第五章 铁碳合金相图及应用
工程材料第五章 铁碳合金相图及应用
相图的应用 工具要用硬度高和耐磨性好的材料, 选碳含量高的钢(大于0.60% C)。
相图的应用
白口铸铁硬度高、脆性大,不能切削加 工,不能锻造。 但耐磨性好,铸造性能好,用于耐磨、不 受冲击、形状复杂的铸件,例如拔丝模、 冷轧辊、犁铧、泵体、阀门等。
相图的应用——铸造工艺方面的应用
共晶白口铸铁的铸造性能最好, 凝固温度区间最小, 流 动性好, 分散缩孔少, 精密铸件选在共晶成分附近。
铸钢零件 碳含量0.15-0.6%之间, 这个范围内钢的结晶 温度区间较小, 铸造性能较好。
相图的应用——热锻、热轧工艺方面的 应用
钢在奥氏体状态时强度较低, 塑性较好, 锻造 或轧制选在单相奥氏体区进行。 一般始锻温度为1150℃~1250℃, 终锻温度为 750℃~850℃。
相图的应用——在热处理工艺方面的应用
第五章 铁碳合金相图及应用
铁碳合金:以铁和碳为基本元素的合金。 钢:0.0218~2.11%C,铸铁大于2.11%C。
低碳钢:<0.25%C;中碳钢:0.25%-0.60%C;高碳钢>0.60%C。 铁与碳可以形成间隙固溶体、化合物Fe3C、Fe2C、FeC等。 铁碳相图中的组元是Fe和Fe3C。
第二节 Fe-Fe3C相图分析
一、相图中的三条水平线和三个重要点 (1)包晶转变线HJB,J为包晶点。 1495℃ ,C%=0.09-0.53% L → L+δ → A
(2)共晶转变线ECF, C点为共晶点。
L→A(2.11%C)+Fe3C(6.69%C) 奥氏体与渗碳体的混和物, 称莱氏体。
第一节 铁碳合金基本相
一、 铁素体 δ相 高温铁素体:δ固溶体。 α相 铁素体:α-Fe中的固溶体, “F”表示。
工程材料 第五章 铁碳合金相图及应用
二、 在铸造工艺方面的应用
§5.4 铁碳相图的应用简介
根据Fe - Fe3C相图可以确定合金的浇注温度,浇注温度一
般在液相线以上50~100℃。 共晶合金铸造性能最好。
2020/10/16
§5.4 铁碳相图的应用简介
2020/10/16
合金的铸造性能与相图的关系
三、在热锻、热轧工艺方面的应用
2020/10/16
(一)工业纯铁结晶过程(wc = 0.01% )§5.2 铁碳合金相图分析
t (℃) 1
A
2
L
L+A
A G3
4
F A+F S
0.0218
P
0.77
5
Q
E
2.11
C
A+Fe3C 727℃
F+Fe3C
Fe
2020/10/16
wc(%)
简化的铁碳合金相图
F k Fe3C
纯铁
§5.2 铁碳合金相图分析
二、典型合金的平衡结晶过程§5.3 铁碳合金成分、组织与性能的关系
2020/10/16
§5.3 铁碳合金成分、组织与性能的关系
2020/10/16
300
1200
wc
对
退
1000
火
碳 200
800
钢
力
学
600
性
能 100
400
的
影
响
200
HB
2020/10/16
0b/MP
§5.3 铁碳合金成分、组织与性能的关系
第五章 铁碳合金相图及应用
§5.1 铁碳合金基本相及基本组织 §5.2 铁碳合金相图分析 §5.3 铁碳合金成分、组织与性能的关系 §5.4 铁碳相图的应用简介
第五章 铁碳合金相图及应用
第五章 铁碳合金相图及应用4学时
铁碳合金基本相→铁碳相图重要点、线、区分析→铁碳合金 分类→工业纯铁、亚共析钢、共析钢、过共析钢凝固结晶分析→ 合金成分与组织性能关系及应用
3.分析一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体和共析渗碳体的异同之处。
答:相同点:都是渗碳体,晶体结构、成分、性能相同。 不同点:一次渗碳体从液相析出,二次渗碳体从奥氏体析出,三次渗碳体从铁素体析出,共晶渗碳体共晶反应
时形成,共析渗碳体共析反应时形成。
7.根据铁碳相图解释下列现象:1)进行热轧和锻造时,通常将钢材加热到1000-1250℃;2)钢铆钉一般用低碳钢制造; 3)绑扎物件铁丝一般为镀锌低碳钢丝,而起重机吊重物时用钢丝绳用含碳0.60%、0.65%、0.70%的钢等制成;4)在 1100℃时,Wc=0.4%的碳钢能进行锻造,而Wc=4%的铸铁不能进行锻造;5)室温下Wc=0.8%的碳钢比Wc=1.2% 的碳钢强度高;6)亚共析钢适于压力加工成形,而铸铁适于铸造成形。
渗碳体Fe3C:含碳6.69%,是硬而脆的间隙相,硬度为950-1050Hv,塑性和韧
性几乎为零。
思考题:什么是铁素体和奥氏体?铁素体和奥氏体分别具有何种晶体结构?
铁碳相图分析 第二节 铁碳合金相图分析 P73 ➢重要点:共析成分点S(0.77%C);共晶成分点C(4.3%C)。 ➢重要线:A1线(PSK),A3线(GS),Acm线(ES)。 ➢相区:单相区、两相区和三相区。 ➢渗碳体:从液相、奥氏体、铁素体中析出的一次、二次、三次渗碳体。 ➢共析反应和共晶反应:A=F+Fe3C,L=A+Fe3C。 ➢珠光体P和莱氏体Ld:共析反应形成的铁素体和渗碳体的机械混合 物;共晶反应形成的A与Fe3C的机械混合物。
铁碳合金相图及碳素钢
㈡相图中的主要相变线
ABCD线为液相线。温度高于此线铁碳合金均是 液相。其中,AB线是L→δ开始线,BC是L→A 开始线,CD是L→Fe3C开始线。从液相直接结 晶出来的Fe3C称为一次渗碳体,标记为Fe3CⅠ。
AHJECF线为固相线。温度降到次线之下铁碳合 金全部都结晶成固相。
(三)Fe-Fe3C相图中的相区
单相区有五个:L、δ、A、F、Fe3C。具体位置 见图5-5。其中,Fe3C相区因Fe3C有固定的化学 成分(wc=6.69%),所以是wc=6.69%的一条垂 线DFKL。
双 相 区 有 七 个 : δ+L 、 δ+A 、 A+L 、 L+Fe3C 、 A+Fe3C、A+F、F+ Fe3C。具体位置见图5-5。
铁碳合金相图对于了解钢铁材料平衡状态下的组织和 性能有重要意义。对于制定钢铁材料的铸、锻、焊及 热处理等工艺有直接的指导意义。
一、Fe-C相图与Fe-Fe3C相图 铁和碳两个组元不仅能形成各种固溶体相而且可以产 生一系列的化合物。如,Fe3C、Fe2C、FeC等。这样 一来,Fe-C二元合金相图就可以看成是由Fe-Fe3C ; Fe3C-Fe2C;Fe2C-FeC;FeC-C四个二元相图组成,见 图5-4。
温下先微组织的不同又分为三种:
共析钢: wc=0.77% 亚共析钢:0.02%<wc<0.77% 过共析钢:0.77%<wc≤2.11% 3.白口铸铁 它是2.11%<wc<6.69%的铁碳合金。按其 室温下显微组织的不同又分为三种:
共晶白口铸铁: wc=4.3% 亚共晶白口铸铁:2.11%<wc<4.3% 过共晶白口铸铁:4.3%<wc<6.69%
第五章 铁炭合金相图
二. Fe - Fe3C 相图的分析
五个重要的成份点: P、S、E、C、K。
四条重要的线: EF、ES、GS、FK。
三个重要转变: 包晶转变反应式、共晶
转变反应式、共析转变反应式。 二个重要温度: 1148 ℃ 、727 ℃ 。
简化的Fe-Fe3C相图中的特性线
1.包晶转变反应式:
1.工业纯铁 ( Wc < 0.0218% )
工业纯铁组织金相图
2. 共析钢 ( Wc = 0.77% )
共析钢组织金相图
3.亚共析钢 ( Wc = 0.45% )
亚共析钢组织金相图
4.过共析钢 ( Wc = 1.2% )
过共析钢组织金相图
5.共晶白口铁 ( Wc = 4.3% )
LB + H
1495℃
AJ
2.共晶转变反应式:
LC
1148℃
( AE + Fe3C )
Le
3.共析转变反应式:
AS
727℃
( FP + Fe3C )
P
第三节 形成Fe - Fe3C 相图组元 和基本组织的结构与性能
一、组元 * 铁 ( ferrite ) * 渗碳体 ( Cementite )
二、铁碳合金的基本组织 铁素体 奥氏体 渗碳体 珠光体 莱氏体
0.45 0.02 0.77
补充 碳素钢 一、钢铁的冶炼
铸铁锭 高炉 炼铁
生产铸铁件
炼钢生铁
转炉 平炉 电炉
生产钢件
平炉炼钢
转炉炼钢
电弧炉炼钢
二、钢锭的组织、质量及缺陷
1.有益元素
Si — 有很强的固溶强化作用,能脱
氧。
Mn — 脱氧、去硫,提高钢的强度
机械工程材料第五章 铁碳合金
4、共晶白口铁
L
L→ Ld( A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织:Ld′ 即 P+(Fe3C)Ⅱ+Fe3C 室温相:α+Fe3C
5、亚共晶白口铁
L L→A L→ Ld (A+Fe3C) A→ (Fe3C)Ⅱ
A→P(α+Fe3C)
室温组织: Ld′+P+(Fe3C)Ⅱ 即(P+(Fe3C)Ⅱ+Fe3C)+P+Fe3CⅡ 室温相:α+Fe3C
四、 Fe-Fe3C相图的应用
1.为选材提供成分依据
低碳钢(0.10-0.25%C):建筑结构和容器等 中碳钢(0.25-0.60%C):如轴等 高碳钢(0.6-1.3%C):如工具等 白口铁:如拔丝模、轧辊和球磨机的铁球等
34
2.为制定热加工工艺提供依据
(1)在铸造生产方面的应用 根据Fe-Fe3C相图可以确定铁碳合金的浇注温度, 浇注温度一般在液相线以上50℃~100℃。 共晶成分的铸铁凝固区间最小(为零),流动性 好,分散缩孔少,可使缩孔集中在冒口内,有可 能得到致密的铸件得到较广泛的应用。
其性能特点是强度低,硬度不高,易于塑性变形。
⑸ Fe3C相(又称渗碳体):根据其生成条件不同有条状、网状、
片状、粒状等形态,对铁碳合金的力学性能有很大影响。
1600 A 1400 N 1200 1000
+L
B 0.53 J 0.17 H 0.09 1495
L
2.11 E
4.3 1148 C
+
注意:由于不保证化学成分,所以热处理时不能 依甲类钢来选材,应依乙类钢选,才能根据相图 制定热处理工艺。
机械工程材料 第三版 第五章 铁碳合金相图
② 共晶白口铸铁 (4.3%C)
③ 过共晶白口铸铁 (4.3~6.69%C)
㈠工业纯铁的 结晶过程
合 金 液 体 在 1-2
点间转变为, 3-4 点 间 → , 5-6 点 间 → 。 到7点,从中
析出Fe3C。
L+ H B
J
N +
+ S
工业纯铁的结晶过程
PQ—碳在-Fe中的固
溶线。
⒊ 相区
⑴ 五个单相区:
L、、、、Fe3C ⑵ 七个两相区: L+、
L+、L+Fe3C、 +、 +Fe3C、+ 、 +Fe3C
⑶ 三个三相区:即HJB (L++)、ECF(L++ Fe3C)、 PSK(++ Fe3C)三条水平线
三、典型合金的平衡结晶过程
铁碳相图上的合金,按成分可分为三类: ⑴ 工业纯铁(<0.0218% C) 组织为单相铁素体。
㈡ 共析钢的结晶过程
合金液体在 1-2点间转变
为。到S点
发生共析转 变:
S⇄P+Fe3C, 全部转变
为珠光体。
共析钢的结晶过程
珠光体在光镜下呈指纹状. 变结束时,珠光体中相的
相对重量百分比为:
Q
SK PK
6.69 0.77 6.69 0.0218
88.8%,
Q Fe3C 100% 88.8% 11.2%
从铁素体中析出的渗碳体称三次渗碳体,用Fe3CⅢ 表示。 Fe3CⅢ以不连续网状或片状分布于晶界。
随温度下降,
Fe3CⅢ量不断 增加,合金的
《金属材料及热处理》-5.铁碳合金相图
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
二元合金相图的建立方法
• 配制一组不同成分的合金。 • 用热分析法测定各组合金的冷却曲线。 • 找出各冷却曲线上的相变点。 • 建温度—成分坐标。 • 找成分点、画成分线。 • 标相变点。 • 将相同意义的点用一条光滑的曲线连接起来。 • 在每个分区标上相或组织名称。
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
根据以下资料建立PbSn合金的二元合金相图
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
材料科学基础5、铁碳合金相图
作者:陈儒军
Material Science
材料科学基础5、铁碳合金相图
作者:陈儒军
2、二元合金相图的基本类型
Material Science
(1)包晶相图
包晶转变 一定成分的液相和一定成分的固相在恒温下转变成为另一固
相。 以Pt-Ag相图为例: LC +αD à βP
(2)匀晶相图
匀晶转变 由液相直接析出单相固溶体的过程。(Làα)
(典型:Cu-Ni相图)
(3)共晶相图
(2)共晶相图
Material Science
材料科学基础5、铁碳合金相图
作者:陈儒军
(a)共晶合金
Material Science
此时所发生的反应均为共晶反应,共晶反应生成共晶体。 即:Le→(αm +βn)
材料科学基础5、铁碳合金相图
作者:陈儒军
5第五章 铁碳合金相图和碳钢
c) wc=0.65%
3、过共析钢的结晶过程及其组织
合金Ⅲ在1点到3点温度间的结晶过程与共析钢的结晶过程相同。
待合金冷却到与ES线相交的3点温度时,奥氏体中溶碳量达到饱和,温度 再继续下降就开始析出二次渗碳体(Fe3CII),它是沿着奥氏体晶界析出的, 成网状分布。
随着温度的下降,析出的二次渗碳体量不断增加,剩余奥氏体中溶碳量沿 ES线变化而逐渐减少。 待冷却至与共析线PSK相交于4点的温度时,剩余奥氏体的碳的质量分数 正好为共析成分(wc=0.77%),因此就发生共析转变而形成珠光体。
由于铁碳合金中碳的质量分数超过5%的铁碳合金性能很脆,无 实用价值,所以在铁碳合金相图中只需研究Fe-Fe3C部分,所 以铁碳合金相图就是 Fe-Fe3C相图 。
第二节
Fe-Fe3C相图分析
简化后的Fe-Fe3C相图
第二节 Fe-Fe3C相图分析
图5-3 Fe-F
C简化相图上半部分
一、 Fe-Fe3C相图的特性点与特性线 1.上部相图——液态结晶分析
第一节 纯铁、铁碳合金的相结构及其性能
一、纯铁及其同素异构转变
图5-1 纯铁的冷却曲线及晶体转变
居里点
居里点或居里温度是指材料可以在铁磁体和顺磁体 之间改变的温度。低于居里点温度时该物质成为铁磁体, 此时和材料有关的磁场很难改变。当温度高于居里点温 度时 , 该物质成为顺磁体,磁体的磁场很容易随周围磁 场的改变而改变。19世纪末,著名物理家居里在自己的 实验室里发现磁石的一个物理特性,就是当磁石加热到 一定温度时,原来的磁性就会消失。后来,人们把这个 温度叫“居里点”。770℃是铁的居里点。
珠光体的相对量有所不同,根据杠杆定律可知,凡距共析成分
愈近的过共析钢,组织中珠光体相对量愈多。当wc=2.11% 时, 二次渗碳体量达到最多,其值可由杠杆定律求得:
铁碳相图原理及应用
4. 珠光体( P )
珠光体( P ):铁素体和渗碳体的机械混合 物(F+Fe3C) ① 由一片铁素体,一片渗碳体相间呈片层 状形成 ② 其性能介于 Fe 和 Fe3C之间 ③ 由成分为0.77%的A缓冷至727℃分解 得到
5.莱氏体(ld)
莱氏体(ld):奥氏体和渗碳体的机械混合物( A+ Fe3C ) ① 由成分为 4.3% 的铁碳合金,在1148℃时从液 相结晶得到 ② 727℃ 以上的莱氏体称高温莱氏体,用ld表示 727℃ 以下的莱氏体称低温莱氏体,用 ld´表示 ③ 性能接近于渗碳体,硬度 >700HB,塑性很差.
1、铁素体(α-Fe)
铁素体( F ):C 溶在 α—Fe中的一种间隙固 溶体 ① 晶体结构:体心立方晶格 ② 溶碳能力:较小,常温下0.008%以下,在 727℃时溶碳能力达到最大0.0218%。 ③ 组织形态:多边形等轴晶粒 ④ 机械性能:与纯 Fe 性能相似,属软韧相, 强度和 硬度不高,塑性、韧性好。 ⑤ 表示方法:一般用 F 表示,也有用α—Fe、 α 、φ等
典型合金平衡结晶过程和组织
1.工业纯铁(0.01%C,合金①)
工业纯铁的平衡凝固过程及组织 组织 F+(Fe3C)III
1.工业纯铁(0.01%C,合金①)
2.共析钢(0.77%C,合金②)
共析转变 转变产物为珠光体 ,转变过程 L → L+A → A → P ( Fe3C +F )
1.2.2相图中的点、线、区及其意义
Fe-Fe3C相图中各点的成分、温度及其特性综合
第五章 铁碳合金相图及碳素钢
(二)相图中的主要相变线(P59)
主要线 ABCD AHJECF HJB ECF PSK ES PQ GS GP 温 度(℃) 1538~1227 1538~1148 1495 1148 727 1148~727 727~600 912~727 912~727 含 义 液相线 固相线 包晶转 C在α-Fe中的溶解度线 A向F转变的开始线 A3 A向F转变的终了线
P的金相显微镜组织
三、铁碳合金中的基本组织 (组织组成物)(P58)
2、高温莱氏体(Ld)
(A+Fe3C) ≡ Ld 共晶转变 高温莱氏体是存在于727℃以上的一种基 本组织,硬度很高,塑性很差。 L4.3
1148℃
三、铁碳合金中的基本组织 (组织组成物)(P58)
3、低温莱氏体(Ld’) 在727℃以下高温莱氏体中的奥氏体又发 生共析转变成珠光体,这时的莱氏体就变成 由P和Fe3C组成,成为低温莱氏体。 低温莱氏体是室温下的一个基本组织
二、铁碳合金中的相(相组成物) 4、石墨(P58)
石墨(G) Fe-C合金中游离存在的碳 石墨的强度、塑性、硬度都很低
二、铁碳合金中的相(相组成物) 4、液相(P58)
液相(L) 液态的铁碳合金
铸 铁 浇 注 照 片
三、铁碳合金中的基本组织 (组织组成物)(P58)
1、珠光体(P)
共析转变:恒温下,一种固相同时析出两种不同 成分固相的机械混合物(共析体)。 A0.77 727℃ (F+Fe3C) ≡ P 珠光体的力学性能介于F和 Fe3C之间,强度较高,硬 度适中,有一定的塑性。
1148℃
(A2.11+Fe3C) ≡ Ld Ld Ld’
2~3点: A+ Fe3CII + Ld; 3点 : 先共晶A共析转变
机械工程材料:第五章 铁碳合金相图及碳钢
Q
5K 100% PK
组织组成物的相对重量为
QP
P5 PS
100%,Q
5S PS
100%
室温下相的相对重量
百分比为:
Q6 QFe3C QL
C 0.0008 100% 6.69 0.0008
Q
6L QL
100% QFe3C
S’
室温下组织组成物的相对重量百分比为:
QP
Q6 QS '
C 0.0008 100%, 0.77 0.0008
从 Fe-FesC 相图中可知 ,铸 钢的凝固温度区间较宽 ,故流动性 差 ,化学成分不均匀 ,易形成分散 缩孔 。一般采用提高浇注温度来 改善流动性 , 这样会使高温奥氏 体晶粒粗大 ,且冷却速度又比较 快 , 迫使铁素体沿奥氏体一定晶 面以针状组织析出 , 这种组织称 为魏氏组织(如图所示) 。
同素异晶转变:固态金属随温度的变化,由一种晶体结构转变成另一种晶 体结构的过程。 具有同素异晶转变的金属:Fe、Co、Ti、Mn Sn等。
二、铁碳合金的组元和相
⒈ 组元 Fe、 Fe3C
⒉相
液相L、高温铁素体δ 、奥氏体A( )、 (低温)铁素体F ( )、渗碳体Fe3C (Cm)
(1)铁素体 (符号:F) 碳在体心立方的α-Fe或δ-Fe的晶格间隙中形成的间隙固溶体。
三铁碳合金相图a1538铁的熔点c1148含碳量43共晶点d1227渗碳体的熔点e1148含碳量211碳在奥氏体中最大溶解度点s727含碳量077共析点p727含碳量00218碳在铁素体中最大溶解度点q室温含碳量00008室温时碳在铁素体中最大溶解度点1特性点g912铁的同素异构转变点2特性线ecf共晶反应线psk共析反应线符号abcd液相线es碳在奥氏体中的溶解度线符号acmpq碳在铁素体中的溶解度线gs冷却时奥氏体开始析出铁素体加热时铁素体全部溶入奥氏体的转变温度线符号fefe工业纯铁含碳量000218亚共析钢含碳量00218077共析钢含碳量077
铁碳合金相图分析及应用
第五章铁碳合金相图及应用[重点掌握]1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌;2、根据相图,分析各种典型成份的铁碳合金的结晶过程;3、铁碳合金的成份、组织与性能之间的关系。
铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。
铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。
第一节铁碳合金基本相一、铁素体1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。
2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。
F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形三、渗碳体Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物,渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。
渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。
第二节Fe-Fe3C相图分析一、相图中的点、线、面1.三条水平线和三个重要点(1)包晶转变线HJB,J为包晶点。
1495摄氏度,C%=0.09-0.53% L+δ→A(2)共晶转变线ECF, C点为共晶点。
冷却到1148℃时, C点成分的L发生共晶反应:L →A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。
共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号Le表示。
(3)共析转变线PSK,S点为共析点。
合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:A →F(0.0218%C)+Fe3C(6.69%C、共析渗碳体)—P(珠光体)共析反应在恒温下进行, 反应过程中, A、F、Fe3C三相共存。
铁碳相图原理及应用
② 其性能介于 Fe 和 Fe3C之间 ③ 由成分为0.77%的A缓冷至727℃分解
得到
5.莱氏体(ld)
莱氏体(ld):奥氏体和渗碳体的机械混合物( A+ Fe3C )
① 由成分为 4.3% 的铁碳合金,在1148℃时从液 相结晶得到
② 727℃ 以上的莱氏体称高温莱氏体,用ld表示 727℃ 以下的莱氏体称低温莱氏体,用 ld´表示 ③ 性能接近于渗碳体,硬度 >700HB,塑性很差.
ES线 Acm线,C在A中溶解度曲线,当温度低于此曲线时,要从A中析出
次生渗碳体Fe3CⅡ,所以这条线又是次生渗碳体开始析出线
ECF线 物,莱共氏晶体线。,含C量2.11-6.69%至此发生共晶反应,结晶出A与Fe3C混合
PSK线 A1线(共析线),含C量在0.0218-6.69%至此反生共析反应,产生出
7.过共晶白口铸铁 (C%=5.0%为例,合金⑦)
7.过共晶白口铸铁 (C%=5.0%为例,合金⑦)
1.2.4按组织分区的铁碳合金相图
1.2.5碳对铁碳合金平衡组织和性能的影响
根据铁碳合金平衡状态图和对各种铁碳 合金平衡组织的分析可知,不同含C量的 铁碳合金室温平衡组织都是由F和Fe3C这 两个基本相组成。但含C量不同,铁碳合 金中这两相的相对数量、形状和分布情 况不同,因而各种成分的铁碳合金呈现 出不同的组织形态,从而导致它们之间 在性能上的差异。
C%=0.77%的合金为共析钢,组织为P。 0.77%<C%<2.11%的为过共析钢,其组
织为P+CmII。 2.11%<C%<4.3%的合金为亚共晶铸铁,
组织为P+CmII+Ld'。 C%=4.3%的合金为共晶铸铁,其组织为
铁碳合金相图及应用
§5 铁碳合金相图应用简介
1.为选材提供成分依据 2.为制定热加工工艺提供依据
铁碳合金相图及应用
1.为选材提供成分依据
若零件要求塑性,韧性好,如建筑结构和容器等, 应选用低碳钢(0.10~0.25%C);若零件要求强 度、塑性、韧性都较好,如轴等,应选用中碳钢 (0.25~0.60%C);若零件要求硬度高、耐磨性 好,如工具等,应选用高碳钢(0.6~1.3%C)。
晶过程的简明图解称为相图,又称状态图或
平衡图。
铁碳合金相图及应用
§2铁碳合金基本相
一.组元的性质 ——多晶型性
纯铁的同素异构转变:
室温~912℃ 体心立方(b、c、c)称 Fe
912℃~1394℃面心立方(f、c、c)称 Fe 1394℃~熔点体心立方(b、c、c)称 Fe
铁碳合金相图及应用
图4-16 过铁共碳合晶金白相图口及铁应用结晶过程示意图
过共晶白口铁组织金相图
铁图碳4合-金1相7图及应用
§4 合金成分、组织与性能关系
含碳量对平衡组织的影响 含碳量对铁碳合金机械性能的影响
铁碳合金相图及应用
含碳量对平衡组织的影响
铁碳合金随含碳量增高,其组织发生如下变化:
F F 3 C Ⅲ F e P P P F 3 C Ⅱ P e F 3 C Ⅱ L d ‘ e L d ‘ F 3 C Ⅲ L d ‘ e
白口铁具有很高的硬度和脆性,应用很少,但因其 具有很高的抗磨损能力,可应用于少数需要耐磨而 不受冲击的零件,如:拔丝模、轧辊和球磨机的铁 球等。
铁碳合金相图及应用
2.为制定热加工工艺提供依据
对铸造:确定铸造温度;根据相图上液相线和固相 线间距离估计铸造性能的好坏.
第五章铁碳相图
种溶质元素构成的固溶体。都是体心
立方间隙固溶体。用F或α表示。 (2)晶体结构:体心立方。最大溶 碳量为0.0218%,(室温 0.008%C,
727℃ 0.0218%C)。
(3)组织为多边形晶粒,性能与 纯铁相近
2、奥氏体( A )
(1)奥氏体:γ铁中溶入碳或其它元素形成的固溶体,用A 或 γ相表示。 γ-Fe(C)固溶体 (2)晶体结构:面心立方。组织为 不规则多面体晶粒,晶界较直。最 大溶碳量 2.11% 。(溶解度: 727℃ 0.77%C,1148℃ 2.11%C)
⒉ 含碳量对力学性能的影响 <0.77%C时,随含碳量增加,P 量增加,钢的强度、硬 度升高,塑性、韧性下降。 这是由于随着含碳量的 增加,钢中渗碳体量增多, 铁素体量减小所造成
0.77%C时,组织为100% P, 钢的性能即P的性能。
>0.9%C,随着含碳量的增加,钢的强度开始明显 下降,但硬度仍在增高,塑性和韧性继续下降。 因为二次渗碳体沿晶界已 形成较完整的网,因此钢 的强度开始明显下降,但 硬度仍在增高,塑性和韧 性继续下降。 为了保证工业用钢的强度和 塑性,钢的含碳量一般不超 过1.3%。 >2.11%C,组织中有以 Fe3C为基的Le’,合金太脆.
奥氏体和渗碳体组成的机械混合物。 高温莱氏体为Ld ,由 (A2.11+Fe3C) 组成 室温平衡组织为Ld′,
由黑色条状或粒状P和
白色Fe3C基体组成, 而组成相还是F和Fe3C。
二、铁碳合金相图的分析
二、铁碳合金相图的分析
1. Fe-Fe3 C相图的组元
● Fe —— α –Fe、δ -Fe (bcc) 和γ -Fe (fcc) 强度、硬度低,韧性、塑性好。 ● Fe3 C —— 熔点高,硬而脆,塑性、韧性几乎为零。 分Fe3 CⅠ 、 Fe3 CⅡ 、 Fe3 CⅢ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业纯铁(wc≤0.0218%C)平衡结晶过程分析 P76 室温下相组成物:α+Fe3C 室温下组织组成物:F+Fe3CIII Fe3CIII常沿铁素体晶界呈片状 析出,量很少(0.3%),可忽略 不计。
白口铸铁平衡凝固到室温时组织 P79 亚共晶白口铸铁(2.11<wc<4.3%C) :P+Fe3CII+Ld 共晶白口铸铁(4.3%C):Ld 过共晶白口铸铁(4.3<wc< 6.69%C):Ld+Fe3CI
思考题: 1.分析一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体和共析渗碳体的异同之处。
性几乎为零。
思考题:什么是铁素体和奥氏体?铁素体和奥氏体分别具有何种晶体结构?
铁碳相图分析 第二节 铁碳合金相图分析 P73 ➢重要点:共析成分点S(0.77%C);共晶成分点C(4.3%C)。 ➢重要线:A1线(PSK),A3线(GS),Acm线(ES)。 ➢相区:单相区、两相区和三相区。 ➢渗碳体:从液相、奥氏体、铁素体中析出的一次、二次、三次渗碳体。 ➢共析反应和共晶反应:A=F+Fe3C,L=A+Fe3C。 ➢珠光体P和莱氏体Ld:共析反应形成的铁素体和渗碳体的机械混合 物;共晶反应形成的A与Fe3C的机械混合物。
答:1)钢材加热到1000-1250℃时为单相奥氏体组织,奥氏体强度低、塑性好,适于进行热轧和锻造; 2)低碳钢能满足铆钉低强度和高塑性性能要求; 3)绑扎物件的铁丝要求低强度和高塑性,镀锌可提高铁丝的抗腐蚀性能,故用镀锌低碳钢丝; 吊重物的钢丝绳要求高强度,故用含碳量较高的钢制造; 4)含碳量0.4%的碳钢在1100℃为奥氏体组织,具有低强度和高塑性,故能进行锻造; 含碳量为4%的铸铁在1100℃为A和莱氏体,莱氏体的塑性很差,不适合锻造; 5)含碳量为0.8%的钢组织为P+Fe3CII少量,因珠光体强度高,因而具有较高的强度; 含碳量为1.2%的碳钢虽组织也为P+Fe3CII,但二次渗碳体呈网状分布于晶界,脆性大,因而强度低; 6)亚共析钢具有良好的塑性,因而适于压力加工成形;铸铁熔点低,具有良好的铸造性能,因而适于铸造成形。
思考题:共析钢平衡凝固到室温时 相组成物和组织组成物各是什么? 画出共析钢平衡<wc<0.77%C)平衡凝固结晶过程P77 室温下相组成物:α+Fe3C 相相对量:Wα=(6.69-Wc)/6.69 WFe3C=1- Wα
室温下组织组成物:F+P+Fe3CIII少量 相对量(不考虑三次渗碳体时):
3.现有形状和尺寸完全相同的四块平衡状态的铁碳合金,它们的碳含量分别为0.2、0.45、 1.2和3.5%,根据您所学的知识,可用哪些方法来区别它们?
答:1.硬度法:硬度由低到高依次为含碳0.2、0.45、1.2和3.5%的铁碳合金。 2.组织观察法:组织为F+P+Fe3CIII的铁碳合金含碳量为0.2和0.45%,这两种对比,F多的是0.2%铁碳合金,少
答:1)钢材加热到1000-1250℃时为单相奥氏体组织,奥氏体强度低、塑性好,适于进行热轧和锻造; 2)低碳钢能满足铆钉低强度和高塑性性能要求; 3)绑扎物件的铁丝要求低强度和高塑性,镀锌可提高铁丝的抗腐蚀性能,故用镀锌低碳钢丝; 吊重物的钢丝绳要求高强度,故用含碳量较高的钢制造; 4)含碳量0.4%的碳钢在1100℃为奥氏体组织,具有低强度和高塑性,故能进行锻造; 含碳量为4%的铸铁在1100℃为A和莱氏体,莱氏体的塑性很差,不适合锻造; 5)含碳量为0.8%的钢组织为P+Fe3CII少量,因珠光体强度高,因而具有较高的强度; 含碳量为1.2%的碳钢虽组织也为P+Fe3CII,但二次渗碳体呈网状分布于晶界,脆性大,因而强度低; 6)亚共析钢具有良好的塑性,因而适于压力加工成形,铸铁熔点低,具有良好的铸造性能,因而适于铸造成形。
相同点:都是渗碳体,晶体结构、成分、性能相同。 不同点:一次渗碳体从液相析出,二次渗碳体从奥氏体析出,三次渗碳体从铁素体析出,共晶渗碳体共晶反应时形成,共析渗碳体共析反应时形成。
思考题:2.根据铁碳相图解释下列现象:1)进行热轧和锻造时,通常将钢材加热到10001250℃;2)钢铆钉一般用低碳钢制造;3)绑扎物件铁丝一般为镀锌低碳钢丝,而起重机吊 重物时用钢丝绳用含碳0.60%、0.65%、0.70%的钢等制成;4)在1100℃时,Wc=0.4%的碳钢 能进行锻造,而Wc=4%的铸铁不能进行锻造;5)室温下Wc=0.8%的碳钢比Wc=1.2%的碳钢强 度高;6)亚共析钢适于压力加工成形,而铸铁适于铸造成形。
WF=(0.77-Wc)/(0.77-0.0218) WP=1- Wα
思考题:1.亚共析钢平衡凝固到室温时的相和组织组成物各是什么?2.亚共析钢平衡凝固 组织中的铁素体和珠光体含量随其含碳量的增加如何变化?α相和渗碳体相又如何变化?3. 根据含碳量计算亚共析钢相和组织组成物的相对量(不考虑Fe3CIII)。
高温铁素体δ:高温下碳在δ-Fe中的间隙固溶体。 铁素体为体心立方结构,强度硬度低,塑性韧性好。
奥氏体A(或):碳在-Fe中的间隙固溶体。
奥氏体为面心立方结构,强度硬度低、塑性韧性好,钢热加工都在奥氏体区进行。
渗碳体Fe3C:含碳6.69%,是硬而脆的间隙相,硬度为950-1050Hv,塑性和韧
思考题:1.比较平衡状态
下碳含量分别为0.45、
0.80和1.2%碳钢的强度、
硬度、塑性和韧性的大
小。
随含碳量增加,硬度增加, 即硬度由高到低依次为含碳量 1.2、0.8和0.45%的钢;
随含碳量增加,塑性和韧 性下降,即塑性和韧性由高到 低依次为0.45、0.8%和1.2%的 钢;
含碳量0.8%碳钢的强度最 高,其次是1.2%钢,0.45%钢 强度最低。
对于1.2%钢,Wα=(6.69-1.2)/6.69=82.1%;WFe3C=1-82.1%=17.9% 组织组成物计算:对于0.2%钢,三次渗碳体量忽略不计时,Wα=(0.77-0.2)/(0.77-0.0218)=76.2%;WP=1-76.2%=23.8%。
对于1.2%钢,WP=(6.69-1.2)/(6.69-0.77)=92.7%;WFe3CII=1-92.7%=7.3%
3.分析一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体和共析渗碳体的异同之处。
答:相同点:都是渗碳体,晶体结构、成分、性能相同。 不同点:一次渗碳体从液相析出,二次渗碳体从奥氏体析出,三次渗碳体从铁素体析出,共晶渗碳体共晶反应
时形成,共析渗碳体共析反应时形成。
7.根据铁碳相图解释下列现象:1)进行热轧和锻造时,通常将钢材加热到1000-1250℃;2)钢铆钉一般用低碳钢制造; 3)绑扎物件铁丝一般为镀锌低碳钢丝,而起重机吊重物时用钢丝绳用含碳0.60%、0.65%、0.70%的钢等制成;4)在 1100℃时,Wc=0.4%的碳钢能进行锻造,而Wc=4%的铸铁不能进行锻造;5)室温下Wc=0.8%的碳钢比Wc=1.2% 的碳钢强度高;6)亚共析钢适于压力加工成形,而铸铁适于铸造成形。
第五章 铁碳合金相图及应用4学时
铁碳合金基本相→铁碳相图重要点、线、区分析→铁碳合金 分类→工业纯铁、亚共析钢、共析钢、过共析钢凝固结晶分析→ 合金成分与组织性能关系及应用
第一节 铁碳合金中的相 P72 铁碳合金相图是制定热加工、热处理、冶炼和铸造等工艺依据。 铁素体F(或):碳在α-Fe中的间隙固溶体。
本章作业:P84 5-1、5-2、5-3、5-7 作业参考答案:
1.默画简化后的Fe-Fe3C相图,填写各相区的相和组织组成物。
2.解释下列名词:铁素体、奥氏体、珠光体和莱氏体。
答:铁素体是碳在α-Fe中的间隙固溶体; 奥氏体是碳在 -Fe中的间隙固溶体; 珠光体是共析反应形成的铁素体和渗碳体的机械混合物; 莱氏体是共晶反应形成的奥氏体与渗碳体的机械混合物。
过共析钢(0.77 <wc≤2.11%C)平衡凝固结晶过程分析 P79 相组成物:α+Fe3C 相相对量:Wα=(6.69-Wc)/6.69 WFe3C=1- Wα 组织组成物:P+Fe3CII 组织相对量: WP=(6.69-Wc)/(6.69-0.77) WFe3CII=1- WP
思考题:过共析钢的相和组 织组成物各是什么?根据所 给过共析钢的含碳量计算其 相和组织组成物的相对量。
的为0.45%合金;组织为P+Fe3CII的为1.2%铁碳合金;组织为P+Fe3CII+Ld的为3.5%铁碳合金。
4.根据铁碳相图,说明室温下含碳量分别为0.2和1.2%的钢的组成相及组织组成物,并计 算这两种钢的相的相对量和组织组成物的相对量(组织组成物计算时三次渗碳体量忽略不计)。
0.2%和1.2%钢室温下的组成相均为α+Fe3C;0.2%钢室温下的组织组成物为α+P+Fe3CIII,1.2%钢室温下的组织组成物为P+Fe3CII 相的相对量计算:对于0.2%钢,Wα=(6.69-0.2)/6.69=97%;WFe3C=1-97%=3%。
思考题:工业纯铁平衡凝固到室温时组成相和组织组成物各是什么?画出工业纯铁平衡凝 固到室温时的组织示意图。
共析钢(0.77%C)平衡凝固结晶过程 P77
室温下相组成物:α+Fe3C 相相对量:Wα=(6.69-0.77)/6.69=88.5%
WFe3C=1-88.5%=11.5%
室温下组织组成物:100%P; 珠光体为F与FeC3层片相间组织,性能 介于铁素体和渗碳体之间。
第三节 铁碳合金成分、组织与性能的关系及应用P81
合金成分与平衡组织关系
相变化规律:含碳量↑,F单调减少,渗碳体单调增加。 组织变化规律:F→F+Fe3CIII→F+P→P→P+Fe3CII→P+Fe3CII+Ld→Ld→Ld+Fe3CI