2012-2013学年七年级(上)期末数学试卷(含答案)
七年级上期末数学试卷含答案解析 (3)
浙江省温州市苍南县2018-2019学年度七年级上学期期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣22.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×10103.8的立方根为()A. B.C.2 D.±24.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=05.与无理数最接近的整数是()A.5 B.6 C.7 D.86.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3C.4x4y D.x2y27.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是.12.已知∠1=30°,则∠1的补角的度数为度.13.若x﹣3与1互为相反数,则x=.14.用代数式表示“a的2倍与b的的和”.15.计算:(﹣)×(﹣6)=.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是.(直接写出答案)23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有个.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.浙江省温州市苍南县2015~2016学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个选项是正确的,不选、多选、错选均不给分)1.在数1,0,﹣1,﹣2中,最大的数是()A.1 B.0 C.﹣1 D.﹣2【考点】有理数大小比较.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得1>0>﹣1>﹣2,故选:A.【点评】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.2.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为()A.4.6×108B.46×108C.4.6×109D.0.46×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 600 000 000用科学记数法表示为:4.6×109.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.8的立方根为()A. B.C.2 D.±2【考点】立方根.【专题】计算题.【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.4.下列属于一元一次方程的是()A.x+1 B.3x+2y=2 C.3x﹣3=4x﹣4 D.x2﹣6x+5=0【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、x+1是代数式,故A错误;B、3x+2y=2是二元一次方程,故B错误;C、3x﹣3=4x﹣4是一元一次方程,故C正确;D、x2﹣6x+5=0是一元二次方程,故D错误;故选:C.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.与无理数最接近的整数是()A.5 B.6 C.7 D.8【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:<<,得49与51接近,与无理数最接近的整数是7,故选:C.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大是解题关键.6.下列各单项式中,与4x3y2是同类项的是()A.﹣x3y2B.2x2y3C.4x4y D.x2y2【考点】同类项.【分析】根据同类项是字母项相同且相同字母的指数也相同,可得答案.【解答】解:A、字母项相同且相同字母的指数也相同,故A正确;B、相同字母的指数不同,故B错误;C、相同字母的指数不同,故C错误;D、相同字母的指数不同,故D错误;故选:A.【点评】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了2016届中考的常考点.7.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克 B.19.9千克 C.20.1千克 D.20.3千克【考点】正数和负数.【专题】计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.8.实数a,b在数轴上对应的点的位置如图所示,则下列代数式中,表示正数的是()A.﹣b B.﹣a C.a﹣b D.a+b【考点】实数与数轴.【分析】根据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得a<﹣1,0<b<1.A、﹣b<0,故A错误;B、﹣a>0是正数,故B正确;C、a﹣b<a<0,故C错误;D、a+b<0,故D错误;故选:B.【点评】本题考查了实数与数轴,利用点的坐标得出a、b的值是解题关键.9.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.则其中男生人数比女生人数多()A.11人B.12人C.3人D.4人【考点】一元一次方程的应用.【分析】设男生有x人,女生有人,根据男生每人种3棵,女生每人种2棵,共种了52棵树苗,求出男生和女生的人数,再两者相减即可得出答案.【解答】解:设男生有x人,女生有人,根据题意得:3x+2=52,解得:x=12,女生的人数是:20﹣12=8人,则其中男生人数比女生人数多12﹣8=4(人);故选D.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28 B.29 C.30 D.31【考点】两点间的距离.【分析】根据数轴和题意可知,所有线段的长度之和是AC+CD+DB+AD+CB+AB,然后根据CD=2,线段AB的长度是一个正整数,可以解答本题.【解答】解:由题意可得,图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和是:AC+CD+DB+AD+CB+AB=(AC+CD+DB)+(AD+CB)+AB=AB+AB+CD+AB=3AB+CD,∵CD=2,线段AB的长度是一个正整数,AB>CD,∴当AB=8时,3AB+CD=3×8+2=26,当AB=9时,3AB+CD=3×9+2=29,当AB=10时,3AB+CD=3×10+2=32.故选B.【点评】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(本题有8小题,每小题3分,共24分)11.﹣4的绝对值是4.【考点】绝对值.【专题】计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.已知∠1=30°,则∠1的补角的度数为150度.【考点】余角和补角.【专题】计算题.【分析】若两个角的和等于180°,则这两个角互补.根据已知条件直接求出补角的度数.【解答】解:∵∠1=30°,∴∠1的补角的度数为=180°﹣30°=150°.故答案为:150.【点评】本题考查了补角的定义,解题时牢记定义是关键.13.若x﹣3与1互为相反数,则x=2.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:x﹣3+1=0,解得:x=2,故答案为:2【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.用代数式表示“a的2倍与b的的和”.【考点】列代数式.【分析】本题考查列代数式,要明确给出文字语言中的运算关系,先求倍数,然后求和.【解答】解:用代数式表示“a的2倍与b的的和”为:,故答案为:【点评】此题考查代数式问题,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“和”等,从而明确其中的运算关系,正确地列出代数式.15.计算:(﹣)×(﹣6)=﹣1.【考点】有理数的乘法.【专题】计算题;实数.【分析】原式利用乘法分配律计算即可得到结果.【解答】解:原式=﹣4+3=﹣1,故答案为:﹣1【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.16.如果代数式x﹣4y的值为3,那么代数式2x﹣8y﹣1的值等于5.【考点】代数式求值.【分析】根据题意得出x﹣4y=3,再变形后代入求出即可.【解答】解:根据题意得:x﹣4y=3,所以2x﹣8y﹣1=2(x﹣4y)﹣1=2×3﹣1=5,故答案为:5.【点评】本题考查了求代数式的值的应用,能整体代入是解此题的关键.17.如图,直线AB,CD相交于点O,OE平分∠BOD,若∠AOE=144°,则∠AOC的度数是72°.【考点】对顶角、邻补角;角平分线的定义.【分析】根据两直线相交,对顶角相等,可推出∠AOC=∠DOB,又根据OE平分∠BOD,∠AOE=144°,可求∠BOE,从而可求∠BOD,根据对顶角的性质即可得到结论.【解答】解:∵AB、CD相交于O,∴∠AOC与∠DOB是对顶角,即∠AOC=∠DOB,∵∠AOE=144°,∴∠BOE=180°﹣∠AOE=36°,又∵OE平分∠BOD,∠BOE=30°,∴∠BOD=2∠BOE=2×36°=72°,∴∠BOD=∠AOC=72°,故答案为:72°.【点评】本题主要考查对顶角的性质以及角平分线的定义、邻补角,解决本题的关键是求出∠BOE.18.把六张形状大小完全相同的小长方形卡片(如图1)不重叠地放在一个底面为长方形(长为20cm,宽为16cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是64cm.【考点】列代数式.【专题】应用题.【分析】设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,根据图示可得两块阴影部分长的和为20cm,宽表示为(16﹣3y)cm和(16﹣x)cm,再求周长即可.【解答】解:设小长方形长为xcm,宽为ycm,由题意得:y+3x=20,阴影部分周长的和是:20×2+(16﹣3y+16﹣x)×2=104﹣6y﹣2x=104﹣2(3y+x)=104﹣40=64(cm),故答案为:64cm.【点评】此题主要考查了列代数式,关键是正确理解题意,根据图示表示出阴影部分的长和宽.三、解答题(本题有6小题,共46分)19.计算:(1)3+(﹣1)﹣(﹣5)(2)+(﹣3)2×(﹣).【考点】实数的运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方及算术平方根运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=3﹣1+5=8﹣1=7;(2)原式=2+9×(﹣)=2+(﹣3)=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解方程:(1)2(x﹣4)=1﹣x(2)+=1.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣8=1﹣x,移项合并得:3x=9,解得:x=3;(2)去分母得:2x+3x﹣6=6,移项合并得:5x=12,解得:x=2.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.先化简,再求值:2(a﹣ab)+(4ab﹣2b)﹣a,其中a=3,b=﹣2.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a﹣2ab+2ab﹣b﹣a=a﹣b,当a=3,b=﹣2时原式=3﹣(﹣2)=3+2=5.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.22.如图,点O是直线EF上一点,射线OA,OB,OC在直线EF的上方,射线OD的直线EF的下方,且OF平分∠COD,OA⊥OC,OB⊥OD.(1)若∠DOF=25°,求∠AOB的度数.(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)【考点】垂线;角平分线的定义.【分析】(1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,由平角的定义可得5x+90°﹣2x=180°,解得x,即得结果.【解答】解:(1)∵∠DOF=25°,OF平分∠COD,∴∠DOC=50°,∵OB⊥OD,∴∠BOC=90°﹣50°=40°,∵OA⊥OC,∴∠AOB=90°﹣∠BOC=50°;(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,∴∠COD=∠AOB,设∠DOF=∠COF=x,∵OA平分∠BOE,∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°﹣2x,∴5x+90°﹣2x=180°,解得:x=30°,即∠DOF=30°.故答案为:30°.【点评】本题主要考查了角平分线的定义和垂直的定义,利用定义得出各角的度数是解答此题的关键.23.学校组织植树活动,已知在甲处植树的有14人,在乙处植树的有6人,现调70人去支援.(1)若要使在甲处植树的人数与在乙处植树的人数相等,应调往甲处31人.(2)若要使在甲处植树的人数是在乙处植树人数的2倍,问应调往甲、乙两处各多少人?(3)通过适当的调配支援人数,使在甲处植树的人数恰好是在乙处植树人数的n倍(n是大于1的正整数,不包括1.)则符合条件的n的值共有6个.【考点】一元一次方程的应用.【分析】(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数,根据等量关系列出方程,再解即可;(2)设调往甲处x人,则调往乙处(70﹣x)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×2,根据等量关系列出方程,再解即可;(3)设调往甲处z人,则调往乙处(70﹣z)人,由题意得等量关系:在甲处植树的人数=在乙处植树的人数×n,根据等量关系列出方程,再求出整数解即可.【解答】解:(1)设调往甲处y人,则调往乙处(70﹣y)人,由题意得:14+y=6+(70﹣y),解得:y=31,故答案为:31;(2)解:设调往甲处x人,则调往乙处(70﹣x)人,由题意得:14+x=2(6+70﹣x),解得:x=46成人数:70﹣46=24(人),答:应调往甲处46人,乙处24人.(3)设调往甲处z人,则调往乙处(70﹣z)人,列方程得14+z=n(6+70﹣z),14+z=n(76﹣z),n=,解得:,,,,,,共6种,故答案为:6.【点评】此题主要考查了一元一次方程的应用以及二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.24.如图,线段AB=10,动点P从点A出发,以每秒1个单位的速度,沿线段AB向终点B运动,同时,另一个动点Q从点B出发,以每秒3个单位的速度在线段AB上来回运动(从点B向点A运动,到达点A后,立即原速返回,再次到达B点后立即调头向点A运动.)当点P到达B点时,P,Q两点都停止运动.设点P的运动时间为x.(1)当x=3时,线段PQ的长为2.(2)当P,Q两点第一次重合时,求线段BQ的长.(3)是否存在某一时刻,使点Q恰好落在线段AP的中点上?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.【考点】一元一次方程的应用;两点间的距离.【专题】几何动点问题;压轴题;存在型;数形结合;分类讨论;方程思想;一次方程(组)及应用.【分析】(1)结合图形,表示出AP、AQ的长,可得PQ;(2)当P,Q两点第一次重合时,点P运动路程+点Q运动路程=AB的长,列方程可求得;(3)点Q落在线段AP的中点上有以下三种情况:①点Q从点B出发未到点A;②点Q到达点A 后,从A到B;③点Q第一次返回到B后,从B到A,根据AP=2AQ列方程可得.【解答】解:(1)根据题意,当x=3时,P、Q位置如下图所示:此时:AP=3,BQ=3×3=9,AQ=AB﹣BQ=10﹣9=1,∴PQ=AP﹣AQ=2;(2)设x秒后P,Q第一次重合,得:x+3x=10解得:x=2.5,∴BQ=3x=7.5;(3)设x秒后,点Q恰好落在线段AP的中点上,根据题意,①当点Q从点B出发未到点A时,即0<x<时,有x=2(10﹣3x),解得;②当点Q到达点A后,从A到B时,即<x<时,有x=2(3x﹣10),解得x=4;③当点Q第一次返回到B后,从B到A时,即<x<10时,有x=2(30﹣3x),解得;综上所述:当x=或x=4或x=时,点Q恰好落在线段AP的中点上.故答案为:(1)2.【点评】本题考查了数轴、一元一次方程的应用,解答(3)题,对x分类讨论是解题关键,属中档题.。
2023-2024学年北京市海淀区七年级(上)期末数学试卷+答案解析
2023-2024学年北京市海淀区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.的倒数是.()A. B. C.5 D.2.“霜降见霜,谷米满仓”,2023年我国粮食再获丰收.据统计,去年秋粮的种植面积为亿亩,比前年增加了700多万亩,奠定了增产的基础.将1310000000用科学记数法表示应为.()A. B. C. D.3.下列各组有理数的大小关系中,正确的是.()A. B. C. D.4.方程的解是.()A. B. C. D.5.下列运算结果正确的是.()A. B.C. D.6.已知等式,则下列等式中不一定成立的是()A. B. C. D.7.如图,D是线段AB的中点,C是线段AD的中点,若,则线段CB的长度为.()A.2acmB.C.3acmD.8.已知有理数x,y在数轴上对应点的位置如图所示,那么下列结论正确的是.()A. B. C. D.9.如图,在正方形网格中有A,B两点,点C在点A的南偏东方向上,且点C在点B的东北方向上,则点C可能的位置是图中的.()A.点处B.点处C.点处D.点处10.某玩具厂在生产配件时,需要分别从棱长为2a的正方体木块中,挖去一个棱长为a的小正方体木块,得到甲、乙、丙三种型号的玩具配件如图所示将甲、乙、丙这三种配件的表面积分别记为、、,则下列大小关系正确的是注:几何体的表面积是指几何体所有表面的面积之和.()A. B. C. D.二、填空题:本题共6小题,每小题2分,共12分。
11.如果单项式与是同类项,那么__________.12.若关于x的一元一次方程的解为正数,则m的一个取值可以为__________.13.小明一家准备自驾去居庸关长城游玩.出发前,爸爸用地图软件查到导航路程为,小明用地图软件中的测距功能测出他家和目的地之间的距离为,如图所示,小明发现他测得的距离比爸爸查到的导航路程少.请你用所学数学知识说明其中的道理:__________.14.有这样一个问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余18本,如果每人分4本,则还缺22本.这个班有多少学生?设这个班有x名学生,则可列方程为__________只列不解15.如图所示的网格是正方形网格,则__________填“>”“<”或“=”16.记为M,为我们知道,当这两个代数式中的x取某一确定的有理数时,M和N的值也随之确定,例如当时,若x和M,N的值如下表所示.x的值2cM的值3bN的值ab则a和c的值分别是:①__________;②__________.三、计算题:本大题共2小题,共20分。
2023-2024学年天津市部分区七年级(上)期末数学试卷+答案解析
2023-2024学年天津市部分区七年级(上)期末数学试卷一、选择题:本题共12小题,每小题3分,共36分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,是负整数的是()A.0B.C.D.2.袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年努力,目前我国杂交水稻种植面积约为亿亩.将250000000用科学记数法表示应为()A. B. C. D.3.如图所示的几何体,从上往下看的视图是()A. B. C. D.4.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若把气温为零上记作,则表示气温为()A.零上B.零下C.零上D.零下5.下面的计算正确的是()A. B.C. D.6.如果是关于x的方程的解,那么a的值为()A. B.4 C.6 D.107.若多项式为常数化简后的结果不含字母y,则a的值为()A. B.0 C.2或 D.68.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它的北偏东的方向上,观测到小岛B在它的南偏西的方向上,则的度数是()A.B.C.D.9.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A. B. C. D.10.A,B,C三点在同一直线上,线段,,那么A,C两点的距离是()A.1cmB.9cmC.1cm或9cmD.以上答案都不对11.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.设人数为x,则可列方程为()A. B. C. D.12.观察如图“蜂窝图”,按照这样的规律,第2024个图案中的“”的个数是()A.6074B.6072C.6073D.6068二、填空题:本题共6小题,每小题3分,共18分。
13.已知一个角是,则它的余角是______.14.按括号内的要求,用四舍五入法求近似数:精确到______.15.如图所示,在我国“西气东输”的工程中,从A城市往B城市架设管道,有三条路可供选择,在不考虑其他因素的情况下,架设管道的最短路线是______,依据是______.16.若,则______,______.17.如图,,OC平分,OD平分,则的大小为______度18.已知数轴上A,B两点所对应的数分别是1和3,P为数轴上任意一点,对应的数为,B两点之间的距离为______;式子的最小值为______.三、计算题:本大题共1小题,共8分。
2022-2023学年七年级上学期数学期末检测试题(含答案)
2022-2023学年七年级上学期数学期末检测试题(含答案)一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.32.(3分)单项式x2yz2的次数为()A.B.6C.5D.33.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×1066.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.20229.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是.12.(4分)比较大小:﹣﹣.(用“>”“=”或“<”连接)13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=.14.(4分)已知a2+a=3,则2a2+2a+2020的值为.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要根火柴棍,第n个图形需要根火柴棍.三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE 的度数是.(直接写出结果)25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动秒追上点R,此时点P在数轴上表示的数是.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一个符合题意)1.(3分)下列选项中,是负分数的是()A.﹣5B.0C.﹣D.3【解答】解:﹣是分数,且小于0,是负分数,故选:C.2.(3分)单项式x2yz2的次数为()A.B.6C.5D.3【解答】解:单项式的次数是:2+1+2=5.故选:C.3.(3分)2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是()A.经过一点有无数条直线B.两点之间,线段最短C.两点之间,直线最短D.两点确定一条直线【解答】解:2022年9月30日下午,成绵苍巴高速公路项目苍巴段凉水村隧道实现双线贯通,为明年建成通车奠定了坚实基础,在修公路时有时需要挖隧道,其体现的数学道理是两点之间,线段最短,故选:B.4.(3分)下列运用等式的性质进行变形,正确的是()A.由3m﹣1=5得到3m=5+1B.由3x=﹣6得到x=2C.由ac=bc得到a=b D.由a=b得到a+c=b﹣c【解答】解:A、由3m﹣1=5得到3m=5+1,故A符合题意;B、由3x=﹣6得到x=﹣2,故B不符合题意;C、由ac=bc(c≠0)得到a=b,故C不符合题意;D、由a=b得到a+c=b+c,故D不符合题意;故选:A.5.(3分)脆香甜柚是苍溪县农业局从柚芽变中选育出来的早熟良种,平均单果重1300克左右,已种植1万余亩,商品果产量6000吨,单价一般为每千克6元,可得毛利润约为36000000元.数据36000000用科学记数法可表示为()A.3.6×107B.0.36×108C.3.6×108D.3.6×106【解答】解:36000000=3.6×107.故选:A.6.(3分)一个两位数,用x表示十位数字,用y表示个位数字,则这个两位数表示为()A.xy B.x+y C.10y+x D.10x+y【解答】解:个位数字是y,十位数字是x,这个两位数可表示为10x+y.故选:D.7.(3分)如图所示是一个正方体的展开图,图中的六个正方形内分别标有:有、志、者、事、竟、成,将其围成一个正方体后,与“有”所在面相对面上的字是()A.竟B.成C.事D.者【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“志”相对的字是“事”;“者”相对的字是“成”;“有”相对的字是“竟”.故选:A.8.(3分)如果|a+2|+|b﹣1|=0,那么(a+b)2022的值为()A.﹣1B.1C.﹣2022D.2022【解答】解:由题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2022=(﹣2+1)2022=1.故选:B.9.(3分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售20件的销售额,与按这种服装每件的标价降低27元销售25件的销售额相等.设这种服装每件的标价为x元,根据题意可列方程为()A.20×8x=25(x﹣27)B.20×0.8x=25(x﹣27)C.20×8x=25(x+27)D.20×0.8x=25(x+27)【解答】解:根据题意得20×0.8x=25(x﹣27).故选:B.10.(3分)已知A,B,C三点在数轴上从左向右依次排列,且AC=3AB=6,若B为原点,则点A所表示的数是()A.﹣4B.4C.﹣2D.2【解答】解:∵3AB=6,∴AB=2,∵B为原点,A,B,C三点在数轴上从左向右排列,∴点A在原点左侧,∴点A表示的数是﹣2,故选:C.二、填空题(本大题共6小题,每小题4分,共24分,把正确答案直接写在答题卡对应题目的横线上)11.(4分)2022的相反数是﹣2022.【解答】解:2022的相反数是:﹣2022.故答案为:﹣2022.12.(4分)比较大小:﹣>﹣.(用“>”“=”或“<”连接)【解答】解:﹣=﹣,﹣=﹣,∵<,∴﹣>﹣,∴﹣>﹣.故答案为:>.13.(4分)若x=2是关于x的方程3x﹣10=2a的解,则a=﹣2.【解答】解:把x=2代入方程得6﹣10=2a,解得a=﹣2.故答案是:﹣2.14.(4分)已知a2+a=3,则2a2+2a+2020的值为2026.【解答】解:当a2+a=3,2a2+2a+2020=2(a2+a)+2020=2×3+2020=6+2020=2026.故答案为:2026.15.(4分)如图,∠AOC=∠DOE=90°,如果∠AOE=65°,那么∠COD的度数是115°.【解答】解:∵∠AOC=∠DOE=90°,∠AOE=65°,∴∠AOD=∠DOE﹣∠AOE=90°﹣65°=25°,∴∠COD=∠AOC+∠AOD=90°+25°=115°,故答案为:115°.16.(4分)如图是用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍;拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;…照这样拼图,则第4个图形需要9根火柴棍,第n个图形需要(2n+1)根火柴棍.【解答】解:设第n个图形需要a n(n为正整数)根火柴棒,观察发现规律:第1个图形需要火柴棍:3=1×2+1,第2个图形需要火柴棍:5=2×2+1;第3个图形需要火柴棍:7=3×2+1,第4个图形需要火柴棍:4×2+1=9,……,∴第n个图形需要火柴棍:2n+1.故答案为:9,(2n+1).三、解答题(本大题共10小题,共96分,要求写出必要的解题步骤或证明过程)17.(6分)计算:(1)()×(﹣63);(2)﹣22×(﹣)﹣(﹣3)3÷9.【解答】解:(1)原式=×(﹣63)﹣×(﹣63)﹣×(﹣63)=﹣7+18+12=23;(2)原式=﹣4×(﹣)﹣(﹣27)÷9=3+3=6.18.(8分)解方程:(1)6﹣3x=2(2﹣x);(2)﹣1=.【解答】解:(1)6﹣3x=2(2﹣x),去括号,得6﹣3x=4﹣2x,移项,得2x﹣3x=4﹣6,合并同类项,得﹣x=﹣2,系数化为1,得x=2;(2)﹣1=,去分母,得3(3x﹣1)﹣6=2(4x﹣7),去括号,得9x﹣3﹣6=8x﹣14,移项,得9x﹣8x=3+6﹣14,合并同类项,得x=﹣5.19.(8分)先化简,再求值:3ab﹣2(ab﹣a2b)﹣3a2b,其中a=2,6=﹣1.【解答】解:3ab﹣2(ab﹣a2b)﹣3a2b=3ab﹣2ab+3a2b﹣3a2b=ab,当a=2,b=﹣1时,原式=2×(﹣1)=﹣2.20.(9分)如图是由8个相同的小立方体组成的几何体,请在下列方框内画出它的从三个方向所看到的平面图形(线条用黑色签字笔描黑).【解答】解:从正面看从左面看从上面看21.(9分)红阳猕猴桃是在苍溪野生资源中选育出的珍稀品种,为中国特有,小青买了10箱红阳猕猴桃,每箱的标准质量是5千克,将超出标准质量的千克数记为正数,不足标准质量的千克数记为负数,记录结果如下:﹣0.25,+0.15,﹣0.05,+0.2,﹣0.1,﹣0.2,﹣0.1,+0.05,0,+0.1(1)求这10箱红阳猕猴桃的质量;(2)求这10箱红阳猕猴桃的平均质量.【解答】解:(1)10×5+(﹣0.25+0.15﹣0.05+0.2﹣0.1﹣0.2﹣0.1+0.05+0+0.1)=50+(﹣0.2)=49.8(千克),答:这10箱红阳猕猴桃的质量为49.8千克;(2)49.8÷10=4.98(千克),答:这10箱红阳猕猴桃的平均质量为4.98千克.22.(10分)(1)如图所示,已知线段a,b.①作射线AM;②在射线AM上依次截取AC=CD=a;③在线段DA上截取DB=b.由作图可知AB=2a﹣b.(用含a,b的式子表示)(2)在(1)的作图基础上,若a=10,b=8,E为线段AC的中点,F为线段BD的中点,求线段EF的长.【解答】解:(1)由作图可知,AD=2a,DB=b,∴AB=AD﹣DB=2a﹣b.故答案为:2a﹣b;(2)∵E为线段AC的中点,F为线段BD的中点,a=10,b=8,∴AE=AC=a=5,FD=BD=b=4,由(1)可知,AD=2a=20,∴EF=AD﹣AE﹣DF=20﹣5﹣4=11.23.(10分)为了全面贯彻党的教育方针,培养学生劳动技能,学校组织七年级学生乘车前往某社会实践基地进行劳动实践活动.若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量增加4辆,并空出2个座位.问:计划调配36座的新能源客车多少辆?该校七年级共有多少名学生?【解答】解:设计划调配36座的新能源客车x辆,则该校七年级共有(36x+2)名学生,根据题意得:36x+2=22(x+4)﹣2,解得:x=6,∴36x+2=36×6+2=218.答:计划调配36座的新能源客车6辆,该校七年级共有218名学生.24.(10分)如图所示,∠AOB=90°,OD,OE分别是∠AOC和∠BOC的平分线.(1)当∠BOC=30°时,求∠DOE的度数;(2)当∠BOC为锐角a时,∠DOE的度数是45°.(直接写出结果)【解答】解:(1)∵∠BOC=30°,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=30°+90°=120°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×120°=60°,∠COE=∠BOC=×30°=15°,∴∠DOE=∠COD﹣∠COE=60°﹣15°=45°;即∠DOE的度数是45°;(2)45°,理由如下:∵∠BOC=α,∠AOB=90°,∴∠AOC=∠BOC+∠AOB=α+90°,又∵OD,OE平分∠AOC和∠BOC的角平分线,∴∠COD=∠AOC=×(α+90°)=α+45°,∠COE=∠BOC=α,∴∠DOE=∠COD﹣∠COE=α+45°﹣α=45°.故答案为:45°.25.(12分)为响应国家节能减排的号召,各地市先后出台了居民用电“阶梯价格”制度,下表是某市的阶梯电价收费标准(每月):阶梯用电量(单位:度)电费价格(单位:元/度)一档不超过220度的电量0.500.55二档220至420度(含420度)的电量三档超过420度的电量0.80(1)小明家八月份共用电450度,求小明家八月份应交多少电费?(2)如果某户居民某月用电a度(220<a≤420),请用含a的式子表示该户居民该月应交电费;(3)小刚家十月份的电费是176元,求小刚家该月用电多少度.【解答】解:(1)0.5×220+0.55×(420﹣220)+0.8×(450﹣420)=0.5×220+0.55×200+0.8×30=110+110+24=244(元).答:小明家八月份应交244元电费;(2)根据题意得:该户居民该月应交电费0.5×220+0.55(a﹣220)=(0.55a﹣11)元.(3)根据题意得:0.55a﹣11=176,解得:a=340.答:小刚家该月用电340度.26.(14分)已知数轴上两点A,B表示的数分别为﹣4,2.(1)动点P从A出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P、R同时出发,点P运动3秒追上点R,此时点P在数轴上表示的数是2.(2)若点P从A出发,以每秒2个单位的速度沿数轴向右匀速运动,点R从B出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P、R同时出发,运动时间为t秒,试探究:t为何值时,点P、R两点间的距离为4个单位?【解答】解:(1)设点P、R运动时间是t秒,则运动后P表示的数是﹣4+3t,R运动后表示的数是2+t,根据题意得:﹣4+3t=2+t,解得t=3,∴点P运动3秒追上点R,此时点P在数轴上表示的数是﹣4+3×3=5,故答案为:3,5;(2)当点P、R运动时间为t秒时,点P在数轴上表示的数是﹣4+2t,点Q在数轴上表示的数是2﹣t,根据题意得:|(﹣4+2t)﹣(2﹣t)|=4,化简得:3t﹣6=4或3t﹣6=﹣4,解得t=或t=,答:当t=秒或秒时,点P、R两点间的距离为4个单位.。
2013—2014学年度七年级第二学期期末调研考试数学试题(含答案)
2013—2014学年度七年级第二学期期末调研考试数 学 试 卷(人教版)注意:本试卷共8页,满分为120分,考试时间为120分钟.一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.点到直线的距离是指……………………………………………………………( ) A .从直线外一点到这条直线的垂线 B .从直线外一点到这条直线的垂线段 C .从直线外一点到这条直线的垂线的长 D .从直线外一点到这条直线的垂线段的长2.如图,将直线l 1沿着AB 的方向平移得到直线l 2,若∠1=50°, 则∠2的度数是…………………………………………( ) A .40° B .50° C .90° D .130°3.下列语句中正确的是…………………………………………………………( ) A .-9的平方根是-3 B .9的平方根是3 C .9的算术平方根是±3 D .9的算术平方根是34.下列关于数的说法正确的是……………………………………………………( ) A .有理数都是有限小数 B .无限小数都是无理数 C .无理数都是无限小数 D .有限小数是无理数5.点(-5,1)所在的象限是……………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.将点A (2,1)向左平移2个单位长度得到点A ′,则点A ′的坐标是………( ) A .(0,1) B .(2,-1) C .(4,1) D .(2,3)7.下列调查中,适宜采用全面调查方式的是……………………………………( ) A .对我国首架大陆民用飞机各零部件质量的检查A Bl 1l 212 (2题图)B .调查我市冷饮市场雪糕质量情况C .调查我国网民对某事件的看法D .对我市中学生心理健康现状的调查8.二元一次方程3x +2y =11………………………………………………………( ) A .任何一对有理数都是它的解 B .只有一个解 C .只有两个解 D .有无数个解9.方程组⎩⎨⎧=+=+32y x y x ■,的解为⎩⎨⎧==■y x 2,则被遮盖的两个数分别为…………( )A .1,2B .5,1C .2,3D .2,410.如图是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对食品支出费用判断正确的是…………………………………………………………( )A .甲户比乙户多B .乙户比甲户多C .甲、乙两户一样多D .无法确定哪一户多11.如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x ,y ,那么下列求出这两个角的度数的方程是………………………( )A .⎩⎨⎧-==+10180y x y xB .⎩⎨⎧-==+103180y x y xC .⎩⎨⎧+==+10180y x y x D .⎩⎨⎧-==1031803y x y12.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a 米,后两名的平均身高为b 米.又前两名的平均身高为c 米,后三名的平均身高为d 米,则………………………………………………………………………………( ) A .2b c +>2b a + B .2b a +>2b c + C .2b c +=2ba +D .以上都不对ABC1 2O (11题图)二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.在同一平面内,已知直线a 、b 、c ,且a ∥b ,b ⊥c ,那么直线a 和c 的位置关系是___________. 14.下列说法中①两点之间,直线最短;②经过直线外一点,能作一条直线与这条直线平行; ③和已知直线垂直的直线有且只有一条;④在平面内过一点有且只有一条直线垂直于已知直线. 正确的是:_______________.(只需填写序号)15.11在两个连续整数a 和b 之间,a <11<b ,那么b a 的立方根是____________. 16.在实数3.14,-36.0,-66,0.13241324…,39 ,-π,32中,无理数的个数是______. 17.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.18.某空调生产厂家想了解一批空调的质量,把仓库中的空调编上号,然后抽取了编号为5的倍数的空调进行检验.你认为这种调查方式_____________.(填“合适”或“不合适”)19.如图,围棋盘放置在某个平面直角坐标系内,如果白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋的坐标应该是_________________.20.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为________元.(19题图)(20题图)三、解答题(共72分.解答应写出文字说明、证明过程或演算步骤) 21.解下列方程组或不等式(组):(1,2小题各4分,3小题6分, 共14分)(1)⎩⎨⎧-=+=+;62,32y x y x(2)⎩⎨⎧=-=+;2463,247y x y x(3)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx --⎧⎪⎨--<⎪⎩≤, ① ②22.(本题8分)如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.23.(本题6分)小刘是快餐店的送货员,如果快餐店的位置记为(0,0),现有位置分别是A (100,0),B (150,-50),C (50, 100)三位顾客需要送快餐,小刘带着三位顾客需要的快餐从快餐店出发,依次送货上门服务,然后回到快餐店.请你设计一条合适的送货路线并计算总路程有多长.(画出坐标系后用“箭头”标出)ADB CE24.(本题10分)已知:如图,AD ⊥BC 于D ,EG ⊥BC 于G ,AE =AF .求证:AD 平分∠BAC .25.应用题(本题10分)某校为了解七年级学生体育测试情况,以七年级(1)班学生的体育测试成绩为样本,按A ,B ,C ,D 四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下)(1)请把条形统计图补充完整;(2)样本中D 级的学生人数占全班学生人数的百分比是__________; (3)扇形统计图中A 级所在的扇形的圆心角度数是__________;(4)若该校七年级有500名学生,请你用此样本估计体育测试中A 级和B 级的学生人数约为多少人.(24题图)FE ACBGD3 2 1C BD A 46% 20%24%如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?(1)如图,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON 的度数.(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数.(3)如果(1)中∠BOC=β(β为锐角),其他条件不变,求∠MON的度数.(4)从(1)(2)(3)的结果能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计一道以线段为背景的计算题,写出其中的规律来?AMBONC2-1-0 1参考答案题号 1 2 3 4 5 6 7 8 9 10 1112 答案DBDCBAADBDB A12∵a >d ,∴2a +2b <2c +2d , ∴a +b <c +d ,∴<, 即>,故选B .二、填空题 13.a ⊥c ; 14.②,④; 15.4; 16.3; 17.(3,2);18.合适 点拨:因为这样使得该抽样调查具有随机性、代表性. 19.(-3,-7); 20.440. 三、解答题: 21.(1)解:由①得:y =-2x +3……③ ③代入② x +2(-2x +3)=-6 x =4………………………………………………………………………………2分把x =4代入③得 y =-5 ∴原方程组解为 ⎩⎨⎧-==54y x ………………4分(2)解:①×3+②×2得: 27x =54x =2把x =2代入①得:4y =-12y =-3………………………………………………………………………2分 ∴原方程组解为 ⎩⎨⎧-==32y x ……………………………………………4分(3)解:解不等式①,得2x -≥; 解不等式②,得12x <-.在同一条数轴上表示不等式①②的解集,如图所示:…………………………2分……………………………………4分所以,原不等式组的解集是122x -<-≤.……………………………………6分 22.解:∵ DE ∥BC ,∠AED =80°,∴ ∠ACB =∠AED =80°. ………………………………………4分 ∵ CD 平分∠ACB , ∴ ∠BCD =21∠ACB =40°,……………………………………6分 ∴ ∠EDC =∠BCD =40°.…………………………………………8分 23.解:合适的路线有四条,如图所示是其中的一条, 即向北走100 m ,再向东走50 m 到C ;接着向南走 100 m ,再向东走50 m 到A ;接着向东走50 m ,再向 南走50 m 到B ;接着向西走150 m ,再向北走50 m 回到O .尽可能少走重复路段.如图所示,所走的路线 长最短,共为600 m. …………………………………6分 24.证明:∵AD ⊥BC 于D ,EG ⊥BC 于G∴AD ∥EG ,………………………3分 ∴∠2=∠3, ∠1=∠E , ………………5分 ∵AE =AF ∴∠E = ∠3,∴∠1 = ∠2,……………………………8分 ∴AD 平分∠BAC .………………………10分 25.解:(1)条形图补充如图所示.………………3分(2)10%……………………………………5分 (3)72°……………………………………7分 (4)500×(46%+20%)=330(人).………………10分26.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………………6分DB七年级(下)数学期末试卷 第11页(共8页) 解这个方程组,得:⎩⎨⎧==.300,400y x ∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ……………………………………………………………9分(2)依题意,得:300×8000-400×1000-15000-97200=1887800∴批产品的销售款比原料费与运输费的和多1887800元. ……………………12分27.解:(1)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12×120°-12×30°=45°; ……………………………………………………………2分(2)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(α+30°)-12×30°=12α; ……………………………………………………………4分(3)∠MON =∠COM -∠CON =12∠AOC -12∠BOC =12(90°+β)-12β=45°;……6分 (4)∠MON 的大小等于∠AOB 的一半,而与∠BOC 的大小无关;……………9分(5)如图,设线段AB =a ,延长AB 到C ,使BC =b ,点M ,N 分别为AC ,BC 的中点,求MN 的长.规律是:MN 的长度总等于AB 的长度的一半,而与BC 的长度无关.…………12分。
人教版数学七年级上学期期末测试题 (13)含答案
人教版数学七年级上学期期末测试题一、单项选择题(每小题3分,共18分)1.如果零上2℃记作+2℃,那么零下3℃记作()A.﹣3℃B.﹣2℃C.+3℃D.+2℃2.港珠澳大桥全长约为55000米,将数据55000科学记数法表示为()A.0.55×105B.5.5×104C.55×103D.550×1023.如图所示的几何体从上面看得到的图形是()A.B.C.D.4.若x﹣3=2y,则x﹣2y的值是()A.2B.﹣2C.3D.﹣35.下列计算中,正确的是()A.x+x2=x3B.2x2﹣x2=1C.x2y﹣xy2=0D.x2﹣2x2=﹣x26.商店对某种手机的售价作了调整,按原售价的8折出售,此时的利润率为14%,若此种手机的进价为1200元,设该手机的原售价为x元,则下列方程正确的是()A.0.8x﹣1200=1200×14%B.0.8x﹣1200=14%xC.x﹣0.8x=1200×14%D.0.8x﹣1200=14%×0.8x二、填空题(每小题3分,共30分)7.0的相反数是.8.已知|a+1|+(b﹣3)2=0,则a b=.9.种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是:.10.若﹣4x a y+x2y b=﹣3x2y,则a+b=.11.如图,图中阴影部分的面积是.12.将一副三角尺的直角顶点重合并按如图所示摆放,当AD平分∠BAC时,∠CAE=.13.若当x=﹣2018时,式子ax3﹣bx﹣3的值为5,则当x=2018时,式子ax3﹣bx﹣3的值为.14.如图,点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,则∠AOB的度数为°.15.如图,点C在线段AB上,点E、F分别是AB、AC的中点,若BC=4,则EF=.16.某糕点厂中秋节前要制作一批盒装月饼,每盒中2块大月饼和4块小月饼,制作1块大月饼要用0.05kg面粉,制作1块小月饼要用0.02kg面粉,若现共有面粉540kg,设可以生产x盒盒装月饼,则可列方程为.三、解答题(每小题5分,共15分)17.12﹣(﹣18)+(﹣7)﹣15.18.计算:.19.计算(﹣10)3+[(﹣4)2﹣(1﹣32)×2].四、解谷答题〔每小题7分,共21分)20.解下列方程:8x﹣3(3x+2)=6.21.22.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=﹣.五、解答题(每小题8分,共16分)23.在某年全军足球甲级A组的前11场比赛中,某队保持连续不败,共积23分.按比赛规则,胜一场得3分,平一场得1分,那么该队共胜了多少场?24.新定义:若∠α的度数是∠β的度数的n倍,则∠α叫做∠β的n倍角.(1)若∠M=10°21′,请直接写出∠M的3倍角的度数;(2)如图1,若∠AOB=∠BOC=∠COD,请直接写出图中∠AOB的所有2倍角;(3)如图2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度数.六、解答题(每小题10分共20分)25.某玩具厂要生产500个芭比娃娃,此生产任务由甲、乙、丙三台机器承担,甲机器每小时生产12个,乙、丙两台机器的每小时生产个数之比为4:5.若甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.(1)求乙、丙两台机器每小时各生产多少个?(2)由于某种原因,三台机器只能按一定次序循环交替生产,且每台机器在每个循环中只能生产1小时,即每个循环需要3小时.①若生产次序为甲、乙、丙,则最后一个芭比娃娃由机器生产完成,整个生产过程共需小时;②若想使完成生产任务的时间最少,直接写出三台机器的生产次序及完成生产任务的最少时间.26.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.2018-2019学年吉林省吉林市七年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共18分)1.【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作﹣3℃,故选:A.【点评】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个矩形,中间为圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,注意从上边看得到的图形是俯视图.4.【分析】将x﹣3=2y移项即可得.【解答】解:∵x﹣3=2y,∴x﹣2y=3,故选:C.【点评】本题主要考查代数式求值,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.5.【分析】根据同类项的定义和合并同类项的法则进行解答.【解答】解:A、x与x2不是同类项,不能合并,故本选项错误;B、原式=x2,故本选项错误;C、x2y与xy2不是同类项,不能合并,故本选项错误;D、x2﹣2x2=﹣x2,故本选项正确.故选:D.【点评】考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.6.【分析】题目已经设出该手机的原售价为x元,则按原价的8折出售为0.8x,根据“此时的利润率为14%,若此种手机的进价为1200元”,结合进价×利润率=出售价﹣进价,列出方程即可.【解答】解:设该手机的原售价为x元,根据题意得:0.8x﹣1200=1200×14%,故选:A.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.二、填空题(每小题3分,共30分)7.【分析】互为相反数的和为0,那么0的相反数是0.【解答】解:0的相反数是0.故答案为:0.【点评】考查的知识点为:0的相反数是它本身.8.【分析】根据非负数的性质求出a、b的值,再将它们代入a b中求值即可.【解答】解:∵|a+1|+(b﹣3)2=0,∴a+1=0,b﹣3=0,∴b=3,a=﹣1,则a b=(﹣1)3=﹣1.故答案为:﹣1【点评】本题主要考查了非负数的性质,解题的关键是掌握:几个非负数的和等于0,则每一个算式都等于0.9.【分析】根据公理“两点确定一条直线”,来解答即可【解答】解:∵只要定出两个树坑的位置,这条就确定了,∴能使同一行树坑在同一条直线上.故答案为:两点确定一条直线.【点评】本题考查的是“两点确定一条直线”在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.10.【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【解答】解:由同类项的定义可知a=2,b=1,∴a+b=3.【点评】本题考查的知识点为:同类项中相同字母的指数是相同的.11.【分析】根据题意和图形,可以用代数式表示出图中阴影部分的面积,本题得以解决.【解答】解:由题意可得,图中阴影部分的面积是:(x+3)(x+2)﹣2x=x2+5x+6﹣2x=x2+3x+6,故答案为:x2+3x+6.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.12.【分析】依据同角的余角相等,即可得到∠CAE=∠BAD,再根据AD平分∠BAC,即可得出∠CAE=∠BAD=45°.【解答】解:∵∠EAD=∠CAB=90°,∴∠CAE=∠BAD,∵AD平分∠BAC,∴∠BAD=45°,∴∠CAE=45°,故答案为:45°.【点评】此题主要考查了角平分线的定义以及互余两角的定义,正确掌握互余两角的定义是解题关键.13.【分析】把x=﹣2018代入代数式得到﹣20183a+2018b=8,根据添括号法则代入计算即可.【解答】解:当x=﹣2018时,式子ax3﹣bx﹣3的值为5,∴﹣20183a+2018b﹣3=5,∴﹣20183a+2018b=8,当x=2018时,ax3﹣bx﹣3=20183a﹣2018b﹣3=﹣(﹣20183a+2018b)﹣3=﹣8﹣3=﹣11,故答案为:﹣11.【点评】本题考查的是代数式求值,掌握乘方法则,添括号法则是解题的关键.14.【分析】根据方向角的定义以及角的和差,可得∠AOB的度数.【解答】解:∵点A在点O的北偏东60°的方向上,点B在点O的南偏东40°的方向上,∴∠AOB=180°﹣60°﹣40°=80°,故答案为:80.【点评】本题考查了方向角的定义,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.15.【分析】设CE=x,则BE=x+4,根据线段中点的定义得到AE=BE=x+4,求得AC=AE+CE =2x+4,根据线段中点的定义得到CF=AC=x+2,根据线段的和差即可得到结论.【解答】解:设CE=x,则BE=x+4,∵点E是AB的中点,∴AE=BE=x+4,∴AC=AE+CE=2x+4,∵点F是AC的中点,∴CF=AC=x+2,∴EF=CF﹣CE=x+2﹣x=2,故答案为:2.【点评】本题考查了两点间的距离,利用了线段中点的性质得出CM、CN的长,线段的和差得出答案.16.【分析】题目已经设出可以生产x盒盒装月饼,则每盒中2块大月饼的质量为0.05×2x,每盒中4块小月饼的质量为0.02×4x,根据“现共有面粉540kg”,找出等量关系,就可以列出方程.【解答】解:设可以生产x盒盒装月饼,根据题意得:0.05×2x+0.02×4x=540,故答案为:0.05×2x+0.02×4x=540.【点评】本题考查了由实际问题抽象出一元一次方程,正确找出等量关系,列出一元一次方程是解题的关键.三、解答题(每小题5分,共15分)17.【分析】将减法转化为加法,计算加法即可得.【解答】解:原式=12+18﹣7﹣15=30﹣22=8.【点评】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握加减运算法则.18.【分析】本题需先根据有理数的混合运算顺序和法则,分别进行计算,再把所得结果合并即可.【解答】解:原式=,=﹣8.【点评】本题主要考查了有理数的混合运算,在解题时要注意运算顺序和符号是本题的关键.19.【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:原式=﹣1000+[16﹣(﹣8)×2]=﹣1000+32=﹣968.【点评】本题考查的是有理数的运算能力.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.四、解谷答题〔每小题7分,共21分)20.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:8x﹣9x﹣6=6,移项合并得:﹣x=12,解得:x=﹣12.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【分析】这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【解答】解:去分母得:4(5x+4)+3(x﹣1)=24﹣(5x﹣5)去括号得:20x+16+3x﹣3=24﹣5x+5移项合并得:28x=16系数化为1得:.【点评】去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.22.【分析】先根据整式的运算法则化简,然后将a与b的值代入原式即可求出答案.【解答】解:原式=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××()﹣6××=﹣1=【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.五、解答题(每小题8分,共16分)23.【分析】可设该队共胜了x场,根据“11场比赛保持连续不败”,那么该队平场的场数为11﹣x,由题意可得出:3x+(11﹣x)=23,解方程求解.【解答】解:设设该队共胜了x场,根据题意得:3x+(11﹣x)=23,解得x=6.故该队共胜了6场.【点评】此题考查了一元一次方程的应用,列一元一次方程解足球赛问题的关键是抓住胜的场数与平的场数的关系,根据积分总数列出方程.24.【分析】(1)根据题意列式计算即可;(2)根据题意列式计算即可;(3)设∠AOB=α,则∠AOC=3α,∠COD=4α,得到∠BOD=6α,根据∠BOD=90°,求得α=15°,于是得到∠BOC=90°﹣4×15°=30°.【解答】解:(1)∵∠M=10°21′,∴3∠M=3×10°21′=31°3′;(2)∵∠AOB=∠BOC=∠COD,∴∠AOC=2∠AOB,∠BOD=2∠AOB;(3)∵∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,∴设∠AOB=α,则∠AOC=3α,∠COD=4α,∴∠AOD=7α,∴∠BOD=6α,∵∠BOD=90°,∴α=15°,∴∠BOC=90°﹣4×15°=30°.【点评】此题主要考查了角的计算以及余角定义,关键是理清图中角之间的关系,掌握两角和为90°为互余.六、解答题(每小题10分共20分)25.【分析】(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,依据甲、乙、丙三台机器同时生产,刚好在10小时25分钟完成任务.列一元一次方程即可解答;(2)每次循环交替生产48个零件,那么最后一次循环是500除以48的余数,然后按顺序计算即可;(3)速度快的先做即可.【解答】解:(1)设乙机器每小时生产4x个,则丙机器每小时生产5x个,10小时25分钟=小时.依题意得:(12+4x+5x)=500解得:x=4,乙机器每小时生产4x=16个,丙机器每小时生产5x=20个,答:乙机器每小时生产16个,丙机器每小时生产20个,(2)500÷(12+16+20)=10……20,按甲、乙、丙次序交替生产循环10次,共10×3=30小时,最后20个先由甲生产1小时12个,余下8个由乙生产8÷16=0.5小时,∴整个生产过程共需30+1+0.5=31.5小时,故答案为:乙;31.5(3)使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环,生产循环10次,共10×3=30小时,最后20个由丙生产1小时即可,共需30+1=31小时.答:使完成生产任务的时间最少,按丙、乙、甲次序交替生产循环共需31小时.【点评】本题考查了一元一次方程应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,设未知数,得到方程即可解答.26.【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.【解答】解:(1)当t=1时,AP=1,BQ=2,∵AB=4﹣(﹣2)=6,∴PQ=AB﹣AP﹣BQ=3,即d=3.故答案为3;(2)线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1×=,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或;(3)当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4;(4)当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【点评】本题考查了一元一次方程的应用,数轴,两点间的距离,理解题意,分清动点P与动点Q的运动方向、运动速度与运动时间,从而正确进行分类讨论是解题的关键.。
2019-2020学年七年级上学期期末考试数学试卷(附解析)
2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。
山东省济宁市嘉祥县2023-0202学年七年级上学期期末数学试题(含答案)
2023-2024学年度第一学期期末学业水平测试七年级数学试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置,3.答第Ⅰ卷时,必须使用2B 铅笔把答题卡上相应题目的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写,务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题.每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.世界第二长河亚马逊河,其流域面积约为6915000平方千米,数字6915000用科学记数法应表示为()A .B .C .D .2.下列运算正确的是()A .B .C .D .3.下列说法错误的是()A .0是绝对值最小的有理数B .若x 的相反数是,则C .若,则D .任何非零有理数的平方都大于04.将图中的直角三角形绕最长的边旋转一周可以得到一个几何体,从正面看几何体所得到的平面图形是()A .B.66.91510⨯70.691510⨯569.1510⨯5691510⨯43m m -=33323a a a -=-220a b ab -=2yx xy xy -=12-12x =|||6|x =-6x =-C .D .5.下列各式中:①;②;③;④;⑤;⑥;是方程的有()A .3个B .4个C .5个D .6个6.运用等式性质进行变形,错误的是()A .由得到B .由得到C .由得到D .由得到7.下面四个整式中,不能表示图中阴影部分面积的是()A .B .C .D .8.若,且m 、n 异号,则的值为()A .7B .3或C .3D .7或39.如图,点C 、D 为线段上两点,,且,设,则方程的解是()A .B .C .D .10.已知关于x 的方程有非负整数解,则整数a 的所有可能的取值的和为()A .B .23C .D .34第Ⅱ卷(非选择题共70分)二、填空题(本题5个小题,每小题3分,共15分)11.如果方程是关于x 的一元一次方程,那么m 的值是_____________.12.如图,一副三角板中,将一个三角板角的顶点与另一个三角板的直角顶点重合,如果,那么的度数是_____________.0x =23x >220x x +-=120x+=32x -0x y -=a b =a c b c +=+ac bc =a b=213m -=231m =+24x =-2x =-(3)(2)2x x x ++-(3)6x x ++23(2)x x ++25x x +||5,||2m n ==||m n -3-AB 9AC BD +=75AD BC AB +=CD t =37(1)2(3)2tx x x --=-+2x =3x =4x =5x =2263ax xx --=-23-34-23(2)50m m x-++=60︒127∠=︒2∠13.如图,是一个正方体的表面展开图,折成正方体后其相对面上的两个数互为相反数,则的值为_____________.14.当时,代数式的值是8,则_____________.15.已知整数,……满足下列条件,,……,依次类推,则的值为_____________.三、解答题:(本大题共7个小题,共55分)16.计算:(每小题3分,共6分)(1)(2)(结果用度、分、秒表示)17.(本题满分7分)(1)先化简,再求值:,其中.(2)解方程:18.(本题满分7分)(1)如图,平面上有射线和B,C 两点,按要求画图.画射线;连接,并延长到点E ,使;(2)已知如图1,点B 在线段上,点D 在线段上,若为线段的中点,2a b c -+1x =-2238ax b -+332a b -++=123,,a a a 121320,1,2a a a a a ==-+=-+343a a =-+2024a 2024211130.55(3)3⎡⎤⎛⎫⎡⎤----÷⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦183********''''︒⨯-︒()()22225333a b ab ab a b ----11,2a b =-=0.40.90.030.0210.50.03y y++-=AP AB BC BC CE BC =AC AB 6cm,4cm,AB BC D ==AC求线段的长度.19.(本题满分7分)在七年级活动课上,有三位同学各拿一张卡片,卡片上分别为A,B,C 三个代数式,三张卡片如下,其中C 的代数式是未知的.C(1)若A 为二次二项式,则k 的值为_____________;(2)若的结果为常数,则这个常数是_____________,此时k 的值为_____________;(3)当时,,求C .20.(本题满分8分)某中学有一些相同的教室需要粉刷墙面.一天2名一级技工去粉刷6个教室,结果其中有40平方米的墙面未来得及粉刷;同样时间内5名二级技工粉刷了9个教室的墙面.每名一级技工比二级技工一天多粉刷34平方米的墙面,求每个教室需要粉刷的墙面面积.(1)方法一:根据题意,甲同学列出的一元一次方程如下:根据甲同学所列的一元一次方程,可知x 表示的意义是_____________;方程两边的代数式表示的意义是_____________;(2)方法二:设每个教室需要粉刷的墙面面积为(请列出方程并写出完整的解答过程).21.(本题满分9分)已知是一个直角,作射线,再分别作和的平分线.图① 图② 备用图备用图如图①,当时,求的度数;(2)如图②,当射线在内绕O 点旋转时,的大小是否发生变化,说明理由;(3)当射线在外绕O 点旋转且为钝角时,画出图形,直接写出相应的的度数(不必写出过程).22.(本题满分11分)今年济宁的天气比往年要寒冷许多,进入12月份以后人们对暖手宝的需求开始增加,某超市第一次共购进300件甲、乙两种品牌的暖手宝,全部出售后赚得2700元.已知甲品牌暖手宝的进价为22元/件,售价为29元/件,乙品牌暖手宝的进价为30元/件,售价为40元/件.(1)该超市第一次购进甲、乙两种暖手宝各多少件?(2)该超市第二次以第一次的进价又购进甲、乙两种暖手宝,其中乙品牌的件数不变;甲品牌按原价销售,DB 22(1)1A x k x =---+()222B x x =--+A B -1k =-2C A B +=2405(34)69x x +-=2m y AOB ∠OC AOC ∠BOC ∠OD OE 、70BOC ∠=︒DOE ∠OC AOB ∠DOE ∠OC AOB ∠AOC ∠DOE ∠乙品牌打九折销售,第二次两种暖手宝都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次购进甲品牌多少件?(3)该超市第三次进货时,厂家给出了如下优惠方案:甲品牌优惠方案一次性购买数量不超过100件的部分超过100件的部分折扣数九折八折乙品牌优惠方案购买总金额不超过3000元超过3000元但不超过5000元超过5000元返现金金额0元直接返现金200元先返购买总金额的5%,再返现金200元已知该超市第三次购进甲品牌共支付了3740元,购进乙品牌共支付了4930元.将第三次购进的甲、乙两种暖手宝全部卖完一共可获得多少利润?2023—2024学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号12345678910答案ABCDBBDADC二、填空题:本题共5小题,每题3分,共15分11.2;12.;13.;14.3;15..三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.计算:(每小题3分,共6分)(1)解:3分(2)解:6分17.(本题7分)(1)解:,2分当时,原式3分57︒2-1012-2024211130.55(3)3⎡⎤⎛⎫⎡⎤----÷⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦11133(59)2⎡⎤⎛⎫=----⨯⨯- ⎪⎢⎥⎝⎭⎣⎦311(4)2⎛⎫=---⨯- ⎪⎝⎭11(4)2⎛⎫=---⨯- ⎪⎝⎭123=--=-183********''''︒⨯-︒72132201950''''=︒-︒7213160201950︒''''''=︒-5211210'''=︒535210'''=︒()()22225333a b ab ab a b----222215539a b ab ab a b =-++22242a b ab =-11,2a b =-=2211124(1)2(1)12222⎛⎫=⨯-⨯-⨯-⨯= ⎪⎝⎭(2)解:,方程可化为:,去分母,得,去括号,得,移项,得,合并同类项,得,化系数为1,得.7分18.(本题7分)(1)解:如图,射线,点E 即为所求;3分(2)解:由题意知,,因为D 为线段的中点,所以,所以,所以线段的长度为.7分19.(本题7分)解:(1)因为为二次二项式,所以,解得,故答案为:1;1分(2)因为,所以0.40.90.030.0210.50.03y y++-=4932153y y++-=3(49)5(32)15y y +-+=1227151015y y +--=1210151527y y -=+-23y =32y =AB 10AC AB BC =+=AC 152CD AC ==1DB CD BC =-=DB 1cm 22(1)1,A x k x A =---+10k -=1k =()222(1)1,22A x k x B x x =---+=--+A B-()222(1)122x k x x x ⎡⎤=---+---+⎣⎦,因为的结果为常数,所以,解得,即若的结果为常数,则这个常数是5,此时k 的值为,故答案为:5,;3分(3)当时,,因为,所以.7分20.(本题8分)(1)解:x 表示的意义是:1名一级技工一天粉刷的墙面面积;2分方程两边的代数式表示的意义是:每个教室需要粉刷的墙面积;4分(2)解:设每个教室需要粉刷的墙面面积为,根据题意得:6分解得7分答:每个教室所刷的墙面面积为.8分21.(本题9分)(1)解:如图,,因为分别平分和,所以,所以;3分图①图②222(1)1224x k x x x =---++-+(1)5k x =-++A B -10k +=1k =-A B -1-1-1k =-()22221,22A x x B x x =-++=--+2C A B +=2C B A=-()()22222221x x x x =--+--++22224442x x x x =-+-+--2226x x =--2m y 64093425y y-=+45y =245m 9020AOC BOC ∠=︒-∠=︒OD OE 、AOC ∠BOC ∠1110,3522COD AOC COE BOC ∠=∠=︒∠=∠=︒45DOE COD COE ∠=∠+∠=︒(2)解:的大小不变,理由是:4分;7分(3)解:的大小发生变化情况为,如图3,则为;如图4,则为,图3图49分(解析如下,供参考)分两种情况:如图3所示,因为分别平分和,所以,;如图4所示,因为分别平分和,所以,所以.22.(本题11分)(1)解:设该超市第一次购进甲种暖手宝x 件,则购进乙种暖手宝件,根据题意可得2分解得所以答:该超市第一次购进甲种暖手宝100件,乙种暖手宝200件.3分(2)解:设第二次购进甲品牌y 件,根据题意可得5分解得DOE ∠1111()452222DOE COD COE AOC COB AOC COB AOB ∠=∠+∠=∠+∠=∠+∠=∠=︒DOE ∠DOE ∠45︒DOE ∠135︒OD OE 、AOC ∠BOC ∠11,22COD AOC COE BOC ∠=∠∠=∠1()452DOE COD COE AOC BOC ∠=∠-∠=∠-∠=︒OD OE 、AOC ∠BOC ∠11,22COD AOC COE BOC ∠=∠∠=∠11()27013522DOE COD COE AOC BOC ∠=∠+∠=∠+∠=⨯︒=︒()300x -()()()292240303002700x x -+--=100x =()300200x -=(2922)(400.930)2002700600y -+⨯-⨯=+300y =答:第二次购进甲品牌300件.6分(3)解:设第三次购进甲品牌a 件,根据题意可得解得8分设第三次购进乙品牌总金额m 元,根据题意可得,解得所以(件)10分所以共获利:(元)答:第三次购进的甲、乙两种暖手宝全部卖完一共可获得4330元利润.11分221000.922(100)0.83740a ⨯⨯+⨯-⨯=200a =(5000)m >(15%)2004930m --=5400m =540030180÷=2920040180374049304330⨯+⨯--=。
初一数学试题]]新人教版初一数学上册期末考试(含答案)[1]
人教版2022-2023学年七上期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.截至2021年12月8日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过3600000000剂次.用科学记数法表示3600000000是( )A .3.6×109B .0.36×109C .3.6×1010D .0.36×10102.下列各组单项式中,是同类项的是( )A .5a ,3abB .4mn ,﹣nmC .﹣2x 2y ,3xy 2D .3ab ,﹣5ab 23.如图,直线AB 、CD 相交于点O ,则推导出“∠AOD =∠BOC ”,下列依据中,最合理的是( )A .同角的余角相等B .等角的余角相等C .同角的补角相等D .等角的补角相等4.已知关于x 的方程2x ﹣a +5=0的解是x =1,则a 的值为( )A .6B .7C .8D .95.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?( )A .1个B .2个C .3个D .4个6.若一个角的余角比它的这个角大20°,则这个角等于( )A .25°B .35°C .45°D .55°7.下列说法中错误的是( )A .数字0是单项式B .单项式b 的系数与次数都是1C .12x 2y 2是四次单项式D .−2πab 3的系数是−238.《孙子算经》中有一道题,原文是:今有三人共车,二车空:二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人?设共有x 人,则( )A .x+23=x 2−9B .x 3+2=x−92C .x 3−2=x+92D .x−23=x 2+99.(3分)如图,已知∠AOB =∠COD =90°,OB 平分∠DOE ,图中有m 对互余的角;图中有n 对互补的角,则m ,n 的值分别为( )A .m =1,n =2B .m =2,n =3C .m =2,n =5D .m =3,n =610.观察下列等式找出规律①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,则(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3的值是( )A .14400B .﹣14400C .14300D .﹣14300二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算:(﹣7)﹣(+5)+(+13)= .12.亚贸广场某件农服的售价为240元,若这件衣服的利润率为50%,则该衣服的进价为 元.13.计算72°﹣29°18′33″的结果是 .14.若方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,则k +2023= .15.已知线段AB =16,直线AB 上有一点C ,且BC =4,点M 是线段AC 的三等分点,则AM 的长是 .16.如图,已知∠AOB =90°,∠COD 在∠AOB 内部且∠COD =45°.下列说法:①如果∠AOC =∠BOD ,则图中有两对互余的角;②如果作OE 平分∠BOC ,则∠AOC =2∠DOE ;③如果作OM 平分∠AOC ,ON 在∠AOB 内部,且∠MON =45°,则OD 平分∠BON ;④如果在∠AOB 外部分别作∠AOC 、∠BOD 的余角∠AOP 、∠BOQ ,则∠AOP+∠BOQ ∠COD =3;其中正确的有 .三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(8分)计算.(1)(5a ﹣3b )+5(a ﹣2b );(2)﹣2×(﹣3)2﹣(﹣2)3÷4.18.(8分)解方程.(1)5(x +2)=14+3x ;(2)x−45+1=x−53.19.(8分)七(31)班有43名志愿者,由于疫情每人捐7个医用口罩或5个抗原检测试剂.现把3个口罩和4个检测试剂配成一套健康包,有意思的是该班捐赠的口罩和抗原试剂刚好配套成整套的健康包,试求该班捐赠口罩和抗原试剂的志愿学生各多少名?20.(8分)按要求完成作图及作答:(1)如图1,请用适当的语句表述点M 与直线l 的关系: ;(2)如图1,画射线PM ;(3)如图1,画直线QM ;(4)如图2,平面内三条直线交于A 、B 、C 三点,将平面最多分成7个不同的区域,点M 、N 是平面内另外两点,若分别过点M 、N 各作一条直线,则新增的两条直线使得平面内最多新增 个不同的区域.21.(8分)如图,∠AOB =110°,OD 平分∠BOC ,∠EOC =3∠AOE .(1)若∠AOD =95°,求∠AOE 的度数.(2)作OF 平分∠EOB ,若∠DOE =65°,求∠FOB 的度数.22.(10分)双十一期间,各大商场进行促销活动,其中“大洋百货”推出了如下活动:活动一:每满300元减50元;活动二:若标价不超过600元时,打九折,若标价超过600元时,则不超过600元的部分打九折,超过600元的部分打六折.设某一商品的标价为x元:(1)x=720时,按方式二应该付多少钱?(2)当300<x<900时,两种方式如何选择才更优惠?23.(10分)如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是﹣12,点C在数轴上表示的数是14.若线段AB以每秒2个单位长度的速度向右匀速运动,同时线段CD以每秒1个单位长度的速度向左匀速运动.设运动时间为ts.(1)当点B与点C相遇时,点A,D在数轴上表示的数分别为,;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=9(单位长度)时,求出此时点B在数轴上表示的数.24.(12分)已知∠AOB=120°,OC为∠AOB内部的一条射线,∠BOC=30°.(1)如图1,若OE平分∠AOB,OD为∠BOC内部的一条射线,∠BOD=5∠COD,求∠DOE的度数;(2)如图2,若射线OM绕着O点从OA开始以12度/秒的速度顺时针旋转至OB结束,在旋转过程中,ON 平分∠AOM,试问2∠BON﹣∠BOM是否为定值,若不是,请说明理由;若是,请求出其值;(3)如图3,若射线OE绕着O点从OA开始以15度/秒的速度顺时针旋转至OB结束、OF同时绕着O点从OB开始以3度/秒的速度逆时针旋转至OA结束,运动时间为t秒,当∠EOC=∠FOC时,求t的值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3600000000=3.6×109.故选:A .2.【解答】解:由“所含的字母相同,且相同字母的指数也相同”可得,选项B 的两个单项式是同类项,故选:B .3.【解答】解:∵∠AOD 与∠BOC 都是∠AOC 的补角,∴∠AOD =∠BOC (同角的补角相等).故选:C .4.【解答】解:把x =1代入方程2x ﹣a +5=0中得:2﹣a +5=0,解得:a =7.故选:B .5.【解答】解:因为圆柱的左视图是矩形,四棱锥的左视图是等腰三角形,圆锥的左视图是等腰三角形,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选:B .6.【解答】解:设这个角等于x °,则它的余角是(90﹣x )°,根据题意得:(90﹣x )°﹣x °=20°,解得:x =35.故这个角等于35°.故选:B .7.【解答】解:A 、数字0是单项式,本选项说法正确,不符合题意;B 、单项式b 的系数与次数都是1,本选项说法正确,不符合题意;C 、12x 2y 2是四次单项式,本选项说法正确,不符合题意;D 、−2πab 3的系数是−2π3,故本选项说法错误,符合题意;故选:D .8.【解答】解:由题意可得:x 3+2=x−92, 故选:B .9.【解答】解:∵OB 平分∠DOE ,∴∠EOB =∠DOB ,∵∠AOB =∠COD =90°,∴∠AOD =∠COB ,∴∠AOE 和∠BOE 互余,∠AOE 和∠BOD 互余,∠BOE 和∠BOD 互余,即m =3;∴∠AOE 和∠AOC 互补,∠AOE 和∠BOC 互补,∠BOE 和∠AOC 互补,∠BOE 和∠BOC 互补,∠AOC 和∠BOD 互补,∠BOC 和∠BOD 互补,即n =6.故选:D .10.【解答】解:∵①13=12;②13+23=32;③13+23+33=62;④13+23+33+43=102;…,∴(﹣5)3+(﹣6)3+(﹣7)3+…+(﹣15)3=﹣(53+63+73+ (153)=﹣[13+23+33+…+153﹣(13+23+33+43)]=﹣(1202﹣102)=﹣14300,故选:D .二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.【解答】解:(﹣7)﹣(+5)+(+13)=﹣7﹣5+13=﹣12+13=1.故答案为:1.12.【解答】解:设该衣服的进价是x 元,依题意有:(1+50%)x =240,解得x =160.高该衣服的进价为160元.故答案为:160.13.【解答】解:72°﹣29°18′33″=71°59′60″﹣29°18′33″=42°41′27″.故答案为:42°41′27″.14.【解答】解:∵方程(k +2)x |k +1|+6=0是关于x 的一元一次方程,∴{k +2≠0|k +1|=1, 解得:k =0,∴k +2023=0+2023=2023.故答案为:2023.15.【解答】解:当点C 在线段AB 上时,∵AB =16,BC =4,∴AC =AB ﹣BC =12,∵点M 是线段AC 的三等分点,∴AM =13AC =4或AM =23AC =8,当点C 在线段AB 的延长线上时,∵AB =16,BC =4,∴AC =AB +BC =20,∵点M 是线段AC 的三等分点,∴AM =13AC =203或AM =23AC =403,∴AM 的长是4或8或203或403. 故答案为:4或8或203或403.16.【解答】解:∵∠AOB =90°,∠COD =45°,∴∠AOC +∠BOD =∠AOB ﹣∠COD =45°.①∵∠AOC =∠BOD ,∠AOC +∠BOD =45°,∴∠AOC =∠BOD =22.5°,∴∠AOD =∠COB =67.5°,∴∠AOD +∠COB =90°,∠BOC +∠AOC =90°,∴图中有两对互余的角,故①正确;②设∠AOC =x ,则∠BOD =45°﹣x ,∴∠BOC =∠BOD +∠COD =45°﹣x +45°=90°﹣x .∵OE 平分∠BOC ,∴∠BOE =12∠BOC =45°−12x ,∴∠DOE=∠BOE﹣∠BOD=(45°−12x)﹣(45°﹣x)=12x,∴∠AOC=2∠DOE,故②正确;③设∠AOC=x,则∠BOD=45°﹣x,∵OM平分∠AOC,∴∠COM=12∠AOC=12x.∴∠CON=∠MON﹣∠COM=45°−12x,∴∠DON=∠COD﹣∠CON=45°﹣(45°−12x)=12x,∴∠BOD不一定等于∠DON,即ON不是∠BOD的平分线,故③错误;④设∠AOC=x,则∠BOD=45°﹣x,∠AOP=90°﹣x,∠BOQ=90°﹣(45°﹣x)=45°+x,∴∠AOP+∠BOQ=90°﹣x+45°+x=135°,∵∠COD=45°,∴∠AOP+∠BOQ∠COD=3,故④正确.故答案为:①②④.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.【解答】解:(1)(5a﹣3b)+5(a﹣2b)=5a﹣3b+5a﹣10b=10a﹣13b;(2)﹣2×(﹣3)2﹣(﹣2)3÷4=﹣2×9﹣(﹣8)÷4=﹣18﹣(﹣2)=﹣16.18.【解答】解:(1)去括号得:10x +10=14+3x ,移项得:10x ﹣3x =14﹣10,合并同类项得:7x =4,解得:x =74;(2)去分母得:3(x ﹣4)+15=5(x ﹣5),去括号得:3x ﹣12+15=5x ﹣25,移项得:3x ﹣5x =12﹣15﹣25,合并同类项得:﹣2x =﹣28,解得:x =14.19.【解答】解:设捐赠口罩的有x 人,则捐赠抗原试剂的有(43﹣x )人, 根据题意得:7x 3=5(43−x)4,即28x =15(43﹣x ),解得x =15,∴43﹣x =43﹣15=28,答:该班捐赠口罩的志愿学生有15名,捐赠抗原试剂的志愿学生有28名.20.【解答】解:(1)点M 与直线l 的关系:M 在直线l 外;故答案为:M 在直线l 外;(2)如图1,直线PM 即为所求;(3)如图1,射线QM 即为所求;(4)如图2,新增的两条直线使得平面内最多新增7个交点. 故答案为:7.21.【解答】解:(1)∵∠AOD =95°,∠AOB =110°,∴∠BOD =∠AOB ﹣∠AOD =110°﹣95°=15°,又∵OD 平分∠BOC ,∴2∠COD =2∠BOD =∠BOC ,∴∠BOC =15°+15°=30°,∴∠AOC=∠AOB﹣∠BOC=110°﹣30°=80°,又∵∠EOC=3∠AOE,∴∠AOE=14∠AOC=14×80°=20°;(2)∵∠DOE=65°,∠AOB=110°,∴∠AOE+∠BOD=∠AOB﹣∠DOE=110°﹣65°=45°,设∠AOE=x°,则∠EOC=3x°,又∵OD平分∠BOC,∴∠BOD=∠COD=(45﹣x)°,∵∠EOC+∠COD=∠DOE=65°,∴3x+(45﹣x)°=65°,∴x=10°,∵OF平分∠EOB,∴∠FOB=12∠EOB=12(∠AOB﹣∠AOE)=12×(110﹣10)=50°.22.【解答】解:(1)(720﹣600)×0.6+600×0.9=612(元);(2)①当300<x<600时,活动一可以优惠50元,活动二标价50÷(1﹣0.9)=500元;当x<500时,活动一更优惠;当x=500时,两种方式优惠一样;当500<x<600时,活动二更优惠;②当x=600时,∵活动一优惠50×2=100元,活动二优惠600×0.1=60元,∴活动一更优惠;③当600<x<900时活动一可以优惠50×2=100元,活动二标价600×0.9+100÷(1﹣0.6)=700元;当x <700时,活动一更优惠;当x =700时,两种方式优惠一样;当700<x <900时,活动二更优惠.23.【解答】解:(1)点A 表示的数是4,点D 表示的数是10,故答案为:4,10;(2)由题意可知点B 表示的数是﹣10,线段CD 的中点在数轴上表示的数是16, (2+1)t =16﹣(﹣10),t =263,答:当t =263时,点B 刚好与线段CD 的中点.(3)①当点B 在点C 的左侧时,(2+1)t +9=14﹣(﹣10),t =5,﹣10+2×5=0;②当点B 在点C 的右侧时,(2+1)t =14﹣(﹣10)+9,t =11,﹣10+2×11=12;答:点B 在数轴上表示的数是0或12.24.【解答】解:(1)∵∠BOC =30°,∠BOD =5∠COD ,∴∠BOD =30°×51+5=25°, 又∵∠AOB =120°,OE 平分∠AOB ,∴∠BOE =120°÷2=60°∴∠DOE =60°﹣25°=35°;(2)2∠BON ﹣∠BOM 为定值,理由如下:设OM 运动t 秒,则∠BOM =120﹣12t ,∠AOM =12t ,∵ON 平分∠AOM ,∴∠NOM =12t ÷2=6t ,∠BON =120﹣12t +6t =120﹣6t ,∴2∠BON ﹣∠BOM =2×(120﹣6t )﹣(120﹣12t )=120°,∴2∠BON ﹣∠BOM 为定值;(3)当OE 在∠AOC 内部时,∵∠EOC =∠FOC ,∴120﹣30﹣15t =30﹣3t ,解得t =5,当OE 与OF 重合时,15t +3t =120°,解得t =203,综上所述,当∠EOC =∠FOC 时,t =5秒或203秒。
七年级(上)期末数学试卷(含答案) (3)
北京市丰台区2018-2019学年七年级(上)期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.(3分)在﹣3,﹣1,2,0这四个数中,最小的数是()A.﹣3 B.﹣1 C.2 D.02.(3分)如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.3.(3分)北京某天的最高气温是6℃,最低气温是﹣1℃,则这天的温差是()A.﹣7℃B.﹣5℃C.5℃D.7℃4.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱5.(3分)如图,小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是()A.经过一点能画无数条直线B.两点之间,线段最短C.两点确定一条直线D.连接两点间的线段的长度,叫做这两点的距离6.(3分)下列运算正确的是()A.4m﹣m=3 B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=07.(3分)2018年10月24日珠港澳大桥正式通车,它是中国境内一座连接珠海、香港和澳门的桥隧工程.其中海底隧道由33节巨型沉管等部件组成,已知每节沉管重约74000吨,那么珠港澳大桥海底隧道所有巨型沉管的总重量约为()A.7.4×104吨B.7.4×105吨C.2.4×105吨D.2.4×106吨8.(3分)有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a>b B.﹣ab<0 C.|a|<|b| D.a<﹣b9.(3分)如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等的图形是()A.B.C.D.10.(3分)如图,表中给出的是某月的月历,任意选取“H”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是()A.63 B.70 C.96 D.105二、填空题(本题共16分,每小题2分)11.(2分)绝对值等于3的数是.12.(2分)单项式﹣x2y3的系数是,次数是.13.(2分)若a,b互为相反数,则5a+5b的值为.14.(2分)若∠α=47°30′,则∠α的补角的度数为.15.(2分)若x=4是关于x的一元一次方程ax=x﹣1的解,则a=.16.(2分)学习直线、射线、线段时,老师请同学们交流这样一个问题:直线上有三点A,B,C,若AB=6,BC=2,点D是线段AB的中点,请你求出线段CD的长.小华同学通过计算得到CD的长是5.你认为小华的答案是否正确(填“是”或“否”).你的理由是.17.(2分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了6天才到达目的地.若设此人第一天走的路程为x里,依题意可列方程为.18.(2分)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.集合中的元素是互不相同的,如一组数1,2,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比有理数可以进行加法运算,集合也可以“相加”.我们规定:集合A与集合B中的所有元素组成的集合称为集合A与集合B的和,记为A+B.若已知A={﹣2,0,1,4,6},B={﹣1,0,4},则A+B.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.(3分)计算:﹣7﹣(﹣13)+(﹣9).20.(4分)计算:﹣8×(+﹣)21.(4分)计算:(﹣1)2019+|﹣|÷(﹣4)×822.(5分)解方程:2x+3(5﹣x)=4.23.(5分)=1﹣.24.(5分)如图,平面上有三个点A,O,B.(1)画直线OA,射线OB;(2)连接AB,用圆规在射线OB上截取OC=AB(保留作图痕迹);(3)用量角器测量∠AOB的大小(精确到度).25.(5分)先化简,再求值:3(a2b+ab2)﹣(3a2b﹣1)﹣ab2﹣1,其中a=1,b=﹣3.26.(5分)如图,∠CAB+∠ABC=90°,AD平分∠CAB,与BC边交于点D,BE平分∠ABC与AC 边交于点E.(1)依题意补全图形,并猜想∠DAB+∠EBA的度数等于;(2)证明以上结论.证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=.(理由:)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠+∠)=.27.(6分)某校初一年级两个班的学生要到航天科普教育基地进行社会大课堂活动,两班学生共104人,其中初一(1)班有40多人,不足50人,教育基地门票价格如下:原计划两班都以班为单位购票,则一共应付1136元,请回答下列问题:(1)初一(1)班有多少人?(2)你作为组织者如何购票最省钱?比原计划省多少钱?28.(6分)如图,数轴上点A对应的有理数为10,点P以每秒1个单位长度的速度从点A出发,点Q以每秒3个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动,设运动时间为t秒.(1)当t=2时,P,Q两点对应的有理数分別是,,PQ=;(2)当PQ=8时,求t的值.29.(6分)阅读下面一段文字:问题:0.能化为分数形式吗?探求:步骤①设x=0.,步骤②10x=10×,步骤③10x=7.,则10x=7×,步骤④10x=7+x,解得:x=.根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是;(2)仿照上述探求过程,请你尝试把0.化为分数形式:步骤①设x=0.,步骤②100x=100×,步骤③;步骤④,解得x=;(3)请你将0.3化为分数形式,并说明理由.参考答案一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.解:如图所示,,由图可知,四个数中﹣3最小.故选:A.2.解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.3.解:这天的温差为6﹣(﹣1)=6+1=7(℃),故选:D.4.解:观察图形可知,这个几何体是三棱柱.故选:A.5.解:小红用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能解释这一现象的数学知识是两点之间,线段最短,故选:B.6.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.7.解:74000×33=2442000(吨),2442000吨≈2.4×106吨.故选:D.8.解:∵由图可知a<0<b,且|a|>|b|,∴a<﹣b.故选:D.9.解:A、∠α=∠β=90°﹣45°=90°,能判断∠α和∠β相等,故本选项错误;B、∠α和∠β都等于90°减去重合的角,故本选项错误;C、不能判断∠α和∠β相等,故本选项正确;D、∠α=∠β=180°﹣45°=135°,能判断∠α和∠β相等,故本选项错误.故选:C.10.解:设“H”型框中的正中间的数为x,则其他6个数分别为x﹣8,x﹣6,x﹣1,x+1,x+6,x+8,这7个数之和为:x﹣8+x﹣6+x﹣1+x+1+x+x+6+x+8=7x.由题意得A、7x=63,解得:x=9,能求得这7个数;B、7x=70,解得:x=10,能求得这7个数;C、7x=96,解得:x=,不能求得这7个数;D、7x=105,解得:x=15,能求得这7个数.故选:C.二、填空题(本题共16分,每小题2分)11.解:绝对值等于3的数是±3.12.解:单项式﹣x2y3的系数为﹣,次数为5.故答案为:﹣,5.13.解:∵a,b互为相反数,∴5a+5b=5(a+b)=0.故答案为:0.14.解:180°﹣47°30′=132°30′,故答案为:132°30′.15.解:把x=4代入方程ax=x﹣1得:4a=4﹣1,解得:a=,故答案为:.16.解:如图1,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=5;如图2,∵AB=6,点D是线段AB的中点,∴DB=3,又BC=2,∴DC=1,∴小华的答案不正确,因为线段DC的长为1或5,故答案为:否;当点C在线段AB上时,CD=1或5.17.解:设此人第一天走的路程为x里,根据题意得:x+++++=378.故答案为:x+++++=378.18.解:∵A={﹣2,0,1,4,6},B={﹣1,0,4},∴由集合的定义,可得A+B={﹣2,﹣1,0,1,4,6}.故答案为:={﹣2,﹣1,0,1,4,6}.三、解答题(本题共54分,第19题3分,第20-21题,每小题3分,第22-26题,每小题3分,第27-29题,每小题3分)19.解:原式=﹣7+13﹣9=﹣3.20.解:原式=﹣1﹣2+12=9.21.解:原式=﹣1﹣××8=﹣1﹣1=﹣2.22.解:去括号得:2x+15﹣3x=4,移项合并得:﹣x=﹣11,解得:x=11.23.解:去分母得:4x﹣1=6﹣6x+2,移项合并得:10x=9,解得:x=0.9.24.解:(1)如图所示,直线OA和射线OB即为所求;(2)如图所示,线段OC即为所求;(3)∠AOB约为40°.25.解:原式=3a2b+3ab2﹣3a2b+1﹣ab2﹣1=2ab2,当a=1,b=﹣3时,原式=2×1×(﹣3)2=2×9=18.26.解:(1)补全图形,并猜想∠DAB+∠EBA的度数等于45°;(2)证明:∵AD平分∠CAB,BE平分∠ABC,∴∠DAB=∠CAB,∠EBA=∠CBA.(理由:角平分线的定义)∵∠CAB+∠ABC=90°,∴∠DAB+∠EBA=×(∠CAB+∠ABC)=45°.故答案为:45°,∠CAB,角平分线的定义,,∠CAB,∠ABC,45°.27.解:(1)设初一(1)班有x人,则初一(2)班有(104﹣x)人,12x+10(104﹣x)=1136,解得,x =48,答:初一(1)有48人; (2)两个班一起购票最省钱,1136﹣8×104=1136﹣832=304(元), 即可以节省304元.28.解:(1)∵10+2×1=12,3×2=6,∴当t =2时,P ,Q 两点对应的有理数分别是12,6, ∴PQ =12﹣6=6. 故答案为:12;6;6;(2)运动t 秒时,P ,Q 两点对应的有理数分别是10+t ,3t . ①当点P 在点Q 右侧时, ∵PQ =8,∴(10+t )﹣3t =8, 解得:t =1;②当点P 在点Q 左侧时, ∵PQ =8,∴3t ﹣(10+t )=8, 解得:t =9.综上所述,t 的值为1秒或9秒.29.解:(1)步骤①到步骤②的依据是等式的基本性质2. 故答案为等式的基本性质2;(2)把0.化为分数形式:步骤①设x =0.,步骤②100x =100×,步骤③100x =37.,则100x =37+0.;步骤④100x =37+x ,解得x =.故答案为100x =37.,则100x =37+0.;100x =37+x ,;11(3)设x =0.,10x =10×0.,10x =8.,10x =8+0.,10x =8+x ,解得:x =.设m =0.3,10m =3.=3+=,m =. 即0.3=.。
苏科版七年级数学上册期末试卷真题(含答案)
初一上学期期末数学试卷一、单选题1. A.1 B.0 C.﹣4 D.﹣6下面四个数中比﹣5小的数是( )2. A. B. C. D.下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是( )3. A.2a 2+3a 2=6a 2 B.2a 2+3a 2=5a 2 C.2xy -xy =1 D.2x 3+3x 3=5x 6下列合并同类项结果正确的是( )4. A.7.5×103 B.75×103 C.7.5×104 D.7.5×105目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )5. A.四边形周长小于三角形周长 B.两点确定一条直线C.垂线段最短D.两点之间,线段最短如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是( )6. A. B. C. D.下图中的图形绕虚线旋转一周,可得到的几何体是( )7.期末复习与测试A. B.C. D.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是元,那么根据题意,所列方程正确的是( )8. A.45 369 B.45 371 C.45 465 D.46 489若x 、y 、z 是三个连续的正整数,若x 2=44944,z 2=45796,则y 2=( )二、填空题9.若3x 4y 2n 和-x 2m y 6是同类项,则m +n = .10.已知是关于x 的一元一次方程的解,则 .11.若∠α=10°45',则∠α的余角等于 .12.若x 2-2x =1,则代数式2x 2-4x -1的值为 .13.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是 .14.如图,点A ,B 在数轴上,点O 为原点,.按如图所示方法用圆规在数轴上截取,若点C 表示的数是15,则点A 表示的数是 .15.如图,直线 a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60°的点在直线a 上,表示135°的点在直线b 上,则∠1= °.期末复习与测试16.已知线段AB =8cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,则线段AM 的长为 .17.小明在计算1-3+5-7+9-11+13-15+17时,不小心把一个运算符号写错了(“+”错写成“-”或“-”错写成“+”),结果算成了-17,则原式从左往右数,第 个运算符号写错了.18.小淇同学在元旦晚会上表演了一个节目:他准备了♥(红桃)和♠(黑桃)的扑克牌各10张,洗匀后将这些牌的牌面朝下,排成两列:一列m (m >10)张,一列(20-m )张,他立刻报出长的一列中的♠(黑桃)比短的一列中的♥(红桃)多了 张.(结果用含有m 的代数式表示)三、解答题19.计算:(1)-12-2+(-3)×;(2).20.先化简,再求值:(3x 2-2xy +5y 2 )-2(x 2-xy -2y 2),其中x =-1,y =2.21.解方程:(1)4(x +3)=2x -1;(2).22.如图,△ABC 的三个顶点均在格点处.(1)过点B 画 AC 的平行线 BD ;(2)过点A 画 BC 的垂线AE ;(请用黑水笔描清楚)23.(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 个期末复习与测试小立方块.24.如图,直线AB 与CD 相交于点O ,.(1)如果,求和的度数.(2)如果,求的度数.25.列方程解应用题:为了加强公民的节水意识,某市将要采用价格调控手段达到节水目的,设计了如下的调控方案.价目表每月用水量 单价不超出10吨的部分 2.5元/吨超出10吨的部分3元/吨(1)甲户居民五月份用水12吨,则水费为 元;(2)乙户居民八月份缴纳水费40元,则该户居民八月份用水多少吨?(列方程解答)26.如图,将一副直角三角板的直角顶点C 叠放在一起.(1)如图(1),若∠DCE =33°,则∠BCD = ,∠ACB = .期末复习与测试(2)如图(1),猜想∠ACB与∠DCE的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A重合在一起,则∠DAB与∠CAE的数量关系为.27.如图,已知直线AB 和CD 相交于点O,∠COE=90°,OF平分∠AOE,∠COF=37°.(1)求∠EOB的度数.(2)若射线OF、OD分别绕着点O按顺时针方向转动,两射线同时出发,射线OF每分钟转动6°,射线OD每分钟转动0.5°,多少分钟后,射线OF与射线OD第一次重合.(3)在(2)的条件下,假设转动时间不超过60分钟,若∠FOD=33°,则两射线同时出发分钟.期末复习与测试初一上学期期末数学试卷(详解)一、单选题 1. A.1 B.0 C.﹣4 D.﹣6【答案】【解析】下面四个数中比﹣5小的数是( )D【详解】试题分析:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选D . 考点:有理数大小比较.2. A. B. C. D.【答案】【解析】下列图形都是由六个相同的正方形组成的,经过折叠不能围成正方体的是( )D【分析】根据正方体的展开图去判断.【详解】∵是正方体的展开图之一,∴能围成正方体,∴A 不符合题意;∵是正方体的展开图之一,∴能围成正方体,∴B 不符合题意;期末复习与测试∵是正方体的展开图之一,∴能围成正方体,∴C 不符合题意;∵不是正方体的展开图之一,∴不能围成正方体,∴D 符合题意;故选D .【点睛】本题考查了正方体的展开图,熟练掌握正方体的各种展开图是解题的关键.3. A.2a 2+3a 2=6a 2 B.2a 2+3a 2=5a 2 C.2xy -xy =1 D.2x 3+3x 3=5x 6【答案】【解析】下列合并同类项结果正确的是( )B【分析】根据合并同类项的法则,进行求解即可.【详解】解:,故A 错误;B 正确;,故C 错误;,故D 错误;故选:B.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项法则.4. A.7.5×103 B.75×103 C.7.5×104 D.7.5×105目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )期末复习与测试【答案】【解析】C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将数据75000用科学记数法表示为7.5×104.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5. A.四边形周长小于三角形周长 B.两点确定一条直线C.垂线段最短D.两点之间,线段最短【答案】【解析】如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是( )D【分析】根据两点之间线段最短解题即可.【详解】解:如图,把三角形剪去一个角,可得期末复习与测试即四边形周长比原三角形的周长小,能正确解释这一现象的是: 两点之间,线段最短,故选:D .【点睛】本题考查线段的性质:两点之间线段最短,是重要考点,难度较易,掌握相关知识是解题关键.6. A. B. C. D.【答案】【解析】下图中的图形绕虚线旋转一周,可得到的几何体是( )C【分析】根据面动成体的原理:上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥,所以应是圆锥和圆柱的组合体.【详解】解:∵上面的长方形旋转一周后是一个圆柱,下面的直角三角形旋转一周后是一个圆锥, ∴根据以上分析应是圆锥和圆柱的组合体.故选C .【点睛】此题主要考查了平面图形与立体图形的联系,可把较复杂的图象进行分解旋转,然后再组合,学生应注意培养空间想象能力.7. A. B.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元,如果设这件夹克衫的成本价是元,那么根据题意,所列方程正确的是( )期末复习与测试C. D.【答案】【解析】A【分析】根据售价的两种表示方法解答,关系式为:标价×80%=进价+28,把相关数值代入即可.【详解】由题意得,标价为:x (1+50%),八折出售的价格为:(1+50%)x×80%;∴可列方程为:(1+50%)x×80%=x+28,故选:A .【点睛】此题考查由实际问题抽象出一元一次方程,根据售价的两种不同方式列出等量关系是解题的关键.8. A.45 369 B.45 371 C.45 465 D.46 489【答案】【解析】若x 、y 、z 是三个连续的正整数,若x 2=44944,z 2=45796,则y 2=( )A【分析】根据有理数的乘方运算求出x 、y 即可解答.【详解】解:∵x 、y 、z 是三个连续的正整数,∴y =x +1,∵x 2=44944=2122,∴x =212,∴y =213,∴y 2=2132=45 369, 期末复习与测试【点睛】本题考查有理数的乘方,熟练掌握有理数的乘方运算是解答的关键.二、填空题9.【答案】【解析】【踩分点】若3x 4y 2n 和-x 2m y 6是同类项,则m +n = .5【分析】根据同类项是字母相同,且相同的字母指数也相同,可得m 、n 的值,代入代数式计算即可.【详解】解:∵3x 4y 2n 和-x 2m y 6是同类项,∴2m =4,2n =6,∴m =2,n =3,∴m +n =5,故答案为:5.【点睛】本题考查了同类项,解一元一次方程,同类项是字母相同,且相同的字母指数也相同.10.【答案】【解析】已知是关于x 的一元一次方程的解,则 .1【分析】把代入方程即可求出结果.【详解】解:把代入得:期末复习与测试【踩分点】故答案是1.【点睛】本题主要考察是一元一次方程的解,难度较小.11.【答案】【解析】【踩分点】若∠α=10°45',则∠α的余角等于 .79°15'【分析】根据如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角进行计算即可.【详解】解:∵∠α=10°45',∴∠α的余角等于:;故答案为:.【点睛】此题主要考查了余角,关键是掌握两角互余和为90°.12.【答案】【解析】若x 2-2x =1,则代数式2x 2-4x -1的值为 .1【分析】将所求式子化为含x 2-2x 的形式,整体代入即可得到答案.【详解】解:∵x 2-2x =1,∴2x 2-4x -1期末复习与测试【踩分点】=2(x 2-2x )-1=2×1-1=1.故答案为:1.【点睛】本题考查了代数式求值,解题的关键是将所求式子化为含x 2-2x 的形式及整体思想的应用.13.【答案】【解析】【踩分点】从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是 .圆柱【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故答案为:圆柱.【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.14.如图,点A ,B 在数轴上,点O 为原点,.按如图所示方法用圆规在数轴上截取,若点C 表示的数是15,则点A 表示的数是 .期末复习与测试【答案】【解析】【踩分点】-5【分析】设点A 表示的数是a ,首先确定点B 表示的数,再确定AB 的长,进而可得BC 的长,然后可得点C 表示的数,根据点C 表示的数是15列出方程,求解即可.【详解】解:设点A 表示的数是a ,∵点O 为原点,OA=OB ,∴点B 表示的数为-a ,AB=-2a ,∵BC=AB ,∴点C 表示的数是-3a ,∴-3a=15,解得a=-5,即点A 表示的数是-5.故答案为:-5.【点睛】此题考查了数轴,一元一次方程的应用,关键是正确确定点B 表示的数.15.【答案】如图,直线 a 、b 相交于点O ,将量角器的中心与点O 重合,发现表示60°的点在直线a 上,表示135°的点在直线b 上,则∠1= °.75期末复习与测试【解析】【踩分点】【分析】先计算∠AOB 的度数,后利用对顶角相等确定即可.【详解】如图,根据题意,得∠AOB =135°-60°=75°,∵∠AOB =∠1,∴∠1=75°,故答案为:75.【点睛】本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.16.【答案】【解析】【踩分点】已知线段AB =8cm ,在直线AB 上有一点C ,且BC =4cm ,M 是线段AC 的中点,则线段AM 的长为 .6cm 或2cm/ 2cm 或6cm【详解】①当点C 在线段AB 的延长线上时,此时AC=AB+BC=12cm ,∵M 是线段AC 的中点,则AM=AC=6cm ;②当点C 在线段AB 上时,AC=AB ﹣BC=4cm ,∵M 是线段AC 的中点,则AM=AC=2cm .故答案为6cm 或2cm .17.小明在计算1-3+5-7+9-11+13-15+17时,不小心把一个运算符号写错了(“+”错写成“-”或“-”期末复习与测试【答案】【解析】【踩分点】错写成“+”),结果算成了-17,则原式从左往右数,第 个运算符号写错了.6【分析】先确定哪一个数的符号出了错,再确定这个符号是第几个.【详解】∵1-3+5-7+9-11+13-15+17=9,∴-17小于9,∴一定是把+错写成减号了,∴这个数为[9-(-17)]÷2=13,∴是第六个符号写错了,故答案为:6.【点睛】本题考查了有理数的混合运算,大小的比较,熟练进行计算是解题的关键.18.【答案】【解析】小淇同学在元旦晚会上表演了一个节目:他准备了♥(红桃)和♠(黑桃)的扑克牌各10张,洗匀后将这些牌的牌面朝下,排成两列:一列m (m >10)张,一列(20-m )张,他立刻报出长的一列中的♠(黑桃)比短的一列中的♥(红桃)多了 张.(结果用含有m 的代数式表示)(m -10)【分析】设一列m (m >10)张的黑桃有n 张,则红桃有(m -n )张,再求出短的一列中红桃有10-(m -n )=10-m +n 张,两种牌数作差即可.【详解】解:设一列m (m >10)张的黑桃有n 张,则红桃有(m -n )张,∴短的一列中红桃有10-(m -n )=10-m +n 张,∴长的一列中的♠(黑桃)比短的一列中的♥(红桃)多:n -(10-m +n )=(m -10)张.期末复习与测试【踩分点】故答案为:(m -10).【点睛】本题考查用代数式表示数,整式的加减法运算,掌握用代数式表示数的方法,整式的加减法运算去括号合并同类项是解题关键.三、解答题19.【答案】【解析】计算:(1)-12-2+(-3)×;(2).(1)-15;(2)-4【分析】(1)先有理数乘方、绝对值运算,再有理数乘法运算,最后有理数加减运算即可求解;(2)利用乘法分配律进行有理数乘法运算,再进行有理数加减法运算即可.【详解】解:(1)-12-2+(-3)×=-1-2+(-3)×4=-1-2+(-12)=-15;(2)==1-2-3=-4.【点睛】本题考查有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.期末复习与测试【踩分点】20.【答案】【解析】【踩分点】先化简,再求值:(3x 2-2xy +5y 2 )-2(x 2-xy -2y 2),其中x =-1,y =2.x 2+9y 2,37【分析】先根据整式的加减混合运算法则化简原式,再代值求解即可.【详解】解:原式=3x 2-2xy +5y 2-2x 2+2xy +4y 2=x 2+9y 2,当x =-1,y =2时,原式=(-1)2+9×22=1+36=37.【点睛】本题考查整式的加减中的化简求值,熟练掌握运算法则是解答的关键.21.【答案】【解析】解方程:(1)4(x +3)=2x -1;(2).(1);(2)【分析】(1)去括号,移项,合并同类项,系数化为1求出未知数的值即可;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.【详解】解:(1)4(x +3)=2x -1去括号得,4x +12=2x -1,移项得,4x -2x =-1-12,期末复习与测试【踩分点】合并得,2x =-13,系数化为1得,.(2)去分母得,6-2(2x -1)=1+2x ,去括号得,6-4x +2=1+2x ,称其 合并得,-6x =-7,系数化为1得,.【点睛】本题考查了解一元一次方程的解法;解一元一次方程常见的过程有去分母,去括号,移项,系数化为1等.22.【答案】【解析】如图,△ABC 的三个顶点均在格点处.(1)过点B 画 AC 的平行线 BD ;(2)过点A 画 BC 的垂线AE ;(请用黑水笔描清楚)(1)画图见解析;(2)画图见解析.【分析】(1)利用网格特点,把点向右平移格得到点 画直线即可,(2)利用网格特点,结合每一个网格都为一个小正方形,利用正方形的性质画的垂线即可.【详解】解:(1)如图,直线即为所画的平行线,(2)如图,直线即为所画的垂线,期末复习与测试【踩分点】【点睛】本题考查的是利用网格图的特点画直线的平行线与垂线,平移的性质,垂线的定义,掌握网格特点与画图方法是解题的关键.23.【答案】【解析】(1)由大小相同的小立方块搭成的几何体如左图,请在右图的方格中画出该几何体的俯视图和左视图.(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 个小立方块.(1)见解析;(2)2【分析】(1)从上面看从左往右3列正方形的个数依次是1,2,1,从左面看从左往右2列正方形的个数依次是2,依次可分别画出俯视图和左视图.(2)由于要保持俯视图和左视图不变,所以添加的小正方体只能在第一层第二行的两个小正方体上.【详解】(1)俯视图和左视图如图所示:(2)由图可知,由于要保持俯视图和左视图不变,所以添加的小正方体只能在第一层第二行期末复习与测试【踩分点】的两个小正方体上,故最多可添加2个小立方块.【点睛】本题考查几何体的三视图,解题的关键是熟悉几何体的三视图的画法.24.【答案】【解析】如图,直线AB 与CD 相交于点O ,.(1)如果,求和的度数.(2)如果,求的度数.(1)70°,20°;(2)150°【分析】(1)根据题意及余角、对顶角的意义可直接进行求解;(2)设,则,则有,进而根据角的和差关系可求解.【详解】解:(1),,,;(2)设,则,,即,解得,,,.期末复习与测试【踩分点】本题主要考查余补角、对顶角的意义及一元一次方程的应用,熟练掌握余补角、对顶角的意义及一元一次方程的应用是解题的关键.25.【答案】【解析】列方程解应用题:为了加强公民的节水意识,某市将要采用价格调控手段达到节水目的,设计了如下的调控方案.价目表每月用水量 单价不超出10吨的部分 2.5元/吨超出10吨的部分3元/吨(1)甲户居民五月份用水12吨,则水费为 元;(2)乙户居民八月份缴纳水费40元,则该户居民八月份用水多少吨?(列方程解答)(1)31;(2)15吨【分析】(1)根据分段计费的方法,12立方米分为2段计费,再根据单价×数量=总价,据此解答;(2)乙户居民八月份交水费40元,显然是分2段计费,据此列列方程式解答.【详解】解:(1)10×2.5+2×3=31元,故答案为:31.(2)该户居民八月份用水x 吨,根据题意得:2.5×10+3(x -10) =40,解得 x =15.答:该户居民八月份用水15吨.期末复习与测试【踩分点】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.26.【答案】【解析】如图,将一副直角三角板的直角顶点C 叠放在一起.(1)如图(1),若∠DCE =33°,则∠BCD = ,∠ACB = .(2)如图(1),猜想∠ACB 与∠DCE 的大小有何特殊关系?并说明理由.(3)如图(2),若是两个同样的直角三角板60°锐角的顶点A 重合在一起,则∠DAB 与∠CAE 的数量关系为 .(1)57°,147°;(2)∠ACB =180°-∠DCE ,理由见解析;(3)∠DAB+∠CAE =120°【分析】(1)根据角的和差定义计算即可.(2)利用角的和差定义计算即可.(3)利用特殊三角板的性质,角的和差定义即可解决问题.【详解】解:(1)由题意,;;故答案为:57°,147°.(2)∠ACB =180°-∠DCE ,理由如下:∵ ∠ACE =90°-∠DCE ,∠BCD =90°-∠DCE ,∴ ∠ACB =∠ACE +∠DCE +∠BCD=90°-∠DCE +∠DCE +90°-∠DCE期末复习与测试【踩分点】=180°-∠DCE .(3)结论:∠DAB +∠CAE =120°.理由如下:∵∠DAB +∠CAE =∠DAE +∠CAE +∠BAC +∠CAE =∠DAC +∠EAB ,又∵∠DAC =∠EAB =60°,∴∠DAB +∠CAE =60°+60°=120°.故答案为:∠DAB +∠CAE =120°.【点睛】本题考查三角形的内角和定理,角的和差定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.27.【答案】【解析】如图,已知直线 AB 和 CD 相交于点O ,∠COE =90°,OF 平分∠AOE ,∠COF =37°.(1)求∠EOB 的度数.(2)若射线OF 、OD 分别绕着点O 按顺时针方向转动,两射线同时出发,射线OF 每分钟转动6°,射线OD 每分钟转动0.5°,多少分钟后,射线OF 与射线OD 第一次重合.(3)在(2)的条件下,假设转动时间不超过60分钟,若∠FOD=33°,则两射线同时出发 分钟.(1)74°;(2)26分钟;(3)20或32【分析】(1)先根据直角∠EOF ,再根据角平分线的定义求出∠AOE ,进而由平角定义求解即可;(2)先求出∠FOD=143°,设x 分钟后射线OF 与射线OD 第一次重合,根据射线OF 转动的度数-射线OD 转动的度数=143列出方程求解即可;(3)设两射线同时出发t 分钟后,∠FOD=33°,分两条射线第一次重合前和两条射线第一次重合后两种情况,根据题意列出方程求解即可.【详解】期末复习与测试解:(1)∵∠COE=90°,∠COF=37°,∴∠EOF=90°-37°=53°,∵ OF平分∠AOE,∴∠AOE=2∠EOF=53°×2=106°,∴∠EOB=180°-106°=74°;(2)∵∠COD=180°,∠COE=90°,∴∠EOD=90°,∴∠FOD=90°+53°=143°,设x分钟后射线OF与射线OD第一次重合,依题意,得:6x-0.5x=143,解得:x=26.答:26分钟后,射线OF与射线OD第一次重合;(3)由(2)可知,开始时∠FOD=143°,设两射线同时出发t分钟后,∠FOD=33°,期末复习与测试当射线OF与射线OD第一次重合前,根据题意,得:6t+33=143+0.5t,解得:t=20;射线OF与射线OD第一次重合后,根据题意,得:6t=143+33+0.5t,解得:t=32,综上,两射线同时出发20或32分钟后,∠FOD=33°,故答案为:20或32.【点睛】本题考查一元一次方程的应用、角平分线的定义、平角定义、角的运算,理解题意,正确列出一元一次方程是解答的关键,注意分类讨论思想的运用.【踩分点】。
北师大版七年级上学期期末考试数学试卷(含答案)一
北师大版七年级数学第一学期期末考试试题及答案本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共4页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣12的相反数是( )A .12B .121C .121-D .﹣12 2.下列各图中,表示“射线CD ”的是( )A .B .C .D .3.下列图形中,不是正方体表面展开图的是( )A .B .C .D .4.小明投掷一枚硬币100次,出现“正面朝上”51次,则“正面朝上”的频率为( )A .49B .51C .0.49D .0.515.由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是( )A .B .C .D .6.世界文化遗产﹣﹣长城的总长约为2100000m ,数据2100000用科学记数法可表示为( )A .0.21×107B .2.1×105C .2.1×106D .21×1057.下列各选项中不是同类项的是( )A .﹣3与13B .2a 与2bC .5x 2y 与﹣2x 2yD .﹣xy 与2yx8.下列调查中最适合采用全面调查的是( )A .调查七(1)班学生定制校服的尺寸B .调查市场上奶制品的质量情况C .调查黄河水质情况D .调查全市《习语近人》节目的观看情况9.若x =1是关于x 的方程2x +a =0的解,则a 的值为( )A .﹣1B .﹣2C .1D .210.一幢房子一面墙的形状由一个长方形和一个三角形组成(如图),若把该墙面设计成长方形形状,面积保持不变,且底边长仍为a ,则这面墙的高度应该为( )A .2b +hB .h b 21C .b +2hD .b +h 11.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比∠EBF 大15°,则∠EBC 的度数是( )A .15°B .20°C .25°D .30°第11题图 第12题图 12.“格子乘法”作为两个数相乘的一种计算方法,最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为( )A .2B .3C .4D .5第Ⅱ卷(非选择题共102分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣23= .14.五边形的对角线一共有 条.15.在空气的成分中,氮气约占78%,氧气约占21%,其他微量气体约占1%.若要表示以上信息,最合适的统计图是 .16.如图是一个生日蛋糕盒,这个盒子棱数一共有 条.17.下面的框图表示了小明解方程3(x +5)+x =﹣5的流程:其中,步骤“③”的依据是 .18.已知1<x <a ,写一个符合条件的x (用含a 的代数式表示): .三、解答题:(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣3.2)+12.5+(﹣16.8)﹣(﹣2.5).20.(本题4分)化简:(x +2)﹣(3﹣2x ).21.(本题4分)解方程:3x ﹣2=4+x .22.(本题5分)根据下列语句,画出图形.如图,已知四点A ,B ,C ,D .①画直线AB ;②连接AC 、BD ,相交于点O ;③画射线AD ,BC ,交于点P .23.(本题5分)解方程:36231=+--x x24.(本题6分)如图,是由6个大小相同的小立方体块搭建的几何体,其中每个小正方体的棱长为1厘米.请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.25.(本题6分)先化简,再求值:xy +2y 2+2(x 2﹣y 2)﹣2(x 2﹣xy ),其中x =﹣3,y =2.26.(本题6分)有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?27.(本题8分)某学校计划在八年级开设“折扇”“刺绣”“剪纸”“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图.(部分信息未给出)请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)“陶艺”课程所对应的扇形圆心角的度数是°?(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?28.(本题8分)某校七年级(1)班想买一些运动器材供班上同学大课间活动使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?根据这段对话,请你求出篮球和排球的单价各是多少元?29.(本题10分)阅读下面材料:数学课上,老师给出了如下问题如图1,∠AOB=80°,OC平分∠AOB,若∠BOD=20°,请你补全图形,并求∠COD的度数.以下是小明的解答过程:解:如图2,因为OC平分∠AOB,∠AOB=80°,所以∠BOC=∠AOB=°.因为∠BOD=20°,所以∠COD=∠BOC + =°.小静说:“我觉得这个题有两种情况,小明考虑的是OD在∠AOB外部的情况,事实上,OD还可能在∠AOB的内部”.完成以下问题:(1)请你将小明的解答过程补充完整;(2)根据小静的想法,请你在图3中画出另一种情况对应的图形,并求出此时∠COD的度数.30.(本题12分)在数学综合实践活动课上,小亮同学借助于两根小木棒m、n研究数学问题:如图,他把两根木棒放在数轴上,木棒的端点A、B、C、D在数轴上对应的数分别为a、b、c、d,已知|a+5|+(b+1)2=0,c=3,d=8.(1)求m和n的长度;(2)小亮把木棒m、n同时沿x轴正方向移动,m、n的速度分别为4个单位/s和3个单位/s,设平移时间为t (s)①若在平移过程中原点O恰好是木棒m的中点,则t=(s);②在平移过程中,当木棒m、n重叠部分的长为2个单位长度时,求t的值.。
2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷(含详细答案)
2013-2014学年江苏扬州中学树人学校七年级上学期期末考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.2的相反数是( )A .2B .-2C .12D .12- 【答案】B【详解】2的相反数是-2.故选:B.2.江苏省的面积约为102 6002km ,这个数据用科学记数法表示正确的是( ) A .410.2610⨯B .41.02610⨯C .51.02610⨯D .61.02610⨯ 【答案】C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于102600有6位,所以可以确定n=6-1=5.【详解】解:102 600=1.026×105.故选C .【点睛】此题考查科学记数法表示较大的数的方法,准确确定n 值是关键. 3.实数、在数轴上的位置如图所示,则化简a b a -+的结果为A .B .C .D .【答案】D【详解】试题分析:由绝对值可以看出:a <0,b >0,|a|<|b|∴|a -b|+a=-(a -b)+a=-a+b+a=b .故选D .考点:绝对值.4.已知点在线段上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .2AB AC = C .AC BC AB +=D .12BC AB = 【答案】C5.如图,OD∴AB于O,OC∴OE,图中与∴AOC互补的角有A.1个B.2个C.3个D.4个【答案】B【详解】试题分析:根据题意可得:∴∴∴AOC+∴BOC=180°,∴∴BOC与∴AOC互补.∴∴OD∴AB,OC∴OE,∴∴EOD+∴DOC=∴BOC+∴DOC=90°,∴∴EOD=∴BOC,∴∴AOC+∴EOD=180°,∴∴EOD与∴AOC互补.故图中与∴AOC互补的角有2个.故选B.考点:补角与余角.6.下图所示几何体的主视图是(▲ )A.B.C.D.【答案】A【详解】根据实物的形状和主视图的概念判断即可.解答:解:图中几何体的主视图如选项A所示.故选A.7.下列方程中,解为x=2的方程是()A.3x﹣2=3B.4﹣2(x﹣1)=1C.﹣x+6=2x D.110 2x+=8.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是A.第45行B.第46行C.第47行D.第48行【答案】A【详解】试题分析:由数列知第n行第一个数为(n-1)2+1,第n行最后一个数为n2,而:1937<2014<2025即(45-1)2<2014<452所以:n=45.故选A.考点:数字变化规律.二、填空题9.有理数–3的绝对值是___.【答案】3.【详解】试题分析:根据绝对值的定义进行解答即可.试题解析:有理数-3的绝对值为3.考点:绝对值.10.单项式-5a 2b 3的次数是_____. 【答案】5.【详解】试题分析:根据单项式次数的定义直接进行解答.试题解析:单项式-5a 2b 3的次数是5.考点:单项式.11.如果a ,b 互为相反数,x ,y 互为倒数,则()20132014a b xy +-的值是_____. 【答案】-2014.【详解】试题分析:根据互为相反数的两个数的和可得a+b=0,互为倒数的两个数的积等于1可得xy=1,然后代入代数式进行计算即可得解.试题解析:∴a 、b 互为相反数,∴a+b=0,∴x 、y 互为倒数,∴xy=1,∴2013(a+b )-2014xy=0-2014×1=-2014.考点:1.代数式求值;2.相反数;3.倒数.12.一个角是5433︒',则这个角的补角与余角的差为____°.【答案】90°【详解】试题分析:先求出这个角的补角,再求出这个角的余角,再计算它们的差即可 试题解析:∴这个角的补角等于:180°-54°33′=125°27′,这个角的余角:90°-54°33′=35°27′,∴125°27′-35°27′=90°.考点:余角与补角.13.若x 2+2x 的值是8,则4x 2﹣5+8x 的值是_____.【答案】27【分析】原式结合变形后,将已知等式代入计算即可求出值.【详解】解:∴x 2+2x=8,∴原式=4(x 2+2x )﹣5=32﹣5=27.故答案为:27.【点睛】本题考查代数式求值,利用整体代入思想解题是关键.14.一个平面上有三个点A 、B 、C ,过其中的任意两个点作直线,一共可以作______条直线. 【答案】3或1##1或3【详解】试题分析:分三点共线和不共线两种情况作出图形即可得解.试题解析:点A 、B 、C 三点共线时可以连成1条,三点不共线时可以连成3条, 所以,可以连成3条或1条.考点:直线、射线、线段.15.某书店把一本新书按标价的八折出售,仍可获利20%,若该书的进价为20元,则标价为___________元. 【答案】30【分析】设每本书的标价为x 元,根据八折出售可获利20%,可得出方程:80%x -20=20×20%,解出即可.【详解】解:设每本书的标价为x 元,由题意得:80%x -20=20×20%,解得:x=30.即每本书的标价为30元.故答案为:30.16.下列三个判断:∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直.∴过一点有且只有一条直线与已知直线平行.其中判断正确的是__________.(填序号)【答案】∴∴.【详解】试题分析:根据线段的性质、平行线公理以及垂线公理得∴两点之间,线段最短.∴过一点有且只有一条直线与已知直线垂直正确,∴过一点有且只有一条直线与已知直线平行错误.试题解析:根据以上分析知∴∴∴正确.考点:1.线段的性质;2.平行线公理;3.垂线公理.17.设一列数、、、…、2014a 中任意三个相邻的数之和都是30,已知a 3=3x ,a 200=15,9994a x =-,那么a 2014=______.【答案】12【详解】解:由任意三个相邻数之和都是30可知:a 1+a 2+a 3=30,a 2+a 3+a 4=30,a 3+a 4+a 5=30,…,an +an +1+an +2=30,可以推出:a 1=a 4=a 7=…=a 3n +1,a 2=a 5=a 8=…=a 3n +2,a 3=a 6=a 9=…=a 3n , 所以a 999=a 3,a 200=a 2,则3x =4-x .x =1.a 3=3.a 1=30-3-15=12,因此a 2014=a 1=12.故答案为:12.18.在连续整数1,2,3,…,2014这2014个数的每个数前任意添加“+”或“-”,其代数和的绝对值的最小值是_______.【答案】1.【详解】试题分析:在2014个自然数1,2,3,…,2013,2014的每一个数的前面任意添加“+”或“-”,则其代数和一定是奇数.试题解析:根据试题分析知:在连续整数1,2,3,•••…2014这2014个数的每个数前任意添加 “+"或“-”,其代数和的绝对值的最小值是1.考点:有理数的加减混合运算.三、解答题19.(1)543669⎛⎫-⨯- ⎪⎝⎭(2)()()()()215325⎡⎤-⨯-÷-+⨯-⎣⎦(3)23(4)()30(6)4-⨯-+÷- (4)【答案】(1)-14;(2)-5;(3)-17;(4)-4.20.化简求值(1) ()()3232a b b a -++(2)()()323233m n m n ---(3)()()2222243;ab b a b a b ⎡⎤--+--⎣⎦其中a=2,b=-3.【答案】(1)5a+b ;(2) -3n ;(3) 4ab -5b 2; (4)-69.【详解】试题分析:(1)去括号,合并同类项即可;(2)根据乘法对加法的分配律把括号去掉后,再合并同类项即可求解;(1)先去掉小括号,再去掉中括号后,进行合并同类项,再把a 、b 的值代入化简后的式子即可求值.试题解析:(1)原式=3a-2b+3b+2a=5a+b;(2)原式=6m-9n-6m+6n=-3n;(3)原式=4ab-3b2-(a2+b2-a2+b2)=4ab-3b2-a2-b2+a2-b2=4ab-5b2当a=2,b=-3时,原式=4×2×(-3)-5×(-3)2=-24-45=-69.考点:整式的化简求值.21.解方程(1);(2);(3)1231. 23x x+--=(4)2105试题解析:(1)∴22.作图与推理:如图,是由一些大小相同的小正方体组合成的简单几何体(1)图中有块小正方体;(2)从正面看到该几何体的形状图如图所示,请在下面方格纸中分别画出从左面,上面看到该几何体的形状图【答案】(1)11;(2)图形见解析.【分析】(1)根据如图所示即可得出图中小正方体的个数;(2)读图可得,左视图有2列,每列小正方形数目分别为2,2;俯视图有4列,每行小正方形数目分别为2,2,1,1.【详解】解:(1)2×5+1=11(块).即图中有11块小正方体,故答案为11;(2)如图所示;左视图,俯视图分别如下图:【点睛】此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.如图,直线AB CD EF 、、相交于点O .(1)BOE ∠的对顶角是_______.图中共有对顶角 对.(2)若AOC ∠:2:3AOE ∠=,130EOD ∠=︒ , 求BOC ∠的度数.24.列方程解应用题:甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等.那么甲班原有多少人?【答案】52.【详解】试题分析:设甲班原有人数是x 人,根据甲、乙两班共有98人,若从甲班调3人到乙班,那么两班人数正好相等可列出方程.试题解析:设甲班原有人数是x 人,(98-x )+3=x -3.解得:x=52.答:甲班原有52人.考点:由实际问题抽象出一元一次方程.25.在一条数轴上有A 、B 两点,点A 表示数4-,点B 表示数6.点P 是该数轴上的一个动点(不与A 、B 重合)表示数x .点M 、N 分别是线段AP 、BP 的中点.(1)如果点P 在线段AB 上,则点M 表示的数是 , 则点N 表示的数是 (用含x 的代数式表示).并计算线段MN的长.(2)如果点P在点B右侧,请你计算线段MN的长.(3)如果点P在点A左侧,则线段MN的长度会改变吗?如果改变,请说明理由;如果不变,请直接写出结果.26.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x.(1)小明12:00时看到的两位数的十位数字为.(用x表示)(2)小明13:00时看到的两位数为;14:30时看到的两位数为;(用x表示,需要化简).(3) 你能帮助小明求出摩托车的速度吗?试试看.27.一个长方体水箱,从里面量长25厘米,宽20厘米,深30厘米,水箱里已经盛有深为a 厘米的水.现在往水箱里放进一个棱长10厘米的正方体实心铁块(铁块底面紧贴水箱底部).(1)如果28a ≥,则现在的水深为 cm .(2)如果现在的水深恰好和铁块高度相等,那么a 是多少?(3)当028a <<时,现在的水深为多少厘米?(用含a 的代数式表示,直接写出答案)。
2023-2024学年广东省中山市华辰中学七年级(上)期末数学试卷(含答案)
2023-2024学年广东省中山市华辰中学七年级(上)期末数学试卷一、选择题:本题共9小题,每小题3分,共27分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.2021年“双十一”天猫成交额540300,000,000元.将数据“540300000000”用科学记数法可表示为是( )A. 5.403×1012B. 5.403×1011C. 5.403×1010D. 54.03×10112.下列各式正确的是( )A. 3x+3y=6xyB. x+x=2x2C. −9a2b−9a2b=0D. −9y2+16y2=7y23.下列等式变形错误的是( )A. 若a=b,则a1+x2=b1+x2B. 若a=b,则3a=3bC. 若a=b,则ax=bxD. 若a=b,则am =bm4.下列说法正确的是( )A. 16的平方根是4B. 25=±5C. 0没有立方根D. 任意一个无理数的绝对值都是正数5.在平面直角坐标系中,点P(3,−2)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图,已知AB//CD,∠1=35°,∠2=80°,则∠3的度数是( )A. 65°B. 55°C. 45°D. 35°7.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则∠E′BD的度数为( )A. 29°B. 32°C. 58°D. 64°8.某服装进货价x 元/件,销售价为200元/件,现打6折销售后仍可获利50%,则x 为( )A. 80B. 60C. 70D. 909.如图,由8个边长为1的小正方形组成的图形,被线段AB 平分为面积相等的两部分,已知点A 的坐标是(1,0),则点B 的坐标为( )A. (113,3)B. (103,3)C. (154,3)D. (185,3)二、填空题:本题共6小题,每小题3分,共18分。
2023-2024学年北京市东城区七年级(上)期末数学试卷+答案解析
2023-2024学年北京市东城区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题2分,共20分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是一个几何体的表面展开图,这个几何体是()A. B. C. D.2.我国的长城始建于西周时期,被国务院确定为全国重点文物保护单位.长城总长约6700000米.数据6700000用科学记数法表示应为()A. B. C. D.3.若数在数轴上表示的点的位置如图所示,则下列结论正确的是()A. B. C. D.4.下列说法中正确的是()A.是单项式B.的系数是C.是二次二项式D.与是同类项5.下列选项中,计算错误的是.()A. B.C. D.6.若是关于x的方程的解,则m的任是.()A. B. C. D.87.如图所示四幅图中,符合“射线PA与射线PB是同一条射线”的图为.()A. B. C. D.8.如图,OA 的方向是北偏东,OB 的方向是西北方向,若,则OC 的方向是.()A.北偏东B.北偏东C.北偏东D.北偏东9.王涵同学在某月的日历上圈出了三个数a ,b ,c ,并求出了它们的和为45,则这三个数在日历中的排位位置不可能的是.()A. B. C. D.10.某商店在甲批发市场以每包m 元的价格进了60包茶叶,又在乙批发市场以每包n 元的价格进了同样的40包茶叶,如果商家以每包元的价格卖出这种茶叶,卖完后,这家商店的盈亏情况为.()A.盈利元B.亏损元C.盈利元D.没盛利也没亏损二、填空题:本题共8小题,每小题2分,共16分。
11.一个单项式含有字母x 和y ,系数是2,次数是3,这个单项式可以是__________.12.比较大小:__________,__________填“>”“=”或“<”号13.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房,求该店有客房多少间?设该店有客房x 间,则可列方程为__________.14.如图,O 是直线AB 上一点,若,则__________.15.如图,C 为线段AD 上一点,点B 为CD 的中点,且,则__________16.已知点是数轴上的两个点,点A到原点的距离等于3,点B在点A左侧,并且距离A点2个单位长度,则点B表示的数是__________.17.已知a,b是常数,若的项不含二次项,则__________.18.对于个位数字不为零的任意三位数M,将其个位数字与百位数字对调得到,则称为M的“倒序数”,将一个数与它的“倒序数”的差的绝对值与99的商记为例如523为325的“倒序数”,__________;对于任意三位数满足:的值是__________.三、计算题:本大题共2小题,共20分。
七年级上册数学期末测试卷(含答案)
七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。
1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -第4题图(第8题图)AB第16题图2012—2013学年第一学期期末考试七年级数学试卷一、选择题(本大题8小题,每小题3分,共24分,每小题只有一个正确选项,请将正确选项的代号填在题后的括号内.)1、-5的绝对值是( )A 、-51B 、51C 、5D 、-52、数轴上表示-1.2的点在( )A. -2和-1之间B. -1和0之间C. 0和1之间D.1和2之间 3、下列运算正确的是( ). A. 235=-x x B. ab b a 532=+ C. a b b a +=--)(D. ab ba ab =-24、如图,把弯曲的河道改直,能够缩短航程,这样做依据的道理是( ). A. 两点之间,直线最短 B. 两点确定一条直线 C. 两点之间,线段最短 D.两点确定一条线段 5、下面各对数中互为相反数的是( )A.2与2-- B. -2与2- C . 2-与 2 D. 2与(2)--6.下列图形中,不是正方体表面展开图的图形的个数是( )A .1个B .2个C .3个D .4个7、已知练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好用去14元.如果设水性笔的单价为x 元,那么下列所列方程正确的是( )A 、5(x -2)+3x=14B 、5(x +2)+3x=14C 、5x +3(x +2)=14D 、5x +3(x -2)=148、一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A 点)正好对着直尺刻度约为5.6㎝处,另一端(B 点)正好对着直尺刻度约为20.6㎝.则水笔的中点位置的刻度约为( ) A .15cm B .7.5cm C .13.1cm D .12.1cm二、填空题(本大题共8小题,每小题3分,共24分.) 9、用代数式表示“a 的平方与1的差”: . 10、计算36°-20°32′=___________.11、一双没有洗过的手带有各种细菌80000万个,80000万用科学记数法表示为 . 12、已知3是关于x 的方程2x -a =1的解, 则a 的值是 .13、若y x m 27+-与n y x 33-是同类项,则 m =_______, n = . 14. 如图,南偏东15︒和北偏东25︒的两条射线组成的角(即∠AOB )等于______.15、元旦期间,为了促销,国光超市某品牌服装区全场六折销售.出售一件标价200元女式毛衣,仍可获利20%,则这件服装的进价是16、已知有理数a 、b 在数轴上的位置如图所示,那么在下列四个关系式中:①a >0; ②-b <0; ③ b -a >0;④a +b >0.其中正确的有 .(填序号即可) 三、(本大题共2小题,17题8分,18题4分,共12分.) 17、计算 (1)2111()()941836-+÷-(2)411(6)233⎛⎫---+-⨯- ⎪⎝⎭学校 班级 姓名 座号- 2 -18、先化简,再求值:()()x x x x x x 4329722323+----,其中x =-1四、(本大题共2小题,每小题6分,共12分.)19、下面是马小哈同学做的一道题,请按照“要求”帮他改正.解方程:x x 34121=-+ (马小哈的解答) “要求”:①用“﹏﹏”画出解题过程中的所有错误.解:3(x +1)-1= 8x ②请你把正确的解答过程写在下面. 3x + 3 -1 = 8x 3x - 8x = 3-1 -5x =2 x =52-20、据某统计数据显示,在我国的664座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市.其中,暂不缺水城市数比严重缺水城市数的4倍少50座,一般缺水城市数是严重缺水城市数的2倍.求严重缺水城市有多少座?五、(本大题共2小题,每小题6分,共12分.)21、如图,AC 是∠BAD 的角平分线,点C 是线段BD 的中点. (1)若CD =3cm ,求线段BD 的长; (2)若∠BAD =120°,且∠1与∠3互余,请求出∠1、∠3的度数.22、随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50km 的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每行驶100km 需用汽油6升,汽油价6.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?- 3 -六、(本大题2小题,第23题7分,第24题9分,共16分.) 23、如图,是一计算程序,回答如下问题:⑴当输入某数后,第一次得到的结果为5, 则输入的数值x 是多少?⑵小华发现若输入的x 的值为16时,第1次得到的结果为8,第2次得到的结果为4,… ①请那帮小华完成下列表格:24. 如图,一只 蜗牛A 从原点..出发向数轴负.方向运动,同时,另一只蜗牛B 也从原点..出发向数轴正.方向运动,3秒后,两蜗牛相距15个单位长度.已知蜗牛A 、B 的速度比是1:4,(速度单位:单位长度/秒)(1)求出两个蜗牛运动的速度,并在数轴上(图1)标出A 、B 从原点出发运动3秒时的位置;(2)若蜗牛A 、B 从(1)中的位置同时向数轴负方向........运动,几秒时,原点恰好处在两只蜗牛的正中间?(3)若蜗牛A 、B 从(1)中的位置同时向数轴负方向运动时,另一蜗牛C 也同时从蜗牛B 的位置出发向蜗牛A 运动,当遇到蜗牛A 后,立即返回向蜗牛B 运动,遇到蜗牛B 后又立即返回向蜗牛A 运动,如此往返,直到B 追上A 时,蜗牛C 立即停止运动.若蜗牛C 一直以20单位长度/秒的速度匀速运动,那么蜗牛C 从开始运动到停止运动,行驶的路程是多少个单位长度?3 6 90 122 A B 3 6 90 122 图136 90 122 备用图- 4 -参考答案及评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1、C .2、A .3、D .4、C .5、A .6、B .7、A .8、C .二、填空题(本大题共8小题,每小题3分,共24分.)9、a 2-1 ; 10、15°28′ ;11、8×108;12、.5; 13、1、1; 14、140︒; 15、100元; 16、②③.17.(1)解:原式=211()(36)9418-+⨯- ··································································· 1分 =211(36)(36)(36)9418⨯--⨯-+⨯- ···························································· 2分=892-+- ····································································································· 3分 =-1 ················································································································· 4分 (2)解:原式=1621-+++············································································· 3分 =8 ················································································································· 4分 18、解:原式=3232279268x x x x x x -+-+- ·························································· 2分=2x x -+ ··································································································· 3分 当x =-1时,原式=2(1)(1)--+-=-2 ···························································································· 4分四、(本大题共2小题,每小题6分,共12分.)19、①划记两处出错处即可: 3x + 3 -1 = 8x ·························································································· 1分 3x - 8x = 3-1 ··················································································· 2分 -5x =2 x =52-②解:3x + 3 -6= 8x ····························································································· 3分 3x - 8x = 6- 3 ····················································································· 4分 -5x =3 ······························································································· 5分x =35- ······························································································· 6分20.解:设严重缺水城市有x 座, ·················································································· 1分依题意得:(4x -50)+x +2x =664. ··············································································· 4分解得:x =102. ··············································································································· 5分 答:严重缺水城市有102座.······················································································· 6分 五、(本大题共2小题,每小题6分,共12分.) 21、解:(1)∵点C 是线段BD 的中点. ······································································ 1分 ∴BD =2CD =6cm ······························································································ 2分 (2)∵AC 是∠BAD 的角平分线 ·················································································· 3分∴∠1=12∠BAD =60° ···························································································· 4分 又∵∠1与∠3互余 ·································································································· 5分 ∴∠3=90°-60°=30° ····························································································· 6分 22.解:(1)方法一:总路程为:(50-8)+(50-11)+(50-14)+50+(50-16)+(50+41)+(50+8)=350km 平均每天路程为:350÷7=50 km ································································· 2分 方法二:平均每天路程为:50+811140164187---+-++=50 千米 ···················· 2分答:这七天中平均每天行驶50千米.··································································· 3分 (2)平均每天所需用汽油费用为50×6÷100×6.2=18.6元 ············································ 4分估计小明家一个月的汽油费用是18.6×30=558元 ··············································· 5分 答:估计小明家一个月的汽油费用是18.6×30=558元 ················································· 6分 六、(本大题2小题,第23题7分,第24题9分,共16分.)23、解:⑴∵第一次得到的结果为5 ,而输入值可能是奇数,也可能是偶数;当输入值是奇数时则x +3=5,此时输入的数x =2;不符合,舍去 ······ 1分当输入值是偶数时则21x =5,此时输入的数x =10; ····························· 2分 ⑵当开始输入的值x =16时为偶数,∴第一次输出21x =21×16=8;当再次输入的值x =8时为偶数,∴第二次输出21x =21×8=4;当再次输入的值x =4时为偶数,∴第三次输出21x =21×4=2; ·················· 3分 当再次输入的值x =2时为偶数,∴第四次输出21x =21×4=1; ·················· 4分 当再次输入的值x =1时为奇数,∴第五次输出x +3=1+3=4;·················· 5分则第六次的结果与第三次的结果是一样的,…因为(2011—1)÷3=671 所以第2011次得到的结果是1. ··········································································· 7分 24.解:(1)设蜗牛A 的速度为x 单位长度/秒,蜗牛B 的速度为x 4单位长度/秒- 5 -3(4)15.x x +=依题意, ············································································· 1分 解得1x =即:蜗牛A 的速度为1单位长度/秒,蜗牛B 的速度为4单位长度/秒. ············· 2分 3秒时,蜗牛A 的位置在-3,蜗牛B 的位置在12.并在图上标注 ······· 3分 (2)设x 秒时原点恰好处在两个蜗牛的正中间,依题意得1243x x -=+ ·················································································· 5分1.8x = ····································································································· 6分(3)设y 秒后蜗牛B 追上蜗牛A ,依题意,415,y y -= ·························································································· 7分解得5y = ······································································································ 8分205100⨯= ··········································································································· 9分∴蜗牛C 从开始运动到停止运动,行驶的路程是100个单位长度 .。