第一章飞行力学基础2
飞行力学第1-2章非线性方程
方程组
dV Pky cos( p ) cos Q mg sin dt d mV Pky [cos( p ) sin sin s sin ( p ) cos s ] dt Y cos s Z sin s mg cos d s mV cos Pky [ cos( p ) sin cos s 无风 dt sin ( p ) sin s ] Y sin s Z cos s m
o :飞机质心。 oxt :在飞机对称平面内,沿结构纵轴指向前。
一般与翼弦或机身轴线平行。
oyt
:位于飞机对称面,垂直Oxt轴,向上为正 。 :按右手定则确定,垂直飞机对称面, 指向右翼为正 。 反映飞行器在空中的方位。
ozt
特点: 问: 答:
这里的“向上”与地面坐标系的“向上”一样吗? No.这里的“向上”是指从机腹指向座舱盖。
od od xd
od yd
:地面上任意选定的某一固定点。
:在水平面内,方向可以随意规定 。 :垂直向上 。 :按右手定则确定,在水平面内 。 惯性坐标系。飞行器的位置和姿态都是相 对于此坐标系来衡量的
od zd
特点:
牵连地面坐标系: 原点在质心。
南京航空航天大学空气动力学系
二、机体坐标系
oxt yt zt
五、半机体坐标系
oxb yb zb
o
:飞机质心。 :在飞机对称平面内,沿初始空速在对称面上 的投影方向。 :位于飞机对称面,垂直xb轴,向上为正 。 :按右手定则确定,垂直飞机对称面, 指向右翼为正 。 确定气动力。 这里的“向上”是指从机腹指向机舱盖。
南京航空航天大学空气动力学系
航空工程中的飞行力学资料
航空工程中的飞行力学资料一、引言航空工程中的飞行力学是关于飞行器运动与力学性质的研究,它涉及了飞机的设计、性能、操纵以及飞行安全等方面的知识。
飞行力学是航空工程师必须掌握的重要学科,对于航空器的飞行性能分析、飞行状态判断以及设计改进具有重要意义。
本文将主要介绍航空工程中的飞行力学所需的资料和相关知识。
二、飞行力学资料的介绍1. 飞行力学基本资料在研究飞行力学时,首先需要了解和掌握飞机的基本性能参数。
这些基本资料包括但不限于飞行器的质量、机翼面积、翼展、动力装置参数等。
这些基本资料的准确性对于飞行力学计算和分析至关重要。
另外,飞行力学还需要对飞行器的气动性能参数进行准确描述,如升力系数、阻力系数等。
通过合理选择和计算这些参数,可以帮助工程师对飞机的飞行性能和操纵性进行评估,以支持飞机的设计和改进。
2. 飞行力学试验数据为了更加准确地研究飞行力学问题,航空工程师通常会进行试验研究。
这些试验可以通过模型试验、风洞试验和实际飞行试验进行。
试验数据是飞行力学研究中不可或缺的资料,可以用于验证理论模型和计算模拟的准确性。
试验数据可以包括飞机的空气动力学参数、稳定性和操纵性参数,以及飞行器在不同飞行状态下的性能数据等。
这些数据对于飞机的设计、安全性评估和改进都具有重要意义。
3. 飞行力学计算和仿真软件随着计算机技术的发展,飞行力学的计算和仿真方法也得到了很大的进展。
工程师可以利用各种飞行力学计算软件进行飞机的性能预测和飞行状态仿真。
这些软件通常基于飞行力学理论和数值计算方法,能够模拟飞机在不同飞行条件下的性能和操纵特性。
使用计算和仿真软件可以提高工程师的工作效率,减少试验费用,并支持飞机的设计和改进。
三、飞行力学资料的应用1. 飞机设计和改进在飞机的设计和改进过程中,飞行力学资料起到了关键的作用。
基于准确的性能参数和试验数据,工程师可以进行飞机的性能预测和改进计划。
通过分析飞机的气动性能、操纵性和稳定性等方面的资料,可以帮助工程师进行飞机翼型、机翼布局、尾翼设计等关键部件的选择和优化。
飞机驾驶 教学书
飞机驾驶教学书飞机驾驶教学书
第一章:飞行前准备
1. 航空知识的基础
2. 飞行器构造与主要部件
3. 飞行器性能与规范
4. 天气预报与飞行计划
5. 飞行器设备与仪表
第二章:飞行动力学
1. 飞行力学基础
2. 升力与阻力的控制与调整
3. 重心与稳定性
4. 副翼与操纵装置的使用
5. 自动驾驶系统
第三章:飞行操作
1. 起飞与着陆
2. 飞行路线与航线控制
3. 空中导航与通信
4. 空中会合与防撞措施
5. 紧急情况处理与救生技术
第四章:特种飞行任务
1. 夜间飞行与仪表飞行
2. 高空飞行与超音速飞行
3. 远距离飞行与长时间飞行
4. 特殊地形与天气条件下的飞行
5. 特种机型的飞行技术
第五章:航空法律与规则
1. 国际航空法律与规定
2. 国内航空法律与规定
3. 飞行员的职责与义务
4. 事故与事故调查
5. 航空安全与保护措施
第六章:飞行心理与人因工程
1. 飞行员心理与自我管理
2. 疲劳与压力管理
3. 危险环境下的决策与反应
4. 人因工程在飞行操作中的应用
5. 飞行员的职业发展与培训要求
附录:相关图表与附录
以上是飞机驾驶教学书的大致内容,希望对您有所帮助。
民航飞力第一章
俯仰力矩平衡:
M z 0 M zs M zc 0
1 2 M z mz V SbA 2 俯仰力矩系数, mz 0 mzs mzc 0 由实验得出,综合
表达飞机迎角、焦 点位置、重心位置 和升降舵偏角对俯 仰力矩的影响。
俯仰力矩平衡条件:
飞机零升力矩、俯仰稳定力矩和俯仰
角速度向量的方向按右手
定则确定,如图所示。
图1-9 角速度向量表示法
(二)飞机的俯仰角速度、偏转角速度
和滚转 角速度
绕横轴角速度——俯仰角速度(ω z);
绕立轴角速度——偏转角速度(ω y); 绕纵轴角速度——滚转角速度(ω x). 角速度正负确定——右手定则并依据飞机坐标 轴的正负来确定。
四、飞机空气动力按机体轴系和气流轴系的分解
图1-2
表示飞机重心前后位置的方法是:将飞机重 心投影到平均空气动弦上,以重心的投影点 至平均空气动力弦前线的距离(XG)占该弦长
(bA)的百分比( XG )来表示重心的前后位
置(如图所示)。即
二、飞机的坐标系
飞机坐标系
地面坐标系
机体坐标系
气流坐标系
航迹坐标系
半机体坐标系 ……
注:中国与欧美坐标轴系的规定(如图1-3示)。
驾驶训练
飞行器运转
飞行性能
稳定性、操纵性
运动操纵原理
飞机空气动力学 —— 飞机为什么会飞? 飞机飞行力学 —— 如何飞如何飞得更好?
主要内容:
飞机的稳定性及操纵性 飞机飞行性能分析
保持和改变飞 行状态的能力。 必须考虑绕质 心的转动。 将飞机看作质 点系(刚体或弹性 体)。 外力作用下飞机 质心运动的规律。如: 基本飞行性能、续航 性能、机动性能、起 飞着陆性能等。 将飞机看作可控 质心。
航空航天工程师的飞行力学知识
航空航天工程师的飞行力学知识航空航天工程师是一个极具挑战性和技术要求高的职业,在他们的日常工作中需要掌握深入的飞行力学知识。
飞行力学是研究飞行器在大气中运动和控制的科学,对于航空航天工程师来说,它是必不可少的基础。
一、空气动力学力的作用在飞行力学中,空气动力学力的作用极为重要。
空气动力学力包括升力、阻力、推力和重力等等。
升力使得飞行器在大气中上升,阻力抵抗飞行器的前进方向,推力则通过推进剂提供动力,而重力是飞行器受到的地球引力。
飞行器的升力源于机翼的空气动力学特性。
机翼的形状和斜角会影响到飞行器产生的升力。
同时,附着到机翼上的襟翼和襟翼的操作也会对升力产生影响。
阻力则是飞行器前进时受到的空气阻碍,从而抑制了其速度的增加。
推力是由发动机提供的动力,足够大的推力可以克服阻力,使飞行器加速前进。
重力则是飞行器受到的地球引力,必须通过升力和推力来克服。
二、飞行器的运动学除了力的作用,航空航天工程师还需要了解飞行器的运动学知识。
在飞行力学中,飞行器的运动是三维的,并且受到外在力和力矩的影响。
外在力是指由空气动力学力所产生的力,如升力、阻力和推力等。
这些力会对飞行器产生推动、阻挡和转向的效果。
飞行器的外在力的大小和方向将直接影响到其运动状态。
此外,飞行器还会受到力矩的作用。
力矩会使得飞行器发生转动,并影响到其姿态和稳定性。
飞行器的推力和阻力分布、重心位置以及控制面的操作都会对力矩产生影响。
航空航天工程师通过研究飞行器的力矩,可以预测并控制飞行器的飞行轨迹和姿态。
三、飞行控制与稳定性在飞行力学中,航空航天工程师需要掌握飞行器的控制和稳定性。
飞行器的控制涉及到飞行器运动状态的改变,如姿态的调整和位置的变化。
而稳定性则是指飞行器在受到外界干扰后能够自动调整,并保持平稳飞行的能力。
飞行器的控制和稳定性主要依靠控制面实现。
控制面是飞行器上用于调整运动状态的活动部件,如副翼、方向舵和升降舵等。
航空航天工程师需要研究控制面的操纵和运动对飞行器的影响,以实现飞行器的精确控制和良好的稳定性。
民航飞力第一章
飞行器运转
飞行性能
稳定性、操纵性
运动操纵原理
飞机空气动力学 —— 飞机为什么会飞? 飞机飞行力学 —— 如何飞如何飞得更好?
主要内容:
飞机的稳定性及操纵性 飞机飞行性能分析
保持和改变飞 行状态的能力。 必须考虑绕质 心的转动。 将飞机看作质 点系(刚体或弹性 体)。 外力作用下飞机 质心运动的规律。如: 基本飞行性能、续航 性能、机动性能、起 飞着陆性能等。 将飞机看作可控 质心。
规定:上升时为正。
飞机坐标系 地面坐标系 机体坐标系 航迹坐标系 半机体坐标系 ……
俯仰角 坡度 偏航角
迎角 侧滑角
轨迹俯仰角
三、绕各坐标轴的角速度 (一)角速度的向量表示法(如图1-9)
角速度是向量(矢量),即有大小又有方向。
线段长短表示角速度大小; 可用带箭头的线段表示
箭头方向表示角速度方向。
3. 放减速板对飞机纵向平衡的影响
图1-17 放减速板对纵向平衡的影响
各型飞机减速板安装位置不同而影响不同。 在机身后段两侧 在机身下部 在机身两侧和下部
⑴ 装在机身两侧: 使流过平尾的气流向下弯曲,平尾产生向下附加升 力,形成抬头力矩. ⑵ 装在机身下部: 产生向下附加力矩——抬头力矩; 产生附加阻力且在重心之下——下俯力矩。 ⑶ 装在机身两侧和下部。
飞机以零升迎角飞行时,总升力为零,但存在机 翼正升力和尾翼负升力,它们构成一个上仰力矩,称
为零升力矩。
2.俯仰稳定力矩(Mzs)
由于迎角变化而产生的飞机附加升力的着力点, 叫做焦点。 由于迎角变化而产生的飞机附加升力对重心形成 的力矩,称为俯仰稳定力矩。
3.俯仰操纵力矩(Mzc)
由于飞机升降舵(或平尾)偏转所产生的升力 对飞机重心构成的力矩,称为俯仰操纵力矩。
飞行力学与飞行控制PPT精品文档
2020/10/7
13
操纵系统: 动力装置: 机载设备:
2020/10/7
14
第二章 飞机的一般运动方程
一、常用坐标体系、飞机运动参数定义 及坐标系转换
常用坐标体系(全部为右手直角坐标系) 地面坐标系Axdydzd:地面坐标系是相对地球表 面固定不动的,它的原点A 位于地面的任意选 定的某固定点,而Axd 轴位于地平面内并选定 的任一指定的方向,Ayd轴铅垂向上,Azd位于 水平面内,地轴系常用在表示飞机在空间的位置 和飞行轨迹。
微型扑翼飞机
200mm,总重11.5克,微型电
机驱动
2020/10/7
8
该微型旋翼飞行器基本尺寸为10cm,重 316g,其中发动机为微型柴油发动机,重 37g,燃油重132g。 上部装旋翼,下部装 照相机,采用GPS自动驾驶,留空时间 30min。可携带大约100g的设备。
美国洛克尼克的“克里扑里”微型旋翼飞行器
2020/10/7
4
导弹:大气层外的弹道导弹、装有翼面在大气 层内飞行地空导弹、巡航导弹等(和飞机很相 似!),一次性使用; (航空发动机,火箭发 动机作为动力)
飞机的分类:有人驾驶飞机、无人驾驶飞机
有人驾驶飞机:歼击机(战斗机)、截击机、 歼击轰炸机、强击机(攻击机)、轰炸机、反 潜机、侦察机、预警机、电子干扰机、军用运 输机、空中加油机、舰载飞机等;旅客机、货 机、公务机、农业机、体育运动机、救护机等
2020/10/7
15
机体坐标轴系Oxtytzt :机体坐标轴系是固连与飞 机并随飞机一起运动的一种动坐标系。其原点位 于飞机的重心,Oxt 轴与机翼的平均空气动力弦 线或机身轴平行,指向机头的方向为正,Oyt轴 位于飞机的对称面内垂直于Oxt轴,向上为正, 而Ozt轴则垂直与飞机的对称面,向右为正 气动力矩的三个分量即滚转力Mx,偏航力矩My
大气飞行力学第2-1章补充基本性能
上升性能
适用方程
P ky = P px + G sin θ ⎫ ⎬ Y = G ⎭ (θ , [α + ϕ p ]不大 )
适用方法
简单推力法
大气飞行力学--基本性能
一、上升角θ和最大上升角θmax
Pky = Ppx + G sin θ ⇒
sin θ = ΔP ΔP ⇒ θ = sin − 1 ( ) G G − 1 Δ Pmax ) ⇒ θ max = sin ( G
图1
推力曲线(H=5000米)
图2
推力曲线(H=14000米)
大气飞行力学--基本性能
1-2 飞机定常平飞性能的确定 定常平飞性能指标 Pf
性能指标
Vmax ( Mmax ) , Vmin, Hmax ,平飞包线
11 km
H
简单推力法 在近似公式的基础上,根据 可用推力和平飞需用推力曲 线确定性能的方法。
飞行参数不 随时间变化
大气飞行力学--基本性能
1-1 飞机定常平飞需用推力曲线 一、基本定义和计算公式 定义
飞机在一定高度、一定速度作定直平飞时,所需 要的发动机推力,称为定常平飞需用推力Ppx。
Ppx = f ( H , V )
基本公式
平飞需用推力曲线
Kmax 亚音速飞机
先进布局 1 ⎧ 2 经典超音 ⎪ Ppx = Qpf = C x 2 ρV S ⎪ 速飞机 ⎨ ⎪G = Y = C y 1 ρV 2 S M ⎪ ⎩ 2 ∴ K max ↔ Ppx min ↔ Vyl , α yl , C yyl
零升阻力 升致阻力 (诱导阻力)
大气飞行力学--基本性能
一)平飞需用推力随飞行速度的变化规律
AG 2 1 2 Q0 = C x 0 ρV S , Qi = 1 2 ρV 2 S 2 M < M lj (亚音速范围 )
飞行力学知识点
飞行力学知识点一、协议关键信息1、飞行力学的基本概念和原理定义:____________________________研究范围:____________________________重要性:____________________________ 2、飞行器的受力分析重力:____________________________升力:____________________________阻力:____________________________推力:____________________________3、飞行性能参数速度:____________________________高度:____________________________航程:____________________________续航时间:____________________________4、飞行器的稳定性和操纵性稳定性的类型:____________________________操纵性的要素:____________________________稳定性与操纵性的关系:____________________________5、飞行轨迹和导航常见的飞行轨迹:____________________________导航方法:____________________________导航系统的组成:____________________________二、飞行力学的基本概念和原理11 飞行力学的定义飞行力学是研究飞行器在空中运动规律的学科,它综合了力学、数学、物理学和工程学等多学科的知识,旨在揭示飞行器在不同飞行条件下的受力、运动状态和性能特征。
111 研究范围飞行力学的研究范围涵盖了飞行器的起飞、爬升、巡航、下降、着陆等各个飞行阶段,以及飞行器在不同气象条件、飞行高度和速度下的运动特性。
112 重要性飞行力学对于飞行器的设计、性能评估、飞行控制和飞行安全具有至关重要的意义。
第一章-2 飞行动力学-纵向气动力
飞行力学基础
第四节 纵向气动力与气动力矩
南航金城学院 赵宾
2010,9
一、升力L
1.机翼升力:低速机翼(a),超音速机翼(b)
• 翼弦长c——翼型前缘点A至后缘点B的距离 • 相对厚度 , , t —— 最大厚度 • 相对弯度 , , f —— 中弧线最高点至翼弦线距离
超音速机翼特点:没有弯度且相对厚度很薄 机翼形状对产生的升力有很大影响
(2)三维机翼的气动力矩
三维机翼:机翼弦长取CA —平均气动弦
三维机翼的焦点:亚音速: 大后掠角、小展弦比等因泰对焦点位置 有较大影响 三维机翼的俯仰力矩:由焦点得出 设飞机质心与平均气动弦前缘点的距离为Xc.g. 令: 对质心的力矩系数为 由于焦点到前缘的距离与质心到前缘的距离都是常值 所以俯仰力矩系数可用线性描述
也可用俯仰力矩系数Cm描述:
(一)定常直线飞行的俯仰力矩
此飞行状态下,近似认为 一般阻力的作用线接近飞机重心,故可以忽略,俯仰力矩主 要由升力引起。
1.机翼产生的俯仰力矩Mw—— 机翼升力产生 (1)气动焦点 为方便地对重心求矩,将机翼、机身和平尾产生的升力理解 为集中作用于一点---气动焦点。 位置不随迎角变化。
3.水平尾翼的俯仰力矩
平尾对质心的俯仰力矩
Mt=-Lt*lt=CmtQSwcA Lt— 平尾升力, lt—平尾焦点至飞机质心距离,也称平尾力臂
平尾升力 平尾力矩系数
式中第一项与全机迎角有关。正向增加则平尾对质心的负力矩也增大, 是稳定作用。平尾对全机的作用是使焦点后移 式中第二项与升降舵偏转角有关,称为俯仰操纵力矩,可写为操纵力矩系 数导数,一般为常值。
四、操纵舵面的铰链力矩(续)
• 升降舵的铰链力矩系数在平尾迎角及升降舵偏转角都 不大的情况下,可表示为 式中 为铰链力矩导数,与马赫数M有关。 其他舵面的描述相同 人或舵机操纵舵面偏转时,不仅要克服操纵机构的摩 擦力和惯性力,而且要克服舵面的铰链力矩。铰链力 矩是驾驶员和舵机的负载力矩。 随着飞行速度的提高及尺寸的加大,完全依靠人力操 纵舵面已不可能,因而现代飞机上都装有电动或液压 助力器。 铰链故障会直接造成飞行控制失控
飞行力学知识点
飞行力学知识点飞行力学知识点集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
飞行力学知识点总结
飞行力学知识点总结一、飞行力学的基本概念1. 飞行力学的定义飞行力学是研究飞机在大气环境中的运动规律和飞行性能的科学学科。
它包括飞行动力学、飞行静力学和航向稳定性等内容。
2. 飞机的运动状态飞机的运动状态包括静止状态、匀速直线运动状态和加速直线运动状态等多种状态。
在进行飞机设计与分析时,需要充分考虑飞机在不同运动状态下的特性和性能。
3. 飞机的坐标系飞机通常采用本体坐标系和地理坐标系进行描述和分析。
本体坐标系是以飞机为参考物体建立的坐标系,用于描述和分析飞机内部的运动规律;地理坐标系是以地球表面为参考物体建立的坐标系,用于描述和分析飞机在大气中的运动规律。
4. 飞机的运动参数飞机的运动参数包括速度、加速度、位移、航向、倾角等多个参数,这些参数直接影响着飞机的飞行状态和性能。
二、风阻和升力1. 风阻的概念和特性风阻是飞机在飞行中受到的空气阻力,它随飞机速度和气动外形等因素变化。
风阻的大小直接影响飞机的燃油消耗和续航力。
2. 风阻的计算方法风阻的计算一般采用实验测定和理论计算相结合的方法,通过气动力学原理和风洞试验等手段来确定飞机在不同速度下的风阻系数和风阻大小。
3. 升力的概念和特性升力是飞机在飞行过程中所受到的向上的气动力,它是飞机能够在大气中持续飞行的重要保障。
升力的大小取决于飞机的气动外形、机翼面积和攻角等因素。
4. 升力的计算方法升力的计算一般采用理论推导和数值模拟相结合的方法,通过气动力学公式和实验数据来确定飞机在不同状态下的升力大小和升力系数。
三、飞机的稳定性和控制1. 飞机的平衡状态飞机的平衡状态包括静态平衡和动态平衡两种状态。
静态平衡是指飞机在静止状态下所处的平衡状态,动态平衡是指飞机在运动过程中所处的平衡状态。
2. 飞机的稳定性飞机的稳定性是指飞机在受到外界扰动时能够自动恢复到原来的平衡状态的能力。
飞机的稳定性直接影响着其飞行过程中的安全性和舒适性。
3. 飞机的控制系统飞机的控制系统包括飞行操纵系统、引擎控制系统和动力控制系统等多个部分,它们协同工作来保证飞机在飞行中能够保持稳定的运动状态和实现各种飞行任务。
4、飞行力学第一章(2)
gx
0 g sina
m
g
y
Lkg
m
0
m
0
gz k
所以
g g cos a
m(V t
V )
Tx
Lkb
Tx
D 0
Lka
C
Lkg
0
Tx b
L
m g
方程左边
dV dt 0
dV dt
0 0
cos
cos
0
sin
V
sin
0
0 0
) sin cos] Lsin C cos
m V d
T[ cos(
) sin sin sin
dt
( ) cos] L cos C sin m gcos
m dV T cos( ) cos D
dt
mV
d
dt
T[sin(
)sin
cos(
1.动力学方程
对称飞行条件可描述为:
0, 0, d 0
dt
动力学方程可简化为:
m dV T cos( ) cos D m gsin
dt
m V cos d T[sin( ) sin cos(
dt
) sin cos] Lsin C cos
mV
d
标量形式方程组
m dV T cos( ) cos D m gsin
dt
mV
c os
d
dt
T[sin(
) sin
cos(
) sin
c os ]
Lsin C cos
d
mV
T[ cos( ) sin sin sin( ) cos]
飞行基础学习知识原理学习知识要点
第一章飞机和大气的一般介绍1、机翼的剖面参数:翼弦:翼型前沿到后沿的连线。
厚度:上翼面到下翼面的距离;最大厚度;最大厚度位置:最大厚度到翼型前沿的距离与弦长的比值,用百分比表示;相对厚度:(厚弦比)翼型最大厚度与弦长的比值,用百分比表示。
中弧线:与翼型上下表面相切的一系列元的圆心的连线(中弧线到上下翼面的距离相等),对称翼面中弧线与翼弦重合。
弧高:中弧线与翼弦的垂直距离;相对弯度:最大弧高与翼弦的比值,用百分比表示。
2、机翼的平面形状参数:平直机翼有极好的低速特性,便于制造;椭圆形机翼的阻力最小,但是难以制造,成本高;梯形机翼结合律矩形机翼和椭圆机翼的优缺点,具有适中的升阻特性和较好的低速性能,制造成本也较低;后掠翼和三角翼有很好的高速性能,主要用于高亚音速飞机和超音速飞机,低速性能较差翼展:机翼翼尖之间的距离;展弦比:机翼翼展与平均弦长的比值(表示机翼平面形状长短和宽窄的程度);梢根比:机翼翼尖弦长玉机翼翼根弦长的比值(表示翼尖道翼根的收缩度);后掠角:机翼1/4弦线玉机身纵轴垂直线之间的夹角(表示机翼的平面形状向后倾斜的程度)第二节大气的一般介绍空气密度减小对飞行的影响:真空速不断增大、发动机效率降低空气压力降低的线性变化规律:高度上升8.25(27ft)米气压降低1hPa;高度上升1000ft 气压降低1inHg;高度上升11米气压降低1mmHg空气温度降低的线性变化规律:高度上升1000米温度下降6.5°高度上升1000ft温度降低2°湿度越大,空气的密度越小(水蒸气是干空气重量的62%);相对湿度,露点(反映空气中水汽含量的多少,假如空气中水汽含量多,温度降低很少—相对较高的温度就可以达到饱和,露点就高),气温露点差:就是实际气温与露点的差值,反映空气的潮湿程度中低空高度每升高1000米真空速比表速约大5%;气温升高5°速度增大1%第二章低速空气动力学第一节低速空气动力学基础1、飞机的相对气流:相对于飞机运动的空气流,方向与飞行速度方向相反。
飞行力学知识点
1.最大飞行速度:飞机在某高度上以特定的重量和一定的发动机工作状态进行等速水平直线飞行所能达到的最大速度称为飞机在该高度上的最大平飞速度,各个高度上的最大平飞速度中的最大值,称为飞机的最大平飞速度。
2.最小平飞速度:指飞机在一定高度上能作定直平飞的最小速度3.实用静升限:飞机以特定的重量和给定的发动机工作状态做等速直线平飞时,还具有最大上升率为5(m/s)或0.5(m/s)的飞行高度。
4.理论静升限:飞机以特定的质量和给定的发动机工作状态能够保持等速直线平飞的飞行高度,也就是上升率等于零的飞行高度5.飞机的航程:飞机携带的有效载荷在标准大气及无风情况下,沿预定航线飞行,耗尽其可用燃油所经过的水平距离(包括上升和下滑的水平距离)。
6.飞机的航时:飞机携带的有效载荷在标准大气及无风条件下按照预定航线飞行,耗尽其可用燃油所能持续的飞行时间。
7.飞机的过载:作用在飞机上的气动力和发动机推力的合力与飞机重力之比,称为过载。
8.上升率:飞机以特定的重量和给定的发动机工作状态进行等速直线上升时在单位时间内上升的高度,也称上升垂直速度。
9.定常运动:运动参数不随时间而改变的运动。
10.飞机的平飞需用推力:飞机在某一高度以一定的速度进行等速直线平飞所需要的发动机推力11.铰链力矩:作用在舵面上的气动力对舵面转轴的力矩,称为铰链力矩12.最短上升时间:以最大上升率保持最快上升速度上升到预定高度所需要的时间13.小时耗油率:飞机飞行一小时发动机所消耗的燃油质量14.公里耗油率:飞机飞行一公里发动机所消耗的燃油质量15.飞机的最大活动半径:飞机由机场出发,飞到目标上空完成一定任务后,再飞回原机场所能达到的最远距离。
16.飞机的焦点:当迎角变化时,气动力对该点的力矩始终保持不变,这样的特殊点称为机翼的焦点17.尾旋:当飞机迎角超过临界迎角时,飞机同时绕三个机体轴旋转并沿小半径的螺旋轨迹急剧下降的运动18.升降舵平衡曲线:在满足力矩平衡(Mz=0)条件下,升降舵偏角与飞机升力系数之间的关系19.极曲线:反应飞行器阻力系数与升力系数之间的关系的曲线20.机体坐标系:平行于机身轴线或机翼的平均气动原点,位于飞机的质心;Oxb轴在飞机的对称面内,弦线指向前;Ozb轴也在对称面内,垂直于Oxb轴,指向下;Oyb轴垂直于对称面,指向右。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动压:单位体积空气流动的动能。
P1
1 2
V
2
伯努利方程 (适用于低速流)
p 1 V 2 C 常数
2
含义:静压p与动压之和沿流管不变。 动压:单位体积空气流动的动能。 意义:在同一流管中,流速大的地方静压小,流
速小的地方静压大。
大气地面值
在海平面,地理纬度为 4532'33"时的大气地面值 为:气压 p0 101.325kpa 气温 T0 288.15k ; 密度 0 1.225kg / m3 ; 声速 A0 340.294m / s 。 随着飞行高度的变化,气温、密度、重力加速度、 音速的计算公式为:
第一章 飞行力学基础 二
1.2、作用于飞机的力和力矩
飞机在空气中飞行时,其表面分布着空气动力: 作用于飞机质心处的合力; 一个绕质心的合力矩;
在空气动力学,常常将总空气动力在气流坐标 轴系内分解为升力(L)、阻力(D)、侧力(Y),总空 气动力矩在机体坐标系内分解为俯仰力矩(M)、偏 航力矩(N)和滚转力矩(L)。
e
Y
r
Y
T
H
V
1.2.2 空气动力与力矩
空气性质包括一定飞行高度上的压力、温度、 密度、黏度、声速。 一、基本概念 1、压强
大气的静压强实质上就是这一点以上的空气的 单位面积上的重量。
P R ,R T 2J 8 /k (7 K g )
作用在飞机上的和力矩矢量是延机体轴分解成滚转
力矩 L、俯仰力矩 M、偏航力矩N。
滚转力矩系数(绕x轴):Cl
LA QS wb
;
俯仰力矩系数(绕y轴):Cm
MA QS wC A
偏航力矩系数(绕z轴):Cn
NA QS wb
对于飞机,参考面积取机翼平面的面积, 滚动和偏航的特征长度取机翼的翼展,对 俯仰方向取平均气动弦长。
个作用于飞机质心的合力矢量和一 个合力矩矢量。
(1)总空气动力延气流坐标系的分解
作用在飞机上的合力F延气流坐标系各轴的
分量分别为:XA,YA,ZA。与动
Q 1 V 2
2
压
Sw
、机翼面积
成
正比。比例系数称为空气动力系数CD,CY,CL。
通常表示成升力L(-Z)、阻力D(-X)和侧
力Y。
(2)总空气动力矩延机体坐标系的分解
临界马赫数:当翼面上最大速度处的流速 等于当地音速时,远前方的迎面气流速度 与远前方空气的音速之比。
马赫数Ma区间划分: 亚声速(subsonic speedsM),a 0.8 跨声速(transonic speeds0).8, Ma 1.2
超声速(supersonic speeds1).2, Ma 5.0 高超声速(hypersonic speeds5).0, Ma
CLb 为机身的升力系数
CLt 为平尾升力系数
0时,CLW 0 因为机翼有正弯
度。
CLW 0 时的迎角称为零升迎角0,
一般为负值。
临界迎角cr为使CLW CLW max 时的 迎角;
cr时,机翼上表面气流严重
分离并形成大漩涡,故升力不再
3、机翼术语
沿着与飞机对称面平行 的平面在机翼上切出的 剖面称为机翼的翼型, 又叫翼剖面
机翼定义
弦线:前缘和后援的连线称为弦线,距离称为弦长 CA。
厚度分布函数:yc=y上(x)-y下(x) 中弧线: yf=y上(x)+y下(x) 机翼厚度:bmax=max(yc(x)) , 0<x<CA; 相对厚度:bbmax/CA 弯度:f=max yf , , 0<x<CA; NACA系列翼型,四位数字翼型和五位数字翼型
常见的机翼形状
3、机翼术语
(1)机翼展长b,机翼两侧翼尖之间的距离;
(2)机翼面积 SW : 参考面积:机翼在水平面的投影面积; 表面积:露在外面的机翼的表面面积,又称浸润
面积; 参考面积决定升力大小 ,浸润面积决定摩擦
阻力大小。浸润面积与参考面积之比越小,则升 阻比就越大。
各种飞机表面积与机翼参考之比
驾驶员通过驾驶杆、脚蹬和操纵杆系操纵舵面
驾驶杆位移e
:
前推驾驶杆e〉0 e 左倾驾驶杆e〉0 a
0 0
M 0低头 L 0左滚
脚蹬位移r : 左脚蹬向前r〉0 r 0 N 0左偏
操纵机构与运动参数间调整关系:
T 288.15 0.0065* High
0 * (1 0.225577e4 * High)4.25588
A 20.0648* T g 9.80665 /(1 High / 6.356766e6 )2
2、马赫数M
马赫数定义为气流速度(V)和当地音速 (a)之比, M=V/A。 马赫数M的大小表示空气受压缩的程度。
1.2.1 操纵机构
被控量:三个姿态角、高度、速度及侧偏 利用升降舵、副翼、方向舵、油门杆来控制
升降舵偏角e:平尾后缘下偏为正 e〉0 M<0 副翼偏转角a:右翼后缘下偏(右下左上)为正 a〉0 L<0 方向舵偏转角r:方向舵后缘向左偏为正 r〉0 N<0 油门杆位置T:向前推油门杆为正 T〉0 加大油门、推力
1.2.3 纵向气动力
1、升力L
机翼、平尾、机身(少量)均产生升力
L=Lw Lb Lt
L:总升力
L w :机翼升力
Lb :机身升力
L t :平尾升力
1、升力L
L=CLQSw
CL
升力系数,Q
1 2
V2
动压头,S w
机翼面积;
C LC Lw C Lb C Lt
其中: CLW 为举力系数(机翼升力系数)
弦长 c ( z ) :弦长是机翼前缘与后缘之间的距离。
平均气动弦长:
cA
2 SW
b 2 c2 y dy
0
展弦比: A
b2 SW
后掠角 :前缘或者某条连接翼根与翼尖的直线与z轴
的夹角;
动压头
Q
1 2
V2
4、空气动力和空气动力系数 作用在飞机上的空气动力归为一