铁碳合金相图分析及应用

合集下载

铁碳合金相图及平衡组织分析

铁碳合金相图及平衡组织分析

实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。

按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。

它是碳在α-Fe中的固溶体,为体心立方晶格。

具有磁性及良好的塑性,硬度较低。

用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。

亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。

(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。

用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。

此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。

(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。

由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。

因此,铁素体后,渗碳体薄。

硝酸酒精寝蚀后可观察到两种不同的组织形态。

1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。

铁碳合金相图及平衡组织分析

铁碳合金相图及平衡组织分析

实验三铁碳合金相图及平衡组织分析一、实验目的1.认识和熟悉铁碳合金平衡状态下的显微组织特征;2.了解含碳量对铁碳合金平衡组织的影响,建立Fe-Fe3C状态图与平衡组织的关系3.了解平衡组织的转变规律并能应用杠杆定律4.掌握金相显微镜用铁碳合金样品的制备二、实验原理通常将碳含量小于2.11%的铁碳合金称为钢,碳含量大于2.11%的Fe-C合金称为铁,根据铁碳二元相图(图1),它们在室温下组成相都是铁素体和渗碳体,但是它们在纤维组织上却有很大的差异。

按组织分区的Fe-Fe3C相图(一)铁碳合金中的几种基本相和组织(1)铁素体(F)。

它是碳在α-Fe中的固溶体,为体心立方晶格。

具有磁性及良好的塑性,硬度较低。

用3%-4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形晶粒。

亚共析钢中,铁素体呈现块状分布;当碳含量接近共析成分时,铁素体则呈现断续的网状分布于珠光体(共析体)周围。

(2)渗碳体(Fe3C,又称Cementite),它是铁与碳形成的一种化合物,其碳含量为6.69%。

用3%-4%的硝酸酒精溶液寝蚀后,呈现亮白色;若用热苦味酸钠溶液寝蚀,则渗碳体呈现黑色而铁素体仍为白色,由此可以区别铁素体与渗碳体。

此外,按铁碳合金成分和形成条件不同,渗碳体呈现不同的的形态:一次渗碳体,从液相中析出,呈现条状;二次渗碳体(次生相),从奥氏体中析出,呈现网络状,沿奥氏体晶界分布,经球化退火,渗碳体呈现颗粒状;三次渗碳体,从铁素体中析出,常呈现颗粒状;共晶渗碳体与奥氏体同时生长,称为莱氏体;共析渗碳体与铁素体同时生长,称为珠光体。

(3)珠光体(P),它是铁素体和渗碳体的机械混合物,是共析转变的产物。

由杠杆定律可以求得铁素体和渗碳体的含量比为8:1。

因此,铁素体后,渗碳体薄。

硝酸酒精寝蚀后可观察到两种不同的组织形态。

1)片状珠光体,它是由铁素体与渗碳体交替排列形成的层状组织,腈硝酸酒精溶液寝蚀后,在不同放大倍数下,可以观察到具有不同特征的层片状组织。

铁碳合金相图分析报告

铁碳合金相图分析报告

Fe3CⅢ .
工业纯铁( <0.0218%C ) 钢( 0.0218-2.11%C ) —— 亚共析钢、共析钢( 0.77%C )、过共析钢 白口铸铁( 2.11-6.69%C) —— 亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁
L → L+A → A → P(F+Fe3C)
L → L+A → A → A+F → P+F
Mn 溶入 Fe3C → 形成合金渗碳体( Fe, Mn) 3C
2、硅
Si + FeO → S2iO + Fe (脱氧)
Si 溶入铁素体 → 固溶强化
Si<0.4% ,对性能影响不大
3、硫 钢中 S+Fe → FeS。FeS 与 Fe 形成低熔点的共晶体(
Mn <0.8% ,对性能影响不大 985℃)分布在晶界上,当钢在热
标准实用
第四章 铁碳合金
第一节 铁碳合金的相结构与性能
一、纯铁的同素异晶转变 δ-Fe→γ-Fe→α-Fe 体心 面心 体心
同素异晶转变 —— 固态下,一种元素的晶体结构 随温度发生变化的现象。
特点: ? 是形核与长大的过程(重结晶) ? 将导致体积变化(产生内应力) ? 通过热处理改变其组织、结构 → 性能 二、铁碳合金的基本相
文案大全
轮、曲轴等 。
标准实用
. 状态图中的特性点 Fe- Fe3C 相图中各点的温度、浓度及其含义
Fe-Fe3C 相图中各特性点的符号及意义
L → L+A → A → A+ Fe 3CⅡ→ P+ Fe3CⅡ
4、 共晶白口铸铁 L → Ld(A+Fe 3C) → Ld(A+Fe 3C+ Fe3CⅡ) → Ld′ (P+F3eC+ Fe3CⅡ)

第二讲 铁碳相图与应用180326

第二讲 铁碳相图与应用180326

相图的局限性: 相图是描述体系平衡状态的,不能说明达到平衡过程的动力学,不能 知道转变后的组织,也不能判断体系中可能出现的亚稳相。 由于固态材料往往难达到整体稳定的平衡,实际测得的相图多数都或 多或少地偏离真正平衡,甚至有些相实际上是亚稳相。
2、 铁碳相图简介
铁碳合金相图是研究铁碳合金的 重要工具。它是研究铁碳合金的 化学成分、组织和性能之间关系 的理论基础。
性能介于铁素体和渗碳体之间
,强度较高,硬度适中,有一 定的塑性。
莱氏体(Ledeburite—Ld或Ld')
莱氏体是由奥氏体和渗 碳体组成的处于热力学平衡 状态的机械混合物。系在
1148℃恒温下发生共晶转变
的产物,平均碳含量为4.3%

(3) 固溶碳的作用:固溶强化、缩小α、扩大γ、固溶于γ使C曲线右移、提 高淬透性、降低MS点 固溶强化效果与固溶度有关,碳在奥氏体的固溶度远远大于铁素体。
Fe 转变为面心立方晶格的γ-Fe,通常把
δ-Fe→γ-Fe的转变称为 A4 转变,转变的 平衡临界点称为 A4 点。当温度继续冷却至 912℃时,面心立方晶格的 γ-Fe 又转变为 体心立方晶格的 α -Fe,把 γ -Fe→ αFe 的转变称为A3 转变,转变的平衡临界点 称为 A3 点。912℃以下,铁的晶体结构不
钢铁材料属于铁碳合金。碳素钢、工程铸铁是铁碳合金;低合金钢、合
金钢等实际上是有意加入合金元素的铁碳合金。
在铁碳合金中,铁与碳可以形成Fe3C、Fe2C、FeC等一系列化合物,随 着碳的质量分数增加,合金的性能逐渐变脆,当碳的质量分数大于5%之 后,合金将失去使用价值。所以,在铁碳合金中,一般只研究碳质量分 数5%左右的合金。
的晶体结构。其硬度很高,塑性

工程材料 第五章 铁碳合金相图及应用

工程材料 第五章 铁碳合金相图及应用
2020/10/16
二、 在铸造工艺方面的应用
§5.4 铁碳相图的应用简介
根据Fe - Fe3C相图可以确定合金的浇注温度,浇注温度一
般在液相线以上50~100℃。 共晶合金铸造性能最好。
2020/10/16
§5.4 铁碳相图的应用简介
2020/10/16
合金的铸造性能与相图的关系
三、在热锻、热轧工艺方面的应用
2020/10/16
(一)工业纯铁结晶过程(wc = 0.01% )§5.2 铁碳合金相图分析
t (℃) 1
A
2
L
L+A
A G3
4
F A+F S
0.0218
P
0.77
5
Q
E
2.11
C
A+Fe3C 727℃
F+Fe3C
Fe
2020/10/16
wc(%)
简化的铁碳合金相图
F k Fe3C
纯铁
§5.2 铁碳合金相图分析
二、典型合金的平衡结晶过程§5.3 铁碳合金成分、组织与性能的关系
2020/10/16
§5.3 铁碳合金成分、组织与性能的关系
2020/10/16
300
1200
wc

退
1000

碳 200
800



600

能 100
400



200
HB
2020/10/16
0b/MP
§5.3 铁碳合金成分、组织与性能的关系
第五章 铁碳合金相图及应用
§5.1 铁碳合金基本相及基本组织 §5.2 铁碳合金相图分析 §5.3 铁碳合金成分、组织与性能的关系 §5.4 铁碳相图的应用简介

4.3_铁碳合金相图及应用

4.3_铁碳合金相图及应用

4.过共析钢((0.77%~2.11%C) 过共析钢的结晶过程如图所示。 由示意图分析可知,过共析钢结晶过程的基本反应为 [匀晶反应+二次析出反应+共析反应],室温组织为珠光体+ 二次渗碳体,显微组织如图所示。 过共析钢中Fe3CⅡ的最大相对量为:
2.11 0.77 Fe3CⅡ 100 % 22.6% 6.69 0.7
两者性能与晶粒大小、杂质含量有关
2.奥氏体 奥氏体是碳在γ-Fe中的固溶体,用符号“A”表示。高 温奥氏体的显微组织如图所示。 奥氏体的特点: ① 在1148℃时有最大溶解度2.11%C,727℃时可固溶 0.77%C; ② 其力学性能与含碳量及晶粒大小有关,一般170~ 220HBS、δ=40~50%; ③ 形变能力好,形变抗力小。
⑤ 热处理工艺性能和热处理效果。
“铁碳合金相图及应用”部分结束! 请转入:
“钢的热处理”
3)白口铸铁(2.11~6.67%C),根据室温的不同,分为: ① 亚共晶白口铸铁 ② 共晶白口铸铁(≈4.3 %C)
③ 过共晶白口铸铁(>4.3%C)
2.共析钢(≈0.77%C) 共析钢的结晶过程如图a)所示。
由示意图分析可知,共析钢结晶过程的基本反应为[匀晶 反应+共析反应],室温组织为珠光体显微组织。 P中F和Fe3C的相对量:
三、典型铁碳合金的平衡结晶过程及其组织
1.铁碳合金相图上的各种合金,一般分为三类: 1)工业纯铁(<0.02% C ),室温组织为α固溶体; 2)钢(0.02~2.11%C), 根据室温组织不同,分为: ① 亚共析钢(<0.77%C ) ② 共析钢(≈0.77%C) ③ 过共析钢(>0.77%C)
1.铁碳合金的含碳量对组织的影响 2.含碳量对热轧状态钢的力学性能的影响

铁碳合金相图分析

铁碳合金相图分析

成P点成分的铁素体和渗碳体,即γS=αP+Fe3C。

所得到的共析体αP+Fe3C称为珠光体,用P表示。
3. 铁碳合金的平衡结晶和组织转变
1)铁碳合金的分类 工业纯铁:碳含量小于0.022%的铁碳合金称为工业纯铁, 其特点是在冷却过程中不发生共析反应。
钢:碳含量在0.022~2.14%之间的铁碳合金称为钢,其特 点是结晶过程不发生共晶反应。根据室温组织的不同,钢又 分为:
是2.25g/cm3。

碳的原子半径为0.34nm。碳有两种存在
形式:石墨和金刚石,石墨较为广泛。

石墨是由碳原子层组成,层内原子呈正六
边形。层内原子由共价键结合,原子间距为
0.142nm。层间原子由弱金属键结合,间距为
0.34nm。

石墨的晶体结构属于六方晶系,其中a=
0.46nm,c=0.670nm,每个晶胞含有四个原子。
PK
6.690.022
亚共析钢的室温平衡组织是先共析铁素体和珠光体。
亚共析钢中的先共析铁素体可能呈现不同的形态:先共 析铁素体在奥氏体晶界上形核后,可形成沿原奥氏体晶界的 网状先共析铁素体;也可沿奥氏体晶内某特定晶面生长成相 互平行的片状,即魏氏组织。
❖ 过共析钢
d1 d2
d3 P S d4
当合金从液相开始冷却:
%=c5S100% 0.76- 0.3 100%62.2%
PS
0.760.022
P%Pc5100%0.30.022100%37.8%
PS
0.760.022
此时,合金中α与Fe3C两相的相对量为:
%=c5K100% 6.69- 0.3100%95.8%
PK
6.690.022

铁碳合金相图分析

铁碳合金相图分析

第四章铁碳合金第一节铁碳合金的相结构与性能一、纯铁的同素异晶转变δ-Fe→γ-Fe→α-Fe体心面心体心同素异晶转变——固态下,一种元素的晶体结构随温度发生变化的现象.特点:是形核与长大的过程重结晶将导致体积变化产生内应力通过热处理改变其组织、结构→ 性能二、铁碳合金的基本相基本相定义力学性能溶碳量铁素体 F碳在α-Fe中的间隙固溶体强度,硬度低,塑性,韧性好最大%奥氏体 A碳在γ-Fe中的间隙固溶体硬度低,塑性好最大%渗碳体Fe3C Fe与C的金属化合物硬而脆800HBW,δ↑=αk=0%第二节铁碳合金相图一、相图分析两组元:Fe、 Fe3C上半部分图形二元共晶相图共晶转变:1148℃ 727℃→ + Fe3C →P + Fe3C莱氏体Ld Ld′2、下半部分图形共析相图两个基本相:F、Fe3C共析转变:727℃→ + Fe3C珠光体P二、典型合金结晶过程分类:三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727oC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300oC以下溶碳量小于%.因此当铁素体从727oC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.工业纯铁<%C钢——亚共析钢、共析钢%C、过共析钢白口铸铁——亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁L → L+A → A → PF+Fe3CL → L+A → A → A+F →P+FL → L+A → A → A+ Fe3CⅡ→P+ Fe3CⅡ4、共晶白口铸铁L → LdA+Fe3C →LdA+Fe3C+ Fe3CⅡ → Ld′P+Fe3C+Fe3CⅡ5、亚共晶白口铸铁L → LdA+Fe3C + A →Ld+A+ Fe3CⅡ → Ld′+P+ Fe3CⅡ6、过共晶白口铸铁L → LdA+Fe3C + Fe3C → Ld + Fe3C→ Ld′+ Fe3C三、铁碳合金的成分、组织、性能之间的关系1、含碳量对铁碳合金平衡组织的影响2、含碳量对铁碳合金力学性能的影响四、铁碳合金相图的应用1、选材方面的应用2、在铸造、锻造和焊接方面的应用3、在热处理方面的应用第三节碳钢非合金钢碳钢是指ωc≤%,并含有少量锰、硅、磷、硫等杂质元素的铁碳合金.铁碳合金具有良好的力学性能和工艺性能,且价格低廉,故广泛应用.一、杂质元素对碳钢性能的影响1、锰Mn + FeO → MnO + Fe 脱氧Mn+ S → MnS 炉渣去硫Mn溶入铁素体→ 固溶强化Mn溶入Fe3C → 形成合金渗碳体Fe, Mn3C Mn <%,对性能影响不大2、硅Si + FeO → SiO2 + Fe 脱氧Si溶入铁素体→ 固溶强化Si<%,对性能影响不大3、硫钢中S+Fe → FeS.FeS与Fe形成低熔点的共晶体985℃分布在晶界上,当钢在热加工1000~1200℃时,共晶体熔化,导致开裂——热脆消除热脆:Mn+ S → MnS熔点高1620℃并有一定塑性硫是一种有害元素4、磷钢中磷全部溶于铁素体,产生强烈固溶强化,低温时更加严重——冷脆磷是一种有害元素二、碳钢的分类按含碳量分:低碳钢~、中碳钢~、高碳钢~%按质量分类:普通碳钢、优质碳钢、特殊碳钢S、P含量按用途分类:碳素结构钢、碳素工具钢三、碳钢的牌号、性能和应用1、碳素结构钢GB700-88 Q195, Q215, Q235, Q255, Q275五大类,20个钢种GB700-79 A1, A2, A3, A4, A5Q235-AF表示:σs≥235Mpa,质量等级为A,沸腾钢.应用:Q195, Q215——塑性高,用于冲压件、铆钉、型钢等; Q235——强度较高,用于轴、拉杆、连杆等;Q255, Q275——强度更高,用于轧辊、主轴、吊钩等.2、优质碳素结构钢优质碳素结构钢:优质钢、高级优质钢A、特级优质钢E 牌号:08F ——冲压件;45——齿轮、连杆、轴类;65 Mn——弹簧、弹簧垫圈、轧辊等.3、碳素工具钢牌号:T8、T8A——木工工具;T10、T10A——手锯锯条、钻头、丝锥、冷冲模;T12、T12A——锉刀、绞刀、量具.4、铸钢表示方法:用力学性能表示ZG200-400σs≥200Mpa,σb≥400Mpa用化学成分表示ZG30%C用于制作形状复杂且强度和韧性要求较高的零件,如轧钢机架、缸体、制动轮、曲轴等.. 状态图中的特性点Fe- Fe3C相图中各点的温度、浓度及其含义Fe-Fe3C 相图中各特性点的符号及意义二. 状态图中的特性线Fe-C合金相图中的特性线三. 状态图中的相区在Fe-Fe3C相图中共有五个单相区、七个两相区和三个三相区.五个单相区是:ABCD以上——液相区LAHNA——δ固溶体区δα、δNJESGN——奥氏体区γ或AGPQG——铁素体区α或FDFKL——渗碳体区Fe3C或Cm两相区是:L+δ、L+γ、L+ Fe3C、δ+γ、α+γ、γ+ Fe3C和α+ Fe3C.三个三相区是:HJB线、ECF线和PSK线.1. 工业纯铁含C≤%——其显微组织为铁素体+Fe3CⅢ.2. 钢含C在~%——其特点是高温组织为单相奥氏体具有良好的塑性因而适于锻造.根据室温组织的不同钢又可分为三类:① 亚共析钢< C <%——其组织是铁素体+珠光体② 共析钢C=%——其组织为珠光体③ 过共析钢< C≤%——其组织为珠光体+渗碳体3. 铁在1538ºC结晶为δ-FeX射线结构分析表明它具有体心立方晶格.当温度继续冷却至1394ºC时δ-Fe转变为面心立方晶格的γ- Fe通常把δ-Fe←→γ- Fe的转变称为A4转变转变的平衡临界点称为A4点.当温度继续降至912ºC时面心立方晶格的γ- Fe又转变为体心立方晶格的α-Fe把γ- Fe←→α-Fe的转变称为A3转变转变的平衡临界点称为A3点.4. 三条重要的特性曲线① GS线---又称为A3线它是在冷却过程中由奥氏体析出铁素体的开始线或者说在加热过程中铁素体溶入奥氏体的终了线.② ES线---是碳在奥氏体中的溶解度曲线当温度低于此曲线时就要从奥氏体中析出次生渗碳体通常称之为二次渗碳体因此该曲线又是二次渗碳体的开始析出线.也叫Acm线.③ PQ线---是碳在铁素体中的溶解度曲线.铁素体中的最大溶碳量于727ºC时达到最大值%.随着温度的降低铁素体中的溶碳量逐渐减少在300ºC以下溶碳量小于%.因此当铁素体从727ºC冷却下来时要从铁素体中析出渗碳体称之为三次渗碳体记为Fe3CⅢ.四. 名词1. 铁素体:是碳在α-Fe中形成的固溶体常用“δ”或“F”表示.铁素体在770ºC以上具有顺磁性在770ºC以下时呈铁磁性.通常把这种磁性转变称为A2转变把磁性转变温度称为铁的居里点.碳溶于δ-Fe中形成的固溶体叫δ铁素体在1495ºC时其最大溶碳量为%.2. 顺磁性:就是在顺磁物质中分子具有固有磁矩无外磁场时由于热运动各分子磁矩的取向无规宏观上不显示磁性;在外磁场作用下各分子磁矩在一定程度上沿外场排列起来宏观上呈现磁性这种性质称为顺磁性.3. 铁磁性:就是磁性很强的物质在未磁化时宏观上不显示出磁性但在外加磁场后将会显示很强的宏观磁性.4. 奥氏体:是碳溶于γ-Fe中所形成的固溶体用“γ”或“A”表示.奥氏体只有顺磁性而不呈现铁磁性.碳在γ-Fe 中是有限溶解其最大溶解度为%1148ºC.5. 渗碳体:是铁与碳的稳定化合物Fe3C 用“C”表示.其含碳量为%.由于碳在α-Fe中的溶解度很小所以在常温下碳在铁碳合金中主要是以渗碳体的形式存在.渗碳体于低温下具有一定的铁磁性但是在230ºC以上铁磁性就消失了所以230ºC是渗碳体的磁性转变温度称为A0转变.渗碳体的熔点为1227ºC.它不能单独存在总是与铁素体混合在一起.在钢中它主要是强化相它的形态、大小及分布对钢的性能有很大的影响.另外渗碳体在一定的条件下可以分解形成石墨状的自由碳.即Fe3C——→3Fe+C石墨6. 珠光体:是由铁素体和渗碳体所组成的机械混合物常用“P”表示.珠光体存在于727ºC以下至室温.五. 铁碳合金相图的应用一在选材方面的应用若需要塑性、韧性高的材料应选用低碳钢含碳为~%;需要强度、塑性及韧性都较好的材料应选用中碳钢含碳为~%;当要求硬度高、耐磨性好的材料时应选用高碳钢含碳为~%.一般低碳钢和中碳钢主要用来制造机器零件或建筑结构.高碳钢主要用来制造各种工具.二在制定热加工工艺方面的应用铁碳相图总结了不同成分的合金在缓慢加热和冷却时组织转变的规律即组织随温度变化的规律这就为制定热加工及热处理工艺提供了依据.钢处于奥氏体状态时强度较低、塑性较好便于塑性变形.因此钢材在进行锻造、热轧时都要把坯料加热到奥氏体状态.各种热处理工艺与状态图也有密切的关系退火、正火、淬火温度的选择都得参考铁碳相图.六. 应用铁碳相图应注意的几个问题1. 铁碳相图不能说明快速加热或冷却时铁碳合金组织的变化规律.2. 可参考铁碳相图来分析快速加热或冷却的问题但还应借助于其他理论知识.3. 相图告诉我们铁碳合金可能进行的相变但不能看出相变过程所经过的时间.相图反映的是平衡的概念而不是组织的概念.铁碳相图是由极纯的铁和碳配制的合金测定的而实际的钢铁材料中还含有或有意加入许多其他元素.其中有些元素对临界点和相的成分都有很大的影响此时必须借助于三元或多元相图来分析和研究.第二部分晶体结构一. 金属键1. 金属键:金属原子依靠运动于其间的公有化的自由电子的静电作用而结合起来这种结合方式叫金属键.2. 在固态金属及合金中众多的原子依靠金属键牢固的结合在一起.二. 晶体结构1. 晶体:凡是原子或离子、分子在三维空间按一定规律呈周期性排列的固体均是晶体.液态金属的原子排列无周期规则性不为晶体.2. 晶体结构:是指晶体中原子或离子、分子、原子集团的具体排列情况也就是晶体中这些质点原子或离子、分子、原子集团在三维空间有规律的周期性的重复排列方式.3. 三种典型的金属晶体结构a. 体心立方晶格:晶胞的三个棱边长度相等三个轴间夹角均为90º构成立方体.除了在晶胞的八个角上各有一个原子外在立方体的中心还有一个原子.b. 面心立方晶格:在晶胞的八个角上各有一个原子构成立方体在立方体6个面的中心各有一个原子.c. 密排六方晶格:在晶胞的12个角上各有一个原子构成六方柱体上底面和下底面的中心各有一个原子晶胞内还有3个原子.三. 固溶体1. 固溶体:合金的组元以不同的比例相互混合混合后形成的固相的晶体结构与组成合金的某一组元的相同这种相就称为固溶体.2. 置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成固溶体.3. 间隙固溶体:是指溶质原子不是占据溶剂晶格的正常结点位置而是填入溶剂原子间的一些间隙中.4. 金属化合物:是合金组元间发生相互作用而形成的一种新相又称为中间相其晶格类型和性能均不同于任一组元一般可以用分子式大致表示其组成.除了固溶体外合金中另一类相是金属化合物.四. 金属的结晶1. 金属的结晶:金属由液态转变为固态的过程称为凝固由于凝固后的固态金属通常是晶体所以又将这一转变过程称之为结晶.2. 杠杆定律的应用.在合金的结晶过程中合金中各个相的成分以及它们的相对含量都在发生着变化.为了了解相的成分及其相对含量就需要应用杠杆定律.对于二元合金两相共存时两个平衡相的成分固定不变.五. 同素异构转变当外部条件如温度和压强改变时金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变.六. 晶体的各向异性各向异性是晶体的一个重要特性是区别于非晶体的一个重要标志.晶体具有各向异性的原因是由于在不同的晶向上的原子紧密程度不同所致.原子的紧密程度不同意味着原子之间的距离不同从而导致原子之间的结合力不同使晶体在不同晶向上的物理、化学和机械性能不同.第三部分元素的影响1. 锰和硅的影响:锰和硅是炼钢过程中必须加入的脱氧剂用以去除溶于钢液中的氧.它还可以把钢液中的F eO还原成铁并生成MnO和SiO2.脱氧剂中的锰和硅总会有一部分溶于钢液中冷至室温后即溶于铁素体中提高铁素体的强度.锰对钢的机械性能有良好的影响它能提高钢的强度和硬度当含锰量低于%时可以稍微提高或不降低钢的塑性和韧性.碳钢中的含硅量一般小于%它也是钢中的有益元素.硅溶于铁素体后有很强的固溶强化作用显著的提高了钢的强度和硬度但含量较高时将使钢的塑性和韧性下降.2. 硫的影响:硫是钢中的有害元素.硫只能溶于钢液中在固态中几乎不能溶解而是以FeS夹杂的形式存在于固态钢中.硫的最大危害是引起钢在热加工时开裂这种现象称为热脆.防止热脆的方法是往钢中加入适量的锰形成MnS可以避免产生热脆.硫能提高钢的切削加工性能.在易切削钢中含硫量通常为%~%同时含锰量为%~%.3. 磷的影响:一般来说磷是有害的杂质元素.无论是高温还是低温磷在铁中具有较大的溶解度所以钢中的磷都固溶于铁中.磷具有很强的固溶强化作用它使钢的强度、硬度显著提高但剧烈地降低钢的韧性尤其是低温韧性称为冷脆磷的有害影响主要就在于此.4. 氮的影响:一般认为钢中的氮是有害元素但是氮作为钢中合金元素的应用已日益受到重视.5. 氢的影响:氢对钢的危害是很大的.一是引起氢脆.二是导致钢材内部产生大量细微裂纹缺陷——白点在钢材纵断面上呈光滑的银白色的斑点在酸洗后的横断面上则成较多的发丝壮裂纹.存在白点时钢材的延伸率显著下降尤其是断面收缩率和冲击韧性降低的更多有时可接近于零值.因此具有白点的钢是不能用的.6. 氧及其它非金属夹杂物的影响:氧在钢中的溶解度非常小几乎全部以氧化物夹杂的形式存在于钢中如FeO、AL2O3、SiO2、MnO、CaO、MgO等.除此之外钢中往往存在FeS、MnS、硅酸盐、氮化物及磷化物等.这些非金属夹杂物破坏了钢的基体的连续性在静载荷和动载荷的作用下往往成为裂纹的起点.它们的性质、大小、数量及分布状态不同程度地影响着钢的各种性能尤其是对钢的塑性、韧性、疲劳强度和抗腐蚀性能等危害很大.因此对非金属夹杂物应严加控制.第四部分热处理一. 热处理的作用1. 热处理:是将钢在固态下加热到预定的温度保温一定的时间然后以预定的方式冷却下来的一种热加工工艺.钢中组织转变的规律是热处理的理论基础称为热处理原理.热处理原理包括钢的加热转变、珠光体转变、马氏体转变、贝氏体转变和回火转变.在临界温度以下处于不稳定状态的奥氏体称为过冷奥氏体.钢在加热和冷却时临界温度的意义如下:Ac1——加热时珠光体向奥氏体转变的开始温度;Ar1——冷却时奥氏体向珠光体转变的开始温度;Ac3——加热时先共析铁素体全部转变为奥氏体的终了温度;Ar3——冷却时奥氏体开始析出先共析铁素体的温度;Accm——加热时二次渗碳体全部溶入奥氏体的终了温度;Arcm——冷却时奥氏体开始析出二次渗碳体的温度.通常把加热时的临界温度加注下标“C”而把冷却时的临界温度加注下标“r”.2. 珠光体转变——是过冷奥氏体在临界温度A1以下比较高的温度范围内进行的转变.珠光体转变是单相奥氏体分解为铁素体和渗碳体两个新相的机械混合物的相变过程因此珠光体转变必然发生碳的重新分布和铁的晶格改组.由于相变在较高温度下发生铁、碳原子都能进行扩散所以珠光体转变是典型的扩散型相变.无论珠光体、索氏体还是屈氏体都属于珠光体类型的组织.它们的本质是相同的都是铁素体和渗碳体组成的片层相间的机械混合物.它们之间的差别只是片层间距的大小不同而已.珠光体的片层间距:450~150 nm形成于A1~650℃温度范围内.索氏体的片层间距:150~80nm形成于650~600℃温度范围内.屈氏体的片层间距:80~30nm形成于600~550℃温度范围内.3. 马氏体转变——是指钢从奥氏体化状态快速冷却抑制其扩散性分解在较低温度下低于Ms点发生的转变.马氏体转变属于低温转变.钢中马氏体是碳在α-Fe中的过饱和固溶体具有很高的强度和硬度.由于马氏体转变发生在较低温度下此时铁原子和碳原子都不能进行扩散马氏体转变过程中的Fe的晶格改组是通过切变方式完成的因此马氏体转变是典型的非扩散型相变.二. 热处理工艺1. 退火和正火:将金属及其合金加热保温和冷却使其组织结构达到或接近平衡状态的热处理工艺称为退火或回火.A. 低温退火去应力退火:是指钢材及各类合金为消除内应力而施行的退火.加热温度< A1 碳钢及低合金钢550~650℃高合金工具钢600~750℃B. 再结晶退火:加热温度> Tr Tr+150~250℃C. 扩散退火:是指为了改善和消除在冶金过程中形成的成分不均匀性而实行的退火.1 通过扩散退火可以使在高温下固溶于钢中的有害气体主要是氢脱溶析出这时称为脱氢退火.2 均匀化退火的任务在于消除枝晶成分偏析改善某些可以溶入固溶体夹杂物如硫化物的状态从而使钢的组织与性能趋与均一.扩散退火的加热温度> Ac3 Acm 在固相线以下高温加热同时也要考虑不使奥氏体晶粒过于长大.碳钢1100~1200℃D. 完全退火:是指将充分奥氏体化的钢缓慢冷却而完成重结晶过程的退火.加热温度 Ac3+30~50℃E. 等温退火:是指将奥氏体用较快的速度冷却到临界点以下较高温度范围进行珠光体等温转变的退火. 加热温度 Ac3~Ac12. 正火:是指将碳合金加热到临界点Ac3以上适当温度并保持一定时间然后在空气中冷却的工艺方法.过共析钢正火后可消除网状碳化物而低碳钢正火后将显著改善钢的切削加工性.所有的钢铁材料通过正火均可使锻件过热晶粒细化和消除内应力.正火比退火的冷却速度快正火后的组织比退火后的组织细.3. 淬火与回火1. 淬火:是指将钢通过加热、保温和大于临界淬火速度Vc的冷却是过冷奥氏体转变为马氏体或贝氏体组织的工艺方法.2. 钢的淬透性:就是钢在淬火时能够获得马氏体的能力它是钢材本身固有的一个属性.3. 当淬火应力在工件内超过材料的强度极限时在应力集中处将导致开裂.4. 回火:本质上是淬火马氏体分解以及碳化物析出、聚集长大的过程.它与淬火不同点是由非平衡态向平衡态稳定态的转变.4. 化学热处理:是将工件放在一定的活性介质中加热使非金属或金属元素扩散到工件表层中、改变表面化学成分的热处理工艺.如:渗入碳、氮、硼、钒、铌、铬、硅等元素第五部分宏观检验一. 宏观检验主要可分为低倍组织及缺陷酸蚀检验、断口检验、硫印检验等.二. 酸蚀试验在宏观检验领域中酸蚀检验是最常用的检验金属材料缺陷、评定钢铁产品质量的方法.如果一批钢材在酸蚀中显示出不允许存在的缺陷或超过允许程度的缺陷时其它检验可不必进行.1. 酸蚀试验:是用酸蚀方法来显示金属或合金的不均匀性.1 热酸浸蚀实验方法2 冷酸浸蚀实验方法3 电解腐蚀实验方法2. 酸蚀试验所检验的常见组织和缺陷A:偏析:是钢中化学成分不均匀现象的总称.在酸蚀面上偏析若是易蚀物质和气体夹杂物析集的结果将呈现出颜色深暗、形状不规则而略凹陷、底部平坦的斑点;若是抗蚀性较强元素析集的结果则呈颜色浅淡、形状不规则、比较光滑微凸的斑点.根据偏析的位置和形状可分为中心偏析、锭型偏析或称方框偏析、点状偏析、白斑和树枝状组织.中心偏析:出现在试面中心部位形状不规则的深暗色斑点.锭型偏析:具有原钢锭横截面形状的、集中在一条宽窄不同的闭合带上的深暗色斑点.B. 疏松:这种缺陷是钢凝固过程中由于晶间部分低熔点物最后凝固收缩和放出气体而产生的孔隙.在横向酸蚀面上这种孔隙一般呈不规则多边形、底部尖狭的凹坑这种凹坑多出现在偏析斑点之内.根据疏松分布的情况可分为中心疏松和一般疏松.C. 夹杂:宏观夹杂可分为外来金属、外来非金属和翻皮三大类.D. 缩孔:由于最后凝固的钢液凝固收缩后得不到填充而遗留下来的宏观孔穴.E. 气泡:由于钢锭浇注凝固过程中所产生和放出气体所造成的.一般可分为皮下气泡和内部气泡两类.a. 皮下气泡: 由于浇注时钢锭模涂料中的水分和钢液发生作用而产生的气体.b. 内部气泡:又可分为蜂窝气泡和针孔气泡.蜂窝气泡是由于钢液去气不良所导致一般为不允许存在的缺陷存在钢坯内部在试面上较易浸蚀象排列有规律的点状偏析但颜色更深暗些;针孔是因为较深的皮下气泡在锻轧过程中未焊合而被延伸成细管状在横试面上呈孤立的针状小孔.白点:也称发裂是由于氢气脱溶析集到疏松孔中产生巨大压力和钢相变时所产生的局部内应力联合造成的细小裂缝.在横试面上呈细短裂缝三. 硫印检验是一种定性检验是用来直接检验硫元素并间接检验其它元素在钢中偏析或分布情况的操作.硫印检验时先用5~10%的稀硫酸水溶液浸泡相纸5分钟左右后取出去除多余的硫酸溶液把湿润的相纸感光面贴到受检表面上应确保相纸与试样面的紧密接触不能发生任何滑动排除相纸与试样面的气泡和液滴.其化学反应大致为:MnS+H2SO4→MnSO4+H2S↑FeS+H2SO4→FeSO4+H2S↑H2S+2AgBr→2HBr+Ag2S↓几秒到几分钟后将从试面上揭下的相纸在水中冲洗约10分钟然后放入定影液中定影10分钟以上取出后在流动水中冲洗30分钟以上干燥后既成.四. 断口检验1. 脆性断口:通常工程上把没有明显塑性变形的断裂统称为脆性断裂发生脆性断裂的断口为脆性断口.脆性断口也称晶状断口是指出现大量晶界破坏的耀眼光泽断口断口中晶状区的面积与断口原始横截面积的百分比则是脆性断面率也称晶状断面率.2. 结晶状断口:此种断口具有强烈的金属光泽有明显的结晶颗粒断面平齐而呈银灰色.是一种正常的断口.属于脆性断口.3. 纤维状断口:这种断口呈无光泽和无结晶颗粒的均匀组织.通常在断口的边缘有明显的塑性变形.一般情况下是允许存在的.属于韧性断口.4. 瓷状断口:是一种类似瓷碎片的断口呈亮灰色、致密、有绸缎的光泽和柔和感.是一种正常的断口.5. 台状断口:这种断口出现在纵向断面上呈比基体颜色略浅、变形能力稍差、宽窄不同、较为平坦的片状平台状.多分布在偏析内.6. 撕痕状断口:这种断口出现在纵向断面上沿热加工方向呈灰白色、变形能力差致密而光滑的条带.7. 层状断口:这种断口出现在纵向断面上呈劈裂的朽木状或高低不平的、无金属光泽的、层次起伏的条带条带中伴有白亮或灰色线条.8. 缩孔残余断口:出现在纵向断口的轴心区是非结晶状条带或疏松区有时伴有非金属夹杂物或夹杂沿条带常带有氧化色.9. 石状断口:在断口表面呈现粗大而凹凸不平的沿晶界断裂的粗晶颜色暗灰而无金属光泽象有棱角的沙石颗粒堆砌在一起.。

铁碳合金相图分析

铁碳合金相图分析

第四章铁碳合金相图教学目的及其要求通过本章学习,使学生们掌握铁碳合金的基本知识,学懂铁碳相图的特征点、线及其意义,了解铁碳相图的应用。

主要内容1.铁碳合金的相组成2.铁碳合金相图及其应用3.碳钢的分类、编号及应用学时安排讲课4学时教学重点1.铁碳合金相图及应用2.典型合金的结晶过程分析教学难点铁碳合金相图的分析和应用。

教学过程第一节纯铁、铁碳合金中的相一、铁碳合金的组元铁:熔点1538℃,塑性好,强度硬度极低,在结晶过程中存在着同素异晶转变。

不同结构的铁与碳可以形成不同的固溶体。

由于纯铁具有同素异构转变,在生产上可以通过热处理对钢和铸铁改变其组织和性能。

碳:在Fe-Fe3C相图中,碳有两种存在形式:一是以化合物Fe3C形式存在;二是以间隙固溶体形式存在。

二、铁碳合金中的基本相相:指系统中具有同一聚集状态、同一化学成分、同一结构并以界面隔开的均匀组成部分。

铁碳合金系统中,铁和碳相互作用形成的相有两种:固溶体和金属化合物。

固溶体是铁素体和奥氏体;金属化合物是渗碳体。

这也是碳在合金中的两种存在形式。

1.铁素体碳溶于α-Fe中形成的间隙固溶体称为铁素体,用α或者F表示,为体心立方晶格结构。

塑性好,强度硬度低。

2.奥氏体碳溶于γ-Fe中形成的间隙固溶体称为奥氏体,用γ或者A表示,为面心立方晶格结构。

塑性好,强度硬度略高于铁素体,无磁性。

3.渗碳体Fe3C:晶体结构复杂,含碳量6.69%,熔点高,硬而脆,几乎没有塑性。

渗碳体对合金性能的影响:(1)渗碳体的存在能提高合金的硬度、耐磨性,使合金的塑性和韧性降低。

(2)对强度的影响与渗碳体的形态和分布有关:以层片状或粒状均匀分布在组织中,能提高合金的强度;以连续网状、粗大的片状或作为基体出现时,急剧降低合金的强度、塑性韧性。

二、两相机械混合物珠光体:铁素体与渗碳体的两相混合物,强度、硬度及塑性适中。

莱氏体:奥氏体与渗碳体的混合物;室温下为珠光体与渗碳体的混合物,又硬又脆。

材料科学基础铁碳相图

材料科学基础铁碳相图
γ - Fe
912℃
α - Fe 时间
铁素体
碳在α-Fe中的间隙固溶体称为α铁素体,简称为 铁素体(F);最大溶碳量为727℃时的 wc=0.0218%,最小为室温时的wc=0.0008%;性 能 为 : σb180~280MPa、σ0.2100~170MPa、 δ30%~50%,αk160~200J/㎝2 、硬度~80HB 。
5.0 4.3 Fe3C% 6.69 4.3 29.3%
Ld'% 1 29.3% 70.7%
总结:从Fe-Fe3C相图可知,铁碳合金室温下
的相组成物都是铁素体和渗碳体,并且随含碳量 的增加,渗碳量不断增多。而室温组织组成物却 有α、Fe3CⅢL、dP、 Fe3CⅡ、Fe3CⅠ 和Ld’。
铁碳合金组元性质 Fe-Fe3C相图分析★ ★ ★ ★ 铁碳合金平衡结晶过程★ ★ ★ ★ Fe-Fe3C相图的应用 ★ ★ 碳钢★
基本知识
合 金:是两种或两种以上的金属元素,或金属元素与 非金属元素组成的具有金属特性的物质
合金系:两个或两个以上的组元按不同比例下配制成 的一系列不同成分的合金的总称
标记为Fe3CⅡ 二次渗碳体通常沿奥氏体 晶界呈网状分布
ES线又称为Acm线
PQ线为碳在-Fe中的固溶线
随着温度下降,C的 溶解度下降
铁碳合金自727℃向室温冷 却时,会从铁素体中析出渗 碳体,称为三次渗碳体
标记为Fe3CⅢ
因为析出量极 少,在含碳量 高的合金中不
予以考虑
CD线是从液体中结晶出 渗碳体的开始温度线
碳在δ-Fe中形成的间隙固溶体称为δ铁素体,(δ), 最大溶碳量为1495℃时的0.09%。
奥氏体
碳在γ-Fe中形成的间隙固溶体称为奥氏体 (A),最高溶碳量为1148℃时的wc=2.11%; 奥氏体具有高塑性、低硬度和强度,其力 学 性 能 为 : σb400MPa、δ40%~50%、 170~220HB。

第五章 铁碳合金相图及应用

第五章 铁碳合金相图及应用
铁碳合金基本相铁碳相图重要点线区分析铁碳合金分类工业纯铁亚共析钢共析钢过共析钢凝固结晶分析合金成分与组织性能关系及应用第一节p72铁碳合金相图是制定热加工热处理冶炼和铸造等工艺依据
第五章 铁碳合金相图及应用4学时
铁碳合金基本相→铁碳相图重要点、线、区分析→铁碳合金 分类→工业纯铁、亚共析钢、共析钢、过共析钢凝固结晶分析→ 合金成分与组织性能关系及应用
3.分析一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体和共析渗碳体的异同之处。
答:相同点:都是渗碳体,晶体结构、成分、性能相同。 不同点:一次渗碳体从液相析出,二次渗碳体从奥氏体析出,三次渗碳体从铁素体析出,共晶渗碳体共晶反应
时形成,共析渗碳体共析反应时形成。
7.根据铁碳相图解释下列现象:1)进行热轧和锻造时,通常将钢材加热到1000-1250℃;2)钢铆钉一般用低碳钢制造; 3)绑扎物件铁丝一般为镀锌低碳钢丝,而起重机吊重物时用钢丝绳用含碳0.60%、0.65%、0.70%的钢等制成;4)在 1100℃时,Wc=0.4%的碳钢能进行锻造,而Wc=4%的铸铁不能进行锻造;5)室温下Wc=0.8%的碳钢比Wc=1.2% 的碳钢强度高;6)亚共析钢适于压力加工成形,而铸铁适于铸造成形。
渗碳体Fe3C:含碳6.69%,是硬而脆的间隙相,硬度为950-1050Hv,塑性和韧
性几乎为零。
思考题:什么是铁素体和奥氏体?铁素体和奥氏体分别具有何种晶体结构?
铁碳相图分析 第二节 铁碳合金相图分析 P73 ➢重要点:共析成分点S(0.77%C);共晶成分点C(4.3%C)。 ➢重要线:A1线(PSK),A3线(GS),Acm线(ES)。 ➢相区:单相区、两相区和三相区。 ➢渗碳体:从液相、奥氏体、铁素体中析出的一次、二次、三次渗碳体。 ➢共析反应和共晶反应:A=F+Fe3C,L=A+Fe3C。 ➢珠光体P和莱氏体Ld:共析反应形成的铁素体和渗碳体的机械混合 物;共晶反应形成的A与Fe3C的机械混合物。

铁碳合金相图及平衡组织分析

铁碳合金相图及平衡组织分析
P F
T8钢(4%硝酸酒精溶液)
P
T12钢(4%硝酸酒精溶液)
P Fe3CⅡ
T12钢(碱性苦味酸钠水溶液)
Fe3CⅡ P
共晶白口铁(4%硝酸酒精溶液)
L'd
亚共晶白口铁(4%硝酸酒精溶液)
Fe3CⅡ
P
L'd
过共晶白口铁(4%硝酸酒精溶液)
Fe3CⅠ L'd
小结: 不同含碳量旳铁碳合金平衡组织形貌特征
腐蚀剂
4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液
碱性苦味酸钠水溶液
4%硝酸酒精溶液 4%硝酸酒精溶液 4%硝酸酒精溶液
工业纯铁(4%硝酸酒精溶液)
F 晶 界
15钢(4%硝酸酒精溶液)
F P
45钢(4%硝酸酒精溶液)
F
P
65钢(4%硝酸酒精溶液)
铁碳合金相图及平衡组织分析
一、试验目旳: 1. 熟练利用铁碳相图,提升分析铁碳合金平衡结晶过程 及组织变化旳能力; 2. 掌握碳钢和白口铁旳显微组织特征。
二、试验概述: 1. 铁碳相图旳分析; 2. 铁碳合金中常见旳固态组织及特征; 3. 工业纯铁、碳钢和白口铁旳显微组织特征。
三、试验内容、措施及要求: 1. 讨论Fe-Fe3C相图(相、组织、性能与含碳量旳关系); 2. 借助显微镜和电脑对金相试样实物及其电子组织图片进行 观察,分析不同成份铁碳合金旳室温平衡组织形貌特征; 3. 随堂完毕电子试验报告。
为确保工业用钢应具有 足够旳σb 和一定旳δ 、Ak , 故其碳含量一般都不超出 Wc1.3% ~1.4%。
Ψ HB σb
δ Ak
1.0
试样名称 工业纯铁

铁碳相图原理及应用

铁碳相图原理及应用

4. 珠光体( P )
珠光体( P ):铁素体和渗碳体的机械混合 物(F+Fe3C) ① 由一片铁素体,一片渗碳体相间呈片层 状形成 ② 其性能介于 Fe 和 Fe3C之间 ③ 由成分为0.77%的A缓冷至727℃分解 得到

5.莱氏体(ld)
莱氏体(ld):奥氏体和渗碳体的机械混合物( A+ Fe3C ) ① 由成分为 4.3% 的铁碳合金,在1148℃时从液 相结晶得到 ② 727℃ 以上的莱氏体称高温莱氏体,用ld表示 727℃ 以下的莱氏体称低温莱氏体,用 ld´表示 ③ 性能接近于渗碳体,硬度 >700HB,塑性很差.

1、铁素体(α-Fe)






铁素体( F ):C 溶在 α—Fe中的一种间隙固 溶体 ① 晶体结构:体心立方晶格 ② 溶碳能力:较小,常温下0.008%以下,在 727℃时溶碳能力达到最大0.0218%。 ③ 组织形态:多边形等轴晶粒 ④ 机械性能:与纯 Fe 性能相似,属软韧相, 强度和 硬度不高,塑性、韧性好。 ⑤ 表示方法:一般用 F 表示,也有用α—Fe、 α 、φ等

典型合金平衡结晶过程和组织
1.工业纯铁(0.01%C,合金①)
工业纯铁的平衡凝固过程及组织 组织 F+(Fe3C)III

1.工业纯铁(0.01%C,合金①)
2.共析钢(0.77%C,合金②)
共析转变 转变产物为珠光体 ,转变过程 L → L+A → A → P ( Fe3C +F )

1.2.2相图中的点、线、区及其意义
Fe-Fe3C相图中各点的成分、温度及其特性综合


铁碳合金相图分析及应用

铁碳合金相图分析及应用

第五章铁碳合金相图及应用[重点掌握]1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌;2、根据相图,分析各种典型成份的铁碳合金的结晶过程;3、铁碳合金的成份、组织与性能之间的关系。

铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。

铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。

第一节铁碳合金基本相一、铁素体1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。

2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。

F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形三、渗碳体Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物,渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。

渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。

第二节Fe-Fe3C相图分析一、相图中的点、线、面1.三条水平线和三个重要点(1)包晶转变线HJB,J为包晶点。

1495摄氏度,C%=0.09-0.53% L+δ→A(2)共晶转变线ECF, C点为共晶点。

冷却到1148℃时, C点成分的L发生共晶反应:L →A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。

共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号Le表示。

(3)共析转变线PSK,S点为共析点。

合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:A →F(0.0218%C)+Fe3C(6.69%C、共析渗碳体)—P(珠光体)共析反应在恒温下进行, 反应过程中, A、F、Fe3C三相共存。

铁碳合金相图及应用

铁碳合金相图及应用
图4-19含碳量对铁铁碳碳合金合相金图及机应械用性能的影响
§5 铁碳合金相图应用简介
1.为选材提供成分依据 2.为制定热加工工艺提供依据
铁碳合金相图及应用
1.为选材提供成分依据
若零件要求塑性,韧性好,如建筑结构和容器等, 应选用低碳钢(0.10~0.25%C);若零件要求强 度、塑性、韧性都较好,如轴等,应选用中碳钢 (0.25~0.60%C);若零件要求硬度高、耐磨性 好,如工具等,应选用高碳钢(0.6~1.3%C)。
晶过程的简明图解称为相图,又称状态图或
平衡图。
铁碳合金相图及应用
§2铁碳合金基本相
一.组元的性质 ——多晶型性
纯铁的同素异构转变:
室温~912℃ 体心立方(b、c、c)称 Fe
912℃~1394℃面心立方(f、c、c)称 Fe 1394℃~熔点体心立方(b、c、c)称 Fe
铁碳合金相图及应用
图4-16 过铁共碳合晶金白相图口及铁应用结晶过程示意图
过共晶白口铁组织金相图
铁图碳4合-金1相7图及应用
§4 合金成分、组织与性能关系
含碳量对平衡组织的影响 含碳量对铁碳合金机械性能的影响
铁碳合金相图及应用
含碳量对平衡组织的影响
铁碳合金随含碳量增高,其组织发生如下变化:
F F 3 C Ⅲ F e P P P F 3 C Ⅱ P e F 3 C Ⅱ L d ‘ e L d ‘ F 3 C Ⅲ L d ‘ e
白口铁具有很高的硬度和脆性,应用很少,但因其 具有很高的抗磨损能力,可应用于少数需要耐磨而 不受冲击的零件,如:拔丝模、轧辊和球磨机的铁 球等。
铁碳合金相图及应用
2.为制定热加工工艺提供依据
对铸造:确定铸造温度;根据相图上液相线和固相 线间距离估计铸造性能的好坏.

铁碳合金的相图解读

铁碳合金的相图解读

D1227
L+ Fe3CⅠ F
912 G
A
Ld
A+Ld+Fe3CⅡ P+Ld’+Fe3CⅡ Ld’ ( P+Fe3C )
Ld+Fe3CⅠ
727℃ K Ld’+Fe3CⅠ
S A+ Fe3CⅡ A+F F P ( F+ Fe3C )
P
O 0.0218%C 0.77%C Fe
Q P+F
P+Fe3CⅡ
2.11%C
在1148℃时最大,为2.11%。727 ℃时为0.77%

奥氏体强度硬度不高但具 有良好塑性,钢材热加工 都在 区进行。

一般情况奥氏体不存在于
室温中。
奥氏体

⑶ 渗碳体Fe3C: 渗碳体是一种具有复杂斜方晶格的金属化合物。含碳量为 6.69%,熔点为1227℃。 Fe3C具有硬度高、强度低(b35MPa), 脆性大, 塑性几乎为 零
谢谢!
铁碳合金相图
•一、纯铁的同素异构转变 •二、铁碳合金的基本相及组织 •三、铁碳合金相图
•四、铁碳合金相图的应用
一、纯铁的同素异构转变
纯铁在 结晶为固态 后继续冷却 至室温的过 程中,还会 发生两次晶 格结构的转 变。
二、铁碳合金的基本相及组织
⑴ 铁素体F:
铁素体是碳固溶于-Fe中形 成的间隙固溶体, 用F 表示。
4.3%C
6.69%C Fe3C

特征线 ⑴ 液相线—ACD, 固相线—AECF


⑵ 水平线:
ECF:共晶线LC⇄ A+Fe3C 共晶产物是A与Fe3C的机械混合 物,称作莱氏体, 用Ld表示。为 蜂窝状, 以Fe3C为基,性能硬而

铁碳相图原理及应用

铁碳相图原理及应用
① 由一片铁素体,一片渗碳体相间呈片层 状形成
② 其性能介于 Fe 和 Fe3C之间 ③ 由成分为0.77%的A缓冷至727℃分解
得到
5.莱氏体(ld)
莱氏体(ld):奥氏体和渗碳体的机械混合物( A+ Fe3C )
① 由成分为 4.3% 的铁碳合金,在1148℃时从液 相结晶得到
② 727℃ 以上的莱氏体称高温莱氏体,用ld表示 727℃ 以下的莱氏体称低温莱氏体,用 ld´表示 ③ 性能接近于渗碳体,硬度 >700HB,塑性很差.
ES线 Acm线,C在A中溶解度曲线,当温度低于此曲线时,要从A中析出
次生渗碳体Fe3CⅡ,所以这条线又是次生渗碳体开始析出线
ECF线 物,莱共氏晶体线。,含C量2.11-6.69%至此发生共晶反应,结晶出A与Fe3C混合
PSK线 A1线(共析线),含C量在0.0218-6.69%至此反生共析反应,产生出
7.过共晶白口铸铁 (C%=5.0%为例,合金⑦)
7.过共晶白口铸铁 (C%=5.0%为例,合金⑦)
1.2.4按组织分区的铁碳合金相图
1.2.5碳对铁碳合金平衡组织和性能的影响
根据铁碳合金平衡状态图和对各种铁碳 合金平衡组织的分析可知,不同含C量的 铁碳合金室温平衡组织都是由F和Fe3C这 两个基本相组成。但含C量不同,铁碳合 金中这两相的相对数量、形状和分布情 况不同,因而各种成分的铁碳合金呈现 出不同的组织形态,从而导致它们之间 在性能上的差异。
C%=0.77%的合金为共析钢,组织为P。 0.77%<C%<2.11%的为过共析钢,其组
织为P+CmII。 2.11%<C%<4.3%的合金为亚共晶铸铁,
组织为P+CmII+Ld'。 C%=4.3%的合金为共晶铸铁,其组织为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章铁碳合金相图及应用
[重点掌握]
1、铁碳合金的基本组织;铁素体、奥氏体、渗碳体、珠光体、菜氏体的结构和性能特点及显微组织形貌;
2、根据相图,分析各种典型成份的铁碳合金的结晶过程;
3、铁碳合金的成份、组织与性能之间的关系。

铁碳相图是研究钢和铸铁的基础,对于钢铁材料的应用以及热加工和热处理工艺的制订也具有重要的指导意义。

铁和碳可以形成一系列化合物,如Fe3C、Fe2C、FeC等, 有实用意义并被深入研究的只是Fe-Fe3C部分,通常称其为 Fe-Fe3C相图,相图中的组元只有Fe和Fe3C。

第一节铁碳合金基本相
一、铁素体
1.δ相高温铁素体:C固溶到δ-Fe中,形成δ相。

2.α相铁素体(用F表示):C固溶到α-Fe中,形成α相。

F强度、硬度低、塑性好(室温:C%=0.0008%,727度:C%=0.0218%)二、奥氏体
γ相奥氏体(用A表示):C固溶到γ-Fe中形成γ相)强度低,易塑性变形
三、渗碳体
Fe3C相(用Cem表示),是Fe与C的一种具有复杂结构的间隙化合物, 渗碳体的熔点高,机械性能特点是硬而脆,塑性、韧性几乎为零。

渗碳体根据生成条件不同有条状、网状、片状、粒状等形态, 对铁碳合金的机械性能有很大影响。

第二节 Fe-Fe3C相图分析
一、相图中的点、线、面
1.三条水平线和三个重要点
(1)包晶转变线HJB,J为包晶点。

1495摄氏度,C%=0.09-0.53% L+δ→A
(2)共晶转变线ECF, C点为共晶点。

冷却到1148℃时, C点成分的L发生共晶反应:L→A(2.11%C)+Fe3C(6.69%C,共晶渗碳体)共晶反应在恒温下进行, 反应过程中L、A、Fe3C三相共存。

共晶反应的产物是奥氏体与渗碳体的共晶混和物, 称莱氏体, 以符号 Le表示。

(3)共析转变线PSK,S点为共析点。

合金(在平衡结晶过程中冷)却到727℃时, S点成分的A发生共析反应:
A→F(0.0218%C)+Fe3C(6.69%C、共析渗碳体)—P(珠光体)共析反应在恒温下进行, 反应过程中, A、F、Fe3C三相共存。

共析反应的产物是铁素体与渗碳体的共析混合物, 称珠光体, 以符号P表示。

珠光体的强度较高, 塑性、韧性和硬度介于渗碳体和铁素体之间, 其机械性能如下:
抗拉强度极限σb≈770MPa
冲击韧性a k≈3×105 J/m2~4×105J/m2
延伸率δ≈20%~35%
硬度:180HB
2.液固相线
液相线ABCD 固相线AECF
二、Fe-C合金平衡结晶过程
7种典型Fe-C合金的平衡结晶过程:
(看动画:Fe-C合金平衡结晶过程)
1.工业纯铁|
2.共析钢
3.亚共析钢
4.过共析钢
5.共晶白口铁
6.亚共晶白口铸铁
7.过共晶白口铸铁
1.工业纯铁(C%≤0.0218%)
铁熔点或凝固点为1538℃, 相对密度是7.87g/cm3。

纯铁从液态结晶为固态后, 继续冷却到1394℃及912℃时, 先后发生两次同素异构转变。

L→L+A→A→A+F→F→F+Fe3C III
相组成物:F+Fe3C (C%>0.0008%)或 F(C%<0.0008%)
相相对量:F%= Fe3C%=
组织组成物:F和Fe3C III
工业纯铁的显微组织 300×
工业纯铁的机械性能特点是强度低、硬度低、塑性好。

主要机械性能如下:
抗拉强度极限σb 180MPa~230MPa
抗拉屈服极限σ0.2 100MPa~170MPa
延伸率δ30%~50%
断面收缩率ψ 70%~80%
冲击韧性a k 1.6×106J/m2~2×106 J/m2
硬度 50HB~80HB
2.共析钢 C%=0.77%
L →L+A →A →A+P →P
光学显微镜下观察的珠光体组织600×
相组成物:F和Fe3C
相相对量:F%= Fe3C%=
组织组成物:P
3.亚共析钢 0.0218%<C%<0.77%
L →L+A →A →A+F →A+P+F →P+F
亚共析钢的室温组织 200× 45钢金相
相组成物:F,Fe3C
相相对量:F%= Fe3C%=
组织组成物:F、P
P%= F%=
4.过共析钢
L →L+A →A →A+Fe3C II→A+P+Fe3C II→P+Fe3C II
(a) (b)
图7.21 含碳1.2%的过共析钢缓冷后的组织500×
(a)硝酸酒精浸蚀,白色网状相为二次渗碳体,暗黑色为珠光体
(b)苦味酸钠浸蚀,黑色为二次渗碳体,浅白色为珠光体
相组成物:F,Fe3C F%= Fe3C%=
组织组成物:P,Fe3C II
组织相对量: Fe3C II%= P%=
5.共晶白口铁(C%=4.3%)
L→L+Le→Le (A+Fe3C共晶)→Le (A+Fe3C共晶+Fe3C II)→Le’(P+Fe3C II+Fe3C)
共晶白口铸铁的室温组织(白色基体是共晶渗碳体,黑色颗粒是由共晶奥氏体转变而来的珠光体)250×
相组成物:F,Fe3C F%= Fe3C%=
组织组成物:Le'
6.亚共晶白口铸铁,2.11%<C%<4.3%
亚共晶白口铸铁在室温下的组织(黑色树植状组成体是珠光体,其余为莱氏体)80×
相组成物:F%= Fe3C%=
组织组成物:P,Le’,Fe3C II
7.过共晶白口铸铁
过共晶白口铸铁冷却到室温后的组织(白色条片是一次渗碳体,其余为莱氏体)250×
相组成物:F%= Fe3C%=
组织组成物:Le’%=Lc%=Fe3C%=
小结:
标注组织的铁碳相图
第三节、Fe-C合金的成分-组织-性能关系
1.含碳量——铁碳合金在室温下的组织都由F和Fe3C两相组成, 两相的质量分数由杠杆定律确定。

随C%↑→F%↓,Fe3C%↑
2.含碳量——组织
F→ F+P→ PdP+Fe3C II→ P+Fe3C II+Le’→Le’→Le’+Fe3C II→ Fe3C 3.含碳量——性能 HB:取决于相及相对量
强度:C%↑→σ↑,——0.9%↑→σ↓
塑性、韧性:C%↑→塑性↓、韧性↓
第四节. Fe- Fe3C相图的应用
Fe- Fe3C相图在生产中具有巨大的实际意义, 主要应用在钢铁材料的选用和加工工艺的制订两个方面。

1. 在钢铁材料选用方面的应用 Fe- Fe3C相图所表明的成分-组织-性能的规律,为钢铁材料的选用提供了根据。

建筑结构和各种型钢需用塑性、韧性好的材料, 选用碳含量较低的钢材。

机械零件需要强度、塑性及韧性都较好的材料, 应选用碳含量适中的中碳钢。

工具要用硬度高和耐磨性好的材料, 则选碳含量高的钢钟。

纯铁的强度低, 不宜用做结构材料, 但由于其导磁率高, 矫顽力低, 可作软磁材料使用, 例如做电磁铁的铁芯等。

白口铸铁硬度高、脆性大,不能切削加工,也不能锻造,但其耐磨
性好,铸造性能优良,适用于作要求耐磨、不受冲击、形状复杂的铸件,例如拔丝模、冷轧辊、犁铧、球磨机的磨球等。

2. 在铸造工艺方面的应用根据Fe- Fe3C相图确定合金的浇注温度。

浇注温度一般在液相线以上50℃~100℃。

纯铁和共晶白口铸铁的铸造性能最好, 它们的凝固温度区间最小, 因而流动性好, 分散缩孔少, 可以获得致密的铸件, 所以选在共晶成分附近。

在铸钢生产中, 碳含量规定在0.15-0.6%之间, 因为这个范围内钢的结晶温度区间较小, 铸造性能较好。

3.在热锻、热轧工艺方面的应用钢处于奥氏体状态时强度较低, 塑性较好, 因此锻造或轧制选在单相奥氏体区进行。

一般始锻、始轧温度控制在固相线以下100℃~200℃范围内。

一般始锻温度为1150℃~1250℃, 终锻温度为750℃~850℃。

4. 在热处理工艺方面的应用:一些热处理工艺如退火、正火、淬火的加热温度都是依据Fe- Fe3C相图确定的。

因此有重要的意义。

在运用Fe-Fe3C相图时应注意以下两点:
①Fe-Fe3C相图只反映铁碳二元合金中相的平衡状态, 如含有其它元素, 相图将发生变化。

②Fe-Fe3C相图反映的是平衡条件下铁碳合金中相的状态, 若冷却或加热速度较快时, 其组织转变就不能只用相图来分析了。

11。

相关文档
最新文档