丙类高频功率放大器
丙类功率放大器的特点
2.3 丙类谐振功放的性能分析
5.放大特性
指VCC 、 VBB 、 RP固 定, Uim变化对放
大器性能的影响。
特点:随着Uim的增
大,先后经历: 欠压→临界→过压 且θ增大。 欠压时用于放大,过
压时用于限幅。
2.4 丙类谐振功放的电路
1.基极馈电电路
2.4 丙类谐振功放的电路
2.集电极馈电电路
源VBB应小于死区电压以保证晶体管工作于丙类状态, 一般VBB略小于0。集电极电压VCC是功率放大器的能
量来源。
2.2 丙类谐振功放的工作原理
2.工作原理
设输入ui为一余弦信号: u i Uimcost
则三极管的发射结电压:uBE VBBuiV BB U im cots
因为管子只在小半周期内导通,因而iB为脉冲电流。
2.1 丙类谐振功放的特点
1.与低频功放相比较
✓ 工作频率和相对频带不同 ✓ 负载性质不同 ✓ 工作状态不同
2.与小信号谐振放大器比较
✓ 对放大信号的要求不同 ✓ 谐振网络的作用不同 ✓ 工作状态不同
2.2 丙类谐振功放的工作原理
1.电路原理
三极管V在工作时应处于丙类工作状态,只有小部分 时间导通。LC谐振回路起到滤波和匹配作用。基极电
✓ 5.倍频器按其工作原理可分为丙类倍频器和参量倍频 器。
✓ 6.传输线变压器是以传输线原理和变压器原理相结合 的方式工作,因此具有良好的宽频带传输特性。
临界状态分析,如: 1
Po n2IcnU mcn m
Cnp PD o nC 1 2IIcC nU V 0m C cn Cm
• n越大,Pon和ηcn越小且<n的谐波难滤除,所以
一般n取2~3级。
第6讲高频 丙类功率放大器原理和工作状态要点
第六讲 丙类功率放大器原理和工作状态 9/21/2018 8:52 PM 3
管子的运用状态不同,相应的最大集电极效率 也就不同。假定管子集电极电流为iC,电压为vCE
则
1 P iC vCE dt C 2 1 iC vCE dt 2
射频功率放大器 (Power Amplifier)
高频功率放大器的特点
丙类谐振功率放大器
丁类谐振功率放大器
谐振功率放大器的电路组成
宽带高频功率放大器
第六讲 丙类功率放大器原理和工作状态
9/21/2018 8:52 PM
1
功放是能量转换器:
在输入信号的作用下,直流电源提供的直流功 率PD中,一部分被转换为输出信号功率P0 ,其余部 分消耗在功率管中,成为功率管的耗散功率Pc ,即 管耗。 放大器的集电极效率
c
(Collection efficiency)
就是来评价这种转换能力的性能指标:
Po Po c PD Po Pc
作为放大器,功率增益是重要的性能指标, 但却是第二位的。
第六讲 丙类功率放大器原理和工作状态 9/21/2018 8:52 PM 2
二.
功率管的运用特性
在功放中,往往 选择不同的静态工作 点,使功放运用在特 性不同的区段上,来 实现甲,乙,丙,丁 等不同运用状态。在 输入余弦波激励下,集 电极输出电流iC 的波形 不同:
cos t cos c 1 cos c
若对ic 分解为付里叶级数为:
ic
ic1
ic2
ic3
Ico ωt
其中各系数分别为:
I co 1 2
I cmax sin c c cos c ) I cmax 0 c 1 cos c 1 1 c sin c cos c I cm 1 i cos td ( t ) I ( ) I cmax 1 c c cmax 2 1 cos c 2 sinn c cos c c cos n c sin c 1 c I cmn ic cos ntd(t ) ic max ) I cmax n c 2 c 2 n n 1 1 cos c ic d (t )
实验三高频功率放大器(丙类)
实验操作过程
调整丙类功率放大器的输入和输 出阻抗,使其与信号源和负载匹 配。
逐步增加输入信号的幅度,观察 放大器的输出波形和参数变化。
使用示波器记录放大器的输入和 输出波形,分析波形的失真情况。
打开高频信号发生器,设置合适 的信号频率和幅度。
使用电压表和电流表测量放大器 的各项参数,如输入电压、输出 电压、输入电流、输出电流等。
02
它主要由输入匹配网络、功放管 、输出匹配网络和偏置电路等部 分组成。
高频功率放大器的分类
根据功放管的类型,高频功率 放大器可分为电子管式高频功 率放大器和晶体管式高频功率
放大器。
根据工作频率,高频功率放 大器可分为超短波高频功率 放大器和微波高频功率放大
器。
根据放大器的级数,高频功率 放大器可分为单级高频功率放 大器和多级高频功率放大器。
对未来实验的展望与建议
01
深入研究不同类型的 高频功率放大器
在未来的实验中,可以进一步探索甲 类、乙类等不同类型的高频功率放大 器的设计与制作,比较它们之间的性 能差异和应用特点。
02
结合实际应用场景进 行优化设计
针对实际应用需求,可以对高频功率 放大器进行优化设计,如提高输出功 率、降低失真度、拓宽带宽等,以满 足不同场景下的使用要求。
通过分析实验数据,我们发现放大器在不同频率下的响应特性有所不同。在低频段,放大 器的放大效果较好;而在高频段,放大效果逐渐减弱。这可能与放大器的设计参数和元器 件特性有关。
线性度与失真
在实验过程中,我们观察到输出信号存在一定的失真现象。失真可能源于放大器的非线性 特性,如饱和、截止等。为了量化失真程度,我们采用了失真度指标进行分析。
丙类高频功率放大器的最佳工作状态
丙类高频功率放大器的最佳工作状态一、概述高频功率放大器是一种常用的电子器件,用于放大高频电信号的功率。
丙类高频功率放大器是其中一种常见类型,其在通讯、雷达、无线电频率对信号的放大中扮演着重要角色。
在实际应用中,如何保证丙类高频功率放大器的最佳工作状态是一个重要的问题。
二、丙类高频功率放大器的工作状态1. 丙类高频功率放大器的特点丙类高频功率放大器是一种采用晶体管或真空管等器件工作的放大器。
它的特点是具有较高的工作效率和较大的功率输出,适合用于高频信号的放大。
然而,丙类高频功率放大器的工作状态对其性能有着直接的影响。
2. 最佳工作状态的定义最佳的工作状态是指在一定的工作条件下,丙类高频功率放大器能够达到最佳的性能表现。
在实际应用中,最佳工作状态的定义包括但不限于:最大功率输出、最高的工作效率、最小的失真程度、最小的热量产生等。
三、影响丙类高频功率放大器工作状态的因素1. 电源电压丙类高频功率放大器在不同的电源电压下工作状态会有所不同。
合适的电源电压可以保证其正常的放大功能,并且对功率输出和工作效率有直接影响。
2. 输入信号幅度输入信号的幅度也是影响丙类高频功率放大器工作状态的重要因素。
合适的输入信号幅度可以保证放大器的正常工作,并且影响着放大器的失真程度。
3. 温度丙类高频功率放大器在不同温度下的工作状态也会有差异。
过高或过低的温度都会对其性能产生负面影响。
保持合适的工作温度对丙类高频功率放大器而言是十分重要的。
4. 负载匹配负载匹配是指输出端负载与放大器输出端的阻抗匹配。
合适的负载匹配可以最大限度地提高功率输出和工作效率,并减小失真程度。
四、实现丙类高频功率放大器最佳工作状态的方法1. 精确控制电源电压在实际应用中,可以通过精密的电源控制电路来保持恒定的电源电压,确保丙类高频功率放大器在最佳的电源电压下工作。
2. 输入信号控制可以通过信号处理电路来控制输入信号的幅度,以保证丙类高频功率放大器在适当的输入信号幅度下工作。
丙类高频功率放大器实验报告
丙类高频功率放大器实验报告一、实验目的1.了解和熟悉丙类放大器、高频功率放大器及其工作原理;2.掌握丙类高频功率放大器电路的设计和调试方法;3.实现一个丙类高频功率放大器的设计和调试。
二、实验原理1.丙类放大器丙类放大器是一种功率放大器,其输出信号的一个部位接近正弦波而另一部分则大约失真。
丙类放大器又称为开关放大器,工作原理如下:(1)若输入的信号为负半周期,管子导通,输出便接近0V;(2)若输入信号为正半周期,管子截止,输出电压取决于负载电路。
(3)由于丙类放大器的输出电压只在正半周期时才产生,故功率效率可达90%以上,但其输出信号存在失真,因此丙类放大器多用于功率放大应用中。
2.高频功率放大器高频功率放大器的特点是恢复时间低,速度快、功率输出大,其主要应用在收音机、电视机、雷达、电子计算机等电子设备中,其原理如下:高频功率放大器具有放大频率宽、能量转换效率高、输入输出匹配好、频率稳定性好、体积小、功率大等特点。
其主要应用在无线通信、信号干扰、雷达和通信等电子设备中。
三、设计内容1.电路图设计高频功率放大器电路调试原理如下:(1)采用驱动单一管子的电路,以避免传输相位问题,同时减少了对驱动器电路的要求。
(2)采用变压器耦合方式,从低频端口把信号发送到功率放大器,减少了对驱动信号源的要求。
(3)采用反馈电路,对稳定性及主动去谐增益方面起到较好的作用。
2.实验步骤(1)根据所设计的电路图,依据实际元器件参数选择合适型号、参数元器件进行组装,拼装好整个高频放大器的主板电路。
(2)在采用反馈电路的前提下,测试电路器件的频率特性,应适当减小反馈电压以提高增益。
(3)根据反馈电路实验条件测量出高频功率放大器的输出功率、增益、谐波失真等有关参数,得出实验结果。
四、实验结果及分析高频功率放大器的实验结果及分析如下:1.功率输出本次实验所测试电路的功率输出可达到40W的功率输出。
2.增益本次实验所测试电路的增益为30dB左右,符合预期结果。
实验一 高频丙类功率放大器
实验一高频丙类功率放大器在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz—几十MHz。
一般都采用LC谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
一、实验目的及要求(一)实验目的1.进一步了解高频丙类功率放大器的工作原理和调试技术。
2.熟悉负载变化对放大器工作状态的影响及各指标的测试方法。
3.掌握输入激励电压,集电极电压,基极偏置电压变化对放大器工作状态的影响。
(二)实验要求1.认真阅读本实验教材及有关教材内容。
2.熟悉本实验步骤,并画出所测数据表格。
3.熟悉本次实验所需仪器使用方法。
(三)实验报告要求1.写出本次实验原理及原理图。
2.认真整理记录的测试数据及绘出相应曲线图。
3.对测试结果与理论值进行比较分析,找出产生误差的原因,提出减少实验误差的方法。
4.详细记录在调谐和测试过程中发生的故障和问题,并进行故障分析,说明排除过程和方法。
5.本次实验收获,体会以及改进意见。
二、实验仪器及实验板1.双踪示波器(CA8020)一台2.高频信号发生器(XFG-7)一台3.晶体管直流稳压电源 一台4.数字万用表 一块5.超高频毫伏表(DA22) 一台6.直流毫安表 一块7.高频丙类功率放大器实验板 一块三、实验原理及公式推导高频谐振放大器的主要作用是使电路输出功率大,效率高;主要特点是用谐振回路来实现阻抗变换,并且为了提高效率常工作在丙类状态。
高频功率放大器一般有两种:窄带高频功率放大器和宽带高频功率放大器。
前者由于频带比较窄,故常用选频网络作为负载回路,所以又称为谐振功率放大器。
高频丙类功率放大器基础知识详解
高频丙类功率放大器基础知识详解高频功率放大器是各种无线电发射机的主要组成部分,它与低频功率放大器一样要求输出功率大、效率高。
但不同的是,高频功放的工作频率高(几万千赫兹到几万兆赫兹数量级),但相对频带很窄。
高频功放一般工作在丙类状态,其放大电路一般采用选频网络作为负载回路。
由于高频功放通常工作于丙类,属于非线性电路,因此不能用线性等效电路来分析。
对它们的分析方法有图解法和解析近似分析法,这里我们采用最常的解析近似分析法中的一种折线法来简要叙述高频功放的基本工作原理和工作状态。
高频丙类谐振功放的电路主要由放大部分和频带选通部分组成,其结构框图简单示意如图6.17所示。
输出信号其中,频带选通部分由选频滤波电路实现,其主要任务是滤除输入到放大电路的无用频率分量,滤除放大器件产生的无用谐波分量,以减小非线性失真。
高频丙类谐振功放的具体原理电路,如图6.18所示。
这是一个以晶体管为核心的非线性放大器,其转移特性曲线,如图6.19(a)所示。
尽管集电极电流是周期性非正弦波、是不连续的,但输出电压却是连续的。
如果从能量交换的角度来解释当ic=0时为什么还会有输出电压。
这是由于选频网络是由LC并联电路构成,当ic=0时,L与C支路电流并不为零,只是大小相等而方向相反而已。
说明此时回路正在进行着电场能量与磁场能量的交换,所以输出是不断的,连续的。
当然如果输出回路是一电阻网络,自然不会出现这种现象。
需要说明的是工作于功率放大器中的选频网络,为了适应输出较大功率的要求,通常回路的品质因数都较低,一般在10左右。
由于输出回路调谐在基波频率上,输出电路中的高次谐波处于失谐状态,相应的输出电压很小,因此,在放大电路的输出功率Po等于集电极电流基波分量在负载R上的平均功率,即谐振功放中只需研究直流及基波功率2.电源供给功率(PE)电源电压UCC与流过UCC的集电极电流ic的直流分量IC0的乘积,用PE表示,即Pe=Ucc*Ico(6.25)3.集电极管耗(PC)电源供给功率PE与输出基波交流功率Po之差,用PC表示,即Pc=Pe-Po (6.26)丙类放大器的工作状态人们根据是否进入器件的截止区,以及进入截止区的深入程度,把放大电路分为甲类、乙类、甲乙类和丙类四种工作状态。
丙类高频功率放大器失谐后果
丙类高频功率放大器失谐后果丙类高频功率放大器失谐后果丙类高频功率放大器是一种常见的电子设备,广泛应用于无线通信、雷达、医疗设备等领域。
失谐是指输入和输出电路之间的阻抗不匹配,导致功率放大器无法正常工作。
失谐会对功率放大器的性能产生一系列不良影响,下面将详细介绍丙类高频功率放大器失谐后果。
首先,失谐会导致功率放大器的效率降低。
在失谐状态下,输入电路和输出电路之间存在阻抗不匹配,导致部分输入信号无法被放大器正确处理。
这样一来,输入信号无法完全转化为输出信号,功率放大器的效率会明显下降。
效率的降低不仅会浪费能量,还会带来额外的热量,影响设备的稳定性和寿命。
其次,失谐会导致功率放大器的线性度下降。
在失谐状态下,功率放大器的输入和输出特性会发生变化,无法实现理想的线性放大。
这样一来,输入信号在经过功率放大器时可能会出现非线性失真现象,使得输出信号与输入信号不再保持一致。
线性度下降会严重影响信号的传输质量,导致通信系统的误码率增加,甚至影响到无线通信的可靠性。
此外,失谐还会导致功率放大器的带宽变窄。
在失谐状态下,功率放大器无法有效地传输高频信号,导致输出信号的频率范围受限。
带宽的变窄会限制功率放大器的应用场景和传输能力,降低设备的灵活性和适用性。
另外,失谐还会引起功率放大器的输出功率波动。
在失谐状态下,输入和输出之间存在反射波,导致输出功率不稳定。
这种波动会对通信系统产生干扰,影响到接收端对信号的解调和处理。
尤其是在无线通信系统中,功率波动会导致通信质量下降,降低通信距离和可靠性。
最后,失谐还会对功率放大器的工作温度产生影响。
在失谐状态下,功率放大器由于效率降低而产生更多的热量。
这样一来,功率放大器的工作温度会升高,可能超过设备能够承受的范围。
过高的工作温度会导致设备故障、损坏甚至起火等安全隐患。
综上所述,丙类高频功率放大器失谐后果是多方面的。
失谐会降低功率放大器的效率、线性度和带宽,引起输出功率波动,并对工作温度产生影响。
实验3丙类高频功率放大器
实验3 丙类高频功率放大器仿真高频功率放大电路通常在发射机末级功率放大器和末前级功率放大器中,主要对高频信号的功率进行放大,使其达到发射功率的要求。
在硬件实验中,我们已经对高频功率放大器的幅频特性、负载特性及电路效率进行了测试。
在仿真实验中,我们将对放大器的其它特性进行进一步的仿真研究。
一、实验电路:电路特点:晶体管基极加0.1V的负偏压,电路工作在丙类,负载为并联谐振回路,调谐在输入信号频率上,起滤波和阻抗变换作用。
二、测试内容(一)高频功率放大电路原理仿真1、集电极电流Ic与输入信号之间的非线性关系晶体管工作在丙类的目的是提高功率放大电路的效率,此时晶体管的导通时间小于输入信号的半个周期。
因此,集电极电流Ic将是周期的余弦脉冲序列。
(1)、当输入信号的振幅有效值为0.75V时,对晶体管集电极电流Ic进行瞬态分析。
设置:起始时间为0.03S,终止时间为0.03005S,输出变量为I(V3)仿真分析。
记录并分析实验结果。
(2)、当输入信号振幅为1V时,对晶体管集电极电流Ic进行瞬态分析,设置同上。
记录并分析实验结果,指出输出信号波形顶部凹陷失真的原因是什么?2、输入信号与输出信号之间的线性关系将电路中R1改取30K,重复上述过程,使用示波器测试电路输出电压波形。
记录并分析实验结果,指出输出信号波形与步骤1的实验结果有何区别?为什么?(二)高频功率放大电路外部特性仿真测试1、调谐特性调谐特性指在R1、V1、V BB、Vcc不变的条件下,高频功率放大电路的Ico、Ieo、Uc等变量随C变化的关系。
将C1改用可变电容器,调C1使电路处于谐振状态(C1=50%),回路阻抗最大,呈纯阻,电流最小,此时示波器显示输出信号幅度最大,电流表显示电流最小值;当改变C1值,回路失谐,回路阻抗变小,回路电流变大,输出波形出现失真。
通过示波器和电流表观察记录实验结果,并对实验结果进行分析。
使用波特图仪和小信号交流分析方法测试测试并记录电路的调谐特性。
高频电子线路实验报告2——高频丙类功率放大器
高频电子线路实验报告2——高频丙类功率放大器实验目的:1. 学习高频丙类功率放大器的基本原理。
2. 掌握高频丙类功率放大器的设计方法。
3. 验证高频丙类功率放大器的工作性能。
实验原理:丙类功放器是一种在放大器的输出段设有截止偏压的放大器。
其主要特点是效率高、失真小、输出功率大,因此,在广播、通信、雷达等领域被广泛应用。
实验步骤:1. 按照图1所示连接电路。
2. 调整可变电容器C1的值,使电路在工作频率上谐振。
3. 将信号源接入电路的输入端,调整可变电阻R3的值,使输出端的电压最大。
4. 在三极管的发热体上放置热敏电阻,测量其电阻值,计算其温度。
5. 调整信号源输出频率,测量输出端的电压值,记录数据。
6. 计算电路的功率增益、效率、输出功率等参数。
1. 电源电压:12V2. 工作频率:1MHz3. 可变电容器C1的值:10pF4. 可变电阻R3的值:10kΩ5. 发热体上的热敏电阻电阻值:100Ω6. 发热体温度:25℃7. 输出功率:2.5W8. 功率增益:6dB9. 效率:65%实验分析:1. 在C1的值确定的情况下,可通过变频电源调整工作频率,使电路在工作频率上谐振,从而提高电路的效率。
2. 随着输出功率的增加,三极管发热体的温度也会相应升高,从而导致热敏电阻的电阻值发生变化。
可以通过测量热敏电阻的电阻值,计算发热体的温度。
3. 在理论分析的基础上,通过实验数据对电路性能进行评估,验证了丙类功率放大器的工作性能良好,可以满足实际应用需求。
通过本次实验,我学习了丙类功率放大器的基本原理和设计方法,并通过实验数据验证了其工作性能。
这对我今后从事电子工程相关的工作具有很大的参考价值。
同时,我也意识到在实验过程中需要仔细操作、认真记录数据,以确保实验结果的准确性。
第6讲_高频 丙类功率放大器原理和工作状态
11
开放实验:高频功率放大器
本次实验主要研究以甲类谐振功率放大器为推动级, 以丙类谐振功率放大器为末级的混合功率放大器。
第六讲 丙类功率放大器原理和工作状态
4/2/2024 6:52 PM
12
例题
晶体管高频功率放大器,电源 V 24 V, CC
Ic0 300mA, 电压利用系数 0.95 , VD 0.5 V 输出功率 Po 6 W 。求电源提供的功率 Pdc ,
A
ubemax
•
令 t 0 o
A
:
uubcee
uc min ub ma x
EC UCm U BB U
bm
O
EC uce •Q
(2)作静态工作点 Q:
ucmin
令 t 90 o 由外部方程可得:输出端: uce EC Ucm cost
Q
:
uce
ic
I
EC , Q
uBE U BB gc (U BB U
R较 得P 为 快 多, ,L故即C倍集回 频电器路 极的效谐集率振 电 c极 在较耗2低散ω,功时 且率倍的 PC频比并次正联 数常谐 n工值振 作较于电高基阻 ,波损。状耗态较时大大,
效率较低,故丙类倍频器一般只限于二倍频和三倍频的应用。
第六讲 丙类功率放大器原理和工作状态
4/2/2024 6:52 PM
1 1 2 0
1 2 1.75 0
查表得知: 66
cos 0.407
1( ) 0.419 0 ( ) 0.239
第六讲 丙类功率放大器原理和工作状态
4/2/2024 6:52 PM
14
Icm
Ico
0 ( )
300 0.239
实验03 丙类高频功率放大器
一、实验目的 1. 通过实验进一步熟悉丙类高频功率放大器的基本 工作原理,掌握丙类放大器的计算与设计方法。 2. 了解电源电压Vcc与集电极负载对功率放大器功 率和效率的影响。 3. 掌握谐振功率放大器的调谐技术,了解高频功率 的测量方法。
二、实验原理
高频功率放大器一般都采用选频网络作为负载回路, 并且一般都工作于丙类状态。高频功率放大器的主要 技术指标是输出功率和效率。 1.集电极效率 C .集电极效率η 设 PD=直流电源供给的直流功率 PO=交流输出信号功率 PC=集电极耗散功率 则 PD=PO+PC 为了说明晶体管放大器的功率转换能力,定义集电极 效率ηC
VB VE VCE Vi Vo Ico Icm PD P0 PC
η
R=50
Vc= 12V
V= 120m V
R=75
R=120
Vi= 84m V
RL=50 RL=75 RL=120
Vi= 120 mV VC=5 V Vi= 84m V
RL=50 RL=75 RL=120 RL=50 RL=75 RL=120
式中,ICO为丙类工作时,C脉冲波的傅立叶级数展开式中的平均 i 分量;由于电路处于基波谐振状态,所以,无高次谐波输出, Vcm为基波分量输出电压;Icm为基波分量电流;Re为谐振回路阻 抗。Re与谐振回路及负载有关。本实验就是在改变负载的情况 下,测量功率及 ηC的变化。
三、实验仪器 双踪示波器 扫频仪 高频信号发生器 万用表 实验板G1
Vi :输入电压峰-峰值 峰 Vo:输出电压峰-峰值 峰 IC0 :电源给出总电流 PD :电源给出总功率(PD = VCC IC0) P0 :输出功率 PC :管子损耗功率(PC = PD – P0 ) 3.加75负载电阻,同2测试并填入表3-1内。 . 4.加120负载电阻,同2测试并填入表3-1内。 . 5.改变输入端电压V= 84mV,同2、3、4测试并填入表3-1 . 内。 6.改变电源电压V= 5V,同2、3、4测试并填入表3-1内。 .
实验三丙类高频功率放大器实验
实验三 丙类高频功率放大器实验一. 实验目的1.通过实验,加深对于高频谐振功率放大器工作原理的理解。
2.研究丙类高频谐振功率放大器的负载特性,观察三种状态的脉冲电流波形。
3.了解基极偏置电压、集电极电压、激励电压的变化对于工作状态的影响。
4.掌握丙类高频谐振功率放大器的计算与设计方法。
二。
预习要求:1.复习高频谐振功率放大器的工作原理及特点。
2.熟悉并分析图3所示的实验电路,了解电路特点。
三.电路特点及实验原理简介在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求效率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百kHz —几十MHz 。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
1.电路特点本电路的核心是谐振功率放大器,在此电路基础上,将音频调制信号加入集电极回路中,利用谐振功率放大电路的集电极调制特性,完成集电极调幅实验。
当电路的输出负载为天线回路时,就可以完成无线电发射的任务。
为了使电路稳定,易于调整,本电路设置了独立的载波振荡源。
2.高频谐振功率放大器的工作原理参见图1。
谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重cR L要、最为难调的单元电路之一。
根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。
丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。
图1中,Vbb 为基极偏压,Vcc为集电极直流电源电压。
为了得到丙类工作状态,Vbb应为负值,即基极处于反向偏置。
u b为基极激励电压。
图2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。
第6讲_高频丙类功率放大器原理和工作状态
第6讲_高频丙类功率放大器原理和工作状态高频丙类功率放大器是一种常见的放大器类型,广泛应用于通信、无线电等领域。
本文将介绍高频丙类功率放大器的原理和工作状态,帮助读者更好地理解和应用这一技术。
一、高频丙类功率放大器的原理高频丙类功率放大器是一种用于放大高频信号的电路。
它的原理基于功率放大器的工作方式。
功率放大器是一种特殊的放大器,其输出端可以输出较大幅度的电功率,通常用于将弱信号放大到足够驱动负载的水平。
高频丙类功率放大器的原理和一般功率放大器相似,但其特点是在工作过程中采用了丙类放大的方式。
丙类放大是一种非线性放大方式,其输出信号在正半周和负半周分别被不同的放大器阶段放大。
具体而言,高频丙类功率放大器由一个或多个功率放大器级联组成。
每个放大器阶段都工作在丙类工作状态下,即在正半周和负半周分别进行放大。
这样可以有效提高功率放大器的效率,并实现对高频信号的放大。
二、高频丙类功率放大器的工作状态1. 正半周放大状态在高频丙类功率放大器的正半周工作状态中,输入信号的正半周期被放大器阶段进行放大。
此时,输出信号为输入信号的正半周期的放大结果。
由于丙类放大器在正半周时工作,因此其输出端的负电压是由负反馈电路提供的,保持放大器处于良好的工作状态。
2. 负半周放大状态在高频丙类功率放大器的负半周工作状态中,输入信号的负半周期被不同的放大器阶段进行放大。
此时,输出信号为输入信号的负半周期的放大结果。
同样,由于丙类放大器在负半周时工作,负反馈电路提供正电压来保持放大器的工作状态稳定。
3. 合并输出高频丙类功率放大器通过将正半周和负半周的放大结果合并起来,得到了每一个周期内的完整的输出信号。
这种合并输出的方式可以保证高频丙类功率放大器输出信号的连续性和稳定性。
三、高频丙类功率放大器的应用高频丙类功率放大器在通信和无线电领域有着广泛的应用。
由于其工作效率高,输出功率大,适用于处理高频信号,并且可通过合并多个放大器级联来获得更高的增益。
高频丙类功率放大器
实验一:高频丙类功率放大器前言在高频范围内为获得足够大的高频输出功率,必须采用高频放大器,高频功率放大器主要用于发射机的未级和中间级,它将振荡产生的信号加以放大,获得足够高频功率后,再送到天线上辐射出去。
另外,它也用于电子仪器作未级功率放大器。
高频功率放大器要求功率高,输出功率大。
丙类放大器它是紧紧围绕如何提高它的效率而进行的。
高频功率放大器的工作频率范围一般为几百KHZ—几十MHZ。
一般都采用LC 谐振网络作负载,且一般都是工作于丙类状态,如果要进一步提高效率,也可工作于丁类或戊类状态。
一.实验目的及要求(一)实验目的1.进一步了解高频丙类功率放大器的工作原理和调试技术。
2.熟悉负载变化对放大器工作状态的影响及各指标的测试方法。
3.掌握输入激励电压,集电极电压,基极偏置电压变化对放大器工作状态的影响。
(二)实验要求1.认真阅读本实验教材及有关教材内容2.熟悉本实验步骤,并画出所测数据表格。
3.熟悉本次实验所需仪器使用方法。
(三)实验报告要求1.写出本次实验原理及原理框图2.认真整理记录测试数据及绘出相应曲线图。
3.对测试结果与理论值进行比较分析,找出产生误差的原因,提出减少实验误差的方法。
4.详细记录在调谐和测试过程中发生的故障和问题,并进行故障分析,说明排除过程和方法。
5.本次实验收获,体会以及改进意见。
二.实验仪器及实验板1.双踪示波器(CA8020)一台2.高频信号发生器(XFG-7)一台3.晶体管直流稳压电源一块4.数字万用表一块5.超高频毫伏表(DA22)一台6.直流毫安表一块7.高频丙类功率放大器实验板一块三.实验原理及公式推导高频谐振放大器的主要作用是使电路输出功率大,效率高;主要特点是用谐振回路来实现阻抗变换,并且为了提高效率常工作在丙类状态。
高频功率放大器一般有两种:1.窄带高频功率放大器;2. 宽带高频功率放大器。
前者由于频带比较窄,故常用选频网络作为负载回路,所以又称为谐振功率放大器。
丙类高频功率放大器实验报告
[实验报告]实验名称:丙类高频功率放大器实验实验目的:了解丙类功率放大器的工作原理和特点。
掌握丙类功率放大器的电路设计和搭建方法。
测试丙类功率放大器的频率响应和功率输出特性。
实验器材和材料:电源供应器变压器电容器、电阻器、电感器二极管功率晶体管示波器频谱分析仪连接线等实验步骤:按照设计要求,搭建丙类高频功率放大器电路。
连接电源供应器和变压器,调整电源电压和电流,确保电路工作在适当的参数范围内。
连接示波器和频谱分析仪,用于观察和分析电路的输出波形和频谱。
运行电路,调整输入信号的频率和幅度,记录输出信号的频率响应和功率输出特性。
分析实验结果,总结丙类高频功率放大器的工作性能和优缺点。
实验结果:测试结果显示,丙类高频功率放大器具有较高的功率放大能力和频率响应范围。
输出信号的失真较小,但存在一定的非线性失真,尤其在低频部分。
功率输出特性受到电源电压和负载阻抗的影响,需要合理调整和匹配以达到最佳性能。
实验结论:通过本实验,我们深入了解了丙类高频功率放大器的工作原理和特点。
该放大器具有高功率放大能力和宽频率响应范围,适用于许多高频应用场景。
然而,由于其非线性特性,需要注意功率输出的失真问题,并且需要合理调整电源和负载以优化性能。
实验中可能存在的误差和改进方法:实验中的测量误差和器件非理想性可能会对结果产生一定影响。
可以采用更精密的测量仪器和优质的元器件来减小误差。
可以进一步优化电路设计,改进反馈机制和调整工作参数,以提高放大器的线性度和效率。
实验参考文献:[列出使用的参考文献和资料]附注:实验过程中请遵循实验室安全规范,注意电路连接的正确性和稳定性,避免发生意外和设备损坏。
以上为丙类高频功率放大器实验的基本报告框架,具体内容和格式可以根据实验要求和指导老师的要求进行调整。
高频功率放大器(丙类)
实验报告课程名称高频电子线路实验名称高频功率放大器(丙类)实验类型验证(验证、综合、设计、创新)学院名称电子与信息工程学院专业电子信息工程年级班级2012级电信3 班开出学期2014-2015上期学生姓名学号指导教师蒋行达成绩2014 年11 月22 日实验二高频功率放大器(丙类)一、实验目的1、了解丙类功率放大器的基本工作原理,三种工作状态,功率、效率计算。
2、掌握丙类功率放大器性能的测试方法。
3、观察集电极负载、输入信号幅度与集电极电压EC对功率放大器工作情况的影响。
二、实验仪器1、示波器2、高频信号发生器3、万用表4、实验板2三、预习要求1、复习功率放大器原理及特点。
2、分析图2-2所示的实验电路,说明各元器件作用。
四、实验内容1、用示波器观察功率放大器工作状态,尤其是过压状态时的集电极电流凹陷脉冲。
2、观察并测量集电极负载变化对功率放大器工作的影响。
3、观察并测量输入信号幅度变化对功率放大器工作的影响。
4、观察并测量集电极电源电压变化对功率放大器工作的影响。
五、基本原理及实验电路高频功率放大器是通信系统中发送装置的重要组件。
它的作用是放大信号,使之达到足够功率输出,以满足天线发射或其他负载的要求。
它的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)。
1、基本原理功率放大器的效率是一个最突出的问题,其效率高低与放大器的工作状态有直接的关系。
放大器工作状态可分为甲类、乙类和丙类等。
图2-1 表示了不同Ube时,谐振功率放大器不同工作状态的基极电压和集电极电流波形。
当工作点在Q 和Q/输入Ub1m、Ub2m时,工作点Q 和Q/在转移特性的线性段,调谐功率放大器工作在甲类。
甲类工作状态理想效率为50%。
此时晶体管需要正偏置。
当工作点在移至Q//输入Ub3m时,晶体管只在输入信号的正半周时导通,集电极电流是周期性电流脉冲,调谐功率放大器工作在乙类。
乙类工作状态理想效率为78.5%。
高频丙类功率放大器原理和工作状态要点课件
3
交叉学科融合
与其他学科领域的交叉融合将为高频丙类功率放 大器的发展带来新的机遇和突破口。
THANKS
感谢观看
减小非线性失真的方法包括提高放大器线性度、 采用预失真技术以及合理配置负载阻抗等。
动态范围
01
动态范围是指放大器在正常工作状态下,能够处理的信号强度 的最大值和最小值之间的范围。
02
动态范围的大小取决于放大器的噪声性能、线性工作范围和失
真性能等因素。
动态范围越大,放大器能够处理的信号强度变化范围越广,信
增益不稳定
由于电路参数的变化或外部干扰,功率放大器的增益可能不稳定。解决方案:采用自动增益控制(AGC)技术,实时 监测和调整放大器的增益水平,确保输出信号的稳定性。
非线性失真
在高功率输出时,放大器可能产生非线性失真,影响信号质量。解决方案:采用适当的负反馈或前馈技 术,改善放大器的线性度;同时合理选择工作点,避免进入非线性区域。
由于丙类放大器只在信号峰值时消耗功率 ,因此效率较高。
非线性失真
适用范围广
由于丙类放大器的非线性工作特性,会产 生非线性失真。
适用于各种不同的信号和通信系统。
工作原理
01
02
03
输入信号
输入信号通过输入变压器 耦合到功率管,并在功率 管中进行放大。
功率放大
功率管在电源电压的作用 下,将输入信号放大并输 出。
高频丙类功率放大器原 理和工作状态要点课件
目录
• 高频丙类功率放大器概述 • 丙类放大器的原理 • 工作状态要点 • 实际应用与优化 • 发展趋势与展望
01
高频丙类功率放大器概述
定义与特点
定义
效率高
高频丙类功率放大器是一种电子设备,用 于将较小的信号放大到足够大的功率,以 便在传输系统中传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要随着无线通信技术的高速发展,市场对射频电路的需求越来越大,同时对射频电路的性能要求也越来越高。
丙类谐振功率放大器是位于无线发射机末端的重要部件,它通常被用作末级功放,以使发射信号获得较大的输出功率和较高的效率。
本论文对EDA软件PSPICE进行了系统的研究,从而掌握了丙类谐振式功率放大器的仿真设计方法。
首先,根据电路的性能指标要求,对丙类谐振式功率放大器的电路参数进行工程估算;然后,利用软件对估算的电路进行进一步的精确模拟分析,通过观测、分析丙类谐振式功放的负载特性、放大特性、调制特性的基础上,调整电路路的参数,从而达到优化电路参数的目的,以使电路的各项性能指标满足预期的设计要求。
关键词:丙类谐振功率放大器、电子设计自动化、优化设计ABSTRACTWith the rapid development of the radio communication technology, the market requirements for RF circuit are growing, calling for the higher demands of RF circuit performance, in which the class-C resonance Power-Amplifier is an important component at the end of the radio transmitter. It is usually used as the end-Power-Amplifier aiming at obtaining transmitted signal with high output power and high efficiency. In this dissertation,the simulation of the class-C resonant Power-Amplifier is given in detail by studying EDA software PSPICE, by using which the accurate simulation analysis of the estimated circuit is obtained after the Circuit parameters of the class-C resonant Power-Amplifier are estimated according to the circuit performance. On the base of observing and analyzing load characteristics, amplify characteristics and modulation characteristics, optimized Circuit Performance are obtained by adjusting the circuit parameters for the purpose of meeting the demands of the design.Keywords:Class-C resonant Power-Amplifier, EDA, Optimization Design目录一绪论1.1 高频功率放大器的简介1.2 国内发展的状况和前景1.3 课程目的和意义1.4 论文主要工作作二丙类功率谐振放大器的理论设计2.1 电路原理2.1.1 工作原理2.1.2 主要的技术指标2.2 电路的参数值的估计2.2.1 三极管的选取2.2.2 确定放大器的工作状态2.2.3 谐振回路及耦合回路的参数设计2.2.4 基极偏置电路的参数设计三功率放大器性能分析和工作状态的确定3.1 对功放进行理论分析3.1.1 输出特性上的动态线近似作法3.1.2 放大器电参量VBB VCC Vbm 负载RP的变化对动态线的影响3.2 对功放性能进行分析和工作状态的确定3.2.1 负载特性3.3.2 放大特性3.3.3 调制特性4 功率放大器的仿真与调试4.1 功率放大器的仿真设计4.1.1 功率放大器的仿真电路原理4.1.2 功率放大器的调试4.1.3 功率放大器的仿真波形图五课程设计心得体会六参考文献七致谢1 绪论1.1高频功率放大器的应用和前景在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。
为了获得足够大的高频输出功率,必须采用高频功率放大器。
高频功率放大器是无线电发射没备的重要组成部分。
在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,因此在它后面要经过一系列的放大,如缓冲级、中间放大级、末级功率放大级等,获得足够的高频功率后,才能输送到天线上辐射出去。
这里提到的放大级都属于高频功率放大器的范畴。
实际上高频功率放大器不仅仅应用于各种类型的发射机中,而且高频加热装置、高频换流器、微波炉等许多电子设备中都得到了广泛的应用。
1.2高频功率放大器的简介高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。
高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。
谐振功率放大器的特点:①放大管是高频大功率晶体管,能承受高电压和大电流。
②输出端负载回路为调谐回路,既能完成调谐选频功能,又能实现放大器输出端负载的匹配。
③基极偏置电路为晶体管发射结提供负偏压,使电路工作在丙类状态。
④输入余弦波时,经过放大,集电极输出电压是余弦脉冲波形。
1.3 课程设计目的和意义学会设计一个简单的高频功率放大器的电路,培养自己的动手能力和分析问题方法,利用Multisim 软件平台对高频丙类谐振功率放大器进行了仿真研究,给出了其各种外部特性仿真分析结果,现实了其功能验证。
Multisim2001 是一个优秀的高频电路仿真分析软件,其强大的射频仿真分析功能改变了传统的高频电子电路的分析、设计方法,为设计出更合理、更优化的电子电路与系统提供了一个快捷、高效的新途径。
1.4 论文主要的工作熟悉丙类高频功率放大器的工作原理,学习丙类高频谐振功率放大器的电路调谐及测试技术。
研究丙类高频谐振功率放大器的调谐特性和负载特性。
理解基极偏置电压、集电极电源电压、激励电压对放大器工作状态的影响。
了解丙类高频谐振功率放大器的设计方法。
2 丙功率谐振放大器的理论设计…(小三号、黑体)(内容小四号宋体)2.1电路原理2.1.1 工作原理u是利用发射极电流的直如图2-1所示,丙类功率放大器的基极偏置电压BER上产生的压降来提供的,故称为自给偏置流分量0E I在发射极直流负反馈电阻10电路。
当放大器的输入信号i u为正弦波时,集电极电流c i为余弦脉冲波。
利用谐振回路L5C5的选频作用可输出基波谐振电压1C u、电流1C i。
图2-1 功率放大器电路(丙类)原理图2.1.2 主要的技术指标………………………………………………(1)直流电源CC V 提供的直流功率0C CC V I V P = (2-13)式中,0C I 为集电极电流Ci 的直流分量。
电流Ci 经傅立叶级数分解,可得峰值cmI 与分解系数)(θαn的关系式Icm I cnm n /)(=θα (2-14)故有)(00θαcm C I I = (2-15)分解系数)(θαn与θ的关系如图所示。
(2)集电极输出的基波功率om c o m c m c m c C R U R I I U P /212121121211=== (2-19)式中,m c U 1为集电极基波电压的振幅,m c I 1为集电极基波电流的振幅;o R 为集电极负载电阻,最佳匹配状态下有H o R R =,三者间的关系为o m c m c R I U 11= (2-20) 式中,)(11θαcm m c I I =,即集电极基波电流振幅等于集电极电流振幅与基波电流分解系数之积。
(3)功率增益i C P P P A /= (2-21)式中,i P 为功放的基极基波输入功率,它与基波输入电流振幅m b I 1、基波输入电压振幅m b U 1及输入电阻i R 的关系为im b i m b m b m b i R I R U I U P 12121121/2121=== (2-22)实验电流中,i R 可表示为ie i h R ≈。
由公式(2-19)和(2-22)可得m b m b mc m c P I U I U A 1111=(2-23)(4)放大器的效率)()(21)()(21 2101011011θαθαξθαθαη⋅⋅=⋅⋅=⋅⋅==CC m c C mc CC m c V C V U I I V U P P (2-24)式中,CC m c V U /1=ξ称为电压利用系数。
功率放大器的设计原则是在高效率下获得较大的输出功率。
在实际运用中,为兼顾高输出功率和高效率原则,通常取80~600=θ。
2. 2 电路的参数值的估计 2.2.1 三极管的选取功率放大器管:选用 Phili p s 公司的 NPN 型高压晶体管 (2N5551)作为放大管。
直流电流根据设计要求放大器的电源电压初始值均取+ 12V 。
2.2.2 确定放大器的工作状态谐振功放的三种工作状态在非线性谐振功率放大器中,常常根据集电极是否进入饱和区,将放大区的工作状态分为三种:①欠压工作状态:集电极最大点电流在临界线的右方 ②过压工作状态:集电极最大点电流进入临界线之左的饱和区 ③临界工作状态:是欠压和过压状态的分界点, 集电极最大点电流正好落在临界线上。
如图2-4为电压、电流随负载变化的波形图。
图2-4 电压、电流随负载变化波形高频放大器的工作状态是由负载阻抗Rp 、激励电压Vb、供电电压VCC、VBB等4个参量决定的。
为了阐明各种工作状态的特点和正确调节放大器,就应该了解这几个参量的变化会使放大器的工作状态发生怎样的变化。
2.2.3 谐振回路及耦合回路的设计输入耦合回路的作用是自前级取得最大的激励功率,而输出耦合回路则是保证放大器的输出功率能有效地加到负载上。
如图2-1所示,丙类谐振功放的输出回路采用变压器耦合方式,其作用可以归纳为:①实现阻抗匹配,使负载电阻L R能与放大器的最佳负载H R匹配,以保证放大器传输到负载的功率最大。
②与谐振回路配合,抑制工作频带范围以外的频率分量,使负载上只有基波分量及频带内频谱分量存在。