找数字规律
数字找规律方法3则
数字找规律方法3则以下是网友分享的关于数字找规律方法的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。
数字找规律的方法(1)数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为 d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数) 。
[例1]1,3,5,7,9,()A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C 。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性, 往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列, 所以括号内的数与26的差值应为11, 即括号内的数为26+11=37.故选C 。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A 、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D 。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
数字找规律的方法
数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为 d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,() A、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,() A、2/9 B、1/9 C、1/27 D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
数字找规律的方法
数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,() A、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,() A、2/9 B、1/9 C、1/27 D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
数字找规律的方法
数字规律第一种———-等差数列:就是指相邻之间得差值相等,整个数字序列依次递增或递减得一组数。
1、等差数列得常规公式。
设等差数列得首项为a1,公差为d ,则等差数列得通项公式为an=a1+(n-1)d (n为自然数)。
ﻫ[例1]1,3,5,7,9,( ) A、7 B.8 C、11 D、13[解析]这就是一种很简单得排列方式:其特征就是相邻两个数字之间得差就是一个常数。
从该题中我们很容易发现相邻两个数字得差均为2,所以括号内得数字应为11。
故选C。
2、二级等差数列。
就是指等差数列得变式,相邻两项之差之间有着明显得规律性,往往构成等差数列、[例2] 2, 5, 10, 17, 26,(), 50 A、35 B.33 C、37 D、36ﻫ [解析] 相邻两位数之差分别为3,5,7, 9,ﻫ就是一个差值为2得等差数列,所以括号内得数与26得差值应为11,即括号内得数为26+11=37、故选C。
ﻫ3、分子分母得等差数列。
就是指一组分数中,分子或分母、分子与分母分别呈现等差数列得规律性.ﻫ[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9 B、9/10 C、9/11 D、7/8ﻫ[解析]数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4 ﻫ、混合等差数列。
就是指一组数中,相邻得奇数项与相邻得偶数项呈现等差数列。
[例4]1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23 C、21 23 D、2730[解析] 相邻奇数项之间得差就是以2为首项,公差为2得等差数列,相邻偶数项之间得差就是以2为首项,公差为2得等差数列。
第二种-—等比数列:就是指相邻数列之间得比值相等,整个数字序列依次递增或递减得一组数。
ﻫ5、等比数列得常规公式。
设等比数列得首项为a1,公比为q(q不等于0),则等比数列得通项公式为an=a1q n—1(n为自然数)。
一年级找规律题目
一年级找规律题目
一年级找规律题目
1. 规律:在给出的一组数字中,每个数字都比前一个数字多1。
例如:2, 3, 4, 5, ...
题目:请写出下一个数字。
2. 规律:在给出的一组数字中,每个数字都是前一个数字乘以2。
例如:2, 4, 8, 16, ...
题目:请写出下一个数字。
3. 规律:在给出的一组数字中,每个数字都是前两个数字之和。
例如:1, 1, 2, 3, 5, ...
题目:请写出下一个数字。
4. 规律:在给出的一组数字中,每个数字都是前一个数字加上2。
例如:3, 5, 7, 9, ...
题目:请写出下一个数字。
5. 规律:在给出的一组数字中,每个数字都是前一个数字减去1。
例如:10, 9, 8, 7, ...
题目:请写出下一个数字。
6. 规律:在给出的一组数字中,每个数字都是前一个数字的平方。
例如:2, 4, 16, 256, ...
题目:请写出下一个数字。
7. 规律:在给出的一组数字中,每个数字都是前一个数字除以2。
例如:16, 8, 4, 2, ...
题目:请写出下一个数字。
通过帮助一年级学生理解和找到数字规律,这些题目可以帮助他们培养观察和推理能力。
随着他们不断练习,他们将能够更好地理解数字之间的关系,并解决更复杂的规律问题。
数字找规律的方法
数字找规律的方法数字找规律是一项重要的数学技能,它可以帮助我们理解和发现数字背后隐藏的模式和规律。
掌握数字找规律的方法不仅可以提高我们的数学水平,还可以帮助我们在生活和工作中解决问题。
本文将介绍几种常见的数字找规律的方法,希望能对您有所帮助。
一、递推法递推法是最常用的数字找规律方法之一。
它通过观察数列中相邻数字之间的关系,来找到下一个数字。
递推法的基本思路是找出数列中数字之间的规律,并根据这个规律来确定下一个数字。
例如,有一个数列:1,3,5,7,9,...我们可以发现,每个数字都比前一个数字大2。
因此,下一个数字应为9+2=11。
根据这个规律,我们可以预测接下来的数字为11,13,15,17,...递推法对于简单的数列规律通常很有效,但对于复杂的数列规律可能不太适用。
二、数位法数位法是一种通过观察数字的各位数之间的关系来找规律的方法。
它适用于包含多个位数的数字。
以数列123,456,789,101112,...为例。
我们可以观察到每个数字增加了一位数。
通过这个规律,我们可以推测下一个数字为131415。
数位法在计算问题中也有广泛应用,例如把一个数字的各位数相加,直到得到一个一位数的结果。
三、公式法公式法是一种通过列出数列中数字的数学公式来找规律的方法。
它适用于规律比较明显的数列。
例如,有一个数列:3,6,9,12,15,...我们可以发现,每个数字都是前一个数字加3。
因此,可以列出数列的公式为an = 3n,其中n为项数。
利用公式法可以方便地计算出数列中的任意一项,也可以帮助我们发现更复杂的数列规律。
四、图形法图形法是一种通过绘制数列中数字的图形来找规律的方法。
它适用于规律较为复杂的数列。
以数列1,2,4,7,11,...为例。
我们可以将这些数字绘制成一个图形。
12 47 11通过观察图形,我们可以发现每一行的差异在递增。
第一行相邻数字的差为1,第二行相邻数字的差为3,第三行相邻数字的差为4,以此类推。
数字找规律方法
数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d,那么等差数列的通项公式为an=a1+(n-1)d(n为自然数)。
[例1]1,3,5,7,9,〔〕.8 C[解析]这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
应选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2]2,5,10,17,26,(),50.33C[解析]相邻两位数之差分别为3,5,7,9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.应选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,〔〕A、8/9 B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
应选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4]1,3,3,5,7,9,13,15,,〔〕,〔〕。
A、1921 B、1923 C、2123D、2730[解析]2为首项,公差为2的等差相邻奇数项之间的差是以数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不0))[例5]12,4,4/3,4/9,〔〕A、2/9B、1/9C、1/27D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。
故选D。
6、二级等比数列。
是指等比数列的变式,相邻两项之比有着明显的规律性,往往构成等比数列。
数字找规律方法
基本技巧
例:2、5、10、17、26……,第n
项?
(三)、有些题可对每位
数同时减去第一位数,成 为第二位开始的新数列, 然后用1、2技巧找出每位 数与位置的关系。再在找 出的规律上加上第一位数,
析:同时减去2后得到 新数列:0、3、8、15、24……, 序列号:1、2、3、4、 5 …… 分析观察可得,新数列的第n项为:
恢复到原来。
n2-1,所以题中数列第n项为:
(n2-1)+2=n2+1
例:4、10、16、22、 28……,求第n位数。
分析:第二位数起,每位数都 比前一位数增加6,增幅都是6, 所以,第n位数是:4+(n-1)×6= 6n-2
基本方法
基本思路是:
1、求出数列的第n-1位到第n位的增
幅;
2、求出第1位到第n位的总增幅;
(二)、增幅不相等,但 3、数列的第1位数加上总增幅即是第n 是,乘除关系。又分 为等比、移动求积或商两 种
1、等比,从第二项起,每一项与它前一项 的比等于一个常数或一个等差数列。 例:8,12,18,27,(40.5)后项与前项之 比为1.5。 例:6,6,9,18,45,(135)后项与前项之 比为等差数列,分别为1,1.5,2,2.5,3
2、移动求积或商关系。从第三项起,每一 项都是前两项之积或商。 例:2,5,10,50,(500) 例:100,50,2,25,(2/25) 例:3,4,6,12,36,(216) 从第三项起, 第三项为前两项之积除以2 例:1,7,8,57,(457)第三项为前两项之 积加 1
给数字找规律
给数字找规律数字,作为数学的基本元素之一,是人类在计算和记录数量上的重要工具。
数字世界中蕴藏着各种规律和奥秘,通过观察和研究数字的变化,我们可以发现其中的规律,并运用这些规律解决问题。
本文将从几个不同的角度探索给数字找规律的方法,并举例说明。
1. 数字的递增规律首先,我们来看数字的递增规律。
递增是指数字按照一定的规律逐渐增加。
最常见的递增规律是等差数列,即每个数字与前一个数字之间的差值相等。
例如,1、3、5、7、9就是一个等差数列,公差为2。
通过观察数字之间的差值是否相等,我们可以推断出是否存在等差数列的规律。
2. 数字的递减规律除了递增规律,数字还可以呈现递减规律。
递减是指数字按照一定的规律逐渐减少。
与递增规律类似,最常见的递减规律也是等差数列。
例如,10、8、6、4、2就是一个公差为-2的等差数列。
通过观察数字之间的差值是否相等,我们可以判断是否存在等差数列的规律。
3. 数字的倍数规律除了递增和递减规律,数字还可以表现出倍数规律。
倍数是指一个数字是否能够被另一个数字整除,如果可以,那么被整除的数字就是倍数。
例如,6是3的倍数,因为6能够被3整除。
观察数字的倍数关系,可以发现一些有趣的规律。
例如,正整数的倍数在数字尾部的末尾数总是0、2、4、6或8,而不会出现1、3、5、7或9。
这是因为正整数的最后一位数字每隔5个数就循环一次。
4. 数字的平方规律另一个常见的数字规律是平方规律。
平方是指一个数与自身相乘的结果,例如2的平方是4(2*2=4)。
观察数字的平方,我们可以发现一些有趣的规律。
例如,完全平方数的尾数只可能是0、1、4、5、6或9,而不可能是2、3、7或8。
这是因为一个数的平方的尾数只与它个位数的平方有关。
通过以上几个角度的观察,我们可以发现数字中蕴藏着丰富的规律。
掌握和应用这些规律,有助于我们在数学问题中快速准确地找到答案。
例如,当我们遇到一个给出前几个数字的数列,并且要求我们推测下一个数字时,我们可以根据递增规律、递减规律或倍数规律进行分析,并得出结论。
数字的找规律
数字的找规律在数学中,找规律是一种重要的思维方式,通过观察数字序列中的特点和规律,可以进行数学推理和问题解决。
本文将探讨数字的找规律方法,并通过实例进行说明,帮助读者提升数字分析和数学推理的能力。
一、递增或递减最常见的数字找规律方式是递增或递减。
在递增中,每个数值都比前一个数值大;而在递减中,每个数值都比前一个数值小。
例如,数列1,3,5,7,9就是一个递增序列,而数列10,8,6,4,2则是一个递减序列。
二、等差数列等差数列是一种特殊的递增或递减序列,其中每个数值都与前一个数值的差相等。
例如,数列2,5,8,11,14就是一个等差数列,差为3。
在等差数列中,可以通过确定首项和公差来找到下一个数值。
三、等比数列等比数列也是一种特殊的序列,其中每个数值都与前一个数值的比相等。
例如,数列2,6,18,54,162就是一个等比数列,比为3。
在等比数列中,可以通过确定首项和公比来找到下一个数值。
四、斐波那契数列斐波那契数列是一个非常有趣的数列,其中每个数值都是前两个数值的和。
例如,数列1,1,2,3,5,8就是一个斐波那契数列。
斐波那契数列常常出现在自然界和艺术中,具有很多有趣的数学性质。
五、质数与合数质数是大于1且只能被1和本身整除的数,而合数是除了1和本身之外,还能被其他数整除的数。
在一系列数字中,通过筛选出质数和合数,可以发现它们之间的数量关系和规律。
六、平方数与立方数平方数是某个数的平方,例如1,4,9,16等;而立方数是某个数的立方,例如1,8,27,64等。
通过观察平方数和立方数在一系列数字中的出现情况,可以找到它们之间的规律。
七、奇数与偶数奇数是不能被2整除的数,而偶数是能被2整除的数。
在一连串数字中,奇数和偶数通常交替出现。
通过观察奇数和偶数的规律,可以推断出下一个数字是奇数还是偶数。
八、十进制与其他进制我们通常使用十进制来表示数字,但是数字也可以以其他进制来表示,如二进制、八进制和十六进制等。
数字的规律
可爱的规律
世界上有很多的规律,语言有规律,做事有规律,生活有规律,同样,我们的数字,他们也有很多自己的规律,你发现了吗?
原来规律一直都在我们身边,只是我们有时把他们忽略了。
数字的规律来说一般分为以下几类。
一、加法。
1、相同的数。
3,6,9,12,()
我们知道规律是+3
2、不同的数。
1,2,4,7,11,()
我们知道规律是+1,+2,+3,+4。
加的是单数
1,2,5,10,17,()
+1,+3,+5,+7,+()
加的是双数。
1,3,7,13,21,()
+2,+4,+6,+8
3、隔江相望。
1,5,2,6,3,7,(),()
隔着看,奇数项和偶数项是非常的有规律,奇数项是1,2,3,偶数项是5,6,7。
二、减法。
方法同上,同减法相似。
三、加减混合。
10,22,17,29,24,36,(),()
+12,-5
也可以把他们分开看,奇数项和偶数项看,奇数项分别是+7,偶数项是+7。
四、菲波纳奇数列。
1,1,2,3,5,8,,13,()
1+2=3 2+3=5 3+5=8 5+8=13 8+13=21
2,3,5,8,()你会填几?
可以填13,认为是菲波纳奇数列。
但是填12也是正确的。
可以认为是+1,+2,+3,+4。
神奇的数列带我们我们神秘的色彩,你认真地观察过他们吗?他们带给我们不一样的数学感受和体会。
只有你用心地去观察,你会发现身边的数字非常的可爱,他们有着自己的规律,等待着你我去发现,给数学增添光彩。
数字找规律方法
整理ppt
9
基本技巧
例:2、5、10、17、26……,第n
项?
(三)、有些题可对每位
数同时减去第一位数,成 为第二位开始的新数列, 然后用1、2技巧找出每位 数与位置的关系。再在找 出的规律上加上第一位数,
析:同时减去2后得到 新数列:0、3、8、15、24……, 序列号:1、2、3、4、 5 …… 分析观察可得,新数列的第n项为:
恢复到原来。
n2-1,所以题中数列第n项为:
找规律
整理ppt
1
1
基本方法
2
基本技巧
3
基本步骤
4
关于数表
5
基本类型
6
妙题赏析
整理ppt
目录
2
基本方法
1
基本方法-看增幅
整理ppt
3
基本方法
(一)、增幅相等(此实 为等差数列):对每个数 和它的前一个数进行比较, 如增幅相等,则第n个数可 以表示为:a+(n-1)b,其中 a为数列的第一位数,b为 增幅,(n-1)b为第一位数到 第n位的总增幅。然后再简 化代数式a+(n-1)b。
整理ppt
15
基本步骤
例:白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠 子,前2002个中有几个是黑的?
1)÷2=(n+1)×(n-1)=n2-1
所以,第n位数是:2+ n2-1= n2+1
数字找规律的方法
数字规律第一种----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的一组数。
1、等差数列的常规公式。
设等差数列的首项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为自然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13 [解析] 这是一种很简单的排列方式:其特征是相邻两个数字之间的差是一个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、二级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是一个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分子分母的等差数列。
是指一组分数中,分子或分母、分子和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,() A、8/9 B、9/10 C、9/11 D、7/8[解析] 数列分母依次为3,4,5,6,7;分子依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指一组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为首项,公差为2的等差数列,相邻偶数项之间的差是以2为首项,公差为2的等差数列。
第二种--等比数列:是指相邻数列之间的比值相等,整个数字序列依次递增或递减的一组数。
5、等比数列的常规公式。
设等比数列的首项为a1,公比为q(q不等于0),则等比数列的通项公式为an=a1q n-1(n为自然数)。
[例5] 12,4,4/3,4/9,() A、2/9 B、1/9 C、1/27 D、4/27[解析] 很明显,这是一个典型的等比数列,公比为1/3。