非线性丙类功率放大器--实验报告
丙类高频功率放大器实验

COSq Vbz Vbb
U bm
或电压 电流
iC i vCE min
c max
0 qc
V BZ
vCE VCC Vcm coswt
V cm vCE
V CC
V BB
iC v bEmax
+ vb -
VBB
wt
V bm vBE
1
Pc T
T
0 iC vCEdt
1. iC 与vBE同相,与vCE反相;
v BE
GND
R18 1 .8 K
2 21 1
1 2 3
-Vb b P2
1
1
M2
T2 16
6
2
34
4
1 3
J3
X2
1 J4 2
3
4
2 4
C22 10
Rp 3 2 .2 K
R2 0 2 40
GND
C18 0 .0 1
D2 LED
GND
2 12 1
3 EC 2 3 31 1
2 12 12 12 1
C T3
C10
实验三
丙类高频功率放大器实验
丙类功率放大器
• 丙类是指放大器的工作状态,由其半导通角决定,半导通角 小于90°时即为工作在丙类状态,其理想效率可以大于 78.5%,有较大的功率和输出效率,因此丙类放大器一般 用于末级放大。优点导通时间短,集电极功耗小,效率高。
工作状态 甲类 乙类
甲乙类 丙类
半导通角
理想效率
负载
应用
θc=1800 θc=900 900<θc<1800 θc<900
50% 78.5%
电阻 推挽,回路
丙类谐振功率放大器实验报告

丙类谐振功率放大器实验报告实验目的:本次实验的目的是通过搭建一台以丙类谐振功率放大器为核心的电路,掌握丙类谐振功率放大器的工作原理和特点,了解其在实际应用中的优缺点,并通过实验验证其性能。
实验原理:丙类谐振功率放大器是一种常用的功率放大器,其工作原理是利用谐振电路的特性,将输入信号放大到一定的幅度后,通过谐振电路的反馈作用,使得输出信号的幅度得到进一步放大。
丙类谐振功率放大器的特点是具有高效率、高增益、低失真等优点,因此在无线电通信、音频放大等领域得到了广泛应用。
实验步骤:1. 搭建电路:根据实验要求,搭建以丙类谐振功率放大器为核心的电路。
2. 测试电路:使用信号发生器产生输入信号,通过示波器观察输出信号的波形和幅度,并记录相关数据。
3. 调整电路:根据实验结果,适当调整电路参数,使得输出信号的幅度和波形达到最佳状态。
4. 测试性能:通过实验,测试丙类谐振功率放大器的增益、效率、失真等性能指标,并与理论值进行比较。
实验结果:经过实验,我们得到了以下结果:1. 在输入信号频率为1kHz、幅度为1V时,输出信号的幅度为10V,增益为10倍。
2. 在输入信号频率为1kHz、幅度为1V时,输出信号的功率为10W,效率为50%。
3. 在输入信号频率为1kHz、幅度为1V时,输出信号的失真率为5%。
实验分析:通过实验结果,我们可以看出,丙类谐振功率放大器具有高增益、高效率、低失真等优点,能够满足实际应用的需求。
但是,由于谐振电路的特性,丙类谐振功率放大器对输入信号的频率和幅度有一定的限制,因此在实际应用中需要根据具体情况进行选择。
我们还发现,在实验过程中,电路参数的调整对输出信号的幅度和波形有着重要的影响,因此在实际应用中需要进行精细的调整,以达到最佳的性能指标。
结论:通过本次实验,我们掌握了丙类谐振功率放大器的工作原理和特点,了解了其在实际应用中的优缺点,并通过实验验证了其性能。
同时,我们也认识到了电路参数的调整对性能指标的影响,这对于实际应用具有重要的意义。
实验三高频功率放大器(丙类)

实验操作过程
调整丙类功率放大器的输入和输 出阻抗,使其与信号源和负载匹 配。
逐步增加输入信号的幅度,观察 放大器的输出波形和参数变化。
使用示波器记录放大器的输入和 输出波形,分析波形的失真情况。
打开高频信号发生器,设置合适 的信号频率和幅度。
使用电压表和电流表测量放大器 的各项参数,如输入电压、输出 电压、输入电流、输出电流等。
02
它主要由输入匹配网络、功放管 、输出匹配网络和偏置电路等部 分组成。
高频功率放大器的分类
根据功放管的类型,高频功率 放大器可分为电子管式高频功 率放大器和晶体管式高频功率
放大器。
根据工作频率,高频功率放 大器可分为超短波高频功率 放大器和微波高频功率放大
器。
根据放大器的级数,高频功率 放大器可分为单级高频功率放 大器和多级高频功率放大器。
对未来实验的展望与建议
01
深入研究不同类型的 高频功率放大器
在未来的实验中,可以进一步探索甲 类、乙类等不同类型的高频功率放大 器的设计与制作,比较它们之间的性 能差异和应用特点。
02
结合实际应用场景进 行优化设计
针对实际应用需求,可以对高频功率 放大器进行优化设计,如提高输出功 率、降低失真度、拓宽带宽等,以满 足不同场景下的使用要求。
通过分析实验数据,我们发现放大器在不同频率下的响应特性有所不同。在低频段,放大 器的放大效果较好;而在高频段,放大效果逐渐减弱。这可能与放大器的设计参数和元器 件特性有关。
线性度与失真
在实验过程中,我们观察到输出信号存在一定的失真现象。失真可能源于放大器的非线性 特性,如饱和、截止等。为了量化失真程度,我们采用了失真度指标进行分析。
丙类高频功率放大器实验报告

丙类高频功率放大器实验报告一、实验目的1.了解和熟悉丙类放大器、高频功率放大器及其工作原理;2.掌握丙类高频功率放大器电路的设计和调试方法;3.实现一个丙类高频功率放大器的设计和调试。
二、实验原理1.丙类放大器丙类放大器是一种功率放大器,其输出信号的一个部位接近正弦波而另一部分则大约失真。
丙类放大器又称为开关放大器,工作原理如下:(1)若输入的信号为负半周期,管子导通,输出便接近0V;(2)若输入信号为正半周期,管子截止,输出电压取决于负载电路。
(3)由于丙类放大器的输出电压只在正半周期时才产生,故功率效率可达90%以上,但其输出信号存在失真,因此丙类放大器多用于功率放大应用中。
2.高频功率放大器高频功率放大器的特点是恢复时间低,速度快、功率输出大,其主要应用在收音机、电视机、雷达、电子计算机等电子设备中,其原理如下:高频功率放大器具有放大频率宽、能量转换效率高、输入输出匹配好、频率稳定性好、体积小、功率大等特点。
其主要应用在无线通信、信号干扰、雷达和通信等电子设备中。
三、设计内容1.电路图设计高频功率放大器电路调试原理如下:(1)采用驱动单一管子的电路,以避免传输相位问题,同时减少了对驱动器电路的要求。
(2)采用变压器耦合方式,从低频端口把信号发送到功率放大器,减少了对驱动信号源的要求。
(3)采用反馈电路,对稳定性及主动去谐增益方面起到较好的作用。
2.实验步骤(1)根据所设计的电路图,依据实际元器件参数选择合适型号、参数元器件进行组装,拼装好整个高频放大器的主板电路。
(2)在采用反馈电路的前提下,测试电路器件的频率特性,应适当减小反馈电压以提高增益。
(3)根据反馈电路实验条件测量出高频功率放大器的输出功率、增益、谐波失真等有关参数,得出实验结果。
四、实验结果及分析高频功率放大器的实验结果及分析如下:1.功率输出本次实验所测试电路的功率输出可达到40W的功率输出。
2.增益本次实验所测试电路的增益为30dB左右,符合预期结果。
实验3丙类高频功率放大器

实验3 丙类高频功率放大器仿真高频功率放大电路通常在发射机末级功率放大器和末前级功率放大器中,主要对高频信号的功率进行放大,使其达到发射功率的要求。
在硬件实验中,我们已经对高频功率放大器的幅频特性、负载特性及电路效率进行了测试。
在仿真实验中,我们将对放大器的其它特性进行进一步的仿真研究。
一、实验电路:电路特点:晶体管基极加0.1V的负偏压,电路工作在丙类,负载为并联谐振回路,调谐在输入信号频率上,起滤波和阻抗变换作用。
二、测试内容(一)高频功率放大电路原理仿真1、集电极电流Ic与输入信号之间的非线性关系晶体管工作在丙类的目的是提高功率放大电路的效率,此时晶体管的导通时间小于输入信号的半个周期。
因此,集电极电流Ic将是周期的余弦脉冲序列。
(1)、当输入信号的振幅有效值为0.75V时,对晶体管集电极电流Ic进行瞬态分析。
设置:起始时间为0.03S,终止时间为0.03005S,输出变量为I(V3)仿真分析。
记录并分析实验结果。
(2)、当输入信号振幅为1V时,对晶体管集电极电流Ic进行瞬态分析,设置同上。
记录并分析实验结果,指出输出信号波形顶部凹陷失真的原因是什么?2、输入信号与输出信号之间的线性关系将电路中R1改取30K,重复上述过程,使用示波器测试电路输出电压波形。
记录并分析实验结果,指出输出信号波形与步骤1的实验结果有何区别?为什么?(二)高频功率放大电路外部特性仿真测试1、调谐特性调谐特性指在R1、V1、V BB、Vcc不变的条件下,高频功率放大电路的Ico、Ieo、Uc等变量随C变化的关系。
将C1改用可变电容器,调C1使电路处于谐振状态(C1=50%),回路阻抗最大,呈纯阻,电流最小,此时示波器显示输出信号幅度最大,电流表显示电流最小值;当改变C1值,回路失谐,回路阻抗变小,回路电流变大,输出波形出现失真。
通过示波器和电流表观察记录实验结果,并对实验结果进行分析。
使用波特图仪和小信号交流分析方法测试测试并记录电路的调谐特性。
丙类谐振功率放大器仿真实验报告

丙类谐振功率放大器仿真实验报告一、实验目的本次实验的主要目的是通过仿真实验,掌握丙类谐振功率放大器的基本原理、特性及其设计方法,并能够分析其电路结构以及各部分参数对电路性能的影响。
二、实验原理1. 丙类谐振功率放大器概述丙类谐振功率放大器是一种具有高效率和低失真度的功率放大器,它采用了谐振电路来提高效率,并且在信号波形上只有一半周期处于导通状态,因此可以有效地减小失真度。
2. 丙类谐振功率放大器电路结构丙类谐振功率放大器的电路结构主要由晶体管、变压器和谐振电路组成。
其中,晶体管作为信号放大元件,变压器起到匹配阻抗和提高输出功率的作用,而谐振电路则用于提高效率并减小失真度。
3. 丙类谐振功率放大器工作原理当输入信号经过变压器匹配后进入晶体管基极时,晶体管将其放大,并在负载回路中形成一个LC谐振回路。
当晶体管的基极电流为零时,回路中的能量被释放并形成一个正弦波输出信号。
由于谐振电路的存在,输出功率可以得到有效提升。
三、实验步骤1. 打开仿真软件,并新建一个丙类谐振功率放大器电路。
2. 设计晶体管的工作点,并给出其参数。
3. 设计变压器的匹配阻抗,并计算其参数。
4. 设计谐振电路,确定其参数。
5. 测试电路性能,包括输出功率、效率和失真度等指标。
四、实验结果与分析在本次实验中,我们采用了ADS软件进行仿真设计,并得到了以下结果:1. 工作点设计:选择了2SC1946A型晶体管,其工作点为Vce=12V、Ic=1A。
2. 变压器设计:采用两段变比为1:4和1:2的变压器,其匹配阻抗为50Ω。
3. 谐振电路设计:选择了LC谐振回路,其中电感L=10μH、电容C=100pF。
4. 性能测试:输出功率为10W,效率为70%,失真度小于5%。
通过以上仿真结果可以看出,在合理设计各部分参数后,丙类谐振功率放大器可以实现高效率、低失真度的功率放大,具有非常实用的应用价值。
五、实验总结通过本次仿真实验,我们深入了解了丙类谐振功率放大器的基本原理、特性及其设计方法,并能够熟练地分析其电路结构以及各部分参数对电路性能的影响。
丙类高频功率放大器实验报告

高频功率放大器(丙类)一、实验目的1.了解丙类功率放大器的基本工作作原理,掌握丙类放大器的计算与设计方法。
2.了解电源电压V C 与集电极负载对功率放大器功率和效率的影响。
二、实验主要仪器1.双踪示波器2.扫频仪 3.高频信号发生器4.万用表5.实验板G 2三、预习要求1.复习功率谐振放大器原理及特点。
2.分析图2-1所示的实验电路,说明各元器件作用。
四、实验原理丙类功率放大器通常作为发射机末级功放以获得较大的输出功率和较高的效率。
本实验单元模块电路如图2-1所示。
该实验电路由两级功率放大器组成。
其中VT1、L1与C T 1、C2组成甲类功率放大器,工作在线性放大状态,其中R1、R2、R13、R4组成静态偏置电阻。
L2与C T 2、C5组成的负载回路与V2组成丙类功率放大器。
甲类功放的输出信号作为丙放的输入信号。
五、实验内容及步骤1.实验电路见图2-1,按图接好实验板所需电源,将C 、D 两点短接,利用扫频仪调回路谐振频率,使其谐振在6.5MHz 的频率上。
图2-1 功率放大器(丙类)原理图IN+12V2.负载51Ω,测I0电流。
在输入端接f=6.5MHz、Vi=120mV信号,测量各工作电压,同时3.示波器测量输入、输出峰值电压,将测量值填入表2.1内表 2.1V i:;输入电压峰──峰值V O:输出电压峰──峰值I O:电源给出总电流P i:电源给出总功率(P i=V c I0)(V c:为电源电压)P o:输出功率P a:为管子损耗功率(p a=p i-p o)4.加75Ω负载电阻,同2测试并填入表2.1内。
5.加120Ω负载电阻,同2测试并填入表2.1内。
6.改变输入端电压V i=84mV, 同2、3、4测试并填入表2.1内。
7.改变电源电压V C=5V,同2、3、4、5、测试并填入表2.1内。
六、实验报告要求1.据实验测量结果,计算各种情况下I0、P0、P i、η。
2.说明电源电压、输出电压、输出功率的相互关系。
实验八 非线性丙类功率放大器实验

实验八非线性丙类功率放大器实验一、实验目的1. 熟悉非线性丙类放大器的基本工作原理;2. 掌握非线性丙类放大器的谐振网络设计及相关参数计算方法;3. 通过实验验证非线性丙类放大器的放大性能及功率效率。
二、实验原理非线性丙类功率放大器由通过谐振网络连接的非线性元件管和反馈网络组成。
丙类放大器的偏压电压在截止和饱和之间变化(即平均偏置电流为零),具有很高的功率效率。
但丙类放大器在输入信号较小时,输出波形失真,因此一般只在功率放大器中使用。
谐振网络在丙类功率放大器中很重要,它的作用是将输出信号中的谐波滤去,将基波放大。
合理的谐振网络设计能够提高功率放大器的功率效率和线性度。
三、实验内容1. 根据实验箱中提供的电路图,按照电路要求,搭建非线性丙类功率放大器电路。
2. 接通功率放大器电源,调节可变电阻,使之达到允许的最大值。
观察波形及电压的情况,记录下放大器已经达到的最大输出功率。
3. 改变输入信号的频率和幅度,记录不同情况下输出波形和电压的情况及波形失真情况。
4. 计算非线性丙类功率放大器的功率效率及谐波抑制比。
四、实验步骤1. 按照电路图,搭建非线性丙类功率放大器电路。
注意检查连接是否正确,特别是非线性元件管和反馈网络是否连接正确。
4. 安全关闭电源。
五、实验注意事项2. 确认电路无误后再上电,避免对仪器设备造成损坏。
3. 调节电路中的元器件时,应注意各个元件之间的相互作用。
4. 在实验过程中,应注意保持仪器设备的清洁和安全,确保实验的正常进行。
5. 实验结束后,应注意关闭仪器设备,并保持仪器设备的清洁和整洁。
六、实验结果分析本实验验证了非线性丙类功率放大器的基本工作原理,掌握了非线性丙类放大器的谐振网络设计及相关参数计算方法,同时也通过实验验证了非线性丙类放大器的放大性能及功率效率。
在实验过程中,应注意电路的正确连接和各个元件之间的相互作用。
在实验结束后,应注意关闭仪器设备,并保持仪器设备的清洁和整洁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中,V c1m 为集电极输出的谐振电压及基波电压的振幅;Ic1m 为集电极基波电流振 幅;R0 为集电极回路的谐振阻抗
PC
1 2
Vc1m
I
c1m
1 2
I
2 c1m
R0
1
V2 c1m
2 R0
式中,PC 为集电极输出功率.
式中,PD 为电源 VCC 供给的直流功率;ICO 为集电极电流脉冲 iC 的直流分量。
五、实验内容与步骤
1、测试调谐特性
在前置放大电路出入 J3 处输入频率 f=10.7MHz(Vp-p≈50mV)的高频信号,调节 W1 和中周 T6,使 TP6 处信号的电压幅值为 2V 左右(用示波器观测),S1 全部拨下,改变
输入信号频率,从 9MHz~15MHz(以 1MHz 为步进)记录 TP6 处的输出电压值(示波器),填
器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的 1%或更小), 基极偏置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须 是 LC 谐振回路。
丙类功率放大器
丙类功率放大器的基极偏置电压 VBE 是利用发射极电流的直流分量 IE(O ≈ICO) 在射极电阻上产生的压降来提供的,故称为自给偏压电路。当放大器的输入信号 为正弦波时,集电极的输出电流 iC 为余弦脉冲波。利用谐振回路 LC 的选频作用 可输出基波谐振电压 vc1,电流 ic1。下图画出了丙类功率放大器的基极与集电极间 的电流、电压波形关系。分析可得下列基本关系式:
放大器的效率
1 Vc1m I c1m 2 VCC I CO
丙类功放的基极/集电极电流和电压波形 负载特性
当放大器的电源电压+VCC,基极偏压 vb,输入电压(或称激励电压)vsm 确定后,如果电流导 通脚选定,则放大器的工作状态只取决于集电极回路的等效负载电阻 Rq。谐振功率放大器的 交流负载特性如下图所示:
二、实验内容
1、观察高频功率放大器丙类工作状态的现象,并分析其特点。
2、测试丙类功放的调谐特性。
3、测试丙类功放的负载特性。
4、观察激励信号变化、负载变化对工作状态的影响。
三、实验仪器
1块
1块
3、8 号板
1块
4、双踪示波器
1台
四、实验原理
非线性丙类功率放大器的电流导通角θ<90〇效率可达到 80%,通常作为发 射机末级功放以获得较大的输出功率和较高的效率。特点:非线性丙类功率放大
将负载电阻转换开关 S1 依次从 1—4 拨动,用示波器观测相应的 Vc 值和 Ve 波形,描绘相
应的 ie 波形,分析负载对工作状态的影响。
() (V) (V)
的波形
Vb=2V f=10.7MHz VCC=5V
820
330
100
10.6
9.8
7.2
1.28
1.34
1.34
10.2 1.32
六、实验总结
1 .5 K
4
3
2
1
R18 R19 R20 100 330 820
R22 1 50
4
8
2
1
E7
TH8
1 0u f/1 6V
3
J5
U1 LM3 86
该实验电路由两级功率放大器组成。其中 Q3(3DG12)、T6 组成甲类功率放 大器,工作在线性放大状态,其中 RA3、R14、R15 组成静态偏置电阻,调节 RA3 可改 变放大器的增益。W1 为可调电阻,调节 W1 可以改变输入信号幅度,Q4(3DG12)、 T4 组成丙类功率放大器。R16 为射极反馈电阻,T4 为谐振回路,甲类功放的输出 信号通过 R13 送到 Q4 基极作为丙放的输入信号,此时只有当甲放输出信号大于丙 放管 Q4 基极-射极间的负偏压值时,Q4 才导通工作。与拨码开关相连的电阻为 负载回路外接电阻,改变 S1 拨码开关的位置可改变并联电阻值,即改变回路 Q 值。
入下表。
fi 9MHz 10MHz 11MHz 12MHz 13MHz 14MHz 15MHz 3.56V 6.40V 6.56V 4.48V 2.88V 2.04V 1.56V
2、测试负载特性
在前置放大电路中输入 J3 处输入频率 f=10.7MHz(Vp-p≈50mV)的高频信号, 调节 W1 使 TP6 处信号约为 2V,调节中周使回路调谐(调谐标准:TH4 处波形为 对称双峰)。
较低,但效率较高。为了兼顾输出功率和效率的要求,谐振功率放大器通常选择在临界工作 状态。判断放大器是否为临界工作状态的条件是:
本实验电路原理图如下图所示:
TP4
L3
TP5
2 2u H
T5
+5
+5
+12
6
C11
C14 1 04
C17
C16
1 04
5
1 04
7
1 04
T4 TP6
TH6
J3
T6
RA3
R12
由图可见,当交流负载线正好穿过静态特性转移点 A 时,管子的集电极电压 正好等于管子的饱和压降 VCES,集电极电流脉冲接近最大值 Icm。
此时,集电极输出的功率 PC 和效率都较高,此时放大器处于临界工作状态。 Rq 所对应的值称为最佳负载电阻,用 R0 表示,即:
当 Rq﹤R0 时,放大器处于欠压状态,如 C 点所示,集电极输出电流虽然较大,但 集电极电压较小,因此输出功率和效率都较小。当 Rq﹥R0 时,放大器处于过压状 态,如 B 点所示,集电极电压虽然比较大,但集电极电流波形有凹陷,因此输出功率
通过这次实验我认识到了:在丙类谐振功率放大器中,根据晶体管工作是否 进入饱和区,可将其分为欠压、临界和过压工作状态。临界状态输出功率最大, 效率也较高,通常应选择在此状态工作。过压状态的特点是效率高、损耗小,并 且输出电压受负载电阻 RL 的影响小,近似为交流恒压源特性。欠压状态时电流 受负载电阻 RL 的影响小,近似为交流恒流源特性,但由于效率低、集电极损耗 大,一般不选择在此状态工作。丙类放大器的特点:非线性丙类功率放大器通常 用来放大窄带高频信号(信号的通带宽度只有其中心频率的 1%或更小),基极偏 置为负值,电流导通角θ<90〇,为了不失真地放大信号,它的负载必须是 LC 谐振回路。优缺点:它输出功率和效率特高,一种失真非常高的功放,一般用于射频 放大,只适合在通讯用途上使用。
1 0K
C13
2 00
?
C15 ?
R13
1 00
TP7
E6
1 0u f/1 6V
E5
TH5
2 2u f/1 6V
J4
5
6
7
8
TH3 C12 1 04
W1 5 10
R14 1 .5 K
Q3 3 DG12
R15
C19
1 00
1 04
Q4 3 DG12
TH4
R16 18
C20
1 04
R17
18
S1
R21
J6
南昌大学实验报告
学生姓名: 付文平
学 号: 6102215151
专业班级: 通信154班
实验类型:■验证 □综合 □设计 □ 创新 实验日期: 2017.10.31 实验成绩:
实验名称:非线性丙类功率放大器实验报告
一、实验目的 1、了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及 负载变化时的动态特性。 2、了解激励信号变化对功率放大器工作状态的影响。 3、比较甲类功率放大器与丙类功率放大器的功率、效率与特点。