三维设计高考数学苏教版理科一轮复习课时检测2.3函数的奇偶性及周期性(含答案详析)
高考数学一轮复习函数的奇偶性与周期性专题检测(带答案)
高考数学一轮复习函数的奇偶性与周期性专题检测(带答案)验证奇偶性的前提要求函数的定义域必需关于原点对称。
以下是函数的奇偶性与周期性专题检测,请大家细心停止检测。
一、选择题1.设f(x)为定义在R上的奇函数.当x0时,f(x)=2x+2x+b(b 为常数),那么f(-1)等于().A.3 B.1 C.-1 D.-3解析由f(-0)=-f(0),即f(0)=0.那么b=-1,f(x)=2x+2x-1,f(-1)=-f(1)=-3.答案 D2.定义在R上的奇函数,f(x)满足f(x+2)=-f(x),那么f(6)的值为 ().A.-1B.0C.1D.2(结构法)结构函数f(x)=sin x,那么有f(x+2)=sin=-sin x=-f(x),所以f(x)=sin x是一个满足条件的函数,所以f(6)=sin 3=0,应选B.答案 B3.定义在R上的函数f(x)满足f(x)=f(x+2),当x[3,5]时,f(x)=2-|x-4|,那么以下不等式一定成立的是().A.ffB.f(sin 1)f(sin 2)解析当x[-1,1]时,x+4[3,5],由f(x)=f(x+2)=f(x+4)=2-|x+4-4|=2-|x|,显然当x[-1,0]时,f(x)为增函数;当x[0,1]时,f(x)为减函数,cos=-,sin =,又f=ff,所以ff.答案 A4.函数f(x)=那么该函数是().A.偶函数,且单调递增B.偶函数,且单调递减C.奇函数,且单调递增D.奇函数,且单调递减解析当x0时,f(-x)=2-x-1=-f(x);当x0时,f(-x)=1-2-(-x)=1-2x=-f(x).当x=0时,f(0)=0,故f(x)为奇函数,且f(x)=1-2-x在[0,+)上为增函数,f(x)=2x-1在(-,0)上为增函数,又x0时1-2-x0,x0时2x-10,故f(x)为R上的增函数.答案 C.f(x)是定义在R上的周期为2的周期函数,当x[0,1)时,f(x)=4x-1,那么f(-5.5)的值为()A.2B.-1C.-D.1解析 f(-5.5)=f(-5.5+6)=f(0.5)=40.5-1=1.答案 .设函数D(x)=那么以下结论错误的选项是().A.D(x)的值域为{0,1}B.D(x)是偶函数C.D(x)不是周期函数D.D(x)不是单调函数解析显然D(x)不单调,且D(x)的值域为{0,1},因此选项A、D正确.假定x是在理数,-x,x+1是在理数;假定x是有理数,-x,x+1也是有理数.D(-x)=D(x),D(x+1)=D(x).那么D(x)是偶函数,D(x)为周期函数,B正确,C错误.答案 C二、填空题.假定函数f(x)=x2-|x+a|为偶函数,那么实数a=________. 解析由题意知,函数f(x)=x2-|x+a|为偶函数,那么f(1)=f(-1),1-|1+a|=1-|-1+a|,a=0.答案 0.y=f(x)+x2是奇函数,且f(1)=1.假定g(x)=f(x)+2,那么g(-1)=________.解析由于y=f(x)+x2是奇函数,且x=1时,y=2,所以当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.答案 -1.设奇函数f(x)的定义域为[-5,5],当x[0,5]时,函数y=f(x)的图象如下图,那么使函数值y0的x的取值集合为________.解析由原函数是奇函数,所以y=f(x)在[-5,5]上的图象关于坐标原点对称,由y=f(x)在[0,5]上的图象,得它在[-5,0]上的图象,如下图.由图象知,使函数值y0的x的取值集合为(-2,0)(2,5).答案 (-2,0)(2,5) 10. 设f(x)是偶函数,且当x0时是单调函数,那么满足f(2x)=f的一切x之和为________.解析 f(x)是偶函数,f(2x)=f,f(|2x|)=f,又f(x)在(0,+)上为单调函数,|2x|=,即2x=或2x=-,整理得2x2+7x-1=0或2x2+9x+1=0,设方程2x2+7x-1=0的两根为x1,x2,方程2x2+9x+1=0的两根为x3,x4.那么(x1+x2)+(x3+x4)=-+=-8.-8三、解答题.f(x)是定义在R上的不恒为零的函数,且对恣意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f(1),f(-1)的值;(2)判别函数f(x)的奇偶性.解 (1)由于对定义域内恣意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0.(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-,+)上的奇函数..函数f(x)对恣意x,yR,都有f(x+y)=f(x)+f(y),且x0时,f(x)0,f(1)=-2.(1)求证f(x)是奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.(1)证明令x=y=0,知f(0)=0;再令y=-x,那么f(0)=f(x)+f(-x)=0,所以f(x)为奇函数.(2)解任取x10,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)0,所以f(x)为减函数.而f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6.所以f(x)max=f(-3)=6,f(x)min=f(3)=-6.函数f(x)是(-,+)上的奇函数,且f(x)的图象关于x=1对称,当x[0,1]时,f(x)=2x-1,(1)求证:f(x)是周期函数;(2)当x[1,2]时,求f(x)的解析式;(3)计算f(0)+f(1)+f(2)++f(2021)的值.(1)证明函数f(x)为奇函数,那么f(-x)=-f(x),函数f(x)的图象关于x=1对称,那么f(2+x)=f(-x)=-f(x),所以f(4+x)=f[(2+x)+2]=-f(2+x)=f(x),所以f(x)是以4为周期的周期函数.(2) 当x[1,2]时,2-x[0,1],又f(x)的图象关于x=1对称,那么f(x)=f(2-x)=22-x-1,x[1,2].(3)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1又f(x)是以4为周期的周期函数.f(0)+f(1)+f(2)++f(2021)=f(2 012)+f(2 013)=f(0)+f(1)=1..函数f(x)的定义域为R,且满足f(x+2)=-f(x).(1)求证:f(x)是周期函数;(2)假定f(x)为奇函数,且当01时,f(x)=x,求使f(x)=-在[0,2 014]上的一切x的个数.(1)证明 f(x+2)=-f(x),f(x+4)=-f(x+2)=-[-f(x)]=f(x),f(x)是以4为周期的周期函数.(2)解当01时,f(x)=x,设-10,那么01,f(-x)=(-x)=-x.f(x)是奇函数,f(-x)=-f(x),-f(x)=-x,即f(x)=x.故f(x)=x(-11).函数的奇偶性与周期性专题检测及答案的全部内容就是这些,查字典数学网希望对考生温习函数的知识有协助。
2021高考数学(江苏专用)一轮复习学案:第二章 2.3 函数的奇偶性与周期性 (含解析)
§2.3函数的奇偶性与周期性1.函数的奇偶性奇偶性定义图象特点偶函数一般地,如果对于函数f (x)的定义域内任意一个x,都有f (-x)=f (x),那么函数f (x)就叫做偶函数关于y轴对称奇函数一般地,如果对于函数f (x)的定义域内任意一个x,都有f (-x)=-f (x),那么函数f (x)就叫做奇函数关于原点对称2.周期性(1)周期函数:对于函数y=f (x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f (x+T)=f (x),那么就称函数y=f (x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f (x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x)的最小正周期.概念方法微思考1.如果函数f (x)是奇函数或偶函数,则f (x)的定义域关于原点对称.2.已知函数f (x)满足下列条件,你能否得到函数f (x)的周期?(1)f (x+a)=-f (x)(a≠0).(2)f (x+a)=1f(x)(a≠0).(3)f (x+a)=f (x+b)(a≠b).提示(1)T=2|a|;(2)T=2|a|;(3)T=|a-b|.3.若f (x)对于定义域中任意x,均有f (x)=f (2a-x),或f (a+x)=f (a-x),则函数f (x)关于直线x=a对称.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数y =x 2,x ∈(0,+∞)是偶函数.( × )(2)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( √ ) (3)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( √ ) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.( √ )题组二 教材改编2.下列函数中为奇函数的是________.(填序号) ①f (x )=2x 4+3x 2; ②f (x )=x 3-2x ; ③f (x )=x 2+1x ;④f (x )=x 3+1. 答案 ②③3.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=x (1+x ),则f (-1)=________. 答案 -2解析 f (1)=1×2=2,又f (x )为奇函数, ∴f (-1)=-f (1)=-2.4.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如图所示,则不等式f (x )<0的解集为________.答案 (-2,0)∪(2,5]解析 由图象可知,当0<x <2时,f (x )>0;当2<x ≤5时,f (x )<0,又f (x )是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0. 综上,f (x )<0的解集为(-2,0)∪(2,5]. 题组三 易错自纠5.函数f (x )=lg (1-x 2)|x +3|-3是________函数.(填“奇”“偶”“非奇非偶”)答案 奇解析 由⎩⎪⎨⎪⎧1-x 2>0,|x +3|-3≠0,得-1<x <0或0<x <1,即f (x )的定义域为(-1,0)∪(0,1),∴f (x )=lg (1-x 2)x ,∴f (-x )=lg (1-x 2)-x =-f (x ),∴f (x )为奇函数.6.已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎡⎭⎫0,32时,f (x )=-x 3,则f ⎝⎛⎭⎫112=________. 答案 18解析 由f (x +3)=f (x )知函数f (x )的周期为3, 又函数f (x )为奇函数,所以f ⎝⎛⎭⎫112=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12=⎝⎛⎭⎫123=18. 7.若函数f (x )=x(x +2)(x -a )为奇函数,则实数a 的值为________,且当x ≥4时,f (x )的最大值为________. 答案 2 13解析 由f (x )为奇函数易知a =2,当x ≥4时,f (x )=1x -4x 在[4,+∞)上单调递减,∴当x =4时,f (x )max =13.函数的奇偶性命题点1 判断函数的奇偶性例1 (2020·日照模拟)判断下列函数的奇偶性: (1)f (x )=x 3+x ,x ∈[-1,4]; (2)f (x )=ln2-x2+x;(3)f (x )=1a x -1+12(a >0,且a ≠1); (4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2+x ,x >0.解 (1)∵f (x )=x 3+x ,x ∈[-1,4]的定义域不关于原点对称,∴f (x )既不是奇函数也不是偶函数. (2)f (x )的定义域为(-2,2),f (-x )=ln 2+x 2-x =-ln 2-x2+x =-f (x ),∴函数f (x )为奇函数.(3)∵f (x )的定义域为{x |x ∈R ,且x ≠0}, 其定义域关于原点对称,并且有 f (-x )=1a -x -1+12=11a x -1+12=a x 1-a x +12=-(1-a x )-11-a x +12=-1+11-a x +12=-⎝⎛⎭⎫1a x -1+12=-f (x ).即f (-x )=-f (x ),∴f (x )为奇函数.(4)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称. ∵当x <0时,-x >0,则f (-x )=-(-x )2-x =-x 2-x =-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-f (x );综上可知,对于定义域内的任意x ,总有f (-x )=-f (x ), ∴函数f (x )为奇函数.命题点2 函数奇偶性的应用例2 (1)(2018·全国Ⅲ)已知函数f (x )=ln(1+x 2-x )+1,f (a )=4,则f (-a )=________. 答案 -2解析 ∵f (x )+f (-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2, ∴f (a )+f (-a )=2,∴f (-a )=-2.(2)已知函数f (x )=a sin x +b 3x +4,若f (lg 3)=3,则f ⎝⎛⎭⎫lg 13=________.答案 5解析 由f (lg 3)=a sin(lg 3)+b 3lg 3+4=3得a sin(lg 3)+b 3lg 3=-1,而f ⎝⎛⎭⎫lg 13=f (-lg 3)=-a sin(lg 3)-b 3lg 3+4=-[a sin(lg 3)+b 3lg 3]+4=1+4=5.命题点3 函数的对称性例3 已知函数f (x )的定义域为R ,当x ∈[-2,2]时,f (x )单调递减,且函数y =f (x +2)为偶函数,则下列结论正确的是( ) A .f (π)<f (3)<f (2) B .f (π)<f (2)<f (3) C .f (2)<f (3)<f (π) D .f (2)<f (π)<f (3) 答案 C解析 ∵y =f (x +2)为偶函数, ∴f (-x +2)=f (x +2), ∴f (3)=f (1),f (π)=f (4-π). ∵0<4-π<1<2,当x ∈[-2,2]时,f (x )单调递减, ∴f (4-π)>f (1)>f (2), ∴f (2)<f (3)<f (π),故选C.思维升华 (1)定义域关于原点对称是函数具有奇偶性的必要条件.(2)利用函数的奇偶性可画出函数在另一对称区间上的图象,确定函数在另一区间上的解析式,解决某些求值或参数问题.(3)由函数奇偶性延伸可得到一些对称性结论,如函数f (x +a )为偶函数(奇函数),则y =f (x )的图象关于直线x =a 对称(关于点(a,0)对称).跟踪训练1 (1)(2019·黄冈模拟)下列函数中,既不是奇函数也不是偶函数的是( ) A .f (x )=x +sin 2x B .f (x )=x 2-cos x C .f (x )=3x -13xD .f (x )=x 2+tan x答案 D解析 对于选项A ,函数的定义域为R ,f (-x )=-x +sin 2(-x )=-(x +sin 2x )=-f (x ),所以f (x )=x +sin 2x 为奇函数;对于选项B ,函数的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),所以f (x )=x 2-cos x 为偶函数;对于选项C ,函数的定义域为R ,f (-x )=3-x -13-x =-⎝⎛⎭⎫3x -13x =-f (x ),所以f (x )=3x -13x 为奇函数;只有f (x )=x 2+tan x 既不是奇函数也不是偶函数.故选D.(2)设f (x )=e x +e -x ,g (x )=e x -e -x ,f (x ),g (x )的定义域均为R ,下列结论错误的是( ) A .|g (x )|是偶函数 B .f (x )g (x )是奇函数 C .f (x )|g (x )|是偶函数 D .f (x )+g (x )是奇函数答案 D解析 f (-x )=e -x +e x =f (x ),f (x )为偶函数. g (-x )=e -x -e x =-g (x ),g (x )为奇函数.|g (-x )|=|-g (x )|=|g (x )|,|g (x )|为偶函数,A 正确; f (-x )g (-x )=f (x )[-g (x )]=-f (x )g (x ), 所以f (x )g (x )为奇函数,B 正确; f (-x )|g (-x )|=f (x )|g (x )|, 所以f (x )|g (x )|是偶函数,C 正确; f (x )+g (x )=2e x ,f (-x )+g (-x )=2e -x ≠-[f (x )+g (x )], 所以f (x )+g (x )不是奇函数,D 错误,故选D.(3)设函数f (x )在[1,+∞)上为增函数,f (3)=0,且g (x )=f (x +1)为偶函数,则不等式g (2-2x )<0的解集为________. 答案 (0,2)解析 由已知g (x )在[0,+∞)上为增函数,g (2)=0, 又g (x )为偶函数,∴g (2-2x )<0可化为g (2-2x )<g (2), ∴|2-2x |<2,∴-2<2x -2<2,解得0<x <2.函数的周期性1.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=______. 答案 1解析 f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 2.已知定义在R 上的函数f (x )满足f (2)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2 020)=________. 答案 -2- 3解析 由f (x +2)=1-f (x ),得f (x +4)=1-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (2 020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2 020)=-2- 3.3.(2019·石家庄模拟)已知f (x )是定义在R 上的奇函数,且满足f (x )=f (2-x ),当x ∈[0,1]时,f (x )=4x -1,则f ⎝⎛⎭⎫52=________. 答案 -1解析 因为f (x )=f (2-x ),所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12, 又f (x )是定义在R 上的奇函数, 所以f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫-12=-f ⎝⎛⎭⎫12.因为当x ∈[0,1]时,f (x )=4x -1, 所以f ⎝⎛⎭⎫12=124-1=1,则f ⎝⎛⎭⎫52=-1. 4.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x <1时,f (x )=2x -1,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 答案2-1解析 依题意知:函数f (x )为奇函数且周期为2, 则f (1)+f (-1)=0,f (-1)=f (1),即f (1)=0. ∴f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52 =f ⎝⎛⎭⎫12+0+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12-f ⎝⎛⎭⎫12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (0)=122-1+20-1=2-1. 思维升华 利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.函数性质的综合应用命题点1 函数的奇偶性与单调性相结合例4 (2017·全国Ⅰ改编)函数f (x )在(-∞,+∞)上单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是________. 答案 [1,3]解析 因为函数f (x )在(-∞,+∞)上单调递减,且f (1)=-1,所以f (-1)=-f (1)=1,由-1≤f (x -2)≤1,得-1≤x -2≤1,所以1≤x ≤3.命题点2 函数的奇偶性与周期性相结合例5 设 f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 019)=________. 答案 12解析 设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .因为f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (2),所以-2a +1=2a -1,解得a =12,所以f (2 019)=f (-1)=-1×12+1=12.命题点3 函数的奇偶性与对称性相结合例6 已知定义在R 上的函数f (x ),对任意实数x 有f (x +4)=-f (x ),若函数f (x -1)的图象关于直线x =1对称,f (-2)=2,则f (2 018)=________.答案 2解析 由函数y =f (x -1)的图象关于直线x =1对称可知,函数f (x )的图象关于y 轴对称,故f (x )为偶函数.由f (x +4)=-f (x ),得f (x +4+4)=-f (x +4)=f (x ),所以f (x )是周期T =8的偶函数,所以f (2 018)=f (2+252×8)=f (2)=2.命题点4 函数的周期性与对称性相结合例7 已知f (x )的定义域为R ,其函数图象关于x =-1对称,且f (x +4)=f (x -2).若当x ∈[-4,-1]时,f (x )=6-x ,则f (919)=________.答案 216解析 由f (x +4)=f (x -2),得f (x +6)=f (x ).故f (x )是周期为6的函数.所以f (919)=f (6×153+1)=f (1).因为f (x )的图象关于x =-1对称,所以f (1)=f (-3).又x ∈[-4,-1]时,f (x )=6-x ,所以f (-3)=6-(-3)=216.从而f (1)=216,故f (919)=216.思维升华 函数的奇偶性、对称性、周期性和单调性是函数的四大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性、对称性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.跟踪训练2 (1)定义在R 上的函数f (x )满足f (x )=f (-x ),且f (x )=f (x +6),当x ∈[0,3]时,f (x )单调递增,则f (x )在下列哪个区间上单调递减( )A .[3,7]B .[4,5]C .[5,8]D .[6,10]答案 B解析 依题意知,f (x )是偶函数,且是以6为周期的周期函数.因为当x ∈[0,3]时,f (x )单调递增,所以f (x )在[-3,0]上单调递减.根据函数周期性知,函数f (x )在[3,6]上单调递减.又因为[4,5]⊆[3,6],所以函数f (x )在[4,5]上单调递减.(2)(2018·全国Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于( )A .-50B .0C .2D .50答案 C解析 ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (1-x )=-f (x -1).∵f (1-x )=f (1+x ),∴-f (x -1)=f (x +1),∴f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=-[-f (x )]=f (x ),∴函数f (x )是周期为4的周期函数.由f (x )为奇函数且定义域为R 得f (0)=0,又∵f (1-x )=f (1+x ),∴f (x )的图象关于直线x =1对称,∴f (2)=f (0)=0,∴f (-2)=0.又f (1)=2,∴f (-1)=-2,∴f (1)+f (2)+f (3)+f (4)=f (1)+f (2)+f (-1)+f (0)=2+0-2+0=0,∴f (1)+f (2)+f (3)+f (4)+…+f (49)+f (50)=0×12+f (49)+f (50)=f (1)+f (2)=2+0=2.故选C.(3)(多选)已知函数y =f (x )是R 上的奇函数,对任意x ∈R ,都有f (2-x )=f (x )+f (2)成立,当x 1,x 2∈[0,1],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,则下列结论正确的有( ) A .f (1)+f (2)+f (3)+…+f (2 020)=0B .直线x =-5是函数y =f (x )图象的一条对称轴C .函数y =f (x )在[-7,7]上有5个零点D .函数y =f (x )在[-7,-5]上为减函数答案 ABD解析 根据题意,函数y =f (x )是R 上的奇函数,则f (0)=0;对任意x ∈R ,都有f (2-x )=f (x )+f (2)成立,当x =2时,有f (0)=2f (2)=0,则有f (2)=0,则有f (2-x )=f (x ),即x =1是函数f (x )的一条对称轴;又由f (x )为奇函数,则f (2-x )=-f (-x ),变形可得f (x +2)=-f (x ),则有f (x +4)=-f (x +2)=f (x ),故函数f (x )是周期为4的周期函数,当x 1,x 2∈[0,1],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2>0,则函数f (x )在区间[0,1]上为增函数, 又由y =f (x )是R 上的奇函数,则f (x )在区间[-1,1]上为增函数;据此分析选项:对于A ,f (x +2)=-f (x ),则f (1)+f (2)+f (3)+f (4)=[f (1)+f (3)]+[f (2)+f (4)]=0, f (1)+f (2)+f (3)+…+f (2 020)=505×[f (1)+f (2)+f (3)+f (4)]=0,A 正确;对于B ,x =1是函数f (x )的一条对称轴,且函数f (x )是周期为4的周期函数,则x =5是函数f (x )的一条对称轴,又由函数为奇函数,则直线x =-5是函数y =f (x )图象的一条对称轴,B 正确;对于C ,函数y =f (x )在[-7,7]上有7个零点:分别为-6,-4,-2,0,2,4,6,C 错误;对于D ,f (x )在区间[-1,1]上为增函数且其周期为4,函数y =f (x )在[-5,-3]上为增函数, 又由x =-5为函数f (x )图象的一条对称轴,则函数y =f (x )在[-7,-5]上为减函数,D 正确.。
推荐高考数学一轮复习讲练测江苏测专题23 函数奇偶性解析含解析
班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1.下列函数中,既不是奇函数,也不是偶函数的是________(填序号). ①y =1+x 2;②y =x +1x ;③y =2x +12x ;④y =x +e x .【答案】 ④2. 若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 【答案】 -1【解析】 由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2, f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1.3. 已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 【答案】13【解析】依题意b =0,且2a =-(a -1), ∴a =13,则a +b =13.4.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.【答案】43【解析】根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.5. 函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 【答案】--x -1【解析】∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1.6. 对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数.下列函数:①f (x )=x ;②f (x )=x 2;③f (x )=tan x ;④f (x )=cos(x +1).其中为准偶函数的是________ (填序号). 【答案】④【解析】由f (x )=f (2a -x ), ∴y =f (x )关于直线x =a 对称(a ≠0),题中四个函数中,存在对称轴的有②,④,而②中f (x )=x 2的对称轴为x =0,不满足题意,故④适合.7.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.【答案】f (1)>g (0)>g (-1)8.已知函数f (x )对任意x ∈R 都有f (x +4)-f (x )=2f (2),若y =f (x -1)的图象关于直线x =1对称,且f (1)=2,则f (2014)等于________. 【答案】2【解析】由于y =f (x -1)的图象关于直线x =1对称,所以y =f (x )的图象关于y 轴对称,即函数y =f (x )是偶函数.在等式f (x +4)-f (x )=2f (2)中令x =-2得f (2)-f (-2)=2f (2),由此可得f (2)=0,故f (x +4)=f (x ),所以4是函数y =f (x )的一个周期.f (2014)=f (1)=2.9.已知定义在R 上的函数y =f (x )满足条件f (x +32)=-f (x ),且函数y =f (x -34)为奇函数,给出以下四个命题: (1)函数f (x )是周期函数;(2)函数f (x )的图象关于点(-34,0)对称;(3)函数f (x )为R 上的偶函数; (4)函数f (x )为R 上的单调函数.其中真命题的序号为________.(写出所有真命题的序号) 【答案】(1)(2)(3).10.设a >0,f (x )=e xa +ae x 是R 上的偶函数,则实数a 等于 .【答案】1【解析】依题意,对一切x ∈R ,有f (-x )=f (x ),即1a e x +ae x=e xa +a e x ,∴⎝ ⎛⎭⎪⎫a -1a ⎝ ⎛⎭⎪⎫e x -1e x =0对一切x ∈R 成立,则a -1a =0.∴a =±1.∵a >0,∴a =1.二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。
【三维设计】高考数学一轮复习 (基础知识+高频考点+解题训练)函数的奇偶性及周期性教学案
第四节函数的奇偶性及周期性[知识能否忆起]一、函数的奇偶性二、周期性 1.周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.2.最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.[小题能否全取]1.(2012·广东高考)下列函数为偶函数的是( ) A .y =sin x B .y =x 3C .y =e xD .y =ln x 2+1解析:选D 四个选项中的函数的定义域都是R.y =sin x 为奇函数.幂函数y =x 3也为奇函数.指数函数y =e x 为非奇非偶函数.令f (x )=ln x 2+1,得f (-x )=ln -x2+1=ln x 2+1=f (x ).所以y =ln x 2+1为偶函数.2.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13B.13C.12D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.3.(教材习题改编)已知定义在R 上的奇函数f (x ),满足f (x +4)=f (x ),则f (8)的值为( )A .-1B .0C .1D .2解析:选B ∵f (x )为奇函数且f (x +4)=f (x ), ∴f (0)=0,T =4. ∴f (8)=f (0)=0.4.若函数f (x )=x 2-|x +a |为偶函数,则实数a =________.解析:法一:∵f (-x )=f (x )对于x ∈R 恒成立,∴|-x +a |=|x +a |对于x ∈R 恒成立,两边平方整理得ax =0,对于x ∈R 恒成立,故a =0.法二:由f (-1)=f (1), 得|a -1|=|a +1|,故a =0. 答案:05.(2011·广东高考)设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 解析:观察可知,y =x 3cos x 为奇函数,且f (a )=a 3cos a +1=11,故a 3cos a =10.则f (-a )=-a 3cos a +1=-10+1=-9.答案:-91.奇、偶函数的有关性质:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件; (2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反之亦然; (3)若奇函数f (x )在x =0处有定义,则f (0)=0;(4)利用奇函数的图象关于原点对称可知,奇函数在原点两侧的对称区间上的单调性相同;利用偶函数的图象关于y 轴对称可知,偶函数在原点两侧的对称区间上的单调性相反.2.若函数满足f (x +T )=f (x ),由函数周期性的定义可知T 是函数的一个周期;应注意nT (n ∈Z 且n ≠0)也是函数的周期.典题导入[例1] (2012·福州质检)设Q 为有理数集,函数f (x )=⎩⎪⎨⎪⎧1,x ∈Q ,-1,x ∈∁R Q ,g (x )=e x-1e x+1,则函数h (x )=f (x )·g (x )( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .既是奇函数也是偶函数 D .既不是偶函数也不是奇函数[自主解答] ∵当x ∈Q 时,-x ∈Q ,∴f (-x )=f (x )=1;当x ∈∁R Q 时,-x ∈∁R Q ,∴f (-x )=f (x )=-1.综上,对任意x ∈R ,都有f (-x )=f (x ),故函数f (x )为偶函数.∵g (-x )=e -x-1e -x +1=1-e x 1+e x =-e x-11+e x =-g (x ),∴函数g (x )为奇函数.∴h (-x )=f (-x )·g (-x )=f (x )·[-g (x )]=-f (x )g (x )=-h (x ),∴函数h (x )=f (x )·g (x )是奇函数.∴h (1)=f (1)·g (1)=e -1e +1,h (-1)=f (-1)·g (-1)=1×e -1-1e -1+1=1-e 1+e,h (-1)≠h (1),∴函数h (x )不是偶函数.[答案] A由题悟法利用定义判断函数奇偶性的方法(1)首先求函数的定义域,定义域关于原点对称是函数为奇函数或偶函数的必要条件; (2)如果函数的定义域关于原点对称,可进一步判断f (-x )=-f (x )或f (-x )=f (x )是否对定义域内的每一个x 恒成立(恒成立要给予证明,否则要举出反例).[注意] 判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.以题试法1.判断下列函数的奇偶性. (1)f (x )=1-x 2+x 2-1; (2)f (x )=3x-3-x ;(3)f (x )=4-x2|x +3|-3;(4)f (x )=⎩⎪⎨⎪⎧x 2+2,x >0,0,x =0,-x 2-2,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵f (x )的定义域为R ,∴f (-x )=3-x-3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(3)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2], ∴f (x )=4-x2|x +3|-3=4-x 2x +-3=4-x2x,∴f (-x )=-f (x ),∴f (x )是奇函数.(4)f (x )的定义域为R ,关于原点对称,当x >0时,f (-x )=-(-x )2-2=-(x 2+2)=-f (x );当x <0时,f (-x )=(-x )2+2=-(-x 2-2)=-f (x ); 当x =0时,f (0)=0,也满足f (-x )=-f (x ). 故该函数为奇函数.典题导入[例2] (1)(2012·上海高考)已知y =f (x )+x 2是奇函数,且f (1)=1.若g (x )=f (x )+2,则g (-1)=________.(2)(2012·烟台调研)设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式f x +f -xx>0的解集为( )A .(-2,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)[自主解答] (1)∵y =f (x )+x 2是奇函数,且x =1时,y =2,∴当x =-1时,y =-2,即f (-1)+(-1)2=-2,得f (-1)=-3,所以g (-1)=f (-1)+2=-1. (2)∵f (x )为偶函数, ∴f x +f -x x =2f xx>0.∴xf (x )>0.∴⎩⎪⎨⎪⎧x >0,f x 或⎩⎪⎨⎪⎧x <0,f x又f (-2)=f (2)=0,f (x )在(0,+∞)上为减函数, 故x ∈(0,2)或x ∈(-∞,-2). [答案] (1)-1 (2)B本例(2)的条件不变,若n ≥2且n ∈N *,试比较f (-n ),f (1-n ),f (n -1),f (n +1)的大小.解:∵f (x )为偶函数,所以f (-n )=f (n ),f (1-n )=f (n -1).又∵函数y =f (x )在(0,+∞)为减函数,且0<n -1<n <n +1, ∴f (n +1)<f (n )<f (n -1).∴f (n +1)<f (-n )<f (n -1)=f (1-n ).由题悟法函数奇偶性的应用(1)已知函数的奇偶性求函数的解析式.利用奇偶性构造关于f (x )的方程,从而可得f (x )的解析式. (2)已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.(3)奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.以题试法2.(1)(2012·徐州模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≤0,ax 2+bx ,x >0为奇函数,则a +b =________.(2)已知定义在R 上的奇函数满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是________.解析:(1)当x <0时,则-x >0,所以f (x )=x 2+x ,f (-x )=ax 2-bx ,而f (-x )=-f (x ),即-x 2-x =ax 2-bx ,所以a =-1,b =1,故a +b =0.(2)因为f (x )=x 2+2x 在[0,+∞)上是增函数,又因为f (x )是R 上的奇函数,所以函数f (x )是R 上的增函数,要使f (3-a 2)>f (2a ),只需3-a 2>2a ,解得-3<a <1.答案:(1)0 (2)(-3,1)典题导入[例3] (2012·浙江高考)设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f ⎝ ⎛⎭⎪⎫32=________.[自主解答] 依题意得,f (2+x )=f (x ),f (-x )=f (x ),则f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=12+1=32. [答案] 32由题悟法1.周期性常用的结论:对f (x )定义域内任一自变量的值x : (1)若f (x +a )=-f (x ),则T =2a ; (2)若f (x +a )=1f x,则T =2a ; (3)若f (x +a )=-1f x,则T =2a .2.周期性与奇偶性相结合的综合问题中,周期性起到转换自变量值的作用,奇偶性起到调节符号作用.以题试法3.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式. 解:(1)证明:∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数. (2)∵x ∈[2,4],∴-x ∈[-4,-2], ∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8. 又∵f (4-x )=f (-x )=-f (x ), ∴-f (x )=-x 2+6x -8, 即f (x )=x 2-6x +8,x ∈[2,4].1.下列函数中,既是奇函数又是减函数的是( ) A .y =-x 3B .y =sin xC .y =xD .y =⎝ ⎛⎭⎪⎫12x答案:A2.(2012·考感统考)设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=( ) A .-12B .-14C.14D.12解析:选A 由题意得f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫52-2=-f ⎝ ⎛⎭⎪⎫12=-⎣⎢⎡⎦⎥⎤2×12×⎝ ⎛⎭⎪⎫1-12=-12. 3.(2012·北京海淀区期末)已知函数f (x )=x |x |-2x ,则下列结论正确的是( ) A .f (x )是偶函数,递增区间是(0,+∞) B .f (x )是偶函数,递减区间是(-∞,1)C .f (x )是奇函数,递减区间是(-1,1)D .f (x )是奇函数,递增区间是(-∞,0)解析:选 C 将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.4.(2013·吉林模拟)已知函数f (x )=|x +a |-|x -a |(a ≠0),h (x )=⎩⎪⎨⎪⎧-x 2+x ,x >0,x 2+x ,x ≤0,则f (x ),h (x )的奇偶性依次为( )A .偶函数,奇函数B .奇函数,偶函数C .偶函数,偶函数D .奇函数,奇函数解析:选D f (-x )=|-x +a |-|-x -a |=|x -a |-|x +a |=-f (x ),故f (x )为奇函数.画出h (x )的图象可观察到它关于原点对称或当x >0时,-x <0,则h (-x )=x 2-x =-(-x 2+x )=-h (x ),当x <0时-x >0,则h (-x )=-x 2-x =-(x 2+x )=-h (x ).x =0时,h (0)=0,故h (x )为奇函数.5.(2013·杭州月考)已知函数f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x+2x +m (m 为常数),则f (-1)的值为( )A .-3B .-1C .1D .3解析:选A 函数f (x )为定义在R 上的奇函数, 则f (0)=0,即f (0)=20+m =0,解得m =-1.则f (x )=2x+2x -1,f (1)=21+2×1-1=3,f (-1)=-f (1)=-3. 6.若函数f (x )=x x +x -a为奇函数,则a =( )A.12 B.23C.34D .1解析:选A ∵f (x )=x x +x -a是奇函数,∴f (-1)=-f (1), ∴-1-2+-1-a=-1+-a,∴a +1=3(1-a ),解得a =12.7.(2013·孝感模拟)已知f (x )是偶函数,当x <0时,f (x )=x 2+x ,则当x >0时,f (x )=________.解析:x >0,-x <0,f (x )=f (-x )=(-x )2+(-x )=x 2-x ,故x >0时,f (x )=x 2-x . 答案:x 2-x8.(2012·“江南十校”联考)定义在[-2,2]上的奇函数f (x )在(0,2]上的图象如图所示,则不等式f (x )>x 的解集为________.解析:依题意,画出y =f (x )与y =x 的图象,如图所示,注意到y =f (x )的图象与直线y =x 的交点坐标是⎝ ⎛⎭⎪⎫23,23和⎝ ⎛⎭⎪⎫-23,-23,结合图象可知,f (x )>x 的解集为⎣⎢⎡⎭⎪⎫-2,-23∪⎝⎛⎭⎪⎫0,23.答案:⎣⎢⎡⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫0,23 9.已知函数f (x )是定义在R 上的奇函数,其最小正周期为3,且x ∈⎝ ⎛⎭⎪⎫-32,0时,f (x )=log 2(-3x +1),则f (2 011)=________.解析:f (2 011)=f (3×670+1) =f (1)=-f (-1) =-log 2(3+1)=-2. 答案:-210.已知函数f (x )=x 2+a x(x ≠0,常数a ∈R). (1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在[2,+∞)上的单调性. 解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ),函数是偶函数.当a ≠0时,f (x )=x 2+a x(x ≠0,常数a ∈R),取x =±1,得f (-1)+f (1)=2≠0;f (-1)-f (1)=-2a ≠0,即f (-1)≠-f (1),f (-1)≠f (1). 故函数f (x )既不是奇函数也不是偶函数. (2)若f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+1x.任取x 1,x 2∈[2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 21+1x 1-⎝⎛⎭⎪⎫x 22+1x2=(x 1+x 2)(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎪⎫x 1+x 2-1x 1x 2.由于x 1≥2,x 2≥2,且x 1<x 2. 故x 1-x 2<0,x 1+x 2>1x 1x 2,所以f (x 1)<f (x 2),故f (x )在[2,+∞)上是单调递增函数. 11.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ), 于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图象知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].12.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x =1对称. (1)求证:f (x )是周期为4的周期函数;(2)若f (x )=x (0<x ≤1),求x ∈[-5,-4]时,函数f (x )的解析式. 解:(1)证明:由函数f (x )的图象关于直线x =1对称,得f (x +1)=f (1-x ), 即有f (-x )=f (x +2).又函数f (x )是定义在R 上的奇函数, 故有f (-x )=-f (x ). 故f (x +2)=-f (x ).从而f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.(2)由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[-1,0)时,-x ∈(0,1],f (x )=-f (-x )=--x ,又f (0)=0,故x ∈[-1,0]时, f (x )=--x .x ∈[-5,-4],x +4∈[-1,0],f (x )=f (x +4)=--x -4.从而,x ∈[-5,-4]时,函数f (x )=--x -4.1.设f (x )是奇函数,且在(0,+∞)内是增函数,又f (-3)=0,则x ·f (x )<0的解集是( )A .{x |-3<x <0,或x >3}B .{x |x <-3,或0<x <3}C .{x |x <-3,或x >3}D .{x |-3<x <0,或0<x <3}解析:选D 由x ·f (x )<0,得⎩⎪⎨⎪⎧ x <0,fx 或⎩⎪⎨⎪⎧ x >0,f x ,而f (-3)=0,f (3)=0,即⎩⎪⎨⎪⎧ x <0,f x f-或⎩⎪⎨⎪⎧ x >0,f x f ,所以x ·f (x )<0的解集是{x |-3<x <0,或0<x <3}.2.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________. 解析:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12,且f (-1)=f (1),故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,从而12b +212+1=-12a +1,3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,故b =-2a .②由①②得a =2,b =-4,从而a +3b =-10.答案:-103.(2012·烟台模拟)已知函数f (x )的定义域是(0,+∞),且满足f (xy )=f (x )+f (y ),f ⎝ ⎛⎭⎪⎫12=1,如果对于0<x <y ,都有f (x )>f (y ), (1)求f (1);(2)解不等式f (-x )+f (3-x )≥-2.解:(1)令x =y =1,则f (1)=f (1)+f (1),f (1)=0. (2)f (-x )+f (3-x )≥-2f ⎝ ⎛⎭⎪⎫12, f (-x )+f ⎝ ⎛⎭⎪⎫12+f (3-x )+f ⎝ ⎛⎭⎪⎫12≥0=f (1),f ⎝ ⎛⎭⎪⎫-x 2+f ⎝ ⎛⎭⎪⎫3-x 2≥f (1), f ⎝ ⎛⎭⎪⎫-x 2·3-x 2≥f (1), 则⎩⎪⎨⎪⎧ -x >0,3-x >0,-x 2·3-x 2≤1,解得-1≤x <0.故不等式的解集为[-1,0).1.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.解析:在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x .于是解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1). 答案:f (1)>g (0)>g (-1)2.关于y =f (x ),给出下列五个命题:①若f (-1+x )=f (1+x ),则y =f (x )是周期函数;②若f (1-x )=-f (1+x ),则y =f (x )为奇函数;③若函数y =f (x -1)的图象关于x =1对称,则y =f (x )为偶函数;④函数y =f (1+x )与函数y =f (1-x )的图象关于直线x =1对称;⑤若f (1-x )=f (1+x ),则y =f (x )的图象关于点(1,0)对称.填写所有正确命题的序号________.解析:由f (-1+x )=f (1+x )可知,函数周期为2,①正确;由f (1-x )=-f (1+x )可知,y =f (x )的对称中心为(1,0),②错;y =f (x -1)向左平移1个单位得y =f (x ),故y =f (x )关于y 轴对称,③正确;两个函数对称时,令1+x =1-x 得x =0,故应关于y 轴对称,④错;由f (1-x )=f (1+x )得y =f (x )关于x =1对称,⑤错,故正确的应是①③.答案:①③3.已知f (x )是偶函数,且f (x )在[0,+∞)上是增函数,如果f (ax +1)≤f (x -2)在x ∈⎣⎢⎡⎦⎥⎤12,1上恒成立,求实数a 的取值范围. 解:由于f (x )为偶函数,且在[0,+∞)上为增函数,则在(-∞,0]上为减函数,由f (ax +1)≤f (x -2),则|ax +1|≤|x -2|,又x ∈⎣⎢⎡⎦⎥⎤12,1,故|x -2|=2-x , 即x -2≤ax +1≤2-x .故x -3≤ax ≤1-x,1-3x ≤a ≤1x -1,在⎣⎢⎡⎦⎥⎤12,1上恒成立. 由于⎝ ⎛⎭⎪⎫1x -1min =0,⎝ ⎛⎭⎪⎫1-3x max =-2,故-2≤a ≤0.。
高考数学(理科)一轮复习函数的奇偶性与周期性学案附答案
高考数学(理科)一轮复习函数的奇偶性与周期性学案附答案本资料为woRD文档,请点击下载地址下载全文下载地址学案6 函数的奇偶性与周期性导学目标:1.了解函数奇偶性、周期性的含义.2.会判断奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.自主梳理.函数奇偶性的定义如果对于函数f定义域内任意一个x,都有______________,则称f为奇函数;如果对于函数f定义域内任意一个x,都有____________,则称f为偶函数.2.奇偶函数的性质f为奇函数⇔f=-f⇔f+f=____;f为偶函数⇔f=f=f⇔f-f=____.f是偶函数⇔f的图象关于____轴对称;f是奇函数⇔f的图象关于________对称.奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有________的单调性.3.函数的周期性定义:如果存在一个非零常数T,使得对于函数定义域内的任意x,都有f=________,则称f为________函数,其中T称作f的周期.若T存在一个最小的正数,则称它为f的________________.性质:①f=f常常写作f=f.②如果T是函数y=f的周期,则kT也是y=f的周期,即f=f.③若对于函数f的定义域内任一个自变量的值x都有f =-f或f=1fx或f=-1fx,则f是以______为一个周期的周期函数.自我检测.已知函数f=x2+x+为偶函数,则m的值是A.1B.2c.3D.42.如果奇函数f在区间[3,7]上是增函数且最大值为5,那么f在区间[-7,-3]上是A.增函数且最小值是-5B.增函数且最大值是-5c.减函数且最大值是-5D.减函数且最小值是-53.函数y=x-1x的图象A.关于原点对称B.关于直线y=-x对称c.关于y轴对称D.关于直线y=x对称4.已知函数f是上的偶函数,若对于x≥0,都有f=f,且当x∈[0,2)时,f=log2,则f+f的值为A.-2B.-1c.1D.25.设函数f=x+1x+ax为奇函数,则a=________.探究点一函数奇偶性的判定例1 判断下列函数的奇偶性.f=1-x1+x;f=x;f=log2;f=x2+x,x<0,-x2+x,x>0.变式迁移1 判断下列函数的奇偶性.f=x2-x3;f=x2-1+1-x2;f=4-x2|x+3|-3.探究点二函数单调性与奇偶性的综合应用例2 函数y=f是奇函数,且当x∈时是增函数,若f =0,求不等式f[x]<0的解集.变式迁移2 已知函数f=x3+x,对任意的m∈[-2,2],f+f<0恒成立,则x的取值范围为________.探究点三函数性质的综合应用例3 已知定义在R上的奇函数f,满足f=-f,且在区间[0,2]上是增函数,若方程f=m,在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=________.变式迁移3 定义在R上的函数f是偶函数,且f=f.若f在区间[1,2]上是减函数,则fA.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数c.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数转化与化归思想的应用例函数f的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f=f+f.求f的值;判断f的奇偶性并证明你的结论;如果f=1,f+f≤3,且f在上是增函数,求x的取值范围.【答题模板】解∵对于任意x1,x2∈D,有f=f+f,∴令x1=x2=1,得f=2f,∴f=0.[2分]令x1=x2=-1,有f=f+f,∴f=12f=0.[4分]令x1=-1,x2=x有f=f+f,∴f=f,∴f为偶函数.[6分]依题设有f=f+f=2,f=f+f=3,[7分]∵f+f≤3,即f)≤f[8分]∵f为偶函数,∴f≤f.[10分]又∵f在上是增函数,f的定义域为D.∴0<||≤64.[11分]解上式,得3<x≤5或-73≤x<-13或-13<x<3.∴x的取值范围为{x|-73≤x<-13或-13<x<3或3<x≤5}.[12分]【突破思维障碍】在中,通过变换已知条件,能变形出f)≤f的形式,但思维障碍在于f在上是增函数,g是否大于0不可而知,这样就无法脱掉“f”,若能结合中f是偶函数的结论,则有f)=f|),又若能注意到f的定义域为{x|x≠0},这才能有|g|>0,从而得出0<|g|≤a,解之得x的范围.【易错点剖析】在中,由f•|)≤f脱掉“f”的过程中,如果思维不缜密,不能及时回顾已知条件中函数的定义域中{x|x≠0},易出现0≤||≤64,导致结果错误..正确理解奇函数和偶函数的定义,必须把握好两个问题:①定义域在数轴上关于原点对称是函数f为奇函数或偶函数的必要非充分条件;②f=-f或f=f是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f=±f⇔f±f=0⇔f-xfx=±1≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它判断函数的奇偶性.4.关于函数周期性常用的结论:对于函数f,若有f=-f或f=1fx或f=-1fx,则f的一个周期为2a一、选择题.已知f=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值为A.-13B.13c.12D.-122.已知定义域为{x|x≠0}的函数f为偶函数,且f在区间上是增函数,若f=0,则fxx<0的解集为A.∪B.∪c.∪D.∪3.已知f是定义在R上的偶函数,并满足f=-1fx,当1≤x≤2时,f=x-2,则f等于A.4.5B.-4.5c.0.5D.-0.54.设f为定义在R上的奇函数.当x≥0时,f=2x+2x+b,则f等于A.3B.1c.-1D.-35.设函数f满足:①y=f是偶函数;②在[1,+∞)上为增函数,则f与f大小关系是A.f>fB.f<fc.f=fD.无法确定题号2345答案二、填空题6.若函数f=x-1,x>0,a,x=0,x+b,x<0是奇函数,则a+b=________.7.设函数f是定义在R上的奇函数,若f满足f=f,且f>1,f=2m-3m+1,则m的取值范围是________.8.已知函数f是R上的偶函数,g是R上的奇函数,且g=f,若f=2,则f的值为________.三、解答题9.已知f是定义在[-6,6]上的奇函数,且f在[0,3]上是x的一次式,在[3,6]上是x的二次式,且当3≤x≤6时,f≤f=3,f=2,求f的表达式.10.设函数f=x2-2|x|-1证明f是偶函数;画出这个函数的图象;指出函数f的单调区间,并说明在各个单调区间上f是增函数还是减函数;求函数的值域.11.已知函数f=x2+ax.讨论函数f的奇偶性,并说明理由;若函数f在[2,+∞)上为增函数,求实数a的取值范围.答案自主梳理.f=-f f=f2.0 0 y 原点相反3.f 周期最小正周期③2a自我检测.B [因为f为偶函数,所以奇次项系数为0,即m-2=0,m=2.]2.A [奇函数的图象关于原点对称,对称区间上有相同的单调性.]3.A [由f=-f,故函数为奇函数,图象关于原点对称.]4.c [f+f=f+f=f+f=log21+log2=1.]5.-1解析∵f=0,∴f=2=0,∴a=-1.代入检验f=是奇函数,故a=-1.课堂活动区例1 解题导引判断函数奇偶性的方法.定义法:用函数奇偶性的定义判断..图象法:f的图象关于原点对称,则f为奇函数;f的图象关于y轴对称,则f为偶函数.基本函数法:把f变形为g与h的和、差、积、商的形式,通过g与h的奇偶性判定出f的奇偶性.解定义域要求≥0且x≠-1,∴-1<x≤1,∴f定义域不关于原点对称,∴f是非奇非偶函数.函数定义域为∪.∵f=-x=-x===f.∴f是偶函数.函数定义域为R.∵f=log2=log21x+x2+1=-log2=-f,∴f是奇函数.函数的定义域为∪.当x<0时,-x>0,则f=-2-x=-=-f;当x>0时,-x<0,则f=2-x=x2-x=-=-f.∴对任意x∈∪都有f=-f.故f为奇函数.变式迁移1 解由于f=2,f=0,f≠f,f≠-f,从而函数f既不是奇函数也不是偶函数.f的定义域为{-1,1},关于原点对称,又f=f=0,f =-f=0,∴f既是奇函数又是偶函数.由4-x2≥0|x+3|≠3得,f定义域为[-2,0)∪=4-x2x,f=-4-x2x∴f=-f∴f为奇函数.例2 解题导引本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.解∵y=f为奇函数,且在上为增函数,∴y=f在上单调递增,且由f=0得f=0.若f[x]<0=f,则xx-12>0xx-12<1即0<x<1,解得12<x<1+174或1-174<x<0.若f[x]<0=f,则xx-12<0xx-12<-1 由x<-1,解得x∈∅.∴原不等式的解集是{x|12<x<1+174或1-174<x<0}.变式迁移2解析易知f在R上为单调递增函数,且f为奇函数,故f+f<0,等价于f<-f=f,此时应用mx-2<-x,即mx+x-2<0对所有m∈[-2,2]恒成立,令h=mx+x-2,此时,只需h-2<0h2<0即可,解得x∈.例3 解题导引解决此类抽象函数问题,根据函数的奇偶性、周期性、单调性等性质,画出函数的一部分简图,使抽象问题变得直观、形象,有利于问题的解决.-8解析因为定义在R上的奇函数,满足f=-f,所以f =f.因此,函数图象关于直线x=2对称且f=0,由f=-f知f=f,所以函数是以8为周期的周期函数.又因为f在区间[0,2]上是增函数,所以f在区间[-2,0]上也是增函数,如图所示,那么方程f=m在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,所以x1+x2+x3+x4=-12+4=-8.变式迁移3 B [∵f=f,∴f=f.∴x=1为函数f的一条对称轴.又f=f[2-]=f=f,∴2是函数f的一个周期.根据已知条件画出函数简图的一部分,如右图:由图象可以看出,在区间[-2,-1]上是增函数,在区间[3,4]上是减函数.]课后练习区.B [依题意得a-1=-2ab=0,∴a=13b=0,∴a+b=13.]2.D[由已知条件,可得函数f的图象大致为右图,故fxx<0的解集为∪.]3.D [由f=-1fx,得f=-1fx+2=f,那么f的周期是4,得f=f.因为f是偶函数,则f=f=f.而1≤x≤2时,f=x-2,∴f=-0.5.由上知:f=-0.5.]4.D [因为奇函数f在x=0有定义,所以f=20+2×0+b=b+1=0,b=-1.∴f=2x+2x-1,f=3,从而f=-f=-3.]5.A [由y=f是偶函数,得到y=f的图象关于直线x =1对称,∴f=f.又f在[1,+∞)上为单调增函数,∴f>f,即f>f.]6.1解析∵f是奇函数,且x∈R,∴f=0,即a=0.又f =-f,∴b-1=-=0,即b=1,因此a+b=1.7.-1<m<23解析∵f=f,∴f=f=f.∵f为奇函数,且f>1,∴f=-f<-1,∴2m-3m+1<-1.解得:-1<m<23.8.2解析由g=f,得g=f,又g为R上的奇函数,∴g=-g,∴f=-f,即f=-f,用x+1替换x,得f=-f.又f是R上的偶函数,∴f=-f.∴f=f,即f的周期为4.∴f=f=f=2.9.解由题意,当3≤x≤6时,设f=a2+3,∵f=2,∴2=a2+3.∴a=-1.∴f=-2+3.…………………………………………………………∴f=-2+3=-1.又∵f为奇函数,∴f=0.∴一次函数图象过,两点.∴f=-13x.…………………………………………………………………当-3≤x≤0时,-x∈[0,3],∴f=-13=13x.又f=-f,∴f=-13x.∴f=-13x.………………………………………………………………当-6≤x≤-3时,3≤-x≤6,∴f=-2+3=-2+3.又f=-f,∴f=2-3.∴f=x+52-3,-6≤x≤-3,-13x-3<x<3,…………………………………………………………12分-x-52+3,3≤x≤6.0.解f=2-2|-x|-1=x2-2|x|-1=f,即f=f.∴f是偶函数.………………………………………………………当x≥0时,f=x2-2x-1=2-2,当x<0时,f=x2+2x-1=2-2,即f=x-12-2,x≥0,x +12-2,x<0.根据二次函数的作图方法,可得函数图象如下图.……………………………………由中函数图象可知,函数f的单调区间为[-3,-1],[-1,0],[0,1],[1,3].f在区间[-3,-1]和[0,1]上为减函数,在[-1,0],[1,3]上为增函数.……………当x≥0时,函数f=2-2的最小值为-2,最大值为f =2;当x<0时,函数f=2-2的最小值为-2,最大值为f=2;故函数f的值域为[-2,2].……………………………………………………………1.解当a=0时,f=x2对任意x∈∪,有f=2=x2=f,∴f为偶函数.…………………………………………………………………………当a≠0时,f=x2+ax,若x=±1时,则f+f=2≠0;∴f≠-f,又f≠f∴函数f既不是奇函数,也不是偶函数.……………………………………………综上所述,当a=0时,f为偶函数;当a≠0时,f为非奇非偶函数.………………………………………………………设2≤x1<x2,f-f=x21+ax1-x22-ax2=x1-x2x1x2[x1x2-a],………………………………………………………………要使f在x∈[2,+∞)上为增函数,必须使f-f<0恒成立.∵x1-x2<0,x1x2>4,即a<x1x2恒成立.………………………………………又∵x1+x2>4,∴x1x2>16,∴a的取值范围为。
高三一轮复习精题组函数的奇偶性与周期性(有详细答案).docx
1≤x<3,f(x)=x. f(1)+f(2)+f(3)+⋯+f(2 015)等于
()
A.335
B.336 C.1 678 D.2 012
1,当2≤x≤3,f(x)=x,f(105.5)
(2)已知f(x)是定 在R上的偶函数, 并且f( x+2)=-f x
答案(1)A(2)D
解析(1)偶函数满足f(x)=f(|x|),根据这个结论,
1
1
有f(2x-1)< f3? f(|2x-1|)<f3
,
1
进而转化为不等式
|2x-1|<3,
1
2
解这个不等式即得
x的取值范围是
3,3.
(2)由函数f( x)是奇函数且f(x)在[0,2]上是增函数可以推知,f(x)在[-2,2]上递增,
k=________.
1+k·2
x2+1,x≥0,
(2)已知函数f(x)=
则满足不等式f(1-x2)>f(2x)的x的取值范围是________.
1,x<0,
易错分析
(1)解题中忽视函数
f(x)的定义域,直接通过计算
f(0)=0
得k=1.
(2)本题易出现以下错误
由f(1-x2)>f(2x)得1-x2>2x,忽视了1-x2>0导致解答失误.
-x
=-
-x
∴f(x)为奇函数.
(2)f(x)的定义域为R,关于原点对称,
当x>0时,f(-x)=-(-x)2-2=-(x2+2)=-f(x);
当x<0时,f(-x)=(-x)2+2=-(-x2-2)=-f(x);
新高考数学理一轮总复习知能演练2.3函数的奇偶性与周期性(含答案详析)
一、选择题1. (2012 ·考陕西卷高 ) 以下函数中,既是奇函数又是增函数的为()A . y = x + 13B . y =- x1C . y = xD .y = x|x|分析: 选 D. 由函数的奇偶性清除 A ,由函数的单一性清除 B 、 C ,由 y = x|x|的图象可知当 x > 0 时此函数为增函数,又该函数为奇函数,应选D.2.已知 y = f(x + 1)是偶函数,则函数 y = f( x)的图象的对称轴是 ( )A . x = 1B . x =- 11 1C . x = 2D .x =- 2分析: 选 A. ∵y = f(x + 1)是偶函数,∴ f(1+ x)= f(1- x),故 f(x)对于直线 x = 1 对称. 3.函数 f( x)= x 3+ sinx + 1(x ∈ R ),若 f(a)= 2,则 f(- a)的值为 ( )A . 3B . 0C .- 1D .-2分析: 选 B.f(a)= a 3+ sina + 1,①33f(- a)= (- a) + sin(- a)+ 1=- a - sina + 1,②∴f(- a)= 2- f(a)= 2- 2= 0.24.函数 f( x)= 1- 1+ 2x (x ∈R )( )A .既不是奇函数又不是偶函数B .既是奇函数又是偶函数C .是偶函数但不是奇函数D .是奇函数但不是偶函数分析: 选 D. ∵f(x)= 1-2 = 2x- 1,1+ 2x 2x + 12-x-11- 2x 2x - 1 ∴f(- x)= x= 1+ 2 x =- x=- f(x). 2-+ 12 + 1又其定义域为 R ,∴f(x)是奇函数.5.定义在 R 上的偶函数 y =f(x)知足 f(x + 2)= f(x),且当 x ∈ (0,1] 时单一递加,则 ()15 A . f 3 < f(-5)< f 2 1 5B . f 3 < f 2 < f(-5) 5 1C . f 2 < f 3 < f(-5)D . f(-5) <f 1< f 53 2分析: 选 B.∵f(x + 2)= f(x),∴f(x) 是以 2 为周期的函数,51+ 21,又 f(x)是偶函数,∴ f 2 = f2= f 2 f(- 5)= f(5)= f(4+ 1)= f(1) ,∵函数 f(x)在 (0,1] 上单一递加,1 1 1 5∴f 3 < f 2 < f(1),即 f 3 < f 2 < f(- 5).二、填空题6.设函数 f(x) =x(e x + ae -x )(x ∈ R )是偶函数,则实数 a 的值为 ________.分析: 由于 f(x)是偶函数,因此恒有f(- x)= f(x),即- x(e-x+ae x )= x(e x+ ae -x ),化简得 x(e -x +e x )( a + 1)= 0.由于上式对随意实数x 都建立,因此 a =- 1.答案: -17.函数 f(x)在 R 上为奇函数, 且 x > 0 时, f(x)= x + 1,则当 x < 0 时,f(x)= ________. 分析: ∵f(x)为奇函数, x >0 时, f(x)= x + 1, ∴当x < 0 时,- x > 0, f(x)=- f(- x)=- ( - x + 1),即 x <0 时, f(x)=- ( - x + 1)=-- x - 1.答案: - - x - 18. (2013 大·连质检 )设 f(x)是定义在 (-∞, 0)∪ (0,+∞ )上的奇函数,且f(x + 3) ·f(x)=- 1, f(- 4)= 2,则 f(2014) =________.分析: 由已知 f(x + 3)=- 1,f x∴f(x + 6)=- 1= f(x),f x + 3 ∴f(x)的周期为 6.∴f(2014) = f(335× 6+ 4)= f(4) =- f(- 4)=- 2. 答案: -2 三、解答题9.判断以下函数的奇偶性:(1)f(x)=x 2- 1+ 1- x 2;x 2- 2x + 3x>0 ,(2)f(x)= 0 x = 0 ,- x 2- 2x -3x<0 .解: (1)f(x) 的定义域为 { - 1,1} ,对于原点对称.又 f(- 1)= f(1) =0.∴f(- 1)= f(1) 且 f(- 1)=- f(1),∴f(x)既是奇函数又是偶函数.(2)①当 x = 0 时,- x =0,f(x)=f(0)= 0, f(- x)= f(0) = 0, ∴f(- x)=- f(x). ②当 x>0 时,- x<0,∴f(- x)=- (- x)2- 2(- x)- 3=- (x 2- 2x + 3)=- f( x).③当 x<0 时,- x>0,∴f(- x)= (- x)2-2(- x)+3=- (- x2-2x- 3)=- f(x) .由①②③可知,当x∈R时,都有f(- x)=- f(x) ,∴f(x)为奇函数.10.已知奇函数f(x)的定义域为 [ - 2,2] ,且在区间 [ -2,0] 内递减,求知足:f(1- m)+ f(1-m2)<0 的实数 m 的取值范围.解:∵f(x)的定义域为 [- 2,2] ,- 2≤ 1- m≤ 2∴有,- 2≤ 1- m2≤ 2解得- 1≤ m≤ 3.①又 f(x)为奇函数,且在[- 2,0] 上递减,∴在[ - 2,2]上递减,22- 1)?2∴f(1- m)< -f(1-m )= f(m1- m>m -1,即- 2<m<1.②综合①②可知,-1≤ m<1.一、选择题1. (2012 ·考天津卷高) 以下函数中,既是偶函数,又在区间(1,2)内是增函数的为 () A. y= cos 2x, x∈R B . y= log2|x|,x∈R且 x≠ 0C. y=e x-e- x, x∈R D .y= x3+ 1, x∈R 2分析:选 B. 由函数是偶函数能够清除 C 和 D,又函数在区间(1,2)内为增函数,而此时y= log 2|x|=log 2x 为增函数,因此选择 B.2.(2011 ·考山东卷高)已知 f(x)是R上最小正周期为 2 的周期函数,且当 0≤x<2 时,f(x)= x3- x,则函数 y= f(x)的图象在区间[0,6] 上与 x 轴的交点的个数为 () A. 6 B . 7C. 8 D .9分析:选 B.令 f(x)= x3- x=0,即 x(x+ 1)(x- 1)= 0,因此 x= 0,1,- 1,由于 0≤ x< 2,因此此时函数的零点有两个,即与x 轴的交点个数为 2.由于 f(x)是R上最小正周期为 2 的周期函数,因此 2≤ x< 4,4≤ x< 6 上也分别有两个零点,由 f(6) = f(4) = f(2)= f(0)= 0,知 x=6 也是函数的零点,因此函数 y= f(x)的图象在区间[0,6] 上与 x 轴的交点个数为7.二、填空题13.若 f(x)=2x-1+ a 是奇函数,则a= ________.分析: ∵f(x)为奇函数,∴ f(- x)=- f(x),即1 - 11 +a = - a ,得: 2a = 1,a =2-x - 1 2x -12. 答案:124.(2013 长·春质检 )设 f(x)是 (-∞,+∞ )上的奇函数,且 f(x + 2)=- f(x),下边对于 f(x)的判断:此中正确命题的序号为________.① f(4)= 0; ② f(x)是以 4 为周期的函数; ③ f(x)的图象对于 x = 1 对称; ④ f(x)的图象对于 x = 2 对称.分析: ∵f(x +2) =- f(x),∴f(x)=- f( x + 2)=- (- f(x + 2+ 2)) = f(x + 4),即 f(x)的周期为 4,②正确.∵f(x)为奇函数,∴ f(4)= f(0) = 0,即①正确.又∵f(x + 2)=- f(x)= f(- x),∴f(x)的图象对于 x = 1 对称,∴③正确,又∵f(1)=- f(3) ,当 f(1) ≠0 时,明显 f(x)的图象不对于 x =2 对称,∴④错误. 答案: ①②③ 三、解答题5.已知函数 f(x)= x 2+ |x - a|+ 1, a ∈ R .(1)试判断 f(x)的奇偶性;1 1(2)若- 2≤a ≤ 2,求 f(x)的最小值. 解: (1)当 a = 0 时,函数 f(- x)= (- x)2+ |- x|+ 1= f(x), 此时, f(x)为偶函数.当 a ≠0 时, f(a)= a 2+ 1, f(- a)= a 2+ 2|a|+ 1, f(a)≠f(- a), f(a)≠ - f(-a),此时, f(x)既不是奇函数,也不是偶函数.2 - x + a + 1= x -1 23 (2)当 x ≤ a 时, f( x)= x 2+ a + ,4∵a ≤12,故函数f(x)在 (- ∞ ,a]上单一递减,进而函数 f(x)在 (- ∞, a]上的最小值为 f(a)= a 2+ 1.当 x ≥a 时,函数 f(x)= x 2+ x - a + 1= x +1 2- a + 3,241∵a ≥- 2,故函数 f(x)在 [a ,+ ∞ )上单一递加,进而函数 f(x)在 [a ,+ ∞ )上的最小值为 f(a)= a 2+ 1.1 12综上得,当-2≤ a ≤ 2时,函数 f(x)的最小值为a + 1.。
高考数学一轮复习讲练测(江苏版):专题2.3 函数奇偶性(讲)(含答案解析)
【最新考纲解读】【考点深度剖析】函数的奇偶性在高考中占有重要的地位,在命题时主要是与函数的概念、图像、性质综合在一起考查.而近几年的高考中加大了对非三角函数的周期性和抽象函数的奇偶性、周期性的考查力度. 【课前检测训练】 [判一判](1)函数y =x 2,x ∈[0,+∞)是偶函数.( ) 解析 错误.定义域不关于坐标原点对称. (2)若函数f (x )为奇函数,则一定有f (0)=0.( ) 解析 错误.定义域内有x =0时,f (0)=0. (3)函数f (x )=sin x ,x ∈[0,2π]为周期函数.( ) 解析 错误.函数f (x )=sin x 在R 上为周期函数.(4)偶函数的图像不一定过原点,奇函数的图像一定过原点.( ) 解析 错误.f(x)=1x为奇函数,但它的图像不过坐标原点.(5)若函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )也是偶函数.( ) 解析 正确.(6)若T 为函数f (x )的一个周期,则nT (n ∈Z 且n ≠0)也是函数f (x )的周期.( )解析 正确. [练一练]1.已知f(x)=ax2+bx 是定义在[a -1,2a]上的偶函数,那么a +b 的值是_______答案 132.已知定义在R 上的函数f(x)满足f(x)=-f ⎝⎛⎭⎫x +32,且f(3)=2,则f(2 016)=________. 解析 ∵f(x)=-f ⎝⎛⎭⎫x +32,∴f(x +3)=f ⎣⎡⎦⎤⎝⎛⎭⎫x +32+32=-f ⎝⎛⎭⎫x +32=f(x).∴f(x)是以3为周期的周期函数.则f(2 016)=f(671×3+3)=f(3)=2. 答案 23.设函数f(x)是定义在R 上的奇函数,若当x ∈(0,+∞)时,f(x)=lg x ,则满足f(x)>0的x 的取值范围是_____________________.解析 画草图,由f(x)为奇函数知:f(x)>0的x 的取值范围为(-1,0)∪(1,+∞).答案 (-1,0)∪(1,+∞)4.设函数f(x)是定义在R 上的偶函数,当x ≥0时,f(x)=2x +1.若f(a)=3,则实数a 的值为___________.解析 因为函数f(x)是定义在R 上的偶函数,当x ≥0时,f(x)=2x +1,所以当x<0时,f(x)=2-x +1.若a ≥0,f(a)=2a +1=3,解得a =1;若a<0,f(a)=2-a +1=3,解得a =-1,故实数a 的值为1或-1. 答案 1或-1. 【经典例题精析】 考点1 函数奇偶性的判断【1-1】判断函数f (x )=1-x 2+x 2-1的奇偶性;【答案】f(x)既是奇函数又是偶函数.【解析】解:∵由221010xx⎧-≥⎨-≤⎩得x=±1∴f(x)的定义域为{-1,1}.又f(1)+f(-1)=0,f(1)-f(-1)=0,即f(x)=±f(-x).∴f(x)既是奇函数又是偶函数.【1-2】判断函数f(x)=4-x2|x+3|-3的奇偶性;【答案】f(x)是奇函数.【解析】∵由240|3|30xx⎧-≥⎨+-≠⎩得-2≤x≤2且x≠0.∴f(x)的定义域为[-2,0)∪(0,2],∴f(x)=4-x2|x+3|-3=4-x2x+3 -3=4-x2x,∴f(-x)=-f(x),∴f(x)是奇函数.【1-3】判断函数f(x)=22,0,0x x xx x x⎧+>⎨-<⎩的奇偶性;【答案】f(x)是偶函数.【1-4】判断函数f(x)=3-2x+2x-3的奇偶性;【答案】f(x)既不是奇函数,也不是偶函数.【解析】∵函数f(x)=3-2x+2x-3的定义域为3{}2,不关于坐标原点对称,∴函数f(x)既不是奇函数,也不是偶函数【基础知识】【思想方法】1.判断函数奇偶性的两个方法(1)定义法:(2)图像法:2.判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.【温馨提醒】定义域关于原点对称是函数为奇函数或偶函数的必要条件考点2 函数奇偶性的应用【2-1】已知y=f(x)+x2是奇函数,且f(1)=1.若g(x)=f(x)+2,则g(-1)=________.【答案】-1.【解析】(1)∵y=f(x)+x2是奇函数,且x=1时,y=2,∴当x=-1时,y=-2,即f(-1)+(-1)2=-2,得f(-1)=-3,所以g(-1)=f(-1)+2=-1.【2-2】设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式()()f x f xx+->的解集为________.\【答案】(-∞,-2)∪(0,2).故x ∈(0,2)或x ∈ (-∞,-2).【2-3】设函数f (x )是定义在R 上的奇函数,且对任意x ∈R 都有f (x )=f (x +4),当x ∈[-2,0)时,f (x )=2x ,则f (2 014)-f (2 013)的值为_______. 【答案】14【解析】由题可知函数的周期为4,故f (2 014)-f (2 013)=f (2)-f (1).因为f (x )是R 上的奇函数,所以f (2)=-f (-2)=-2-2=-14,f (1)=-f (-1)=-2-1=-12,所以f (2 014)-f (2 013)=-14+12=14.【2-4】已知函数f (x )=x 2-m是定义在区间[-3-m ,m 2-m ]上的奇函数,则f (m )=________.【答案】-1【基础知识】(1)已知函数的奇偶性求函数的解析式.利用奇偶性关于f (x )的方程,从而可得f (x )的解析式. (2)已知带有字母参数的函数的表达式及奇偶性求参数.常常采用待定系数法:利用f (x )±f (-x )=0产生关于字母的恒等式,由系数的对等性可得知字母的值.(3)奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(4)抽象函数的奇偶性就是要判断-x 对应的函数值与x 对应的函数值之间的关系,从而得到函数图象关于原点或y 轴对称,结合函数的图形作出进一步的判断. 【思想方法】①若函数f(x)为偶函数,则函数在y轴两侧单调性相反;若函数f(x)为奇函数,则函数在原点两侧的单调性相同.②利用函数的奇偶性把研究整个函数具有的性质问题转化到只研究部分(一半)区间上的问题,是简化问题的一种途径.【温馨提醒】奇偶函数的不等式求解时,要注意到:奇函数在对称的单调区间上有相同的单调性,偶函数在对称的单调区间上有相反的单调性.【易错问题大揭秘】f(0)=0既不是f(x)是奇函数的充分条件,也不是必要条件.已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=2x4x+1.(1)求f(1)和f(-1)的值;(2)求f(x)在[-1,1]上的解析式.。
三维设计高考数学苏教版理科一轮复习创新问题专项训练(一)(含答案详析)
创新问题专项训练(一)一、填空题1.如图,直线l 和圆C ,当l 从l0开始在平面上绕点O 按逆时针方向匀速转动(转动角度不超过90°)时,它扫过的圆内阴影部分的面积S 是时间t 的函数,这个函数的图像大致是________(填序号).解析:依题意,直线l 从l 0开始按逆时针方向匀速转动,开始一段时间阴影部分的面积增加的比较慢,中间一段时间阴影部分的面积增加的比较快,最后一段时间阴影部分的面积增加的又比较慢,因此④符合题意.答案:④2.已知两个非零向量a 与b ,定义|a ×b |=|a |·|b |sin θ,其中θ为a 与b 的夹角.若a =(-3,4),b =(0,2),则|a ×b |的值为________.解析:|a |=(-3)2+42=5,|b |=02+22=2,a ·b =-3×0+4×2=8,所以cos θ=a ·b|a |·|b |=85×2=45,又因为θ∈[0,π],所以sin θ=1-cos 2θ=1-⎝⎛⎭⎫452=35.故根据定义可知|a ×b |=|a |·|b |sin θ=5×2×35=6.答案:63.设实数a 1,a 2,a 3,a 4是一个等差数列,且满足1<a 1<3,a 3=4.若定义b n ={2a n },给出下列命题:(1)b 1,b 2,b 3,b 4是一个等比数列;(2)b 1<b 2;(3)b 2>4;(4)b 4>32;(5)b 2·b 4=256.其中真命题的个数为________.解析:若{a n }是公差为d 的等差数列,则{2a n }是公比为2d 的等比数列,故(1)正确;a 3>a 1⇒公差d >0⇒公比2d >1,(2)正确;a 1+a 3=2a 2,由1<a 1<3,a 3=4,得a 1+a 3>5⇒a 2>2⇒b 2=2a 2>4,(3)正确;1<a 1<3,a 3=4,又a 3=a 1+2d ⇒d =4-a 12∈(12,32)⇒a 4∈(92,112),故b 4=2a 4不一定大于32,(4)不正确;因为b 2·b 4=b 23=(2a 3)2=256,所以(5)正确.答案:44.我们把形如y =f (x )φ(x )的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y =φ(x )ln f (x ),两边求导得y ′y =φ′(x )·ln f (x )+φ(x )·f ′(x )f (x ),于是y ′=f (x )φ(x )[φ′(x )·ln f (x )+φ(x )·f ′(x )f (x )].运用此方法可以探求得y =x 1x 的单调递增区间是________.解析:由题意知y ′=x 1x (-1x 2ln x +1x ·1x )=x 1x ·1x 2(1-ln x ),x >0,1x 2>0,x 1x >0, 令y ′>0,则1-ln x >0,所以0<x <e. 答案:(0,e)5.对向量a =(a 1,a 2),b =(b 1,b 2)定义一种运算“⊗”:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知动点P ,Q 分别在曲线y =sin x 和y =f (x )上运动,且OQ =m ⊗OP +n (其中O 为坐标原点),若向量m =(12,3),n =(π6,0),则y =f (x )的最大值为________.解析:设P =(x 1,y 1),Q =(x ,y ),∵m =(12,3),∴m ⊗OP =(12,3)⊗(x 1,y 1)=(x 12,3y 1),∵OQ =m ⊗OP +n ,∴(x ,y )=(x 12,3y 1)+(π6,0),∴x =x 12+π6,y =3y 1,∴x 1=2x -π3,y 1=y3,又y 1=sin x 1,∴y 3=sin(2x -π3),∴y =3sin(2x -π3),显然当sin(2x -π3)=1时,y =f (x )取得最大值3.答案:36.设a =x 2-xy +y 2,b =p xy ,c =x +y ,若对任意的正实数x ,y ,都存在以a ,b ,c 为三边长的三角形,则实数p 的取值范围是________.解析:∵a =x 2-xy +y 2,b =p xy ,c =x +y ,∴a <c ,则⎩⎪⎨⎪⎧x 2-xy +y 2+p xy >x 2+2xy +y 2,x 2-xy +y 2+x 2+2xy +y 2>p xy ,即⎩⎪⎨⎪⎧p >x y +yx +2- x y +yx -1,p < x y +yx+2+ x y +yx-1,令t =x y +yx(t ≥2),则⎩⎪⎨⎪⎧p >t +2-t -1p <t +2+t -1,从而1<p <3. 答案:(1,3)7.若从集合13,14,3,4中随机抽取一个数记为a ,从集合{-1,1,-2,2}中随机抽取一个数记为b ,则函数f (x )=a x +b (a >0,a ≠1)的图像经过第三象限的概率是________.解析:(b ,a )的所有可能情况有:⎝⎛⎭⎫-1,13,⎝⎛⎭⎫-1,14,(-1,3),(-1,4);⎝⎛⎭⎫1,13,⎝⎛⎭⎫1,14,(1,3),(1,4);⎝⎛⎭⎫-2,13,⎝⎛⎭⎫-2,14,(-2,3),(-2,4);⎝⎛⎭⎫2,13,⎝⎛⎭⎫2,14,(2,3),(2,4),共16种.由于函数f (x )的图像经过第三象限,因此,0<a <1,b <-1或a >1,b <0,因此满足条件的(b ,a )有:(-1,3),(-1,4),(-2,13),(-2,14),(-2,3),(-2,4),共6种.根据古典概型的概率计算公式可得P =616=38. 答案:388.一个平面图由若干顶点与边组成,各顶点用一串从1开始的连续自然数进行编号,记各边的编号为它的两个端点的编号差的绝对值,若各条边的编号正好也是一串从1开始的连续自然数,则称这样的图形为“优美图”.已知如图是“优美图”,则点A ,B 与边a 所对应的三个数分别为________.解析:观察图中编号为4的边,由于6-2=5-1=4,而数字2已为一端点的编号,故编号为4的边的左、右两端点应为5、1,从而易知编号为1的边的左、右两端点应为4、3.考虑到图中编号为1的边,易知点A 对应的数为3,点B 对应的数为6.故应填3、6、3.答案:3、6、39.已知数列{a n }:a 1,a 2,a 3,…,a n ,如果数列{b n }:b 1,b 2,b 3,…,b n 满足b 1=a n ,b k =a k -1+a k -b k -1,其中k =2,3,…,n ,则称{b n }为{a n }的“衍生数列”.若数列{a n }:a 1,a 2,a 3,a 4的“衍生数列”是5,-2,7,2,则{a n }为________;若n 为偶数,且{a n }的“衍生数列”是{b n },则{b n }的“衍生数列”是________.解析:由b 1=a n ,b k =a k -1+a k -b k -1,k =2,3,…,n 可得,a 4=5,2=a 3+a 4-7,解得a 3=4.又7=a 2+a 3-(-2),解得a 2=1.由-2=a 1+a 2-5,解得a 1=2,所以数列{a n }为2,1,4,5.由已知,b 1=a 1-(a 1-a n ),b 2=a 1+a 2-b 1=a 2+(a 1-a n ),….因为n 是偶数,所以b n =a n +(-1)n (a 1-a n )=a 1.设{b n }的“衍生数列”为{c n },则c i =b i +(-1)i (b 1-b n )=a i +(-1)i ·(a 1-a n )+(-1)i (b 1-b n )=a i +(-1)i (a 1-a n )+(-1)i ·(a n -a 1)=a i ,其中i =1,2,3,…,n .则{b n }的“衍生数列”是{a n }.答案:2,1,4,5 {a n } 二、解答题10.设数列{a n }的各项均为正数.若对任意的n ∈N *,存在k ∈N *,使得a 2n +k =a n ·a n +2k 成立,则称数列{a n }为“J k 型”数列.(1)若数列{a n }是“J 2型”数列,且a 2=8,a 8=1,求a 2n ;(2)若数列{a n }既是“J 3型”数列,又是“J 4型”数列,证明:数列{a n }是等比数列. 解:(1)由题意得a 2,a 4,a 6,a 8,…成等比数列,且公比q =(a 8a 2)13=12,所以a 2n =a 2q n -1=(12)n -4.(2)由数列{a n }是“J 4型”数列,得a 1,a 5,a 9,a 13,a 17,a 21,…成等比数列,设公比为t . 由数列{a n }是“J 3型”数列,得a 1,a 4,a 7,a 10,a 13,…成等比数列,设公比为α1; a 2,a 5,a 8,a 11,a 14,…成等比数列,设公比为α2; a 3,a 6,a 9,a 12,a 15,…成等比数列,设公比为α3. 则a 13a 1=α41=t 3,a 17a 5=α42=t 3,a 21a 9=α43=t 3. 所以α1=α2=α3,不妨记α=α1=α2=α3,且t =α43.于是a 3k -2=a 1αk -1=a 1(3α)(3k -2)-1,a 3k -1=a 5αk -2=a 1tαk -2=a 1αk -23=a 1(3α)(3k -1)-1,a 3k =a 9αk -3=a 1t 2αk -3=a 1αk -13=a 1(3α)3k -1,所以a n =a 1(3α)n -1,故{a n }为等比数列.11.春节前,有超过20万名广西,四川等省籍的外来务工人员选择驾乘摩托车沿321国道长途跋涉返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶,手脚僵硬影响驾驶操作而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个长途行驶摩托车驾驶人员休息站,让过往返乡过年的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的驾驶人员每隔50辆摩托车就进行省籍询问一次,询问结果如图所示.(1)问交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法;(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的被抽取了5名,则四川籍的应抽取几名?(3)在上述抽出的驾驶人员中任取2名,求至少有1名驾驶人员是广西籍的概率.解:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员是广西籍的有5+20+25+20+30=100名,四川籍的有15+10+5+5+5=40名.设四川籍的驾驶人员应抽取x名,依题意得5100=x40,解得x=2,即四川籍的应抽取2名.(3)用a1,a2,a3,a4,a5表示被抽取的广西籍驾驶人员,b1,b2表示被抽取的四川籍驾驶人员,则所有基本事件有{a1,a2},{a1,a3},{a1,a4},{a1,a5},{a1,b1},{a1,b2},{a2,a3},{a2,a4},{a2,a5},{a2,b1},{a2,b2},{a3,a4},{a3,a5},{a3,b1},{a3,b2},{a4,a5},{a4,b1},{a4,b2},{a5,b1},{a5,b2},{b1,b2},共21个,其中2名驾驶人员都是四川籍的基本事件有{b1,b2},1个.所以抽取的2名驾驶人员都是四川籍的概率P1=121,至少有1名驾驶人员是广西籍的概率P=1-P1=1-121=2021.。
高考数学一轮复习讲练测(江苏版):专题2.3 函数奇偶性(测)(含答案解析)
班级__________ 姓名_____________ 学号___________ 得分__________(满分100分,测试时间50分钟)一、填空题:请把答案直接填写在答题卡相应的位置........上(共10题,每小题6分,共计60分). 1.下列函数中,既不是奇函数,也不是偶函数的是________(填序号).①y =1+x 2;②y =x +1x ;③y =2x +12x ;④y =x +e x . 【答案】 ④2. 若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________.【答案】 -1【解析】 由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1,∴f (3)-f (4)=-1.3. 已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________.【答案】13【解析】依题意b =0,且2a =-(a -1),∴a =13,则a +b =13. 4.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________. 【答案】43【解析】根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=x x 2+1是奇函数, 故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43. 5. 函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 【答案】--x -1【解析】∵f (x )为奇函数,x >0时,f (x )=x +1,∴当x <0时,-x >0,f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1.6. 对于函数f (x ),若存在常数a ≠0,使得x 取定义域内的每一个值,都有f (x )=f (2a -x ),则称f (x )为准偶函数.下列函数:①f (x )=x ;②f (x )=x 2;③f (x )=tan x ;④f (x )=cos(x +1).其中为准偶函数的是________ (填序号).【答案】④【解析】由f (x )=f (2a -x ),∴y =f (x )关于直线x =a 对称(a ≠0),题中四个函数中,存在对称轴的有②,④,而②中f (x )=x 2的对称轴为x =0,不满足题意,故④适合.7.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x ,则f (1),g (0),g (-1)之间的大小关系是______________.【答案】f (1)>g (0)>g (-1)8.已知函数f (x )对任意x ∈R 都有f (x +4)-f (x )=2f (2),若y =f (x -1)的图象关于直线x =1对称,且f (1)=2,则f (2014)等于________.【答案】2【解析】由于y =f (x -1)的图象关于直线x =1对称,所以y =f (x )的图象关于y 轴对称,即函数y =f (x )是偶函数.在等式f (x +4)-f (x )=2f (2)中令x =-2得f (2)-f (-2)=2f (2),由此可得f (2)=0,故f (x +4)=f (x ),所以4是函数y =f (x )的一个周期.f (2014)=f (1)=2.9.已知定义在R 上的函数y =f (x )满足条件f (x +32)=-f (x ),且函数y =f (x -34)为奇函数,给出以下四个命题:(1)函数f (x )是周期函数;(2)函数f (x )的图象关于点(-34,0)对称; (3)函数f (x )为R 上的偶函数;(4)函数f (x )为R 上的单调函数.其中真命题的序号为________.(写出所有真命题的序号)【答案】(1)(2)(3).10.设a >0,f (x )=e x a +a e x 是R 上的偶函数,则实数a 等于 . 【答案】1【解析】依题意,对一切x ∈R ,有f (-x )=f (x ),即1a e x +ae x =e x a +a e x , ∴⎝⎛⎭⎫a -1a ⎝⎛⎭⎫e x -1e x =0对一切x ∈R 成立,则a -1a=0.∴a =±1. ∵a >0,∴a =1.二、解答题:解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.....。
三维设计江苏专用高三数学一轮总复习第二章函数与基本初等函数Ⅰ第三节函数的奇偶性及周期性课件理
解:(4()1∵)∵由由4|x-+1xx-23-2|≥-x012,3≥≥≠000,,, 得得-x2≤=x≤±21,且 x≠0. ∴f(∴x)f的(x)定的义定义域域为为{-[-12,1,0}).∪(0,2], 又 f∴(1f)(+x)=f(-|x+14)-3=|-x023,=fx(+14)---xf2(3-=1)4=-x 0x,2, 即 f∴(xf)(=-±x)f=(--xf)(.x),
∴f(∴x)f既(x)是是奇奇函函数数.又是偶函数. (2)∵(关5)函于易数原知点函f(对x数)称=的,定又3义-当域2为x>+(0-时∞2,,x-0)3∪的(0定,义+∞域),为32, 不关f(x于)=坐x标2+原x,点对称,
则当 x<0 时,-x>0,
∴函故数f(-f(xx))=既x不2-是x=奇f函(x)数;,也不是偶函数.
(2)f(0)=0,f(1)=1,f(2)=0, f(3)=f(-1)=-f(1)=-1. 又∵f(x)是周期为 4 的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=… =f(2012)+f(2 013)+f(2 014)+f(2 015)=0, ∴f(0)+f(1)+f(2)+…+f(2 015)=0.
奇函数 一个x,都 有_f_(-__x_)_=__-__f(_x_),那 么 关于_原__点_对称
函数f(x)就叫做奇函数
2.函数的周期性 (1)周期函数
对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义 域内的任何值时,都有_f_(_x_+__T_)_=__f(_x_)_,那么就称函数 f(x) 为周期函数,称 T 为这个函数的周期. (2)最小正周期 如果在周期函数 f(x)的所有周期中存在一个最___小__的_正 ___数_,那 么这个_最__小__的__正__数__就叫做 f(x)的最小正周期.
高三数学大一轮复习 2.3 函数的奇偶性与周期性课时检测 理 苏教版
2.4 函数的奇偶性与周期性一、填空题1.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________. 解析 f ⎝ ⎛⎭⎪⎫-52=-f ⎝ ⎛⎭⎪⎫52=-f ⎝ ⎛⎭⎪⎫12=-2×12×⎝ ⎛⎭⎪⎫1-12=-12.答案 -122.设函数2()(1)()f x x x a =++为奇函数,则a = .解析 由函数2()(1)()f x x x a =++为奇函数得到f (0)=0,即2(01)(0)a ++=0. 所以a =0. 答案 03.设函数f (x )是奇函数且周期为3,f (-1)=-1,则f (2 011)=________解析 因为f (-x )=-f (x ),f (x +3)=f (x ),f (-1)=-1,所以f (1)=1,f (2 011)=f (3×670+1)=f (1)=1.答案 14.已知奇函数f (x )的图象关于直线x =-2对称,当x ∈[0,2]时,f (x )=2x ,则f (-9)=________.解析 由题意,得f (-x )=-f (x ),f (x )=f (-4-x ), 所以f (-9)=f (-4+9)=f (5)=-f (-5)=-f (1)=-2. 答案 -25.若y =f (x )是奇函数,且在(0),+∞内是增函数,又f (3)=0,则xf (x )<0的解集是 _______. 解析 因为f(x)在(0),+∞内是增函数,f(3)=0, 所以当0<x<3时,f(x)<0; 当x>3时,f(x)>0.又因为f(x)是奇函数,其图象关于原点对称,所以当-3<x<0时,f(x)>0; 当x<-3时,f(x)<0.可见xf(x)<0的解集是{x|-3<x<0或0<x<3}. 答案 {x|-3<x<0或0<x<3}6.函数f(x)是奇函数,且在[-1,1]上是单调增函数,又f(-1)=-1,则满足f (x )≤t 2+2at +1对所有的x ∈[-1,1]及a ∈[-1,1]都成立的t 的取值范围是________. 解析 由题意,f (x )max =f (1)=-f (-1)=1,所以t 2+2at +1≥1,即t 2+2at ≥0对a ∈[-1,1]恒成立,t =0时,显然成立;t ≥0时,由t ≥-2a 恒成立,得t ≥2;t <0时,由t ≤-2a 恒成立,得t ≤-2.综上,得t ≤-2或t =0或t ≥2. 答案 (-∞,-2]∪{0}∪[2,+∞)7.设f(x)是定义在(-∞,+∞)上的奇函数,且f(x +2)=-f(x),当0≤x≤1时,f(x)=x ,则f(7.5)=________.解析 由题意得f(x +4)=f[(x +2)+2]=-f(x +2)=f(x),所以f(x)是以4为周期的函数,所以f(7.5)=f(7.5-8)=f(-0.5)=-f(0.5)=-0.5. 答案 -0.58.已知函数f (x )=log 4(4x+1)+kx (k ∈R )是偶函数,则k 的值为________.解析 由f (-x )=f (x ),得log 4(4-x+1)-kx =log 4(4x+1)+kx ,即2kx =log 4⎝ ⎛⎭⎪⎫1+4x4x -log 4(4x+1)=log 414x =-x ,所以k =-12.答案 -129.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是________. 解析 因为f (x )是偶函数,所以f (x )=f (|x |),于是由f (-1)<f (lg x ),得f (1)<f (|lgx |),又由f (x )在(-∞,0)内单调递减得f (x )在(0,+∞)内单调递增,所以有|lg x |>1,即lg x <-1或lg x >1,解得x <110或x >10.答案 ⎝ ⎛⎭⎪⎫0,110∪(10,+∞) 10.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x,则不等式f (x )<-12的解集是________. 解析 若x >0,则由f (x )=1-2-x<-12,得⎝ ⎛⎭⎪⎫12x >32,这与x >0时,⎝ ⎛⎭⎪⎫12x <1矛盾.若x <0,则由f (x )为奇函数,得f (x )=-f (-x )=-1+2x <-12,得2x <12=2-1,解得x <-1.答案 (-∞,-1)11.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断: ①f (x )是周期函数; ②f (x )关于直线x =1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上是减函数; ⑤f (2)=f (0).其中正确的序号是________. 解析 ∵f (x +1)=-f (x ),∴f (x )=-f (x +1)=f (x +1+1)=f (x +2), ∴f (x )是周期为2的函数,①正确.又∵f (x +2)=f (x )=f (-x ),∴f (x )=f (2-x ), ∴y =f (x )的图象关于x =1对称,②正确. 又∵f (x )为偶函数且在[-1,0]上是增函数, ∴f (x )在[0,1]上是减函数.又∵对称轴为x =1,∴f (x )在[1,2]上为增函数,f (2)=f (0),故③④错误,⑤正确. 答案 ①②⑤12.函数y =f (x )与y =g (x )有相同的定义域,且都不是常值函数,对于定义域内的任何x ,有f (x )+f (-x )=0,g (x )g (-x )=1,且当x ≠0时,g (x )≠1,则F (x )=2fxg x -1+f (x )的奇偶性为________.解析 因为f (-x )=-f (x ),g (-x )=1g x,所以F (-x )=2f-x g-x -1+f (-x )=-2f x1g x-1-f (x )=2f x g xg x -1-f (x )=2f x g x -2f x +2f xg x -1-f (x )=2f (x )+2f x g x -1-f (x )=2f xg x -1+f (x )=F (x ).所以F (x )是偶函数. 答案 偶函数13.已知定义在R 上的函数y =f (x )满足条件f ⎝ ⎛⎭⎪⎫x +32=-f (x ),且函数y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,给出以下四个命题:①函数f (x )是周期函数;②函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0对称;③函数f (x )为R 上的偶函数;④函数f (x )为R 上的单调函数,其中真命题的序号为________(写出所有真命题的序号).解析 ①由f ⎝ ⎛⎭⎪⎫x +32=-f (x ),得f (x +3) =-f ⎝ ⎛⎭⎪⎫x +32=f (x ),所以①正确.②由y =f ⎝ ⎛⎭⎪⎫x -34为奇函数,得f (x )图象关于点⎝ ⎛⎭⎪⎫34,0对称,所以②不正确.③由f ⎝ ⎛⎭⎪⎫-x -34=-f ⎝ ⎛⎭⎪⎫x -34,得f (x )=-f ⎝ ⎛⎭⎪⎫-x -32,又f ⎝ ⎛⎭⎪⎫x +32=-f (x ),所以f ⎝ ⎛⎭⎪⎫-x -32=f ⎝ ⎛⎭⎪⎫x +32,所以f (x )是偶函数,③正确.由③正确知④不正确. 答案 ①③ 二、解答题14.设f (x )=e x +a e -x(a ∈R ,x ∈R ). (1)讨论函数g (x )=xf (x )的奇偶性;(2)若g (x )是个偶函数,解不等式f (x 2-2)≤f (x ).解析 (1)a =1时,f (x )=e x+e -x是偶函数,所以g (x )=xf (x )是奇函数;a =-1时,f (x )=e x -e -x 是奇函数,所以g (x )=xf (x )是偶函数.a ≠±1,由f (x )既不是奇函数又不是偶函数,得g (x )=xf (x )是非奇非偶函数.(2)当g (x )是偶函数时,a =-1,f (x )=e x -e -x 是R 上的单调增函数,于是由f (x 2-2)≤f (x )得x 2-2≤x ,即x 2-x -2≤0,解得-1≤x ≤2.15.已知函数f (x )=2220000x x x x x mx x ⎧-+,>,⎪,=,⎨⎪+,<⎩是奇函数. (1)求实数m 的值;(2)若函数f (x )在区间[12]a -,-上单调递增,求实数a 的取值范围. 解析 (1)设x <0, 则-x >0,所以f (-x )=22()2()2x x x x --+-=--. 又f (x )为奇函数, 所以f (-x )=-f (x ).于是x <0时22()2f x x x x mx ,=+=+,所以m =2.(2)要使f (x )在[12]a -,-上单调递增,结合()f x 的图象(略)知2121a a ->-,⎧⎨-≤,⎩所以13a <≤,故实数a 的取值范围是(1,3].16. 已知函数f (x ),当x ,y ∈R 时,恒有f (x +y )=f (x )+f (y ). (1)求证:f (x )是奇函数;(2)如果x ∈R +,f (x )<0,并且f (1)=-12,试求f (x )在区间[-2,6]上的最值.解析 (1)证明:∵函数f (x )的定义域为R , ∴其定义域关于原点对称.∵f (x +y )=f (x )+f (y ),令y =-x ,∴f (0)=f (x )+f (-x ).令x =y =0,∴f (0)=f (0)+f (0),得f (0)=0. ∴f (x )+f (-x )=0,得f (-x )=-f (x ), ∴f (x )为奇函数.(2)法一:设x ,y ∈R +,∵f (x +y )=f (x )+f (y ), ∴f (x +y )-f (x )=f (y ). ∵x ∈R +,f (x )<0,∴f (x +y )-f (x )<0,∴f (x +y )<f (x ).∵x +y >x ,∴f (x )在(0,+∞)上是减函数. 又∵f (x )为奇函数,f (0)=0,∴f (x )在(-∞,+∞)上是减函数. ∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3.∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3. 法二:设x 1<x 2,且x 1,x 2∈R .则f (x 2-x 1)=f [x 2+(-x 1)]=f (x 2)+f (-x 1)=f (x 2)-f (x 1). ∵x 2-x 1>0,∴f (x 2-x 1)<0.∴f (x 2)-f (x 1)<0. 即f (x )在R 上单调递减.∴f (-2)为最大值,f (6)为最小值.∵f (1)=-12,∴f (-2)=-f (2)=-2f (1)=1,f (6)=2f (3)=2[f (1)+f (2)]=-3. ∴所求f (x )在区间[-2,6]上的最大值为1,最小值为-3.17.已知函数f (x )=1+ax2x +b (a ≠0)是奇函数,并且函数f (x )的图象经过点(1,3).(1)求实数a ,b 的值; (2)求函数f (x )的值域.解析 (1)因为函数f (x )=1+ax2x +b 是奇函数,所以f (-x )=-f (x ). 所以1+a -x 2-x +b =-1+ax 2x +b.因为a ≠0,所以-x +b =-x -b . 所以b =0.又函数f (x )的图象经过点(1,3), 所以f (1)=3. 所以1+a 1+b =3.因为b =0, 故a =2.(2)由(1)知f (x )=1+2x 2x =2x +1x(x ≠0).当x >0时,2x +1x≥22x ·1x =22,当且仅当2x =1x ,即x =22时取等号.当x <0时,(-2x )+1-x ≥2-2x ·1-x=2 2.所以2x +1x≤-2 2.当且仅当-2x =1-x ,即x =-22时取等号. 综上可知,函数f (x )的值域为(-∞,-22]∪[22,+∞). 18.设f (x )=log a ⎝ ⎛⎭⎪⎫1-mx x -1为奇函数,g (x )=f (x )+log a[(x -1)(ax +1)](a >1,且m ≠1).(1)求m 的值; (2)求g (x )的定义域;(3)若g (x )在⎣⎢⎡⎦⎥⎤-52,-32上恒正,求a 的取值范围.解析 (1)f (x )是奇函数,f (x )=-f (-x ), log a ⎝⎛⎭⎪⎫1-mx x -1=-log a ⎝ ⎛⎭⎪⎫1+mx -x -1=log a ⎝ ⎛⎭⎪⎫-x -11+mx ,∴1-mx x -1=-x -11+mx ,x 2-1=(mx )2-1, ∴(m 2-1)x 2=0,又m ≠1,∴m =-1. (2)由(1)f (x )=log ax +1x -1,g (x )=log a x +1x -1+log a [(x -1)·(ax +1)],x 必须满足⎩⎪⎨⎪⎧x -1ax +1>0,x +1x -1>0.又a >1,∴x <-1或x >1,∴g (x )的定义域为{x |x <-1或x >1}. (3)a >1,g (x )在⎣⎢⎡⎦⎥⎤-52,-32上恒正,即(x +1)(ax +1)>1⇒ax +1<1x +1⇒ax <-x x +1⇒a >-1x +1, ∵x ∈⎣⎢⎡⎦⎥⎤-52,-32,∴-1x +1≤-1⎝ ⎛⎭⎪⎫-32+1=2, ∴a >2,∴a的取值范围是(2,+∞).。
2017版高考数学(江苏专用、理科)一轮复习习题:第二章 第3讲函数的奇偶性与周期性 含答案
基础巩固题组(建议用时:40分钟)一、填空题1。
(2015·广东卷改编)下列函数中,既不是奇函数,也不是偶函数的是________(填序号)。
①y=错误!;②y=x+错误!;③y=2x+错误!;④y=x+e x.解析令f(x)=x+e x,则f(1)=1+e,f(-1)=-1+e-1,即f(-1)≠f(1), f(-1)≠-f(1),所以y=x+e x既不是奇函数也不是偶函数,而①,②,③依次是偶函数、奇函数、偶函数.答案④2.若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=________。
解析由f(x)是R上周期为5的奇函数知f(3)=f(-2)=-f(2)=-2,f(4)=f(-1)=-f(1)=-1,∴f(3)-f(4)=-1.答案-13。
已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是________。
解析依题意b=0,且2a=-(a-1),∴a=错误!,则a+b=错误!.答案错误!4。
函数f(x)在R上为奇函数,且x>0时,f(x)=错误!+1,则当x<0时,f(x)=________。
解析∵f(x)为奇函数,x>0时,f(x)=错误!+1,∴当x<0时,-x>0,f(x)=-f(-x)=-(错误!+1),即x<0时,f(x)=-(错误!+1)=-错误!-1。
答案--x-15。
(2015·苏北四市模拟)定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有错误!<0,则①f(3)〈f(-2)〈f(1);②f(1)<f(-2)〈f(3);③f(-2)<f(1)〈f(3);④f(3)<f(1)〈f(-2).其中正确的是________(填序号)。
解析由题意知f(x)为偶函数,所以f(-2)=f(2),又x∈[0,+∞)时,f(x)为减函数,且3>2〉1,∴f(3)<f(2)<f(1),即f(3)〈f(-2)<f(1).答案①6.(2016·杭州七校联考)已知定义在R上的函数f(x)满足f(2)=错误!,且对任意的x都有f(x+3)=-错误!,则f(8)=________;f(2 015)=________。
2020版新设计一轮复习数学(文)江苏专版讲义:第二章 第三节 函数的奇偶性及周期性 含答案
第三节函数的奇偶性及周期性1.函数的奇偶性2.(1)周期函数对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期.(2)最小正周期如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.[小题体验]1.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=________.答案:-22.若函数f(x)是周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(8)-f(14)=________.答案:-13.若函数f(x)=(a-1)x2+(a+1)x+a2-1是奇函数,则实数a的值是________.解析:由于函数f(x)的定义域为R,又函数f(x)是奇函数,故f(0)=0,解得a=1或a=-1(舍去),经检验a=1时符合题意.答案:11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)=-f(x)或f(-x)=f(x),而不能说存在x0使f(-x0)=-f(x0)或f(-x0)=f(x0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________.解析:因为f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,所以a -1+2a =0,所以a =13.又f (-x )=f (x ),所以b =0,所以a +b =13.答案:132.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 2(-x ),x <0的奇偶性为________.解析:因为x ≠0,故f (x )的定义域关于原点对称. 当x >0时,-x <0,所以f (-x )=log 2x =f (x ). 当x <0时,-x >0,所以f (-x )=log 2(-x )=f (x ). 故f (-x )=f (x ),所以f (x )为偶函数. 答案:偶函数考点一 函数奇偶性的判断 (基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ;(4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)因为由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1, 所以f (x )的定义域为{-1,1}. 又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).所以f (x )既是奇函数又是偶函数.(2)因为函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,所以函数f (x )既不是奇函数,也不是偶函数. (3)因为f (x )的定义域为R ,所以f (-x )=3-x -3x =-(3x -3-x)=-f (x ), 所以f (x )为奇函数.(4)因为由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.所以f (x )的定义域为[-2,0)∪(0,2], 所以f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,所以f (-x )=-f (x ),所以f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称, 又当x >0时,f (x )=x 2+x , 则当x <0时,-x >0, 故f (-x )=x 2-x =f (x );当x <0时,f (x )=x 2-x ,则当x >0时,-x <0, 故f (-x )=x 2+x =f (x ),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法 (1)定义法(2)图象法(3)性质法①设f (x ),g (x )的定义域分别是 D 1,D 2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒] (1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f (-x )与f (x )的关系,只有对各段上的x 都满足相同的关系时,才能判断其奇偶性.考点二 函数的周期性 (重点保分型考点——师生共研)[典例引领]设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f(x)是周期函数;(2)计算f(0)+f(1)+f(2)+…+f(2 018).解:(1)证明:因为f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x).所以f(x)是周期为4的周期函数.(2)因为f(0)=0,f(1)=1,f(2)=0,f(3)=-f(1)=-1.又f(x)是周期为4的周期函数,所以f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0. 所以f(0)+f(1)+f(2)+…+f(2 018)=f(2 016)+f(2 017)+f(2 018)=f(0)+f(1)+f(2)=1.[由题悟法]1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论(1)若f(x+a)=-f(x),则T=2a.(2)若f(x+a)=1f(x),则T=2a.(3)若f(x+a)=-1f(x),则T=2a(a>0).[即时应用]1.(2018·镇江调研)已知f(x)是定义在R上周期为4的函数,且f(-x)+f(x)=0,当0<x<2时,f(x)=2x-1,则f(-21)+f(16)=________.解析:由f(-x)+f(x)=0,知f(x)是定义在R上的奇函数,∴f(0)=0.又f(x+4)=f(x),且当0<x<2时,f(x)=2x-1,∴f(-21)+f(16)=f(-1)+f(0)=-f(1)=-(21-1)=-1.答案:-12.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.解析:因为当0≤x<2时,f(x)=x3-x,又f(x)是R上最小正周期为2的周期函数,且f(0)=0,所以f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,所以f(3)=f(5)=0.故函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为7.答案:7考点三函数性质的综合应用(题点多变型考点——多角探明)[锁定考向]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合;(4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.(2018·连云港模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=________. 解析:x >0时,-x <0,因为x <0时,f (x )=2x ,所以当x >0时,f (-x )=2-x .因为f (x )是R 上的奇函数,所以当x >0时,f (x )=-f (-x )=-2-x .答案:-2-x角度二:单调性与奇偶性结合 2.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数,且函数f (x )在区间[-1,a -2]上单调递增,则实数a 的取值范围为________.解析:当x <0时,-x >0,f (x )=-f (-x )=-[-(-x )2+2×(-x )]=x 2+2x ,x <0,所以m =2,所以f (x )的单调递增区间为[-1,1],因此[-1,a -2]⊆[-1,1]⇒-1<a -2≤1⇒1<a ≤3.答案:(1,3]角度三:周期性与奇偶性结合3.(2019·江阴期中)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时f (x )=x -2,则f (6.5)=________.解析:∵f (x +2)=-1f (x ), ∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),即函数f (x )的周期为4. ∵f (x )是定义在R 上的偶函数,∴f (-x )=f (x ), ∴f (6.5)=f (-1.5)=f (1.5)=-0.5. 答案:-0.5角度四:单调性、奇偶性与周期性结合4.已知函数y =f (x )是定义在R 上的奇函数,对任意x ∈R ,f (x -1)=f (x +1)成立,当x ∈(0,1)且x 1≠x 2时,有f (x 2)-f (x 1)x 2-x 1<0,给出下列命题:①f (1)=0;②f (x )在区间[-2,2]上有5个零点;③点(2 018,0)是函数y =f (x )图象的一个对称中心; ④直线x =2 018是函数y =f (x )图象的一条对称轴. 则正确命题的序号为________.解析:在f (x -1)=f (x +1)中,令x =0,得f (-1)=f (1),又f (-1)=-f (1),∴2f (1)=0,∴f (1)=0,故①正确;由f (x -1)=f (x +1),得f (x )=f (x +2),∴f (x )是周期为2的周期函数,∴f (2)=f (0)=0,又当x ∈(0,1)且x 1≠x 2时,有f (x 2)-f (x 1)x 2-x 1<0,∴函数f (x )在区间(0,1)上单调递减,可作出函数f (x )的大致图象如图所示.由图知②③正确,④不正确,故正确命题的序号为①②③. 答案:①②③[通法在握]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.[演练冲关]1.(2018·启东中学月考)已知函数f (x )在定义域[2-a,3]上是偶函数,在[0,3]上单调递减,且f ⎝⎛⎭⎫-m 2-a5>f (-m 2+2m -2),则实数m 的取值范围是________.解析:因为函数f (x )在定义域[2-a,3]上是偶函数,所以2-a +3=0,所以a =5,所以f ⎝⎛⎭⎫-m 2-a5>f (-m 2+2m -2),即f (-m 2-1)>f (-m 2+2m -2).由题意知偶函数f (x )在 [-3,0]上单调递增,而-m 2-1<0,-m 2+2m -2=-(m -1)2-1<0,所以由f (-m 2-1)>f (-m 2+2m -2),得⎩⎪⎨⎪⎧-3≤-m 2-1≤0,-3≤-m 2+2m -2≤0,-m 2-1>-m 2+2m -2,解得1-2≤m<12. 答案:⎣⎡⎭⎫1-2,122.设f (x )是定义在R 上周期为4的奇函数,若在区间[-2,0)∪(0,2]上,f (x )=⎩⎪⎨⎪⎧ax +b ,-2≤x <0,ax -1,0<x ≤2,则f (2 018)=________.解析:设0<x ≤2,则-2≤-x <0,f (-x )=-ax +b .f (x )是定义在R 上周期为4的奇函数,所以f (-x )=-f (x )=-ax +1=-ax +b ,所以b =1.而f (-2)=f (-2+4)=f (2),所以 -2a +1=2a -1,解得a =12,所以f (2 018)=f (2)=2×12-1=0.答案:0一抓基础,多练小题做到眼疾手快1.(2019·南通中学高三测试)已知函数f (x )是定义域为R 的奇函数,且f (-1)=2,那么f (0)+f (1)=________. 解析:因为函数f (x )是R 上的奇函数, 所以f (-x )=-f (x ),f (1)=-f (-1)=-2,f (0)=0, 所以f (0)+f (1)=-2. 答案:-22.(2018·南京三模)已知f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=2x -2,则不等式f (x -1)≤2的解集是________.解析:偶函数f (x )在[0,+∞)上单调递增,且f (2)=2.所以f (x -1)≤2,即f (|x -1|)≤f (2),即|x -1|≤2,所以-1≤x ≤3. 答案:[-1,3]3.函数f (x )=x +1x +1,f (a )=3,则f (-a )=________. 解析:由题意得f (a )+f (-a )=a +1a +1+(-a )+1-a +1=2.所以f (-a )=2-f (a )=-1. 答案:-14.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________. 解析:因为f (x )为奇函数,x >0时,f (x )=x +1, 所以当x <0时,-x >0, f (x )=-f (-x )=-(-x +1),即x <0时,f (x )=-(-x +1)=--x -1. 答案:--x -15.(2019·连云港高三测试)已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )= ⎝⎛⎭⎫13x,则f (-2+log 35)=________.解析:由f (x )是定义在R 上的奇函数,得f (-2+log 35)=-f (2-log 35), 由于当x >0时,f (x )=⎝⎛⎭⎫13x,故f (-2+log 35)=-f ⎝⎛⎭⎫log 395=-⎝⎛⎭⎫1339log 5=-59. 答案:-596.(2018·南通一调)若函数f (x )=⎩⎪⎨⎪⎧x (x -b ),x ≥0ax (x +2),x <0(a ,b ∈R )为奇函数,则f (a +b )=________.解析:法一:因为函数f (x )为奇函数,所以⎩⎪⎨⎪⎧ f (-1)=-f (1),f (-2)=-f (2),即⎩⎪⎨⎪⎧1(1-b )=a (-1+2),2(2-b )=2a (-2+2),解得⎩⎪⎨⎪⎧a =-1,b =2,经验证a =-1,b =2满足题设条件,所以f (a +b )=f (1)=-1.法二:因为函数f (x )为奇函数,所以f (x )的图象关于原点对称,由题意知, 当x ≥0,二次函数的图象顶点坐标为⎝⎛⎭⎫b 2,-b24, 当x <0,二次函数的图象顶点坐标为(-1,-a ),所以⎩⎨⎧-b2=-1,b24=-a ,解得a =-1,b =2,经验证a =-1,b =2满足题设条件, 所以f (a +b )=f (1)=-1. 答案:-1二保高考,全练题型做到高考达标1.(2018·抚顺期末)设f (x )是定义在[-2b,3+b ]上的偶函数,且在[-2b,0]上为增函数,则f (x -1)≥f (3)的解集为________.解析:∵f (x )是定义在[-2b,3+b ]上的偶函数, ∴-2b +3+b =0, ∴b =3,∴f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上为增函数, ∴f (x )在[0,6]上为减函数, ∴由f (x -1)≥f (3),得|x -1|≤3, 解得-2≤x ≤4,∴f (x -1)≥f (3)的解集为{x |-2≤x ≤4}.答案:{x |-2≤x ≤4}2.(2019·常州一中模拟)设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (-2 018.5)=________.解析:由f (x +1)+f (x )=1在R 上恒成立,得f (x -1)+f (x )=1,两式相减得f (x +1)-f (x -1)=0,即f (x +1)=f (x -1)恒成立,故函数f (x )的周期是2,∴f (-2 018.5)=f (-0.5)=f (1.5), 又当x ∈[1,2]时,f (x )=2-x , ∴f (-2 018.5)=f (1.5)=2-1.5=0.5. 答案:0.53.已知函数f (x )是定义在[-2,2]上的奇函数,且在区间[0,2]上是单调减函数.若f (2x +1)+f (1)<0,则x 的取值范围是________.解析:∵函数f (x )是定义在[-2,2]上的奇函数,且在区间[0,2]上是单调减函数, ∴函数f (x )在区间[-2,2]上是单调减函数. ∵f (2x +1)+f (1)<0,即f (2x +1)<-f (1), ∴f (2x +1)<f (-1).则⎩⎪⎨⎪⎧-2≤2x +1≤2,2x +1>-1,解得-1<x ≤12.∴x 的取值范围是⎝⎛⎦⎤-1,12. 答案:⎝⎛⎦⎤-1,12 4.(2018·泰州期末)设f (x )是R 上的奇函数,当x >0时,f (x )=2x +ln x4,记a n =f (n -5),则数列{a n }的前8项和为________.解析:数列{a n }的前8项和为f (-4)+f (-3)+…+f (3)=f (-4)+(f (-3)+f (3))+(f (-2)+f (2))+(f (-1)+f (1))+f (0)=f (-4)=-f (4)=-⎝⎛⎭⎫24+ln 44=-16. 答案:-165.(2018·徐州期中)已知函数f (x )=e x -e -x +1(e 为自然对数的底数),若f (2x -1)+f (4-x 2)>2,则实数x 的取值范围为________.解析:令g (x )=f (x )-1=e x -e -x ,则g (x )为奇函数,且在R 上单调递增.因为f (2x -1)+f (4-x 2)>2,所以f (2x-1)-1+f (4-x 2)-1>0,即g (2x -1)+g (4-x 2)>0,所以g (2x -1)>g (x 2-4),即2x -1>x 2-4,解得x ∈(-1,3).答案:(-1,3)6.(2019·镇江中学测试)已知奇函数f (x )在定义域R 上是单调减函数,若实数a 满足 f (2|2a -1|)+f (-22)>0,则a 的取值范围是________.解析:由f (2|2a-1|)+f (-22)>0,可得f (2|2a -1|)>-f (-22).因为f (x )为奇函数,所以f (2|2a -1|)>f (22).因为f (x )在定义域R 上是单调减函数,所以2|2a -1|<22,即|2a -1|<32,解得-14<a <54.答案:⎝⎛⎭⎫-14,54 7.(2019·苏州调研)已知奇函数f (x )在(-∞,0)上单调递减,且f (2)=0,则不等式f (x )x -1>0的解集为________.解析:由f (x )x -1>0,可得⎩⎪⎨⎪⎧ x >1,f (x )>0或⎩⎪⎨⎪⎧x <1,f (x )<0.因为奇函数f (x )在(-∞,0)上单调递减,所以f (x )在(0,+∞)上单调递减,且f (2)=f (-2)=0,所以当x >1时,f (x )>0的解集为(1,2);当x <1时,f (x )<0的解集为(-2,0).所以不等式f (x )x -1>0的解集为(-2,0)∪(1,2).答案:(-2,0)∪(1,2)8.函数f (x )在R 上满足f (-x )=-f (x ),当x ≥0时,f (x )=-e x +1+m cos(π+x ),记a =-πf (-π),b =-134·f ⎝⎛⎭⎫-134,c =e f (e),则a ,b ,c 的大小关系为________.解析:∵函数f (x )为R 上的奇函数,且当x ≥0时,f (x )=-e x +1+m cos(π+x ), ∴f (0)=-1+1-m =0,即m =0, ∴f (x )=-e x +1(x ≥0). 令g (x )=xf (x ),有g (-x )=(-x )f (-x )=xf (x )=g (x ), ∴函数g (x )为偶函数,当x ≥0时,g (x )=xf (x )=x (1-e x ),g ′(x )=f (x )+xf ′(x )=1-(1+x )e x <0, ∴函数g (x )在[0,+∞)上为减函数,∵a =-πf (-π)=g (-π)=g (π),b =-134f ⎝⎛⎭⎫-134=g ⎝⎛⎭⎫-134=g ⎝⎛⎭⎫134,c =e f (e)=g (e), 又e <π<134,∴b <a <c .答案:b <a <c9.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值;(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围. 解:(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x . 又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2. (2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧ a -2>-1,a -2≤1, 所以1<a ≤3,故实数a 的取值范围是(1,3].10.(2018·大同期末)已知函数f (x )=log a (x +1),g (x )=log a (1-x ),其中a >0,a ≠1.(1)求函数F (x )=f (x )-g (x )的定义域;(2)判断F (x )=f (x )-g (x )的奇偶性,并说明理由;(3)当a >1时,求使F (x )>0成立的x 的取值范围.解:(1)∵F (x )=f (x )-g (x )=log a (x +1)-log a (1-x ),∴⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1, ∴函数F (x )的定义域为(-1,1).(2)F (x )为(-1,1)上的奇函数.理由如下:由(1)知F (x )的定义域为(-1,1),关于原点对称,F (-x )=log a (-x +1)-log a (1+x )= -[log a (x +1)-log a (1-x )]=-F (x ),∴函数F (x )为(-1,1)上的奇函数.(3)根据题意,F (x )=log a (x +1)-log a (1-x ),当a >1时,由F (x )>0,得log a (x +1)>log a (1-x ),即⎩⎪⎨⎪⎧ x +1>0,1-x >0,x +1>1-x ,解得0<x <1,故x 的取值范围为(0,1).三上台阶,自主选做志在冲刺名校1.(2019·南通模拟)已知定义在R 上的奇函数y =f (x )满足f (2+x )=f (2-x ),当-2≤x <0时,f (x )=2x ,若a n =f (n )(n ∈N *),则a 2 018=________.解析:∵f (2+x )=f (2-x ),以2+x 代替上式中的x ,得f (4+x )=f (-x ),又函数y =f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴f (4+x )=f (-x )=-f (x ),再以4+x 代替上式中的x ,得f (8+x )=-f (4+x )=f (x ),∴函数f (x )的周期为8.∴a 2 018=f (2 018)=f (252×8+2)=f (2),而f (2)=-f (-2)=-14,∴a 2 018=-14. 答案:-142.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1)证明y =f (x )是周期函数,并指出其周期;(2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值.解:(1)由f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x , 且f (-x )=-f (x ),知f (3+x )=f ⎣⎡⎦⎤32+⎝⎛⎭⎫32+x =-f ⎣⎡⎦⎤32-⎝⎛⎭⎫32+x =-f (-x )=f (x ), 所以y =f (x )是周期函数,且T =3是其一个周期.(2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期, 所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函数,且|f (-x )|=|-f (x )|=|f (x )|,所以|f (x )|为偶函数.故g (x )=x 2+ax +3为偶函数,即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立.于是2ax =0恒成立,所以a =0.。
[整理]【创新设计】高考数学(苏教理)一轮题组训练:2-3函数的奇偶性与周期性.
第3讲 函数的奇偶性与周期性基础巩固题组(建议用时:40分钟)一、填空题1.(2013·温州二模)若函数f (x )=sin x (x +a )2是奇函数,则a 的值为________. 2.(2014·温岭中学模拟)f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________.3.(2013·重庆卷改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.4.函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为______.5.(2014·武汉一模)已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0且a ≠1),若g (2)=a ,则f (2)=________.6.(2013·青岛二模)已知函数f (x )是定义在R 上的奇函数,且满足f (x +2)=f (x )对任意x ∈R 成立,当x ∈(-1,0)时f (x )=2x ,则f ⎝ ⎛⎭⎪⎫52=________. 7.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.8.(2013·临沂模拟)下列函数①y =x 3;②y =|x |+1;③y =-x 2+1;④y =2x 中既是偶函数,又在区间(0,+∞)上单调递增的函数是________.二、解答题9.f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式.10.设f (x )是定义域为R 的周期函数,且最小正周期为2,且f (1+x )=f (1-x ),当-1≤x ≤0时,f (x )=-x .(1)判定f (x )的奇偶性;(2)试求出函数f (x )在区间[-1,2]上的表达式.能力提升题组(建议用时:25分钟)一、填空题1.(2013·昆明模拟)已知偶函数f (x )对∀x ∈R 都有f (x -2)=-f (x ),且当x ∈[-1,0]时f (x )=2x ,则f (2 013)=________.2.(2014·郑州模拟)已知函数f (x +1)是偶函数,当1<x 1<x 2时,[f (x 2)-f (x 1)](x 2-x 1)>0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为________. 3.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝ ⎛⎭⎪⎫121-x ,则: ①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增;③函数f (x )的最大值是1,最小值是0;④当x ∈(3,4)时,f (x )=⎝ ⎛⎭⎪⎫12x -3. 其中所有正确命题的序号是________.二、解答题4.已知函数f (x )在R 上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上,只有f (1)=f (3)=0.(1)试判断函数y =f (x )的奇偶性;(2)试求方程f (x )=0在闭区间[-2 014,2 014]上根的个数,并证明你的结论.第3讲 函数的奇偶性与周期性参考答案基础巩固题组(建议用时:40分钟)一、填空题1.解析 由f (-1)=-f (1),得sin (-1)(-1+a )2=-sin 1(1+a )2,∴(-1+a )2=(1+a )2解得a =0.答案 0 2.解析 f (3)=-f (-3)=-log 24=-2.答案 -23.解析 ∵f (x )=ax 3+b sin x +4,①∴f (-x )=a (-x )3+b sin(-x )+4,即f (-x )=-ax 3-b sin x +4,②①+②得f (x )+f (-x )=8,③又∵lg(log 210)=lg ⎝ ⎛⎭⎪⎫1lg 2=lg(lg 2)-1=-lg(lg 2),∴f (lg(log 210))=f (-lg(lg 2))=5, 又由③式知f (-lg(lg 2))+f (lg(lg 2))=8,∴5+f (lg(lg 2))=8,∴f (lg(lg 2))=3.答案 34.解析 f (x )的图象如图.当x ∈(-1,0)时,由xf (x )>0,得x ∈(-1,0);当x ∈(0,1)时,由xf (x )>0,得x ∈∅;当x ∈(1,3)时,由xf (x )>0,得x ∈(1,3).∴x ∈(-1,0)∪(1,3).答案 (-1,0)∪(1,3)5.解析 依题意知f (-x )+g (-x )=g (x )-f (x )=a -x -a x +2,联立f (x )+g (x )=a x -a -x +2,解得g (x )=2,f (x )=a x -a -x ,故a =2,f (2)=22-2-2=4-14=154.答案 1546.解析 因为f (x +2)=f (x ),故f ⎝ ⎛⎭⎪⎫52=f ⎝ ⎛⎭⎪⎫12=-f ⎝ ⎛⎭⎪⎫-12=1.答案 1 7.解析 ∵f (x )是偶函数,∴f (-x )=f (x )=f (|x |).∴不等式f (1-m )<f (m )⇔f (|1-m |)<f (|m |).又当x ∈[0,2]时,f (x )是减函数.∴⎩⎪⎨⎪⎧ |1-m |>|m |,-2≤1-m ≤2,-2≤m ≤2,解得-1≤m <12.答案 ⎣⎢⎡⎭⎪⎫-1,12 8.解析 因为①是奇函数,所以不成立.③在(0,+∞)上单调递减,不成立,④为非奇非偶函数,不成立,所以填②.答案 ②二、解答题9.解 当x <0时, -x >0,则f (-x )=-2(-x )2+3(-x )+1=-2x 2-3x +1.由于f (x )是奇函数,故f (x )=-f (-x ),所以当x <0时,f (x )=2x 2+3x -1.因为f (x )为R 上的奇函数,故f (0)=0.综上可得f (x )的解析式为f (x )=⎩⎨⎧ -2x 2+3x +1,x >0,0,x =0,2x 2+3x -1,x <0.10.解 (1)∵f (1+x )=f (1-x ),∴f (-x )=f (2+x ). 又f (x +2)=f (x ),∴f (-x )=f (x ),∴f (x )是偶函数.(2)当x ∈[0,1]时,-x ∈[-1,0],则f (x )=f (-x )=x ;进而当1≤x ≤2时,-1≤x -2≤0,f (x )=f (x -2)=-(x -2)=-x +2.故f (x )=⎩⎨⎧ -x ,x ∈[-1,0),x ,x ∈[0,1),-x +2,x ∈[1,2].能力提升题组(建议用时:25分钟)一、填空题 1.解析 由f (x -2)=-f (x )得f (x -4)=f (x ),所以函数的周期是4,故f (2 013)=f (4×503+1)=f (1)=f (-1)=2-1=12.答案 122.解析 ∵f (x +1)是偶函数,∴f (x +1)=f (-x +1),∴y =f (x )关于x =1对称.又1<x 1<x 2,[f (x 2)-f (x 1)](x 2-x 1)>0,知y =f (x )在[1,+∞)是增函数,又f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,且2<52<3,∴f (2)<f ⎝ ⎛⎭⎪⎫52<f (3),即b <a <c .答案 b <a <c3.解析 由已知条件:f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,①正确;当-1≤x ≤0时0≤-x ≤1,f (x )=f (-x )=⎝ ⎛⎭⎪⎫121+x ,函数y =f (x )的图象如图所示:当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝ ⎛⎭⎪⎫12x -3,因此②④正确,③不正确.答案 ①②④二、解答题4.解 (1)若y =f (x )为偶函数,则f (-x )=f [2-(x +2)]=f [2+(x +2)]=f (4+x )=f (x ),∴f (7)=f (3)=0,这与f (x )在闭区间[0,7]上只有f (1)=f (3)=0矛盾;因此f (x )不是偶函数. 若y =f (x )为奇函数,则f (0)=-f (0),∴f (0)=0,这与f (x )在闭区间[0,7]上只有f (1)=f (3)=0矛盾;因此f (x )不是奇函数.综上可知:函数f (x )既不是奇函数也不是偶函数.(2)由⎩⎨⎧ f (2-x )=f (2+x ),f (7-x )=f (7+x )⇒⎩⎨⎧f (x )=f (4-x ),f (x )=f (14-x )⇒ f (4-x )=f (14-x )⇒f (x )=f (x +10),从而知函数y =f (x )的周期T =10.由f (3)=f (1)=0,得f (11)=f (13)=f (-7)=f (-9)=0.故f (x )在[0,10]和[-10,0]上均有两个解,从而可知函数y =f (x )在[0,2 014]上有404个解,在[-2 014,0]上有402个解,所以函数y =f (x )在[-2 014,2 014]上共有806个解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(六) 函数的奇偶性及周期性
第Ⅰ组:全员必做题
1.x 为实数,[x ]表示不超过x 的最大整数,则函数f (x )=x -[x ]的最小正周期是________.
2.(2013·湖南高考改编)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-
1)=4,则g (1)等于________.
3.(2014·长春三校调研)已知函数f (x )=x 2+x +1x 2+1
,若f (a )=23,则f (-a )=________. 4.已知函数f (x )=x |x |-2x ,则下列结论正确的是________.(填写序号)
①f (x )是偶函数,递增区间是(0,+∞)
②f (x )是偶函数,递减区间是(-∞,1)
③f (x )是奇函数,递减区间是(-1,1)
④f (x )是奇函数,递增区间是(-∞,0)
5.(2014·南京摸底)已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 12
,则f (-4)的值是________.
6.若偶函数y =f (x )为R 上的周期为6的周期函数,且满足f (x )=(x +1)(x -a )(-3≤x ≤3),则f (-6)等于________.
7.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝⎛⎭⎫12x ,则f (1),
g (0),g (-1)之间的大小关系是______________.
8.(2012·江苏高考)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ ax +1,-1≤x <0,bx +2x +1
,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________. 9.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),
当0≤x ≤1时,f (x )=x .
(1)求f (3)的值;
(2)当-4≤x ≤4时,求f (x )的图像与x 轴所围成图形的面积.
10.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+2x ,x >0,0,x =0,
x 2+mx ,x <0
是奇函数.
(1)求实数m 的值;
(2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.
第Ⅱ组:重点选做题
1.(2013·南京二模)定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧
3x -1, x ≤0,f (x -1)-f (x -2), x >0,则f (2 016)=________.
2.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当
x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x ,则:
①2是函数f (x )的周期;
②函数f (x )在(1,2)上递减,在(2,3)上递增;
③函数f (x )的最大值是1,最小值是0;
④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.
其中所有正确命题的序号是________.
答 案
第Ⅰ组:全员必做题
1.解析:如图,当x ∈[0,1)时,画出函数图像,
再左右扩展知f (x )为周期函数.
答案:1
2.解析:由已知可得,-f (1)+g (1)=2,
f (1)+
g (1)=4,两式相加解得,g (1)=3.
答案:3
3.解析:根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=x x 2+1
是奇函数, 故f (-a )=1+h (-a )=1-h (a )=2-
[1+h (a )]=2-f (a )=2-23=43
. 答案:43
4.解析:将函数f (x )=x |x |-2x 去掉绝对值得f (x )=⎩⎪⎨⎪⎧
x 2-2x ,x ≥0,
-x 2-2x ,x <0,画出函数f (x )的图像,如图,观察图像可知,函数f (x )的图像关于原点对称,
故函数f (x )为奇函数,且在(-1,1)上单调递减.
答案:③
5.解析:因为f (x )是R 上的奇函数,
所以f (-4)=-f (4)=-412
=-2. 答案:-2
6.解析:∵y =f (x )为偶函数,且f (x )=(x +1)(x -a )(-3≤x ≤3),
∴f (x )=x 2+(1-a )x -a,1-a =0.
∴a =1.
f (x )=(x +1)(x -1)(-3≤x ≤3).
f (-6)=f (-6+6)=f (0)=-1.
答案:-1
7.解析:在f (x )-g (x )=⎝⎛⎭
⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )
=2x
.于是解得f (x )=2-x -2x 2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54, 故f (1)>g (0)>g (-1).
答案:f (1)>g (0)>g (-1)
8.解析:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,
且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1,即3a +2b =-2. ①
由f (-1)=f (1),得-a +1=b +22
, 即b =-2a .
②
由①②得a =2,b =-4,从而a +3b =-10.
答案:-10
9.解:(1)由f (x +2)=-f (x )得,
f (x +4)=f [(x +2)+2]=-f (x +2)=f (x ),
所以f (x )是以4为周期的周期函数,
所以f (3)=f (3-4)=-f (1)=-1.
(2)由f (x )是奇函数与f (x +2)=-f (x ),得f [(x -1)+2]=-f (x -1)=f [-(x -1)],即f (1+x )=f (1-x ).
故知函数y =f (x )的图像关于直线x =1对称.
又0≤x ≤1时,f (x )=x ,且f (x )的图像关于原点成中心对称,则-1≤x ≤0
时,f (x )=x ,则f (x )的图像如图所示.
当-4≤x ≤4时,设f (x )的图像与x 轴围成的图形面积为S ,
则S =4S △OAB =4×⎝⎛⎭⎫12×2×1=4.
10.解:(1)设x <0,则-x >0,
所以f (-x )=-(-x )2+2(-x )
=-x 2-2x .
又f (x )为奇函数,所以f (-x )=-f (x ),
于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.
(2)要使f (x )在[-1,a -2]上单调递增, 结合f (x )的图像知⎩
⎪⎨⎪⎧
a -2>-1,
a -2≤1, 所以1<a ≤3,
故实数a 的取值范围是(1,3].
第Ⅱ组:重点选做题
1.解析:x >0时,f (x )=f (x -1)-f (x -2),f (x +1)=f (x )-f (x -1),相加得f (x +1)=-f (x -2),即f (x +3)=-f (x ),所以f (x +6)=-f (x +3)=f (x ),进而f (2 016)=f (336×6)=f (0)=3-1=13
. 答案:13
2.解析:由已知条件:f (x +2)=f (x ),
则y =f (x )是以2为周期的周期函数,①正确;
当-1≤x ≤0时0≤-x ≤1,
f (x )=f (-x )=⎝⎛⎭⎫121+x ,
函数y =f (x )的图像如图所示:
当3<x <4时,-1<x -4<0,
f (x )=f (x -4)=⎝⎛⎭⎫12x -3,因此②④正确,③不正确.
答案:①②④。