最新高中数学必修二必修三考试卷
人教A版高中数学必修第二册测试题(含答案)
人教A版高中数学必修第二册测试题(含答案)一、单选题1.设D为所在平面内一点,且,则()A.B.C.D.2.若复数为纯虚数,则实数()A.B.0C.5D.3.已知四边形为平行四边形,其中,则顶点的坐标为()A.B.C.D.4.如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为( )A.0.04B.0.06C.0.2D.0.35.某三棱锥的三视图如右图所示,该三棱锥的体积为A.B.C.D.6.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为()A.B.C.D.7.下列说法正确的个数是()①一组数据的标准差越大,则说明这组数据越集中;②曲线与曲线的焦距相等;③在频率分布直方图中,估计的中位数左边和右边的直方图的面积相等;④已知椭圆,过点作直线,当直线斜率为时,M刚好是直线被椭圆截得的弦AB的中点.A.1B.2C.3D.48.在中,一定成立的等式是()A.B.C.D.9.从高二某班级中抽出三名学生.设事件甲为“三名学生全不是男生”,事件乙为“三名学生全是男生”,事件丙为“三名学生至少有一名是男生”,则()A.甲与丙互斥B.任何两个均互斥C.乙与丙互斥D.任何两个均不互斥10.已知是平面,是直线,则下列命题不正确的是()A.若则B.若则C.若则D.若,则11.某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为( )A.80B.96C.108D.110二、填空题12.在复变函数相关领域中,欧拉公式为(这里是虚数单位),当时,可以得到,这个公式被誉为数学中最令人着迷的公式,根据欧拉公式,则______.13.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________.14.气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22;②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有_____.15.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______.三、解答题16.在中,角所对的边分别为已知.(1)求A的大小;(2)如果,求的面积.17.宜宾市创建全国文明城市期间,一单位有甲、乙、丙三个志愿小组,其中甲组4人,乙组8人,丙组12人,现用分层抽样方法从这三个组中选出6人组成宣传小组.(1)应从甲组、乙组、丙组中各抽取多少人?(2)记选出6人分别为,现从这6人中抽取2人进入某小区进行创文宣传;①试用所给的字母列举出所有可能的抽取结果;②设事件是“抽取2人来自同一志愿小组”,求事件发生的概率. 18.某公司有名员工,根据男女员工人数比例,用分层随机抽样的方法从中抽取了人,调查他们的通勤时间(上下班途中花费的总时间,单位:分钟),将数据按照,, ,分成组,并整理得到如下频率分布直方图:(I)从总体中随机抽取人,估计其通勤时间小于分钟的概率;(Ⅱ)求样本数据的中位数的估计值;(Ⅲ)已知样本中通勤时间大于或等于分钟的人都是男员工,通勤时间小于分钟的人中有一半是男员工,求该公司男员工的人数.19.如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC⊥CB,点M和N分别是B1C1和BC的中点.(1)求证:MB∥平面AC1N;(2)求证:AC⊥MB.20.设,复数,其中为虚数单位.(1)当为何值时,复数是虚数?(2)当为何值时,复数是纯虚数?(3)当为何值时,复数所对应的点在复平面内位于第四象限?21.如图,已知正方体内接于球O,且球的半径为,P,Q分别是,上的动点.(1)求正方体的棱长;(2)求的最小值;(3)若平面与平面所成二面角的大小为,平面与平面所成二面角的大小为,试求的最小值,及此时P点的位置.参考答案1.D2.A3.D4.C5.A6.D7.B8.C9.A10.D11.C12.413.公平14.①③15.816.(1);(2)17.(1)甲组1人,乙组2人,丙组3人;(2)①,;②.18.(Ⅰ);(Ⅱ);(Ⅲ).19.(1)见解析;(2)见解析20.(1)且;(2);(3). 21.(1)2(2)(3),点P位于BC的中点。
高中数学必修二必修三考试卷
(单位:度)
由表中数据得线性回归方程: .则 的值为
A. B. C. D.
4.如下图,在空间四边形ABCD中,E,F,G,H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB=
A.m∶nB.n∶mC.(m+n)∶mD.(m+n)∶n
因为直线 被圆 截得的弦长为 ,
所以圆心到直线的距离为 ,
由 ,
得 或
15.5
【解析】由复数 在复平面内对应的点分别为 ,
又三点是共线的,所以 .
16. .
【解析】
试题分析:由已知得0<x<1且0<y<1,满足条件的点〔x,y〕所在的区域为横纵坐标都在〔0,1〕之间的正方形内部,即如图的正方形OABC的内部,
5.C
【解析】因为 =0.82x+1.27中x的系数0.82>0,所以变量x,y之间呈正相关关系.
因为 =0.82× +1.27= ,所以回归直线必过点( , ).
又 ,所以m=1.8.
当x=5时, =5.37.故选C.
6.A
【解析】分析:根据回归直线方程的 的系数是 ,得到变量 增加一个单位时,函数值要平均增加 个单位.
解析:
(I)散点图如下图
(Ⅱ)由已知可得 =33000, =2660, =80, =6.
所以,由最小二乘法确定的回归方程的系数为 = =0.26,
= - =6-0.26×80=-14.8,
因此,所求的线性回归方程为 =0.26x-14.8.
(Ⅲ)由线性回归方程,知当x=110时, =0.26×110-14.8≈14,
A.24B.06C.20D.17
高中数学必修二必修三考试卷
个红色球的编号,选取方法是从随机数表第文案大全文案大全12.如图,在长方体1AC 是否参考答案1.C【解析】由题设中提供的三视图中数据信息与图形信息可知该几何体是底面两直角边分别为2,3的直角三角形,高为4的直三棱柱,如图,截面圆(即底面)的半径为r =,球心距2d =,故球的半径R ==,则外接球的表面积2429S R ππ==,应选答案C 。
2.C【解析】由题意可知: ()()0,0,6,8O C -,则圆心坐标为: ()3,4-圆的直径为:10=,据此可得圆的方程为: ()()22210342x y ⎛⎫-++= ⎪⎝⎭, 即: ()()223425x y -+-=. 本题选择C 选项. 3.C【解析】样本平均数为,即样本中心,则线性回归方程 过 ,则,解得 ,即 的值为 ,故选C. 4.A【解析】因为AC∥平面EFGH ,所以EF∥AC,GH∥AC, 所以EF=HG=m·,同理EH=FG=n·.因为EFGH 是菱形,所以m·=n·,所以AE∶EB=m∶n.故选A.5.C【解析】因为 =0.82x+1.27中x 的系数0.82>0,所以变量x ,y 之间呈正相关关系. 因为, =0.82×+1.27=,所以回归直线必过点( ,).又,所以m =1.8.当x =5时, =5.37.故选C . 6.A【解析】分析:根据回归直线方程的 的系数是 ,得到变量 增加一个单位时,函数值要平均增加 个单位.详解:∵线性回归方程∴变量 增加一个单位时,函数值要平均增加 个单位 故选A.点睛:本题考查线性回归方程,考查线性回归方程系数的意义,考查变量 增加或减少的是一个平均值,注意题目的叙述. 7.A【解析】由()21i 2i z =-=-,则z 的虚部为2-, 故选A . 8.B【解析】中位数为24302+= 27,众数为35,极差38-10 = 28. 故选B. 9.B【解析】不妨设到点A ,平面β, γ距离为x则有)222x x x +=或)222x x x +=两方程解得两个根,故共有两个点,符合题意‘ 故选B 10.A【解析】小明利用下面的随机数表选取6组数作为6个红色球的编号.选取方法是从随机数表第1行的第7列和第8列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为17,23,20,24,06,04.∴选出来的第4个红色球的编号为24. 故选:A .11.B 【解析】试题分析:当1=n 时,21=S ;当2=n 时,22121+=S ;...;当4=n 时,161521212121432=+++=S ;5=n 时,323121212121215432=++++=S ,输出S ,此时54≤<a ,所以选B.考点:循环结构 12.D 【解析】试题分析:以D 为坐标原点,1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,则根据题目所给数据可知1(2,0,0),(2,2,0),(0,(1,2,)2A B C E F ,则(1,2,)2AF =-,(1,BE =--,所以(1)(1)2(1)0AF BE ⋅=-⨯-+⨯-+=,所以AF 和BE 所成的角为 90. 考点:本小题主要考查异面直线所成的角.点评:求解两条异面直线所成的角,可以先通过作平行线作出两条异面直线所成的角,也可以建立空间直角坐标系利用空间向量解决. 13.【解析】因为 是正四面体,所以 .取 中点 ,连接 , 则 的大小为异面直线 和 所成角的大小.因为 ,且 .所以可知. 14.6π或56π【解析】由题知:圆心(2,3),半径为2.因为直线3y kx =+被圆()()22234x y -+-=截得的弦长为所以圆心到直线的距离为1d ===,k ∴= 由tan k α=, 得6πα= 或56π 15.5【解析】 由复数35,1,2i i ai ---+在复平面内对应的点分别为()()()3,5,1,1,2,a ---,又三点是共线的,所以()()15551323a a -----=⇒=---.16.2517. 【解析】试题分析:由已知得0<x <1且0<y <1,满足条件的点(x ,y )所在的区域为横纵坐标都在(0,1)之间的正方形内部,即如图的正方形OABC 的内部, 其面积为S=1×1=1, 若56<+y x ,对应的区域为直线x+y=65的下方,且在正方形OABC 内部,即如图的阴影部分.∵直线x+y=65分别交BC 、AB 于点11,1,1,55D E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,144825525BDES∴=⨯⨯=因此,阴影部分面积为81712525S =-=阴 由此可得:满足56<+y x 的概率为1725S P S ==阴,所以答案应填:2517.考点:几何概型.【方法点晴】本题给出在区间(0,1)内随机地取出两个数,求两数之和小于65的概率.着重考查了二元一次不等式组表示的平面区域、正方形和三角形的面积公式、几何概型计算公式等知识点,属于中档题.正确作出不等式组所表示的平面区域是解题的关键.17.(1)见解析, 【解析】试题分析:(1)要证//MN 平面11ACC A ,转证1//MN AC 即可;(2)点N 到平面MBC 的距离可视为三棱锥N MBC -的高,通过等体积建立方程,解之即可. 试题解析:(1)证明:如图,连接11,AC AB ,因为该三棱柱是直三棱柱, 111AA A B ∴⊥,则四边形11ABB A 为矩形, 由矩形性质得1AB 过1A B 的中点M,在∆ 11AB C 中,由中位线性质得1//MN AC , 又11MN ACC A ⊄平面, 111AC ACC A ⊂平面,11//MN ACC A ∴平面.(2)解:13,4,5BC AB AC CC ====, AB ∴ BC ⊥,1111535222NBC S BC BB ∆∴=⨯⨯=⨯⨯=,1132224MBC S BC BM ∆∴=⨯⨯=⨯⨯=, 又点M 到平面的BCN 的距离为122h AB ='=, 设点N 与平面MBC 的距离为h ,由=M NBC N MBC V V --三棱锥三棱锥可得1133NBC MBC S h S h ∆∆⋅=⋅',即11512323h ⨯⨯=,解得41h =,即点N 到平面MBC 的距离为41.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.(1)见解析;(2)5【解析】试题分析:(1)取DD 1中点M ,连接MA ,MF ,易得AEFM 是平行四边形,有EF ∥AM ,从而得证;(2)因为EF ∥AM ,AD ⊥平面CDD 1C 1,所以∠AMD 与直线EF 和平面CDD 1C 1所成角相等,在Rt △AMD 中求解即可. 试题解析:(1)证明:取DD 1中点M ,连接MA ,MF ,有,所以AEFM 是平行四边形,所以EF ∥AM ,又AM ⊂平面ADD 1A 1,EF ⊄平面ADD 1A 1, 所以EF ∥平面ADD 1A 1,得证.(2)因为EF∥AM,AD⊥平面CDD1C1,所以∠AMD与直线EF和平面CDD1C1所成角相等,又在Rt△AMD中,有sin AMD∠==,所以直线EF和平面CDD1C1所成角的正弦点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.19.【解析】试题分析:四边形PACB面积等于11122PC PC⨯=,所以CP垂直直线l时,四边形PACB面积取最小值试题解析:解从运动的观点看问题,当动点P沿直线3x+4y+8=0向左上方或右下方无穷远处运动时,直角三角形PAC的面积S Rt△PAC=PA·AC=PA越来越大,从而S四边形PACB也越来越大;当点P 从左上、右下两个方向向中间运动时,S四边形PACB变小,显然,当点P到达一个最特殊的位置,即CP垂直直线l时,S四边形PACB应有唯一的最小值,此时PC==3,从而PA==2.所以(S四边形PACB)min=2××PA×AC=2.20.(1)见解析;(2)=0.26x-14.8.(3) 14次.【解析】试题分析:(1)根据题意画出图像即可;(2)根据公式得到=33000,=2660,=80,=6,进而得到方程;(2)由第二问得到回归方程,将x=110,代入表达式可计算得到估计值.解析:(I)散点图如图所示(Ⅱ)由已知可得=33000,=2660,=80,=6.所以,由最小二乘法确定的回归方程的系数为==0.26,=-=6-0.26×80=-14.8,因此,所求的线性回归方程为=0.26x-14.8.(Ⅲ)由线性回归方程,知当x=110时,=0.26×110-14.8≈14,所以在2016年该路段路况及相关安全设施等不变的情况下,车速达到110km/h时,可能发生的交通事故次数为14次.。
高中数学北师大版必修三、必修二---1、必修二---2期末综合检测试题
高二期末复习(二)一、选择题1.在复平面内,复数i2iz =-对应的点所在的象限是( B )A .第一象限B .第二象限C .第三象限D .第四象限2. 设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥”的 ( A )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件3. 已知命题:p x ∀∈R ,03>x ,则 (A )A.:p x ⌝∃∈R ,03≤x B.:p x ⌝∀∈R ,03≤x C.:p x ⌝∃∈R ,03<xD .:p x ⌝∀∈R ,03<x4.函数()sin x f x e x =的图象在点(0,(0))f 处的切线的倾斜角为 (B )(A) 0 (B)4π(C) 1 (D)32 5.. 执行右面的程序框图,如果输入的N 是5,那么输出的S 是 ( B )A.-385B. B. -399C. -45.D. -556.求曲线2y x =与y x =所围成图形的面积,其中正确的是 ( B )( ) A .120()S x x dx =-⎰B .120()S x x dx =-⎰C .12()S y y dy =-⎰D .1()S y y dy =-⎰7.下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆy=0.7x+0.35,那么表中m 的值为( D ) x 6 3 5 2 y4.22.8m2.6A.4B.3.15C.4.5D.38.在A B C ∆中,有如下命题,其中正确的是 ( C )①AB AC BC -= ;②0=++A C C B B A ;③若()()0A B A C A B A C +⋅-= ,则A B C ∆为等腰三角形;④若0A B B C ⋅>,则A B C ∆为锐角三角形。
高中数学必修试题及答案
高中数学必修试题及答案一、选择题(每题3分,共30分)1. 下列函数中,是奇函数的是:A. y = x^2B. y = x^3C. y = sin(x)D. y = cos(x)答案:C2. 函数y = 2x - 3的图象与x轴的交点坐标是:A. (1, 0)B. (3, 0)C. (0, -3)D. (2, 0)答案:B3. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3, 4}答案:B4. 函数y = x^2 - 4x + 4的最小值是:A. 0B. 1C. 4D. -4答案:A5. 已知等差数列{a_n}的首项a_1 = 1,公差d = 2,则第10项a_10等于:A. 19B. 20C. 21D. 22答案:A6. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,则圆心坐标为:A. (2, 3)B. (-2, -3)C. (3, 2)D. (-3, 2)答案:A7. 函数y = 3x + 2的图象与直线y = -x + 5平行,那么它们的斜率k_1和k_2的关系是:A. k_1 = k_2B. k_1 ≠ k_2C. k_1 > k_2D. k_1 < k_2答案:A8. 已知函数f(x) = x^2 - 6x + 8,那么f(-1)的值是:A. 15B. 11C. 3D. 1答案:A9. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值:A. 3x^2 - 6xB. 3x^2 + 6xC. x^2 - 6x + 2D. x^3 - 3x^2答案:A10. 已知函数y = 2x + 3,当x = 1时,y的值是:A. 5B. 6C. 7D. 8答案:A二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的首项a_1 = 2,公比q = 3,那么a_3 =_______。
高中数学必修2,3和5测试卷(含答案)
高二上学期期末考试模拟卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.过点(1,0)且与直线220x y --=平行的直线方程是( )A.210x y --=B.210x y -+=C.220x y +-=D.210x y +-= 2.某个年级有12个班,每个班有50名同学,随机编号为1~50号,为了了解他们的课外兴趣爱好,要求每个班的32号同学留下来进行问卷调查,这里所采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样D.分层抽样3.将一个骰子抛掷一次,设事件A 表示向上的一面出现偶数,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( ) A.A B 与是互斥而非对立事件 B.A B 与是对立事件 C.B C 与是互斥而非对立事件 D.B C 与是对立事件4.已知点(,5)A x 关于点(1,)y 对称的点为(2,3)--,则点(,)P x y 到原点的距离为( )A.4B.13C.15D.17 5.如图,直线123,,l l l 的斜率分别是123,,k k k ,则有( )A.123k k k <<B.312k k k <<C.321k k k <<D.132k k k << 第5题图 第6题图6.执行如图所示的程序框图,输出的S 的值为( )A.34B.45C.56D.677.若变量,x y 满足约束条件1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则2z x y =-的最大值为( )A.4B.3C.2D.1 8.下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行 9.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为( )A.36aB.312a C.3312a D.3212a 10.在腰长为2的等腰直角三角形内任取一点,使得该点到此三角形的直角顶点的距离不大于1的概率为( ) A.16π B.8π C.4π D.2π 11.在三棱锥P ABC -中,PA ABC ⊥底面,AC BC =,PA AC BC ==,则直线PC AB与所成角的大小是( )A.30B.45C.60D.90 12.如果实数,x y 满足22(3)(3)1,x y -+-=则22(3)(1)x y -++的取值范围为( ) A.[]0,9 B.[]9,25 C.[]25,+∞ D.R二.填空题.(本大题共4小题,每小题5分,共20分)13.不等式2902x x->-的解集是 . 14.已知αβγ∥∥,两条直线,l m 分别于平面,,αβγ相交于点,,A B C 和,,D E F ,已知6,AB = 25DE DF =,则AC = .15.在空间直角坐标系中,已知点(1,0,2),(1,3,1)A B -,点M 在y 轴上,且M 到A 与到B 的距离相等,则M 点的坐标是 . 16.我们把圆心在一条直线上,且相邻两圆彼此 外切的一组圆叫做“串圆”,在如图所示的 “串圆”中,圆1C 的方程为221x y +=,圆3C 的方程为22(3)(4)1x y -+-=,则圆2C 的方程为 .三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)17.分别过12(1,0),(1,0)A A -作两条互相垂直的直线,求它们的交点M 的轨迹方程.18.在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为(1,2,,6)n n = 的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5 成绩n x7076727072(Ⅰ)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(Ⅱ)从前5位同学中,随机地选两位同学,求恰有一位同学成绩在区间()68,75中的概率.19.在直三棱柱111ABC A B C -中,1111A B AC =,,D E 分别是棱1,BC CC 上的点(点D 不同于点C ), 且AD DE ⊥,F 为11B C 的中点.求证: (Ⅰ)11ADE BCC B 平面⊥平面; (Ⅱ)直线1A F ADE ∥平面.20.解关于x 的不等式2(1)10()ax a x a R -++<∈.21.某工厂要建造一个长方体无盖贮水池,其容积为34800m ,深为3m ,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少元?22.在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(0,2)P 且斜率为k 的直线与圆Q 相交于不同的两点,A B . (Ⅰ)求k 的取值范围;(Ⅱ)若线段AB 的中点为M ,是否存在常数k ,使得直线OM 与直线PQ 平行?如果存在,求k 值;如果不存在,请说明理由.高二上学期期末模拟卷答案一.选择题.(本大题共12小题,每小题5分,共60分)ACDDD CBCDB CB二.填空题.(本大题共4小题,每小题5分,共20分)13. ()(),32,3-∞- 14.15 15.(0,1,0)- 16.2239()(2)24x y -+-= 三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)2222122217.(,),00,11111211M x y y y x y x x M M x y A A MO M O M x y --=+=+-∴+===∴∴+=解法一:设则当两条直线的斜率存在时,化简得 当两条直线的斜率至少有一个不存在时也满足上式 的轨迹方程为 解法二: 易知 动点以为圆心,为半径 的轨迹方程为{}{}{}{}{}{}{}{}{}{}()6662707672707218.()759061(75)76()51,21,31,41,52,32,42,53,43,54,510.68,75, 4.ni nx x s x A A =+++++=⇒==-=∑解:Ⅰ由题意知 Ⅱ从前位同学中随机选两位包含的基本事件为:, ,,,,,,,,, 共计个记恰有一位同学成绩在区间为事件 则包含的基本事件的个数为 42()105P A ∴==111111*********1111111119.(),,(),,AD DE AD CC DE CC E AD BCC B AD ADE ADE BCC B A B A C F B C A F B C A F CC B C CC C A F BCC B =∴⊂∴=∴=∴ 证明:Ⅰ⊥⊥ ⊥平面 又平面 平面⊥平面 Ⅱ为的中点 ⊥ 又⊥ ⊥平面 11111(),AD BCC B A F ADA F ADE AD ADE A F ADE∴⊄⊂∴ 又由Ⅰ知⊥平面 ∥ 又平面平面 ∥平面220.:0,(1)(1)0101,(1,);1,(1)0,;11,(,1)0,110,(1)(1)0,(,)(1,)10,(,)(1,a ax x a x aa x x a x aa x a ax x x aa a>--<<<∈=-<∈∅>∈=><-+->∈-∞+∞<-∞+∞ 解①若则 当时 当时不等式变为 当时 ②当时不等式变为 ③若则 综上所述,当时不等式的解集为)=0,(1,)101,(1,);1,;11,(,1)a a aa a a+∞<<=∅>;当时不等式的解集为; 当时不等式的解集为 当时不等式的解集为 当时不等式的解集为4800160021.,348001600,150120(3232)31600240000720()1600240000720229760x x xy y x xx x x x==⨯+⨯⨯+⨯⨯=++≥+⨯⨯⨯=解:设水池底面一边的长为则另一边为 设水池总造价为则 01600,4040,297600x x x===∴ 当且仅当即时,取“” 当水池底面是边长为米的正方形时水池的总造价最低,为元222222121211221222.()2123202(1)4(3)36034(3)]4(1)36004().(,),(,),(,)22OM y kx x y x y kx k x k x k k k k x x y y A x y B x y M y y k x =+⎧+-+=⎨=+⎩++-+=--⨯+⨯>-<<+++∴=解:Ⅰ直线的方程为 由得由[得 Ⅱ假设存在满足题意的常数 设则 121212122121212222201,063134(3)(),14(31)(2)(2)()414(31)131,,()4(3)341PQk x OM PQ y y x x k x x k k y y kx kx k x x k k k k k k -==-+-+∴=-+-+=-+++=+++=++=+++∴=-=---+∴ ∥ 由Ⅰ知 解得由Ⅰ知不满足 不存在满足k题意的。
(完整版)高中数学必修二测试卷及答案,推荐文档
(D)2
10、在正方体 ABCD A1B1C1D1 中,下列几种说法正确的是
A、 A1C1 AD
B、 D1C1 AB
C、 AC1与 DC 成 45 角 D、 A1C1与 B1C 成 60 角
11
、a,b,c 表示直线,M 表示平面,给出下列四个命题:①若 a∥M,b∥M,则
a∥b;②若 b M,a∥b,则 a∥M;③若 a⊥c,b⊥c,则 a∥b;④若 a⊥M,b⊥M,则
.
2
16、平行四边形的一个顶点 A 在平面 内,其余顶点在 的同侧,已知其中 有两个顶点到 的距离分别为 1 和 2 ,那么剩下的一个顶点到平面 的距离可能是:
①1; ②2; ③3; 以上结论正确的为
④4; 。(写出所有正确结论的编号)
三、解答题:本大题共 6 题,共 74 分,解答应写出文字说明,证明过程或演算步骤.
a∥b.其中正确命题的个数有
A、0 个
B、1 个
C、2 个
D、3 个
12 、 点 (1,1)在圆(x a)2 ( y a)2 4 的 内 部 , 则 a 的 取 值 范 围 是 ( )
(A) 1 a 1
(B) 0 a 1
(C) a 1或 a 1 (D) a 1
第Ⅱ卷(非选择题 共 90 分) 二、填空题:本大题 4 小题,每小题 4 分,共 16 分. 把正确答案填在题中横线上.
20、解:设圆台的母线长为l ,则 圆台的上底面面积为 S上 22 4 圆台的上底面面积为 S下 5225 所以圆台的底面面积为 S S上 S下 29 又圆台的侧面积S侧 (25)l 7 l 于是7 l25 29 即l 为所求. 7
6
1分 3分 5分 6分 8分
9分 10 分
最新北师大版高中数学必修三测试题全套及答案
最新北师大版高中数学必修三测试题全套及答案章末综合测评(一)统计(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民,这个问题中“2 500名城镇居民的寿命的全体”是()A.总体B.个体C.样本D.样本容量【解析】每个人的寿命是个体,抽出的2 500名城镇居民的寿命的全体是从总体中抽取的一个样本.【答案】 C2.为了了解1 200名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为()A.40B.30C.20D.12【解析】系统抽样也叫间隔抽样,抽多少就分成多少组,总数除以组数=间隔数,即k=1 20040=30.【答案】 B3.一个容量为80的样本中数据的最大值是140,最小值是51,组距是10,则应将样本数据分为()A.10组B.9组C.8组D.7组【解析】根据频率分布表的步骤,极差组距=140-5110=8.9,所以分成9组.【答案】 B4.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14【解析】依据系统抽样的特点分42组,每组20人,区间[481,720]包含25组到36组,每组抽一个,则抽到的人数为12.【答案】 B5.甲、乙两名篮球运动员在某几场比赛中得分的茎叶图如图1所示,则甲、乙两人在这几场比赛中得分的中位数之和是()图1A.63 B.64C.65 D.66【解析】由茎叶图知甲比赛得分的中位数为36,乙比赛得分的中位数为27,故甲、乙两人得分的中位数之和为27+36=63.【答案】 A6.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球数的标准差为0.3.下列说法中,正确的个数为()①甲队的进球技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1 B.2C.3 D.4【解析】因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确,故选D.【答案】 D7.某学校为调查学生的学习情况,对学生的课堂笔记进行了抽样调查,已知某班级一共有56名学生,根据学号(001~056),用系统抽样的方法抽取一个容量为4的样本,已知007号、021号、049号在样本中,那么样本中还有一个学生的学号为()A.014 B.028C.035 D.042【解析】由系统抽样的原理知,抽样的间隔为564=14,故第一组的学号为001~014,所以007为第一组内抽取的学号,所以第二组抽取的学号为021;第三组抽取的学号为035;第四组抽取的学号为049.故选C.【答案】 C8.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是()844217533157245506887704744767217633502583921206766301637859169556671998105071751286735807443952387933211234297864560782524207443815510013429966027954A.169 B.556C.671 D.105【解析】找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.【答案】 D9.对具有线性相关关系的变量x,Y有一组观测数据(x i,y i)(i=1,2,…,8),其回归直线方程是:y=16x+a,且x1+x2+x3+…+x8=3,y1+y2+y3+…+y8=6,则a=()A.116 B.18C.14D.1116【解析】 因为x 1+x 2+x 3+…+x 8=3,y 1+y 2+y 3+…+y 8=6, 所以x =38,y =34,所以样本中心点的坐标为⎝ ⎛⎭⎪⎫38,34,代入回归直线方程得34=16×38+a ,所以a =1116. 【答案】 D10.(2015·安徽高考)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32【解析】 已知样本数据x 1,x 2,…,x 10的标准差为s =8,则s 2=64,数据2x 1-1,2x 2-1,…,2x 10-1的方差为22s 2=22×64,所以其标准差为22×64=2×8=16,故选C.【答案】 C11.(2015·福建高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y =b x +a ,其中b =0.76,a =y -b x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【解析】 由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元). 【答案】 B12.(2016·日照高一检测)样本(x 1,x 2,…,x n )的平均数为x ,样本(y 1,y 2,…,y m )的平均数为y (x ≠y ).若样本(x 1,x 2,…,x n ,y 1,y 2,…,y m )的平均数z =ax +(1-a )y ,其中0<a <12,则n ,m 的大小关系为( )A .n <mB .n >mC .n =mD .不能确定【解析】 由题意知,样本(x 1,…,x n ,y 1,…,y m )的平均数为z =nx +my m +n=nn +m x +m n +m y ,且z =ax +(1-a )y ,所以a =n n +m ,1-a =m n +m .又因为0<a <12,所以0<n n +m<12,解得n <m . 【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.(2015·江苏高考)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为______. 【解析】 x -=4+6+5+8+7+66=6.【答案】 614.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/hm 2):【解析】 由题意,需比较s 2甲与s 2乙的大小.由于x 甲=x 乙=10,s 2甲=0.02,s 2乙=0.244,则s 2甲<s 2乙,因此甲产量比较稳定. 【答案】 甲15.(2015·湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图2所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.图2【解析】(1)由0.1×1.5+0.1×2.5+0.1a+0.1×2.0+0.1×0.8+0.1×0.2=1,解得a=3.(2)区间[0.3,0.5)内的频率为0.1×1.5+0.1×2.5=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.【答案】(1)3(2)6 00016.(2016·潍坊高一检测)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17].将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,图3是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.图3【解析】因为第一组与第二组共有20人,并且根据图像知第一组与第二组的频率之比=12.又因为第一组与第三组的频率之比是是0.24∶0.16=3∶2,所以第一组的人数为20×350.24∶0.36=2∶3,所以第三组有12÷23=18人.因为第三组中没有疗效的人数为6,所以第三组中有疗效的人数是18-6=12.【答案】 12三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某校高中三年级有503名学生,为了了解他们的身体状况,准备按1∶10的比例抽取一个样本,试用系统抽样方法进行抽取,并写出抽样过程.【解】 (1)用简单随机抽样法从503名学生中剔除3名学生. (2)采用随机的方式将500名学生编号为1,2,3,…,500. (3)确定分段间隔,样本容量为500×110=50, 分段间隔k =50050=10,即将500名学生分成50部分,其中每一部分包括10名学生,即把1,2,3,…,500均分成50段.(4)在第一段用简单随机抽样法确定起始的个体编号l ,例如,l =8.(5)按照事先确定的规则抽取样本:从8号起,每隔10个抽取1个号码,这样得到一个容量为50的样本:8,18,28,38,…,488,498.编号为8,18,28,…,488,498的学生便作为抽取的一个样本参与试验.18.(本小题满分12分)两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2; 乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小? (2)哪台机床的生产状况比较稳定? 【解】 (1)x甲=(1+0+2+0+2+3+0+4+1+2)×110=1.5,x乙=(1+3+2+1+0+2+1+1+0+1)×110=1.2.∵x甲>x乙,∴乙车床次品数的平均数较小.(2)s2甲=110[(1-1.5)2+(0-1.5)2+(2-1.5)2+(0-1.5)2+(2-1.5)2+(3-1.5)2+(0-1.5)2+(4-1.5)2+(1-1.5)2+(2-1.5)2]=1.65,同理s2乙=0.76,∵s2甲>s2乙,∴乙车床的生产状况比较稳定.19.(本小题满分12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图4).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.图4(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.【解】(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2.(2)设参加这次测试的学生有x人,则0.1x=5,∴x=50.即参加这次测试的学生有50人.(3)达标率为0.3+0.4+0.2=0.9,∴估计该年级学生跳绳测试的达标率为90%.20.(本小题满分12分)为了了解中学生的身体发育情况,对某一中学同年龄的50名男生的身高进行了测量,结果如下:[157,161)3人;[161,165)4人;[165,169)12人;[169,173)13人;[173,177)12人;[177,181]6人.(1)列出频率分布表;(2)画出频率分布直方图;(3)估计总体在[165,177)间的比例.【解】(1)列出频率分布表:分组频数频率频率组距[157,161)30.060.015[161,165)40.080.02[165,169)120.240.06[169,173)130.260.065[173,177)120.240.06[177,181]60.120.03合计50 1.00(2)画出频率分布直方图如图:(3)因0.24+0.26+0.24=0.74,所以估计总体在[165,177)间的比例为74%.21.(本小题满分12分)(2014·全国卷Ⅱ)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 9440 4 4 89 75 1 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 0 8 1 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.【解】(1)由所给茎叶图知,将50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本的中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.22.(本小题满分12分)(2015·广东高考)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图6.图6(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?【解】(1)由(0.002+0.009 5+0.011+0.012 5+x+0.005+0.002 5)×20=1得x=0.007 5,∴直方图中x的值为0.007 5.(2)月平均用电量的众数是220+2402=230.∵(0.002+0.009 5+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,则(0.002+0.009 5+0.011)×20+0.012 5×(a-220)=0.5,解得a=224,即中位数为224.(3)月平均用电量在[220,240)的用户有0.012 5×20×100=25(户),同理可求月平均用电量为[240,260),[260,280),[280,300]的用户分别有15户、10户、5户,故抽取比例为1125+15+10+5=1 5,∴从月平均用电量在[220,240)的用户中应抽取25×15=5(户).章末综合测评(二)算法初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的叙述中,不是解决问题的算法的是()A.从北京到海南岛旅游,先坐火车,再坐飞机抵达B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100C.方程x2-4=0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15【解析】算法是解决某类问题的一系列步骤或程序,C只是描述了事实,没有解决问题的步骤.【答案】 C2.用二分法求方程x2-10=0的近似根的算法中要用哪种算法结构()A.顺序结构B.选择结构C.循环结构D.以上都用【解析】由求方程x2-10=0的近似根的算法设计知以上三种结构都用到.【答案】 D3.下列程序中的For语句终止循环时,S等于()S=0For M=1To10S=S+MNext输出S.A.1B.5C.10D.55【解析】S=0+1+2+3+…+10=55.【答案】 D4.下列给出的赋值语句中正确的是()A.0=M B.x=-xC.B=A=-3 D.x+y=0【解析】赋值语句不能计算,不能出现两个或两个以上的“=”且变量在“=”左边.【答案】 B5.当A=1时,下列程序输入A;A=A*2A=A*3A=A*4A=A*5输出A.输出的结果A是()A.5 B.6C.15 D.120【解析】运行A=A*2得A=1×2=2.运行A=A*3得A=2×3=6.运行A=A*4得A=6×4=24.运行A=A*5得A=24×5=120.即A=120.故选D.【答案】 D6.(2014·福建高考)阅读如图1所示的程序框图,运行相应的程序,输出的n的值为()图1A.1 B.2C.3 D.4【解析】当n=1时,21>12成立,执行循环,n=2;当n=2时,22>22不成立,结束循环,输出n=2,故选B.【答案】 B7.(2016·菏泽高一检测)执行如图2所示的算法框图,输出的S值为()图2A.2 B.4C.8 D.16【解析】运行如下:①k=0,S=1;②S=1×20=1,k=1;③S=1×21=2,k=2;④S =2×22=8,k =3.此时输出S .【答案】 C8.(2015·福建高考)阅读如图3所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( )图3A .2B .7C .8D .128【解析】 由程序框图知,y =⎩⎪⎨⎪⎧2x ,x ≥2,9-x ,x <2.∵输入x 的值为1,比2小,∴执行的程序要实现的功能为9-1=8,故输出y 的值为8. 【答案】 C9.(2016·北京高考)执行如图4所示的程序框图,若输入的a 值为1,则输出的k 值为( )图4A .1B .2C .3D .4【解析】 开始a =1,b =1,k =0;第一次循环a=-1,k=1;2第二次循环a=-2,k=2;第三次循环a=1,条件判断为“是”,跳出循环,此时k=2.【答案】 B10.阅读如图5所示的算法框图,若输出s的值为-7,则判断框内可填写()图5A.i≥3 B.i≥4C.i≥5 D.i≥6【解析】此算法框图运行如下:①i=1,s=2;②s=1,i=3;③s=-2,i=5;④s =-7,i=7此时应结束循环.所以i=5时不满足循环条件,i=7时满足循环条件.【答案】 D11.当a=16时,下面的算法输出的结果是()If a<10 Theny=2*aElsey=a *aEnd If输出y.A.9B.32 C .10D .256【解析】 该程序是求分段函数y =⎩⎪⎨⎪⎧2a (a <10),a 2(a ≥10)的函数值,所以当a =16时y =162=256.【答案】 D12.阅读如图6所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =( )图6A .2B .3C .4D .5【解析】 m =2,A =1,B =1,i =0. 第一次:i =0+1=1,A =1×2=2, B =1×1=1,A >B ;第二次:i =1+1=2,A =2×2=4, B =1×2=2,A >B ;第三次:i =2+1=3,A =4×2=8, B =2×3=6,A >B ;第四次:i =3+1=4,A =8×2=16, B =6×4=24,A <B . 终止循环,输出i =4.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.如图7是求12+22+32+…+1002的值的算法框图,则正整数n=________.图7【解析】由题意知s=12+22+32+…+1002,先计算s=s+i2,i再加1,故n=100.【答案】10014.下面的程序运行后输出的结果是________.x=1i=1Dox=x+1i=i+1Loop While i<=5输出x.【解析】每循环一次时,x与i均增加1直到i>5时为止,所以输出的结果为6.【答案】 615.如图8给出一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值的集合为________.图8【解析】这个程序框图对应的函数为y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5.当x ≤2时,由x 2=x ,得x =0或1; 当2<x ≤5时,由2x -3=x ,得x =3;当x >5时,由1x =x ,得x =±1(舍),故x =0或1或3.【答案】 {0,1,3} 16.已知程序:【解析】 由程序知,当x >0时, 3x2+3=6.解得x =2; 当x <0时,-3x 2+5=6,解得x =-23, 显然x =0不成立. 【答案】 2或-23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) 17.(本小题满分10分)下面给出了一个问题的算法: 1.输入x .2.若x ≥4,则y =2x -1;否则,y =x 2-2x +3.3.输出y .问题:(1)这个算法解决的问题是什么? (2)当输入的x 值为多少时,输出的y 值最小?【解】 (1)这个算法解决的问题是求分段函数y =⎩⎪⎨⎪⎧2x -1,x ≥4,x 2-2x +3,x <4的函数值.(2)当x ≥4时,y =2x -1≥7;当x <4时,y =x 2-2x +3=(x -1)2+2≥2,所以y min =2,此时x =1.即当输入的x 值为1时,输出的y 值最小.18.(本小题满分12分)将某科成绩分为3个等级:85分~100分为“A”;60分~84分为“B”;60分以下为“C”.试用条件语句表示某个成绩等级的程序(分数为整数).【解】 程序:19.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧2x +1,x <0,1,x =0,x 2+1,x >0.画出算法框图并编写算法语句,输入自变量x 的值,输出相应的函数值. 【解】 算法框图如图所示:算法语句如下:输入x;If x<0 Theny=2*x+1ElseIf x=0 Theny=1Elsey=x2+1End IfEnd If输出y.20.(本小题满分12分)给出30个数:1,2,4,7,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,依此类推.要计算这30个数的和,现已给出了解决该问题的算法框图(如图9所示),图9(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法.【解】 (1)因为是求30个数的和.故循环体应执行30次,其中i 是计数变量,因此判断框内的条件就是限制计数变量i 的,故应为i >30.算法中的变量p 实质是表示参与求和的各个数,由于它也是变化的,且满足第i 个数比其前一个数大i -1,第i +1个数比其前一个数大i ,故应有p =p +i .故①处应填p =p +i ;②处应填i >30.(2)根据框图.写出算法如下: i =1 p =1 S =0 Do S =S +p p =p +i i =i +1Loop While i <=30 输出S .21.(本小题满分12分)如图10所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,△APB 的面积为y ,求y 与x 之间的函数关系式.并写出算法,画出算法框图,写出程序.图10【解】 函数关系如下 y =⎩⎪⎨⎪⎧2x (0≤x ≤4),8(4<x ≤8),2(12-x )(8<x ≤12).算法如下: 1.输入x .2.如果0≤x ≤4,则使y =2x ;否则执行3. 3.如果4<x ≤8,则使y =8;否则执行4.4.如果8<x≤12,则使y=2(12-x);否则结束.5.输出y.算法框图如图所示:算法语句:输入x;If x>=0And x<=4Theny=2*xElseIf x<=8Theny=8ElseIf x<=12Theny=2*(12-x)End IfEnd IfEnd If输出y.22.(本小题满分12分)设计一个算法,求满足1×2+2×3+…+n×(n+1)<1 000的最大整数n,画出框图,并用循环语句描述.【解】算法框图如下所示:用语句描述为:n=0S=0Don=n+1S=S+n*(n+1)Loop While S<1 000输出n-1.章末综合测评(三)概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a,b是实数,那么b+a=a+b;②某地1月1日刮西北风;③当x是实数时,x2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有() A.1个B.2个C.3个D.4个【解析】由题意可知①③是必然事件,②④是随机事件.【答案】 B2.(2016·全国卷Ⅱ)从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n 个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为()A.4nm B.2nmC.4mn D.2mn【解析】分别确定n个数对(x1,y1),(x2,y2),…,(x n,y n)和m 个两数的平方和小于1的数对所在的平面区域,再用随机模拟的方法和几何概型求出圆周率π的近似值.因为x1,x2,…,x n,y1,y2,…,y n都在区间[0,1]内随机抽取,所以构成的n个数对(x1,y1),(x2,y2),…,(x n,y n)都在正方形OABC内(包括边界),如图所示.若两数的平方和小于1,则对应的数对在扇形OAC内(不包括扇形圆弧上的点所对应的数对),故在扇形OAC内的数对有m个.用随机模拟的方法可得S扇形S正方形=mn,即π4=mn,所以π=4mn.【答案】 C3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是()A.310 B.112C.4564 D.38【解析】所有子集共8个,其中含有2个元素的为{a,b},{a,c},{b,c},所以概率为38.【答案】 D4.(2016·山东青岛一模)如图1所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角θ=π6.现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是()图1A.2-32B.2+32 C.1+32D.1-32【解析】 易知小正方形的边长为3-1,故小正方形的面积为S 1=(3-1)2=4-23,大正方形的面积为S =2×2=4,故飞镖落在小正方形内的概率P =S 1S =4-234=2-32.【答案】 A5.4张卡片上分别写有数字1,2,3,4.从这4张卡片中随机抽取2张,则抽取的2张卡片上的数字之和为奇数的概率为( )A.13B.12C.23D.34【解析】 基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6个,其中两数字之和为奇数的有(1,2),(2,3),(1,4),(3,4),所以概率为23.【答案】 C6.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积不小于S3的概率是( ) A.23 B.13 C.34D.14【解析】 如图,设点M 为AB 的三等分点,要使△PBC 的面积不小于S3,则点P 只能在AM 上选取,由几何概型的概率公式得所求概率|AM ||AB |=23|AB ||AB |=23.【答案】 A7.(2016·东北八校二模)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19 B.29 C.718D.49【解析】 任意找两人玩这个游戏,共有6×6=36种猜数字结果,其中满足|a -b |≤1的有如下情形:①a =1,b =1,2;②a =2,b =1,2,3;③a =3,b =2,3,4;④a =4,b =3,4,5;⑤a =5,b =4,5,6;⑥a =6,b =5,6,总共16种,故他们“心有灵犀”的概率为P =1636=49.【答案】 D8.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8【解析】 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2,取到的点到O 的距离大于1的概率为2-π22=1-π4.【答案】 B9.设a 是甲抛掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实数根的概率为( )A.23B.13C.12D.512【解析】 若方程有实根,则a 2-8>0.a 的所有取值情况共6种,满足a 2-8>0的有4种情况,故P =46=23.【答案】 A10.(2016·石家庄高一检测)有分别写着数字1到120的120张卡片,从中取出1张,这张卡片上的数字是2的倍数或是3的倍数的概率是( )A.12B.34C.47D.23【解析】 是2的倍数的数有60个,是3的倍数的数有40个,是6的倍数的数有20个,∴P =60+40-20120=23.【答案】 D11.(2015·湖北高考)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12 B .p 2<12<p 1 C.12<p 2<p 1D .p 1<12<p 2【解析】 如图,满足条件的x ,y 构成的点(x ,y )在正方形OBCA 内,其面积为1.事件“x +y ≤12”对应的图形为阴影△ODE ,其面积为12×12×12=18,故p 1=18<12,事件“xy ≤12”对应的图形为斜线表示部分,其面积显然大于12,故p 2>12,则p 1<12<p 2,故选D.【答案】 D12.如图2所示,在矩形ABCD 中,AB =5,AD =7.现在向该矩形内随机投一点P ,则∠APB >90°的概率为( )图2A.536B.556πC.18πD.18【解析】 由于是向该矩形内随机投一点P ,点P 落在矩形内的机会是均等的,故可以认为矩形ABCD 为区域Ω.要使得∠APB >90°,需满足点P 落在以线段AB 为直径的半圆内,以线段AB 为直径的半圆可看作区域A .记“点P 落在以线段AB 为直径的半圆内”为事件A ,于是求∠APB >90°的概率转化为求以线段AB 为直径的半圆的面积与矩形ABCD 的面积的比,依题意,得μA =12π×⎝ ⎛⎭⎪⎫522=25π8,矩形ABCD 的面积μΩ=35,故所求的概率为P (A )=25π835=5π56.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上) 13.某产品分一、二、三级,其中一、二级是正品,若生产中出现正品的概率是0.98,二级品的概率是0.21,则出现一级品与三级品的概率分别是________,________.【解析】 由题意知出现一级品的概率是0.98-0.21=0.77,又由对立事件的概率公式可得出现三级品的概率是1-0.98=0.02.【答案】 0.77 0.0214.如图3的矩形,长为5 m ,宽为2 m ,在矩形内随机地撒300粒黄豆,数得落在阴影部分的黄豆数为138粒,则我们可以估计出阴影部分的面积为________m 2.图3【解析】 由题意得138300=S 阴5×2,S 阴=235.【答案】 23515.在箱子中装有十张卡片,分别写有1到10的十个整数;从箱子中任取一张卡片,记下它的读数x ,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的读数y ,则x +y 是10的倍数的概率为________.【解析】 先后两次取卡片,形成的有序数对有(1,1),(1,2),(1,3),…,(1,10),…,(10,10),共计100个.因为x +y 是10的倍数,这些数对应该是(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1),(10,10)共10个,故x +y 是10的倍数的概率为P =10100=110.【答案】 11016.(2015·重庆高考)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.【解析】 ∵方程x 2+2px +3p -2=0有两个负根, ∴⎩⎪⎨⎪⎧Δ=4p 2-4(3p -2)≥0,x 1+x 2=-2p <0,x 1x 2=3p -2>0,解得23<p ≤1或p ≥2.故所求概率P =⎝ ⎛⎭⎪⎫1-23+(5-2)5-0=23.【答案】23三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)某饮料公司对一名员工进行测试以便确定其考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料,若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.【解】 将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5种饮料中选出3杯的所有可能情况为(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共有10种,令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110.(2)P (E )=35,P (F )=P (D )+P (E )=710.18.(本小题满分12分)将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“x +y ≤3”的概率; (2)求事件“|x -y |=2”的概率.【解】 设(x ,y )表示一个基本事件,则掷两次骰子包括(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个基本事件.(1)用A 表示事件“x +y ≤3”,则A 的结果有(1,1),(1,2),(2,1),共3个基本事件. ∴P (A )=336=112.即事件“x +y ≤3”的概率为112. (2)用B 表示事件“|x -y |=2”,则B 的结果有(1,3),(2,4),(3,5),(4,6),(6,4),(5,3),(4,2),(3,1)共8个基本事件. ∴P (B )=836=29.即事件“|x -y |=2”的概率为29.19.(本小题满分12分)在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和与标号之积都不小于5的概率.【解】 设从甲、乙两个盒子中各取出1个球,编号分别为x ,y ,用(x ,y )表示抽取的结果,结果有以下25种:(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5).(1)取出的两个球上标号为相邻整数的结果有以下8种:(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),故所求概率为P =825,即取出的两个球上标号为相邻整数的概率为825.(2)标号之和与标号之积都不小于5的结果有以下17种:(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),故所求概率为P =1725,故取出的两个球上标号之和与标号之积都不小于5的概率是1725.20. (本小题满分12分)把一颗骰子抛掷两次,第一次出现的点数记为a ,第二次出现的点数记为b .试就方程组⎩⎨⎧ ax +by =3,x +2y =2解答下列各题: (1)求方程组只有一组解的概率;(2)求方程组只有正数解(x 与y 都为正)的概率.【解】 (1)当且仅当a b ≠12时,方程组只有一组解;a b =12的情况有三种:⎩⎪⎨⎪⎧ a =1,b =2或⎩⎪⎨⎪⎧ a =2,b =4或⎩⎪⎨⎪⎧a =3,b =6.而抛掷两次的所有情况有6×6=36(种),所以方程组只有一组解的概率为P =1-336=1112.(2)因为方程组只有正数解,所以两直线的交点一定在第一象限,解方程组得 ⎩⎪⎨⎪⎧ x =6-2b 2a -b ,y =2a -32a -b .当⎩⎪⎨⎪⎧ 2a -b >0,6-2b >0,2a -3>0,或⎩⎪⎨⎪⎧ 2a -b <0,6-2b <0,2a -3<0,且a >0,b >0,。
高中数学必修2同步测试卷全套直接打印
高中数学必修2同步测试卷全套直接打印第一章空间几何体1.1 空间几何体的结构一、选择题1.在棱柱中()A.只有两个面平行B.所有的棱都平行C.所有的面都是平行四边形D.两底面平行,且各侧棱也互相平行2.将图1所示的三角形线直线l旋转一周,可以得到如图2所示的几何体的是哪一个三角形()3.如图一个封闭的立方体,它6个表面各标出1、2、3、4、5、6这6个数字,现放成下面3个不同的位置,则数字l、2、3对面的数字是()A.4、5、6 B.6、4、5 C.5、4、6 D.5、6、44.如图,能推断这个几何体可能是三棱台的是()A.A1B1=2,AB=3,B1C1=3,BC=4 B.A1B l=1,AB=2,B l C l=1.5,BC=3,A1C1=2,AC=3 C.A l B l=1,AB=2,B1C l=1.5,BC=3,A l C l=2,AC=4 D.AB=A1B1,BC=B1C1,CA =C1A15.有下列命题(1)在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;(2)圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;(3)在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;(4)圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)6.下列命题中错误的是()A.圆柱的轴截面是过母线的截面中面积最大的一个B.圆锥的轴截面是所有过顶点的截面中面积最大的一个C.圆台的所有平行于底面的截面都是圆D.圆锥所有的轴截面是全等的等腰三角形7.图1是由图2中的哪个平面图旋转而得到的()12二、填空题8如图,长方体ABCD —A 1B l C l D 1中,AD =3,AA l =4,AB =5,则从A 点沿表面到C l 的最短距离为______.9在三棱锥S —ABC 中,SA =SB =SC =1,∠ASB =∠ASC =∠BSC =30°,如图,一只蚂蚁从点A 出发沿三棱锥的表面爬行一周后又回到A 点,则蚂蚁爬过的最短路程为_____.10高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是______.11图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:3①点H 与点C 重合;②点D 与点M 与点R 重合;③点B 与点Q 重合;④点A 与点S 重合.其中正确命题的序号是_ ___.(注:把你认为正确的命题的序号都填上)三、解答题12请给以下各图分类.13画一个三棱锥和一个四棱台.14多面体至少有几个面?这个多面体是怎样的几何体? 15合下图,说说它们分别是怎样的多面体?16察以下几何体的变化,通过比较,说出他们的特征.17一个圆锥截成圆台,已知圆台的上下底面半径的比是1∶4,母线长为10cm ,求圆锥的母线长____.1.3 柱体、锥体、台体的表面积一、选择题1.正四棱柱的对角线长是9cm ,全面积是144cm 2,则满足这些条件的正四棱柱的个数是() A .0个 B .1个 C .2个 D .无数个2.三棱柱ABC —A 1B 1C 1中,AB =AC ,且侧面A 1ABB 1与侧面A 1ACC l 的面积相等,则∠BB 1C 1等于() A .45° B .60° C .90° D .120°3.边长为5cm 的正方形EFGH 是圆柱的轴截面,则从正点沿圆柱的侧面到相对顶点G 的最短距离是() A .10cm B .52cmC .512+πcm D .4252+πcm44.中心角为43π,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于()A .11∶8B .3∶8C .8∶3D .13∶8 5.正六棱台的上、下底面的边长分别为a 、b (aC .3(b 2-a 2)D .23(b 2-a 2)6.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥的侧面分成的三部分的面积之比为() A .1∶2∶3 B .1∶3∶5 C .1∶2∶4 D .1∶3∶97.若圆台的上、下底面半径的比为3∶5,则它的中截面分圆台上、下两部分面积之比为() A .3∶5 B .9∶25C .5∶41D .7∶98.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()A .ππ221+B .ππ421+C .ππ21+D .ππ241+9.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则S T等于()A .91B .94C .41D .3110.一个斜三棱柱,底面是边长为5的正三角形,侧棱长为4,侧棱与底面三角形两边所成的角都是60°,则这个斜三棱柱的侧面积是()A .40B .)31(20+C .)31(30+D .303 二、填空题11.长方体的高为h ,底面面积是M ,过不相邻两侧棱的截面面积是N ,则长方体的侧面积是______. 12.正四棱台上、下底面的边长为b 、a (a >b )且侧面积等于两底面面积之和,则棱台的高是______. 13.圆锥的高是10 cm ,侧面展开图是半圆,此圆锥的侧面积是_____;轴截面等腰三角形的顶角为______.14.圆台的母线长是3 cm ,侧面展开后所得扇环的圆心角为180°,侧面积为10πcm 2,则圆台的高为_____;上下底面半径为_______.三、解答题15.已知正三棱台的侧面和下底面所成的二面角为60°,棱台下底面的边长为a ,侧面积为S ,求棱台上底面的边长.16.圆锥的底面半径为5 cm ,高为12 cm ,当它的内接圆柱的底面半径为何值时,圆锥的内接圆柱全面积有最大值?最大值是多少?17.圆锥底面半径为r ,母线长是底面半径的3倍,在底面圆周上有一点A ,求一个动点P 自A 出发在侧面上绕一周到A 点的最短路程.1.3 柱体、锥体与台体的体积一、选择题1.若正方体的全面积增为原来的2倍,那么它的体积增为原来的() A .2倍 B .4倍 C .2倍 D .22倍52.一个长、宽、高分别为a 、b 、c 长方体的体积是8cm 2,它的全面积是32 cm 2,且满足b 2=ac ,那么这个长方体棱长的和是()A 、28cmB .32 cmC .36 cmD .40 cm3.正六棱台的两底面的边长分别为a 和2a ,高为a ,则它的体积为()A .32321aB .3233aC .337a D .3237a4.若球的体积与其表面积的数值相等,则球的半径为()A .1B .3C .2D .215.一个球的外切正方体的全面积的数值等于6cm 2,则此球的体积为()A .334cm πB .386cm πC .361cm π D .366cm π6.正六棱锥的底面边长为a ,体积为323a ,那么侧棱与底面所成的角为() A .6π B .4π C .3πD .125π7.正四棱锥的底面面积为Q ,侧面积为S ,则它的体积为()A 、S Q 31B .)(2122Q S Q -C 、)(2122Q S S -D 、)(6122Q S Q -8.棱台上、下底面面积之比为1∶9,则棱台的中截面分棱台成两部分的体积之比是() A .1∶7 B .2∶7 C .7∶19 D .3∶16 9.正方体、等边圆柱与球它们的体积相等,它们的表面积分别为S 1、S 2、S 3,下面关系中成立的是() A .S 3>S 2>S 1 B .S 1>S 3>S 2 C .S 1>S 2>S 3 D .S 2>S l >S 310.沿棱长为1的正方体的交于一点的三条棱的中点作一个截面,截得一个三棱锥,那么截得的三棱锥的体积与剩下部分的体积之比是()A .1∶5B .1∶23C .1∶11D .1∶47 二、填空题11.底面边长和侧棱长都是a 的正三棱锥的体积是_______.12.将4×6的矩形铁皮作为圆柱的侧面卷成一个圆柱,则圆柱的最大体积是_______.13.半径为1的球的内接正方体的体积是________;外切正方体的体积是_______.14.已知正三棱台上、下底面边长分别为2、4,且侧棱与底面所成角是45°,那么这个正三棱台的体积等于_______.三、解答题15.三棱锥的五条棱长都是5,另一条棱长是6,求它的体积.16.两底面边长分别是15cm 和10cm 的正三棱台,它的侧面积等于两底面积的和,求它的体积.17.一个圆锥形容器和一个圆柱形容器,它们的轴截面尺寸如图所示,两容器内所盛液体的体积正好相等,且液面高度h 正好相同,求h .618.如图所示,已知正方体ABCD —A 1B 1C l D l 的棱长为a ,E 为棱AD 的中点,求点A 1到平面BED 1的距离.1.4 球的体积和表面积一、选择题1.若球的大圆面积扩大为原来的4倍,则球的表面积比原来增加() A .2倍 B .3倍 C .4倍 D ,8倍2.若球的大圆周长是C ,则这个球的表面积是()A .π42cB .π42cC .π2c D .2πc 23.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是()A .916πB .38πC .4πD .964π4、球的大圆面积增大为原来的4倍,那么球的体积增大为原来的() A .4倍 B .8倍 C .16倍 D .32倍5.三个球的半径之比为1∶2∶3,那么最大球的体积是其余两个球的体积和的() A 、1倍 B .2倍 C .3倍 D .4倍6.棱长为1的正方体内有一个球与正方体的12条棱都相切,则球的体积为()A .4πB .4πC .π32 D .42π7.圆柱形烧杯内壁半径为5cm ,两个直径都是5 cm 的铜球都浸没于烧杯的水中,若取出这两个铜球,则烧杯内的水面将下降()A 、35cmB .310cmC .340cmD .65cm8.已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积为()A 、916π B .38π C .4π D .964π9.长方体一个顶点上的三条棱的长度分别为3、4、5,且它的8个顶点都在同一球面上,这个球的表面积为()A .202πB .252πC .50πD .200π 10.等体积的球与正方体,其表面积的大小关系为()A .S 球>S 正方体 B .S 球=S 正方体 C .S 球<S 正方体 D .大小关系不确定二、填空题11.已知三个球的表面积之比为1∶4∶9,若它们的体积依次为V 1、V 2、V 3,则V 1+V 2=_____V 3.12.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为l ,则球的体积为7_________.13.将一个玻璃球放人底面面积为64πcm 2的圆柱状容器中,容器水面升高34cm ,则玻璃球的半径为__________.14.将一个半径为R 的木球削成一个尽可能大的正方体,则此正方体的体积为______.15.表面积为Q 的多面体的每个面都外切于半径为R 的一个球,则多面体与球的体积之比为______.16.国际乒乓球比赛已将“小球”改为“大球”,“小球”的外径为38 mm ,“大球”的外径为40 mm ,则“小球”与“大球”的表面积之比为__________.三、解答题17.已知正三棱柱的底面边长为1,侧棱长为2,则这样的三棱柱内能否放进一个体积为16的小球?18.用刀切一个近似球体的西瓜,切下的较小部分的圆面直径为30 cm ,高度为5 cm ,该西瓜体积大约有多大?19.三棱锥A -BCD 的两条棱AB =CD =6,其余各棱长均为5,求三棱锥的内切球的体积.20.表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.第一章空间几何体单元测试1一、选择题1.下图是由哪个平面图形旋转得到的()A B C D2.过圆锥的高的三等分点作平行于底面的截面,它们把圆锥侧面分成的三部分的面积之比为()A. 1:2:3B. 1:3:5C. 1:2:4D. 1:3:93.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是() A.23 B. 76 C. 45D. 564.已知圆柱与圆锥的底面积相等,高也相等,它们的体积8分别为1V 和2V ,则12:V V =()A. 1:3B. 1:1C. 2:1D. 3:15.如果两个球的体积之比为8:27,那么两个球的表面积之比为( ) A. 8:27 B. 2:3 C. 4:9 D. 2:96.有一个几何体的三视图及其尺寸如下(单位cm ),则该几何体的表面积及体积为:A. 224cm π,212cm πB. 215cm π,212cm π C. 224cm π,236cm π D. 以上都不正确二、填空题1. 若圆锥的表面积是15π,侧面展开图的圆心角是060,则圆锥的体积是_______。
高中数学必修一、必修二、必修三测试题
高中数学必修一、必修二、必修三测试卷总分150分时间120分钟命题人:班级:姓名:总分:一、选择题(本题共12小题,共60分)1、已知集合M={x|x≥-1},N={x|2-x2≥0},则M∪N=( )A、[-,+∞)B、[-1,]C、[-1,+∞)D、(-∞,-]∪[-1,+∞)2、下列函数中,为奇函数的是()A、 B、 C、 D、3、设,则的大小关系是()A、 B、 C、 D、4、已知平面,直线,下面的四个命题中,所有正确命题的序号是()A、①②B、②③C、①④D、②④5、函数的零点是()A、x=-2B、x=-1C、x=1D、26、圆:与圆:的位置关系是( )A、相交B、外切C、内切D、相离7、执行右图的程序框图,若输入,那么输出的等于()A、720B、360C、240D、120输出p(第7题)(第8题)8、执行右图程序框图,如果输入的x,t均为2,则输出的S= ()A、4B、5C、6D、79、用随机数表法从100名学生(其中男生25人)中抽取20人进行评估,某男学生被抽中的概率为()A、 B、 C、 D、10、右图是2010年在惠州市举行的全省运动会上,七位评委为某跳水比赛项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为()A、84,4.84B、84,1.6C、85,1.6D、85,411、已知的单调递减区间是()A、 B、 C、 D、12、某几何体的三视图如图所示,则该几何体的表面积为( )A. B.+6 C.+5 D.+5二、填空题(本题共4道小题,共20分)13、完成下列进位制之间的转化:14、甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三个学校的某方面情况,计划采用分层抽样法,抽取一个容量为90的样本,应在甲校抽取人。
15、已知点是圆上一点,则点P到直线的最小距离为。
16、已知球O与边长为的正方形ABCD相切于该正方形的中心P点,PQ为球O 的直径,若线段QA与球O的球面的交点R恰为线段QA的中点,则球O的体积为.三、解答题(本题共6道小题,共70分)17、设集合实数a的取值范围是?18、已知圆心为的圆经过点.(1)求圆的标准方程;(2)若直线过点且被圆截得的线段长为,求直线的方程.19、已知直线:,直线经过(5,-1),且(1)、求直线的方程。
高中数学必修二必修三 选修1-2试卷
_____姓名:_________________………装……………○…………线…2017-2018学年度伊旗高中考试卷一、单选题1.一个几何体的三视图如图所示,则该几何体的表面积为( )A. 12+8√2B. 12+6√2C. 14+6√2D. 16+8√2 2.已知圆()()22:684C x y -++=,O 为坐标原点,则以OC 为直径的圆的方程为( ) A. ()()2234100x y -++= B. ()()2234100x y ++-= C. ()()223425x y -+-= D. ()()223425x y ++-=3.如图的程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A. 2B. 4C. 6D. 84.在复平面内,复数11−i 的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.某校为了了解高一,高二,高三这三个年级之间的学生打王者荣耀游戏的人数情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ) A. 抽签法 B. 系统抽样法 C. 分层抽样法 D. 随机数法 6.甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n 的比值mn =A. 13B. 12C. 2D. 37.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌马获胜的概率为( )A. 13B. 14C. 15D. 168.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.79.如图,四棱锥P ABCD -中,所有棱长均为2, O 是底面正方形ABCD 中心, E 为PC 中点,则直线OE 与直线PD 所成角为( )A. 30°B. 60°C. 45°D. 90°10.点P 在直线l:x −y −1=0上运动,A(4,1),B(2,0),则|PA|+|PB|的最小值是( ) A. √5 B. √6 C. 3 D. 411.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 018的末四位数字为( ) A. 3125 B. 5625 C. 0625 D. 812512.已知两条直线,m n ,两个平面,αβ,下面说法正确的是A. m m n n αβαβ⊥⎫⎪⊂⇒⊥⎬⎪⊂⎭B. ////m m n n αβαβ⎫⎪⊂⇒⎬⎪⊂⎭C. m m αββα⊥⎫⇒⊥⎬⊂⎭D. ////m m αββα⎫⇒⎬⊂⎭ 第II 卷(非选择题) 二、填空题13.在正四面体ABCD 中,M,N 分别是BC 和DA 的中点,则异面直线MN 和CD 所成角为__________. 14.直线l 过点P (1,2)且倾斜角为π2,则直线l 的方程为_________.:___________考号:_____………订…………15.直线3y kx =+被圆()()22234x y -+-=截得的弦长为,则直线的倾斜角为__________.16.某公司生产甲、乙、丙三种不同型号的轿车,产量分别为1400辆、5600辆、2000辆.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取45辆进行检验,则应从丙种型号的产品中抽取______件. 三、解答题 17.在三棱锥P −ABE 中,PA ⊥底面ABE ,AB ⊥AE ,AB =AP =12AE =2,D 是AE 的中点,C 是线段BE 上的一点,且AC =√5,连接PC ,PD ,CD .(1)求证:CD//平面PAB . (2)求点E 到平面PCD 的距离.18.已知直线1:21,l y x =- 2:1l y x =-+的交点为P 。
高中数学北师大版必修三、选修二--1、选修二--2综合检测试题
高二期末复习一、选择题1. 在下列命题中:①若向量,a b 共线,则向量,a b所在的直线平行;②若向量,a b 所在的直线为异面直线,则向量,a b一定不共面;③若三个向量,,a b c 两两共面,则向量,,a b c共面;④已知是空间的三个向量,,a b c,则对于空间的任意一个向量p 总存在实数x,y,z 使得p x a y b z c =++;其中正确的命题的个数是 ( A )(A )0 (B )1 (C )2 (D )3 2. 方程 2x +6x +13 =0的一个根是( )A -3+2iB 3+2iC -2 + 3iD 2 + 3i3.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数b a i+为纯虚数”的( B )A.充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 【答案】B.4.执行如图所示的程序框图,输出S 值为(A )2 (B )4 (C )8 (D )16 【答案】C5.椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为 ( C )(A )2211612xy+= (B )221128xy+=(C )22184xy+= (D )221124xy+=6.设集合A p a a x a x A ∈><<--=1:},0,2|{命题,命题.2:A q ∈若q p ∨为真命题,q p ∧为假命题,则a 的取值范围是( C )A .210><<a a 或B .210≥<<a a 或C .21≤<aD .21≤≤a7.已知命题p :∃x ∈R ,使sin x =25;命题q :∀x ∈R ,都有x 2+x +1>0. ( C )给出下列结论: ① 命题“q p ∧”是真命题③命题“q p ∨⌝”是真命题;② 命题“q p ⌝∨⌝”是假命题 ④命题“q p ⌝∧”是假命题 其中正确的是A .②③B .②④C .③④D .①②③8.设a ,b 是两个实数,且a ≠b ,①22(3)2611a a a +>++;②)1(222--≥+b a b a ;③332a b a b a b +>+;④2>+ab b a 。
(word完整版)新课标高中数学测试题(必修2)全套含答案,推荐文档
(数学2必修)第一章 空间几何体[基础训练A 组]一、选择题1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )A . 3B . 23C . 33D . 433.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( )A .25πB .50πC .125πD .都不对4.正方体的内切球和外接球的半径之比为( )A .3:1B .3:2C .2:3D .3:35.在△ABC 中,02, 1.5,120AB BC ABC ==∠=,若使绕直线BC 旋转一周,则所形成的几何体的体积是( )A. 92πB. 72πC. 52πD. 32π 6.底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( )A .130B .140C .150D .160二、填空题1.一个棱柱至少有 _____个面,面数最少的一个棱锥有 ________个顶点,顶点最少的一个棱台有 ________条侧棱。
2.若三个球的表面积之比是1:2:3,则它们的体积之比是_____________。
3.正方体1111ABCD A B C D - 中,O 是上底面ABCD 中心,若正方体的棱长为a ,则三棱锥11O AB D -的体积为_____________。
4.如图,,E F 分别为正方体的面11A ADD 、面11B BCC 的中心,则四边形 E BFD 1在该正方体的面上的射影可能是____________。
主视图 左视图 俯视图C 5.已知一个长方体共一顶点的三个面的面积分别是2、3、6,这个 长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15,则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M ,高4M ,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。
2024-2025年北师大版数学必修第二册全书综合测评卷(带答案)
全书综合测评卷时间:120分钟 满分:150分一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.关于向量a ,b ,下列命题中,正确的是( ) A .若|a |=|b |,则a =b B .若a =-b ,则a ∥bC .若a ∥b ,b ∥c ,则a ∥cD .若|a |>|b |,则a >b2.已知i 为虚数单位,复数z 1=1+2i ,z 2=2-i ,则( ) A .z 1的共轭复数为-1+2i B .z 1的虚部是2i C .z 1+z 2为实数 D .z 1z 2=4+3i3.三个数sin 1.5·sin 2·sin 3.1,cos 4.1·cos 5·cos 6,tan 7·tan 8·tan 9中,值为负数的个数有( )A .0个B .1个C .2个D .3个4.已知函数f (x )=cos (ωx +2π3 )(ω>0)的最小正周期为4π,则下面结论正确的是( )A .函数f (x )在区间(0,π)上单调递增B .函数f (x )在区间(0,π)上单调递减C .函数f (x )的图象关于直线x =2π3 对称D .函数f (x )的图象关于点(2π3 ,0)对称5.宜昌奥林匹克体育中心为了迎接湖北省第十六届运动会开幕式,将中心内一块平面四边形ABCD 区域设计灯带.已知灯带AB =CD =10米,BC =20米,AD =102 米,且∠A +∠C =3π4,则cos ∠BCD =( ) A .35 B .0 C .45 D .2106.已知△ABC 中,3AB → +AC → -6AD →=0,延长BD 交AC 于E ,则AE AC=( )A .23B .12C .13D .14 7.如图,已知三棱柱ABC A 1B 1C 1的各条棱长都相等,且CC 1⊥底面ABC ,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角为( )A .90° B.45° C .30° D.60°8.当函数y =sin ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x 取得最大值时,tan x 的值为( ) A .1 B .±1 C.3 D .-1二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,选对但不全的得2分,有选错的得0分)9.设z 1,z 2为复数,则下列命题中一定成立的是( ) A .如果z 1-z 2>0,那么z 1>z 2B .如果|z 1|=|z 2|,那么z 1z - 1=z 2z -2 C .如果⎪⎪⎪⎪⎪⎪z 1z 2 >1,那么|z 1|>|z 2|D .如果z 21 +z 22 =0,那么z 1=z 2=010.已知函数f (x )=cos (sin x ),g (x )=sin (cos x ),则下列说法不正确的是( ) A .f (x )与g (x )的定义域都是[-1,1] B .f (x )为奇函数,g (x )为偶函数C .f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1]D .f (x )与g (x )都不是周期函数11.已知f (x )=sin ⎝ ⎛⎭⎪⎫x -π4 cos ⎝⎛⎭⎪⎫x -π4 +3.给出下列结论,其中不正确的是( )A .最小正周期为πB .对称轴为直线x =k π(k ∈Z )C .对称中心为⎝ ⎛⎭⎪⎫k2π+π4,0D .最大值为312.如图,已知四棱台ABCD A 1B 1C 1D 1的上、下底面均为正方形,其中AB =22 ,A 1B 1=2 ,AA 1=BB 1=CC 1=DD 1=2,则下列叙述正确的是( )A.该四棱台的高为3 B .AA 1⊥CC 1C .该四棱台的表面积为26D .该四棱台外接球的表面积为16π三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.复数z =(m 2+4m +3)+(m +3)i ,m ∈R 为纯虚数,则m =________.14.已知tan α,tan β是方程2x 2+3x -5=0的两个实数根,则tan (α+β)=________.15.已知函数f (x )=2sin (ωx +φ)(ω>0)满足f ⎝ ⎛⎭⎪⎫π4 =2,f (π)=0,且f (x )在区间⎝⎛⎭⎪⎫π4,π3 上单调,则ω的最大值为________.16.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,(a -3 c )sin A =b sin B -c sin C ,若△ABC 外接圆面积为π,则△ABC 面积的最大值为________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)(1)已知复数z =m 2-5m +6+(2m 2-3m -2)i ,m ∈R .若z 为纯虚数,求m 的值;(2)已知复数z =a +b i(a ,b ∈R ),若z 满足z ·z -+i z =15+3i ,求a ,b 的值. 18.(本小题满分12分)函数f (x )=A cos (ωx +φ)(A >0,ω>0,|φ|<π2 )的部分图象如图所示.(1)求函数f (x )的解析式;(2)若函数f (x )在区间[0,m ]有5个零点,求m 的取值范围.19.(本小题满分12分)如图,在长方体ABCD A1B1C1D1中,AD=AA1=1,AB=2,点E 是AB的中点.(1)证明:D1E⊥A1D;(2)在棱DD1上是否存在一点P,使得AP∥平面D1EC,若存在,求DPDD1,若不存在,说明理由;(3)求D到平面D1EC的距离.20.(本小题满分12分)在①2cos2B+cos2B=0,②b cos A+a cos B=3+1这两个条件中任选一个,补充在下面问题的横线中,并解决相应问题.已知在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若4S=b2+c2-a2,b=6,________,求△ABC的面积S的大小.注:如果选择多个条件分别解答,按第一个解答计分.21.(本小题满分12分)矩形ABCD 中,AB =2AD =2,P 为线段DC 的中点,将△ADP 沿AP 折起,使得平面ADP ⊥平面ABCP .(1)在DC 上是否存在点E 使得AD ∥平面PBE ?若存在,求出点E 的位置;若不存在,请说明理由;(2)求二面角P AD B 的余弦值. 22.(本小题满分12分)已知向量m =(1,cos ωx ),n =(sin ωx ,3 )(ω>0),函数f (x )=m ·n ,且f (x )图象上的一个最高点为P ⎝ ⎛⎭⎪⎫π12,2 ,与P 最近的一个最低点的坐标为⎝⎛⎭⎪⎫7π12,-2 .(1)求函数f (x )的解析式;(2)设a 为常数,判断方程f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上的解的个数;(3)在锐角△ABC 中,若cos ⎝ ⎛⎭⎪⎫π3-B =1,求f (A )的取值范围.全书综合测评卷1.答案:B解析:向量是既有大小又有方向的量,大小相等,但方向不一定相同,故A 错误;若a =-b ,得a ,b 方向相反,则a ∥b ,故B 正确;当b =0,a 与c 不一定平行,故C 错误;尽管两个向量的模有大小之分,但两个向量是不能比较大小的,故D 错误.故选B.2.答案:D解析:z 1=1+2i ,z -1=1-2i ,故A 错误;z 1的虚部是2,故B 错误;z 1+z 2=3+i为虚数,故C 错误;z 1·z 2=(1+2i)(2-i)=2-i +4i -2i 2=4+3i ,故D 正确.故选D.3.答案:B解析:0<1.5<π,0<2<π,0<3.1<π,∴sin 1.5·sin 2·sin 3.1>0;π<4.1<3π2,cos 4.1<0,3π2 <5<2π,3π2 <6<2π,cos 5>0,cos 6>0,∴cos 4.1·cos 5·cos 6<0;2π<7<5π2 ,5π2 <8<3π,5π2<9<3π,∴tan 7>0,tan 8<0,tan 9<0,tan 7·tan 8·tan9>0;只有一个负数.故选B.4.答案:C解析:由题意知:2πω =4π⇒ω=12 ,∴f (x )=cos (12 x +2π3)A ,B 选项,当x ∈(0,π)时,12 x +2π3 ∈(2π3 ,7π6 ),当12 x +2π3 ∈(2π3,π)时,f (x )单调递减,12 x +2π3 ∈(π,7π6 )时,f (x )单调递增.因此,A 和B 都错误;C 选项,x =2π3 时,12 x +2π3 =π;x =π是cos x 的对称轴,则x =2π3是f (x )的对称轴.因此,C 正确;D 选项,由C 可知,x =2π3是对称轴的位置,则必不是对称中心,D 错误.故选C.5.答案:A 解析:如图,连接BD .在△ABD 中,由余弦定理有:BD 2=BA 2+AD 2-2BA ×AD ×cos A =300-2002 cos A ①, 在△CBD 中,由余弦定理有:BD 2=BC 2+CD 2-2BC ×CD ×cos C =500-400cos C ②, 由①②得:-2 cos A =1-2cos C ,又∠A +∠C =3π4 ,∴-2 cos (3π4-C )=1-2cos C ,∴-sin C =1-3cos C ,又∵sin 2C +cos 2C =1.∴(3cos C -1)2+cos 2C =1,∴cos C =0或cos C =35,∵C ∈(0,3π4),∴sin C >0,若cos C =0,则sin C =-1(舍),∴cos C =35.故选A.6.答案:C解析:依题意,设AE → =λAC → ,BE → =μBD → ,则AE → =λAC → =λ(-3AB → +6AD →)=-3λAB → +6λAD → .又AE → =AB → +BE → =AB → +μBD → =AB → +μ·(AD → -AB → )=(1-μ)AB → +μAD → ,所以⎩⎪⎨⎪⎧-3λ=1-μ,6λ=μ, 两式相加得λ=13 ,即AE →=13 AC → ,所以AE AC =|AE →||AC →|=13 .故选C.7.答案:A 解析:设棱长为a ,将三棱柱ABC A 1B 1C 1补成正三棱柱A 1B 1C 1 A 2B 2C 2(如图),使AA 1=AA 2.平移AB 1至A 2B ,连接A 2M ,∠MBA 2(或其补角)即为AB 1与BM 所成的角,在△A 2BM 中,A 2B =2a ,BM =a 2+⎝ ⎛⎭⎪⎫a 22 =52 a ,A 2M =a 2+⎝ ⎛⎭⎪⎫3a 22 =132 a ,∴A 2B 2+BM 2=A 2M 2,∴∠MBA 2=90°.故选A.8.答案:A解析:y =⎝ ⎛⎭⎪⎫32cos x +12sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x =34 (sin 2x +cos 2x )+14 sin x cosx +34sin x cos x =34 +12 sin 2x .当sin 2x =1时,y max =3+24 ,此时2x =2k π+π2 (k ∈Z ),即x =k π+π4(k ∈Z ),∴tan x =1.故选A.9.答案:BC解析:取z 1=3+i ,z 2=1+i 时,z 1-z 2=2>0,但虚数不能比较大小,故A 项错误;由|z 1|=|z 2|,得|z 1|2=|z 2|2.又z 1z - 1=|z 1|2,z 2z - 2=|z 2|2,所以z 1z - 1=z 2z - 2,故B 项正确;因为⎪⎪⎪⎪⎪⎪z 1z 2 =|z 1||z 2|>1,所以|z 1|>|z 2|,故C 项正确;取z 1=1,z 2=i ,满足z 21 +z 22=0,但是z 1≠z 2≠0,故D 项错误.故选BC.10.答案:ABD解析:f (x )与g (x )的定义域是R ,故A 错误;f (-x )=cos (sin (-x ))=cos (sin x )=f (x ),则f (x )是偶函数,故B 错误;∵-1≤sin x ≤1,-1≤cos x ≤1,∴f (x )的值域为[cos 1,1],g (x )的值域为[-sin 1,sin 1],故C 正确;f (x +2π)=cos (sin (x +2π))=cos (sin x )=f (x ),则f (x )是周期函数,故D 错误.故选ABD.11.答案:BCD解析:因为f (x )=sin ⎝ ⎛⎭⎪⎫x -π4 cos ⎝ ⎛⎭⎪⎫x -π4 +3=12 sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4 +3=12 sin⎝⎛⎭⎪⎫2x -π2 +3=-12 cos2x +3,所以f (x )的最小正周期T =π,图象的对称轴为直线x =k 2 π,k ∈Z ,对称中心为⎝ ⎛⎭⎪⎫π4+k 2π,3 ,k ∈Z ,最大值为3+12 =72 ,故只有A 正确.故选BCD.12.答案:AD 解析:给四棱台ABCD A 1B 1C 1D 1补上一个小四棱锥S A 1B 1C 1D 1即可得到四棱锥S ABCD ,如图.连接A 1C 1,B 1D 1交于点O 1,连接AC ,BD 交于点O ,连接SO .由AB =22 ,A 1B 1=2 ,可知△SA 1B 1与△SAB 的相似比为1∶2,则SA =2AA 1=4.由题意可得AO =2,则SO =23 ,则OO 1=3 ,故该四棱台的高为3 ,A 正确;因为SA =SC =AC =4,所以AA 1与CC 1的夹角为60°,B 错误;由题意可得该四棱台侧面的高为22-⎝ ⎛⎭⎪⎫22-222=142 ,则四棱台的表面积S =S上底+S下底+S 侧=2+8+4×2+222 ×142=10+67 ,C 错误;因为四棱台ABCD A 1B 1C 1D 1的上、下底面都是正方形,所以其外接球的球心在OO 1上.连接OB 1,在平面B 1BOO 1中,由OO 1=3 ,B 1O 1=1,得OB 1=2=OB ,即点O 到点B 与到点B 1的距离相等,则外接球半径r =OB =2,所以该四棱台外接球的表面积为4πr 2=16π,D 正确.故选AD.13.答案:-1解析:因为复数z =(m 2+4m +3)+(m +3)i ,m ∈R 为纯虚数,所以⎩⎪⎨⎪⎧m 2+4m +3=0,m +3≠0, 所以m =-1.14.答案:-37解析:∵tan α,tan β是方程2x 2+3x -5=0的两个实数根,∴tan α+tan β=-32 ,tan αtan β=-52 ,由tan (α+β)=tan α+tan β1-tan αtan β =-321-⎝ ⎛⎭⎪⎫-52 =-37 . 15.答案:343解析:因为f (x )在区间⎝ ⎛⎭⎪⎫π4,π3 上单调,所以T 2 ≥π3 -π4 =π12 ,解得T ≥π6 ,所以2πω ≥π6 ,解得0<ω≤12.因为f ⎝ ⎛⎭⎪⎫π4 =2,f (π)=0,所以2k +14 T =π-π4 =3π4 ,k ∈N *,所以T =3π2k +1 ,所以2πω =3π2k +1 ,所以ω=4k +23 ,k ∈N *,当ω=4k +23 ≤12时,解得k ≤172 ,k ∈N ,所以ωmax =4×8+23 =343.16.答案:2+34解析:由已知及正弦定理得a 2-3 ac =b 2-c 2,所以a 2+c 2-b 2=3 ac ,所以cos B =a 2+c 2-b 22ac =32 ,又B ∈(0,π),所以B =π6.由△ABC 的外接圆面积为π,得外接圆的半径R =1. 由正弦定理得b =2R sin B =1,所以a 2+c 2-1=3 ac ,所以a 2+c 2=3 ac +1≥2ac ,解得ac ≤2+3 ,所以△ABC 的面积S =12 ac sin B =14 ac ≤2+34,当且仅当a =c 时等号成立.17.解析:(1)因为z 是纯虚数,所以⎩⎪⎨⎪⎧m 2-5m +6=0,2m 2-3m -2≠0, 解得m =3.(2)设z =a +b i ,所以z -=a -b i , z ·z -+i z =(a +b i)(a -b i)+i(a +b i)=a 2+b 2-b +a i =15+3i.所以⎩⎪⎨⎪⎧a =3,a 2+b 2-b =15, 解得⎩⎪⎨⎪⎧a =3b =3 或⎩⎪⎨⎪⎧a =3,b =-2. 18.解析:(1)因为A >0,由图象可知A =2,且有T 2 =πω =2π3 -π6 =π2,所以ω=2,因为图象过点(π6 ,2),所以2cos (2·π6+φ)=2,即φ+π3 =2k π,解得φ=2k π-π3 ,k ∈Z ,因为|φ|<π2 ,所以φ=-π3 ,故f (x )=2cos (2x -π3).(2)由(1)知f (x )=2cos (2x -π3 ),因为x ∈[0,m ],所以2x -π3 ∈[-π3 ,2m -π3],由函数f (x )在区间[0,m ]上有5个零点,令2x -π3=t ,即y =2cos t 在区间[-π3 ,2m -π3]有5个零点,由y =cos t 的图象知,只需9π2 ≤2m -π3 <11π2即可,解得29π12 ≤m <35π12 ,故m ∈[29π12 ,35π12).19.解析:(1)如图所示,连接AD 1交A 1D 于点O ,则O 为AD 1的中点,由题意可知,四边形ADD 1A 1是正方形,∴A 1D ⊥AD 1. ∵AB ⊥平面ADD 1A 1,A 1D ⊂平面ADD 1A 1,∴AB ⊥AD 1. 又∵AB ⊂平面AD 1E ,AD 1⊂平面AD 1E ,AB ∩AD 1=A , ∴A 1D ⊥平面AD 1E ,又D 1E ⊂平面AD 1E ,∴A 1D ⊥D 1E ,即D 1E ⊥A 1D .(2)存在一点P 满足DP DD 1 =12时,使得AP ∥平面ED 1C ,当点P 满足DP DD 1 =12,即P 为DD 1的中点,取CD 1的中点Q ,连接PQ ,EQ , 在△DD 1C 中,P ,Q 为中点,∴PQ ∥DC ,PQ =12DC ,∵在长方体AC 1中,E 是AB 的中点,∴AE ∥DC 且AE =12DC ,∴AE ∥PQ 且AE =PQ ,∴四边形AEQP 为▱AEQP ,∴AP ∥EQ , 又EQ ⊂平面D 1EC ,AP ⊄平面D 1EC ,∴AP ∥平面D 1EC . (3)连接DE ,设D 到平面D 1EC 的距离为h , ∵在长方体AC 1中,DD 1⊥平面ABCD , ∵矩形ABCD ,点E 是AB 的中点,∴S △DCE =12 S 矩形ABCD =12×1×2=1,∴VD 1-DCE =13 S △DCE ·DD 1=13 ×1×1=13,在Rt△D 1DC 中,D 1C =DD 21+DC 2=5 , 在Rt△ADE 中,DE =AD 2+AE 2=2 ,∵DD 1⊥平面ABCD ,DE ⊂平面ABCD ,∴DD 1⊥DE , 在Rt△D 1DE 中,D 1E =DD 21 +DE 2=3 , 在Rt△BCE 中,EC =BC 2+BE 2=2 ,∴D 1E 2+EC 2=CD 21 ,∴ED 1⊥CE ,∴S △D 1CE =12 D 1E ×EC =12 ×3 ×2 =62 ,又VD D 1CE =VD 1DCE ,∴13 S △D 1EC ×h =13 ,h =63 ,∴D 到平面D 1EC 的距离为63. 20.解析:因为4S =b 2+c 2-a 2,cos A =b 2+c 2-a 22bc,S =12bc sin A ,所以2bc sin A =2bc cos A , 显然cos A ≠0,所以tan A =1,又A ∈⎝⎛⎭⎪⎫0,π2 ,所以A =π4 . 若选择①,由2cos 2B +cos2B =0得, cos 2B =14. 又B ∈⎝⎛⎭⎪⎫0,π2 ,∴B =π3 , 由a sin A =b sin B 得,a =b sin A sin B =6×2232=2. 又sin C =sin [π-(A +B )]=sin (A +B )=sin A cos B +cos A sin B =22 ×12 +22 ×32 =6+24 , 所以S =12 ab sin C =3+32. 若选择②,b cos A +a cos B =3 +1,则b cos A +a cos B =b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac =b 2+c 2-a 22c +a 2+c 2-b 22c =c =3 +1,所以S =12 bc sin A =12 ×6 ×(3 +1)×22 =3+32. 21.解析:(1)存在.如图所示:连接AC ,BP ,设AC 交BP 于点F ,∵CP ∥AB ,且CP =12AB , ∴CF CA =PF PB =13. 取DC 的三等分点E ,使CE CD =13,连接EF ,PE ,BE ,则EF ∥AD , 又EF ⊂平面PBE ,AD ⊄平面PBE ,∴AD ∥平面PBE .故存在满足条件的点E ,且E 是线段CD 上靠近点C 的三等分点.(2)在矩形ABCD 中,AP =BP =2 ,AB =2,∴AP 2+BP 2=AB 2,∴AP ⊥BP ,又平面ADP ⊥平面ABCP ,BP ⊂平面ABCP ,平面ADP ∩平面ABCP =AP ,∴BP ⊥平面ADP ,∴BP ⊥DP ,∴BD 2=DP 2+BP 2=1+2=3.在△ADB 中,AB 2=AD 2+BD 2,∴AD ⊥DB ,又PD ⊥AD ,PD ⊂平面ADP ,BD ⊂平面ADB ,平面ADP ∩平面ADB =AD ,∴∠PDB 为二面角P AD B 的平面角,在Rt△PDB 中,cos ∠PDB =DP BD =13=33 ,∴二面角P AD B 的余弦值为33. 22.解析:(1)f (x )=m ·n =sin ωx +3 cos ωx =2(12 sin ωx +32cos ωx )=2sin ⎝⎛⎭⎪⎫ωx +π3 . ∵f (x )图象上的一个最高点为P ⎝ ⎛⎭⎪⎫π12,2 ,与P 最近的一个最低点的坐标为⎝ ⎛⎭⎪⎫7π12,-2 , ∴T 2 =7π12 -π12 =π2,∴T =π, 又ω>0,∴ω=2πT=2. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 . (2)当x ∈⎣⎢⎡⎦⎥⎤0,π2 时,π3 ≤2x +π3 ≤4π3 , 由f (x )=2sin ⎝⎛⎭⎪⎫2x +π3 的图象(图略)可知, 当a ∈[3 ,2)时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上有两解; 当a ∈[-3 ,3 )或a =2时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上有一解; 当a <-3 或a >2时,f (x )=a 在区间⎣⎢⎡⎦⎥⎤0,π2 上无解. (3)在锐角△ABC 中,0<B <π2 ,-π6 <π3 -B <π3, 又cos ⎝ ⎛⎭⎪⎫π3-B =1,∴π3 -B =0,∴B =π3 . 在锐角△ABC 中,0<A <π2 ,A +B >π2, ∴π6 <A <π2 ,∴2π3 <2A +π3 <4π3, ∴sin ⎝ ⎛⎭⎪⎫2A +π3 ∈⎝ ⎛⎭⎪⎫-32,32 , ∴f (A )=2sin ⎝ ⎛⎭⎪⎫2A +π3 ∈(-3 ,3 ). ∴f (A )的取值范围是(-3 ,3 ).GS -2。
高中数学必修2测试题附答案
高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。
2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。
3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。
4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。
5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。
6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。
因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。
9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。
高中数学试卷试题及答案
高中数学试卷试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=2x^2-4x+3,则f(2)的值为()A. 1B. 3C. 5D. 7答案:C2. 已知等差数列{an}的前三项分别为1, 4, 7,则该数列的通项公式an=()A. 3n - 2B. 3n + 1C. 3nD. 3n - 1答案:A3. 集合A={1, 2, 3, 4, 5},集合B={2, 4, 6, 8},则A∩B的元素个数为()A. 1B. 2C. 3D. 4答案:B4. 已知向量a=(3, -4),向量b=(2, 1),则向量a·b的值为()A. -2B. 2C. -5D. 5答案:A5. 函数y=x^3-3x^2+4的极值点个数为()A. 0B. 1C. 2D. 3答案:C6. 已知双曲线x^2/a^2 - y^2/b^2 = 1(a, b > 0)的焦点在x轴上,且离心率为e=√2,则a与b的关系为()A. a = bB. a = 2bC. a = √2bD. a = b/√2答案:C7. 抛物线y^2 = 4px(p > 0)的焦点坐标为()A. (p, 0)B. (0, p)C. (p/2, 0)D. (0, p/2)答案:C8. 函数y=x^2-6x+9的图像与x轴的交点个数为()A. 0B. 1C. 2D. 3答案:B9. 已知圆x^2 + y^2 - 6x - 8y + 24 = 0的半径为()A. 2√2B. 4C. 6D. 8答案:B10. 函数f(x)=|x-1|+|x-3|的最小值为()A. 1B. 2C. 3D. 4答案:B二、填空题(每题5分,共30分)11. 若等比数列{an}的第二项为2,第三项为8,则该数列的公比为______。
答案:412. 已知直线l的方程为3x - 4y + 5 = 0,点P(2, 3)到直线l的距离为______。
答案:113. 函数f(x)=x^3-3x+1的单调递增区间为______。
数学必修2考试题及答案
数学必修2考试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = 2x^2 - 4x + 3,求f(2)的值。
A. 1B. 3C. 5D. 7答案:B2. 已知等差数列{a_n}的首项a_1 = 3,公差d = 2,求a_5的值。
A. 13B. 11C. 9D. 7答案:A3. 计算下列三角函数值:sin(π/6)。
A. 1/2B. √3/2C. 1/3D. √2/2答案:A4. 已知复数z = 3 + 4i,求z的共轭复数。
A. 3 - 4iB. -3 + 4iC. -3 - 4iD. 3 + 4i答案:A5. 求下列二项式展开式的通项公式:(1 + x)^5。
A. C_5^k * x^kB. C_5^k * x^(5-k)C. C_5^k * x^k / k!D. C_5^k * x^(5-k) / k!答案:B6. 已知圆的方程为x^2 + y^2 = 4,求圆心坐标。
A. (0, 0)B. (2, 2)C. (-2, -2)D. (1, 1)答案:A7. 计算下列极限:lim(x→0) [sin(x) / x]。
A. 0B. 1C. 2D. ∞答案:B8. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)。
A. 3x^2 - 6xB. x^2 - 6x + 2C. 3x^2 - 6x + 1D. x^3 - 6x^2 + 2答案:A9. 求下列矩阵的行列式值:| 1 2 || 3 4 |A. -2B. 2C. 5D. 8答案:B10. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B。
A. {1, 2}B. {2, 3}C. {1, 3}D. {1, 2, 4}答案:B二、填空题(每题6分,共30分)1. 已知等比数列{a_n}的前三项分别为2,4,8,则该数列的公比q为______。
答案:22. 求函数f(x) = x^2 - 6x + 8的顶点坐标。
最新高中数学新课程标准考试模拟试卷及答案(三套)
最新高中数学新课程标准考试模拟试卷及答案(三套)高中教师数学新课程标准考试模拟试卷(一)附答案一、填空题(每小题4分,共40分)1.数学教育在学校教育中占有特殊的地位,它使学生掌握数学的基本概念、基本技能、基本方法,使学生表达清晰、思考有条理,使学生具有逻辑思维能力、创新能力,使学生会用数学的思考方式分析问题、解决问题。
2.高中数学课程对于认识数学与自然界、数学与人类社会的关系,认识数学的科学性、规范性,提高提出问题、分析和解决问题的能力,形成数学思维惯,发展数学素养具有基础性的作用。
3.高中数学课程标准最突出的特点就是体现了思想性、方法性和应用性。
4.高中数学课程应力求通过各种不同形式的研究、实践,让学生体验数学探究的历程,发展他们的创新意识。
5.高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一。
人们在研究数学和运用数学解决问题时,不断地经历问题意识、分析、抽象、归纳、演绎、验证、推广、创新、评价等思维过程。
6.为了适应信息时代发展的需要,高中数学课程应增加信息技术的内容,把最基本的计算机操作、数据处理等作为新的数学基础知识和基本技能;同时,应删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容,克服“应试化”的倾向。
7.普高中数学课程的总目标是:培养学生的数学思维能力、数学素养和数学方法,使其具有独立思考、自主研究、创新探究的能力,为学生未来的研究和工作打下坚实的数学基础。
8.高中数学课程的目标是要求学生具备广阔的数学视野,逐步了解数学的基本知识、基本技能和基本思想,培养批判性思维惯,崇尚数学的科学价值和文化价值,体会数学的美学意义,从而建立起符合辩证唯物主义和历史唯物主义的世界观。
9.算法是一个全新的课题,已经成为计算机科学和数据处理的重要基础,在现代社会中起着越来越重要的作用。
10.高中数学研究的评价应该重视学生参与数学活动的兴趣和态度,以及数学研究的自信心和独立思考惯等方面,不仅要注重结果,还要注重过程。
数学必修2测试卷及答案(直接打印)
必修2模块测试卷一、选择题.本大题共10小题.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.如图⑴、⑵、⑶、⑷为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( )A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台 2.几何体的三视图如图,则几何体的体积为( ) A .3π B .23πC .πD .43π3.如图,将无盖正方体纸盒展开,直线AB ,CD 在原正方体中的位置关系是( ) A .平行 B .相交且垂直 C . 异面 D .相交成60° 4.若三点(2,3),(5,0),(0,)(0)A B C b b ≠共线,则b =( ) A .2B .3C .5D .15.与直线:2l y x =平行,且到l )A .2y x =B .25y x =±C .1522y x =-± D .12y x =- 6.若点(,0)k 与(,0)b 的中点为(1,0)-,则直线y kx b =+必定经过点( ) A .(1,2)-B .(1,2)C .(1,2)-D .(1,2)--7.已知菱形ABCD 的两个顶点坐标:(2,1),(0,5)A C -,则对角线BD 所在直线方程为( ) A .250x y +-=B .250x y +-=C .250x y -+=D .250x y -+=8. )A .B .C .6D9.圆心为(11),且与直线4x y +=相切的圆的方程是( ) A .22(1)(1)2x y -+-=B .22(1)(1)4x y -+-=22(1)(1)2x y +++=22(1)(1)4x y +++=10.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( )A .1B .CD .3二、填空题:本大题共4小题.11. 直线0x ay a +-=与直线(23)0ax a y --=垂直,则a =. 12.已知正四棱台的上下底面边长分别为2,4,高为2,则其斜高为.13.一个水平放置的平面图形,其斜二测直观图是一个等腰梯形,其底角为45,腰和上底均为1. 如图,则平面图形的实际面积为.14.设集合{}22(,)4M x y x y =+≤,{}222(,)(1)(1)(0)N x y x y r r =-+->≤.当M N N = 时,则正数r 的取值范围 .三、解答题:本大题共6小题.解答须写出文字说明、证明过程和演算步骤.15.如图,在平面直角坐标系中,已知平行四边形ABCD 的三个顶点坐标:(0,0),(4,0)A B C .⑴ 求边CD 所在直线的方程(结果写成一般式); ⑵ 证明平行四边形ABCD 为矩形,并求其面积.16. 如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,M 、N 分别是AB 、PC 的中点,且MN PC MN AB ⊥⊥,.证明:平面P AD ⊥平面PDC .17. 如图,已知直线1:40l x y +=,直线2:10l x y +-=以及2l 上一点(3,2)P -.求圆心在1l 上且与直线2l 相切于点P 的圆的方程.18. 已知正四棱锥P -ABCD 如图.⑴ 若其正视图是一个边长分别为2的等腰三角形,求其表面积S 、体积V ;⑵ 设AB 中点为M ,PC 中点为N ,证明:MN //平面P AD .19.在棱长为2的正方体1111ABCD A BC D -中,设E 是棱1CC 的中点. ⑴ 求证:BD AE ⊥;⑵ 求证://AC 平面1B DE ;⑶.求三棱锥1A B DE -的体积.20.已知圆22:68210C x y x y +--+=和直线:430l kx y k --+=.⑴ 证明:不论k 取何值,直线l 和圆C 总相交; ⑵ 当k 取何值时,圆C 被直线l 截得的弦长最短?并求最短的弦的长度.§09. 立体几何 知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内. 2. 两个平面可将平面分成3或4部分.(①两个平面平行,②两个平面相交) 3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个. 4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向) 二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线—共面有反且有一个公共点;平行直线—共面没有公共点;异面直线—不同在任一平面内 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ) (斜线与平面成角() 90,0∈θ) (直线与平面所成角[] 90,0∈θ)(向量与向量所成角])180,0[ ∈θ推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. 5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交) ⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA . ● 三垂线定理的逆定理亦成立. 直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面. 推论:如果两条直线同垂直于一个平面,那么这两条直线平行. [注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行) ②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面) ③垂直于同一平面的两条直线平行.(√) 5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短. [注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)] ⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行. 12方向相同12方向不相同POAa面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行. [注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l , 因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.6. 两异面直线任意两点间的距离公式:θcos 2222mn d n m l +++=(θ为锐角取加,θ为钝取减,综上,都取加则必有⎥⎦⎤⎝⎛∈2,0πθ)7. ⑴最小角定理:21cos cos cos θθθ=(1θ为最小角,如图)⑵最小角定理的应用(∠PBN 为最小角)简记为:成角比交线夹角一半大,且又比交线夹角补角一半长,一定有4条. 成角比交线夹角一半大,又比交线夹角补角小,一定有2条.成角比交线夹角一半大,又与交线夹角相等,一定有3条或者2条. 成角比交线夹角一半小,又与交线夹角一半小,一定有1条或者没有. 五、 棱锥、棱柱. 1. 棱柱. ⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的. ②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的. ⑵{四棱柱}⊃{平行六面体}⊃{直平行六面体}⊃{长方体}⊃{正四棱柱}⊃{正方体}. {直四棱柱}⋂{平行六面体}={直平行六面体}.⑶棱柱具有的性质: ①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全.等的矩形..... ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形. 注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×) (直棱柱不能保证底面是钜形可如图) ②(直棱柱定义)棱柱有一条侧棱和底面垂直. ⑷平行六面体:定理一:平行六面体的对角线交于一点.............,并且在交点处互相平分. [注]:四棱柱的对角线不一定相交于一点.定理二:长方体的一条对角线长的平方等于一个顶点上三条棱长的平方和.图1θθ1θ2图2P αβθM A B O推论二:长方体一条对角线与同一个顶点的三各侧面所成的角为γβα,,,则2cos cos cos 222=++γβα. [注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥:棱锥是一个面为多边形,其余各面是有一个公共顶点的三角形. [注]:①一个棱锥可以四各面都为直角三角形. ②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V ShV ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形) ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ③棱锥的侧面积与底面积的射影公式:αcos 底侧S S =(侧面与底面成的二面角为α)附: 以知c ⊥l ,b a =⋅αcos ,α为二面角b l a --.则l a S ⋅=211①,b l S ⋅=212②,b a =⋅αcos ③ ⇒①②③得αcos 底侧S S =.注:S 为任意多边形的面积(可分别多个三角形的方法).⑵棱锥具有的性质: ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高). ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形. ⑶特殊棱锥的顶点在底面的射影位置: ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心. ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心. ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心. ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心. ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径; ⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径. [注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等) ii. 简证:AB ⊥CD ,AC ⊥BD ⇒ BC ⊥AD. 令===,, 得-=⋅⇒=-=-=,,已知()(0,0=-⋅=-⋅c a b b c alabc FED0=-⇒则0=⋅AD BC .iii. 空间四边形OABC 且四边长相等,则顺次连结各边的中点的四边形一定是矩形. iv. 若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形.简证:取AC 中点'O ,则⊥⇒⊥'⊥'AC AC O B AC o o ,平面=∠⇒⊥⇒'FGH BO AC B O O 90°易知EFGH 为平行四边形⇒EFGH 为长方形.若对角线等,则EFGH FG EF ⇒=为正方形. 3. 球:⑴球的截面是一个圆面. ①球的表面积公式:24R S π=.②球的体积公式:334R V π=.⑵纬度、经度: ①纬度:地球上一点P 的纬度是指经过P 点的球半径与赤道面所成的角的度数. ②经度:地球上B A ,两点的经度差,是指分别经过这两点的经线与地轴所确定的二个半平面的二面角的度数,特别地,当经过点A 的经线是本初子午线时,这个二面角的度数就是B 点的经度. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高)②圆锥体积:h r V 231π=(r 为半径,h 为高)③锥形体积:Sh V 31=(S 为底面积,h 为高)4. ①内切球:当四面体为正四面体时,设边长为a ,a h 36=,243a S =底,243a S =侧 得a a a R R a R a a a 46342334/424331433643222=⋅==⇒⋅⋅+⋅=⋅. 注:球内切于四面体:h S R S 313R S 31V 底底侧AC D B ⋅=⋅+⋅⋅⋅=- ②外接球:球外接于正四面体,可如图建立关系式.O rOR。
数学测试题及答案高中生
数学测试题及答案高中生一、选择题(每题3分,共30分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. 1B. -1C. -5D. 5答案:C2. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 不能确定答案:A3. 函数y = x^2 - 4x + 3的顶点坐标为:A. (2, -1)B. (2, 1)C. (-2, -1)D. (-2, 1)答案:B4. 一个圆的半径为5,圆心在原点,那么该圆的方程是:A. x^2 + y^2 = 25B. x^2 + y^2 = 50C. (x - 5)^2 + y^2 = 25D. (x + 5)^2 + y^2 = 25答案:A5. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 0B. 1C. 2D. 3答案:C6. 直线y = 2x + 1与x轴的交点坐标是:A. (0, 1)B. (-1/2, 0)C. (1/2, 0)D. (0, -1)答案:D7. 函数f(x) = x^3 - 3x^2 + 4在区间[1, 2]上是:A. 单调递增B. 单调递减C. 先减后增D. 先增后减答案:C8. 已知等差数列{an}的首项a1 = 2,公差d = 3,则该数列的第五项a5的值为:A. 14B. 17C. 20D. 23答案:A9. 函数f(x) = sin(x) + cos(x)的值域是:A. [-2, 2]B. [-√2, √2]C. [-1, 1]D. [0, 2]答案:B10. 圆x^2 + y^2 = 9与直线x - y + 3 = 0的交点个数为:A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)1. 已知等比数列{bn}的前三项依次为1,2,4,则该数列的第四项b4为______。