细胞培养实验电子版本
细胞培养实验报告
细胞培养实验报告细胞培养是现代生物学研究中不可或缺的手段,其涉及到细胞的生长、分化、代谢以及各种分子和信号的相互作用等。
今天我将分享一份由我亲自进行的细胞培养实验报告,以介绍这一重要技术的原理、步骤和结果。
实验原理细胞培养指的是将体外的细胞,按照一定比例和条件,放置在培养基中进行生长和繁殖的一种方法,通常包含以下步骤:使用无菌操作要求的器材和条件进行细胞总和的计数、试管的制备、制备试验培养液、细胞处理、细胞复苏、细胞的种植等。
实验步骤在实验之前,需要先准备培养所需的器材和试剂,如细胞培养基、跳汞灯、无菌器皿、超净台、离心管、显微镜和培养皿等。
接下来,我们按照以下步骤进行细胞培养。
1. 细胞的收获和处理我们用脱离液将细胞从体内取出,再加入一个特定的培养基中。
我们需要用细胞水平计算细胞总量,并将其分为每个培养皿中的所需数量。
如我们所选的細胞因子等指标。
2. 细胞扩增和培养在试管中添加适当的培养基、生长因子、荷尔蒙和混合,将所有细胞加入并处理好,很快开始分裂形成足够的细胞密度。
3. 培养的观察和种植使用无菌操作的器材和技术检查细胞的状况和数量,然后将其通过无菌技术铺在特定的基质上,进行后续的观察和研究。
实验结果在本次细胞培养实验中,我们成功提取了人造血液中的白细胞,通过分裂和培养,检测到细胞数量的增加和改变,以及不同化学和物理刺激的作用。
我们也观察了细胞的状态、形态和细胞核的状态,以评估其是否处于正常状态。
此外,我们还测试了不同培养条件下的生长速度和丰度,比较了细胞的发育和生长。
结论和思考在本次实验中,我们成功进行了细胞培养,该技术不仅可用于证实细胞的正常生长和增殖,还可用于疾病的研究和治疗中。
在实验中,我们需要注意无菌操作、培养条件和细胞的状态,以保证实验的成功和准确性。
总之,本次细胞培养实验为我们提供了一个更深入地了解细胞生物学的机会。
不仅可以促进人类健康的治疗方法,还可以为制药、医疗和工业领域提供更好的方法和技术。
细胞培养实验报告
动物细胞造就一.实验目标.1.控制无菌操纵技巧.2.控制原代和传代细胞造就.3.控制细胞冷冻和苏醒技巧.4.懂得造就成纤维细胞的形态.二.实验道理.将动物机体的组织从机体中掏出,经各类酶(经常运用胰蛋白酶).螯合剂(经常运用EDTA)或机械办法处理,疏散成单细胞,置适合的造就基中造就,使细胞得以生计.发展和滋生,这一进程称原代造就.细胞在造就瓶长成致密单层后,已根本上饱和,为使细胞能持续发展,同时也将细胞数目扩展,就必须进行传代(再造就). 传代造就也是一种将细胞种保管下去的办法.同时也是运用造就细胞进行各类实验的必经进程.悬浮型细胞直接分瓶就可以,而贴壁细胞需经消化后才干分瓶.对具有移动特征的稳固细胞系或细胞株进行长期保管,一方面可以作为细胞研讨的实验材料,另一方面可以做细胞成品的临盆材料.今朝普遍运用的细胞保管办法是低温冷冻保管法,.细胞的冷冻保管的原则是慢冻快融,如许做是为了防止细胞因为冷冻进程中产生了冰晶而产生细胞决裂.三.实验器材及药品.器材:怀孕的小白鼠.造就箱.造就瓶.造就皿.移液器.眼科剪.镊子.酒精灯.离心计心情.水浴锅.倒置显微镜.CO2造就箱.超净工作台.离心管.高压灭菌锅.试管架等.药品:小牛血清.DMEM合成造就基.抗生素.DMSO冷冻剂.胰酶.PBS 缓冲液等.四.实验操纵.1.消毒灭菌.将实验所需用到的对象(如枪头.造就皿.眼科剪.镊子以及每小我的实验服等)分散灭菌.烘干.配制75%的酒精以备实验时所需.2.造就基的配制.分别取10ml的小牛血清.90ml的DMEM合成造就基,将两种造就基混杂在一路,再向个中参加1ml的抗生素,吹打混匀就得到了细胞造就的造就液.3.原代造就.(1).预备.将实验进程中会用到的对象以及药品全体放在超净工作台长进行紫外消毒灭菌.实验开端前带好乳胶手套,用酒精敌手进行消毒.将怀孕的小白鼠放在酒精中杀逝世,掏出子宫内的胚胎组织.(2).剪切与消化.将胚胎组织放于平板中,用眼科剪将组织块剪碎,剪得越碎越好.将剪碎的组织块放于离心管中,参加大约200µl 的胰酶进行消化.也可将其置于37度恒温箱中进行消化.(3).分别细胞.消化到一准时光时,假如离心管中的溶液中消失了显著的污浊,可用吸管吸出少许消化液在镜下不雅察,如组织已疏散成细胞团或单个细胞,则应当参加与胰酶等量的造就液终止消化.离心管于离心计心情中离心,弃上清液,得到疏散的细胞.℃恒温CO2箱造就,瓶口极少拧的松一点.4.传代造就.(1).倒置显微镜下不雅察细胞的形态.倒置显微镜下不雅察造就细胞的长势及密度,依据细胞密度决议传代的稀释倍数.(2).收集原代造就的细胞.吸出造就瓶中的旧造就液,并用PBS 冲洗两遍.然后向造就瓶中参加200µl的胰酶进行消化.消化一段时光后用设置装备摆设好的造就液等比例终止消化.然后离心,收集到原代造就的细胞.(3).传代细胞的造就.向离心管内参加大约7—8ml的造就液,吹打混匀.将造就液转移到造就瓶中,置于37度恒温CO2造就箱中造就.造就1—2天后于显微镜下不雅察细胞的形态.5.细胞冷冻保管.(1).收集细胞.吸出造就瓶中的旧造就液,并用PBS冲洗两遍.然后向造就瓶中参加200µl的胰酶进行消化.消化一段时光后用设置装备摆设好的造就液等比例终止消化.然后离心,收集细胞.(2).冷冻.向离心管中参加必定量的造就液以及10%—20%的DMSO冷冻液,吹打混匀并转移到冷冻管中.先将冷冻管在4度冰箱中放置10min,再放在—70度的冰箱中冷冻留宿.(3).苏醒.将冷冻的细胞掏出来后,连忙放在40度水浴中,使其快速熔化.并对熔化的细胞进行进一步的不雅察.五.实验成果.传代细胞传代第一次换液细胞原代第一次的细胞原代第四天的细胞冷冻苏醒的细胞六.实验剖析与评论辩论.从本次实验的图片可以看出来,实验做得还算成功,细胞根本上没有被污染.在做的进程中必定要异常留意无菌操纵,这是决议实验成功的症结身分.在做原代造就的时刻,必定要将小鼠胚胎的组织块剪得够碎,确保在用胰酶消化后可以得到分别的单个细胞.在做传代造就时,要掌控好胰酶的消化时光.冷冻苏醒时,必定要按照步调进行冷冻,遵守慢冻速溶的原则.。
细胞培养技术实验报告单
一、实验目的1. 熟悉细胞培养的基本原理和操作步骤。
2. 掌握原代细胞培养和传代细胞培养的方法。
3. 了解细胞培养过程中常见问题的处理方法。
二、实验原理细胞培养是指将生物体内的细胞取出,在无菌条件下,模拟体内环境,使其在体外生长、繁殖和传代的过程。
细胞培养技术在生物学、医学和生物工程等领域具有广泛的应用。
三、实验材料与仪器1. 材料:原代细胞、培养皿、培养瓶、吸管、移液器、胰蛋白酶、EDTA、D-Hank's液、胎牛血清、PBS缓冲液、消毒剂等。
2. 仪器:显微镜、生物安全柜、CO2培养箱、超净工作台、离心机、水浴锅、酒精灯等。
四、实验步骤1. 原代细胞培养(1)取原代细胞,加入适量D-Hank's液,轻轻吹打使细胞悬浮。
(2)将细胞悬液加入培养皿,在CO2培养箱中培养。
(3)观察细胞生长情况,待细胞贴壁后,用移液器将细胞悬液转移至培养瓶中。
(4)加入适量胎牛血清,轻轻摇匀,放入CO2培养箱中继续培养。
2. 传代细胞培养(1)将培养瓶中的细胞用胰蛋白酶或EDTA消化。
(2)加入适量PBS缓冲液,终止消化反应。
(3)将细胞悬液转移至离心管中,离心去上清液。
(4)加入适量胎牛血清,轻轻摇匀,使细胞重新悬浮。
(5)将细胞悬液转移至新的培养瓶中,加入适量胎牛血清,放入CO2培养箱中继续培养。
3. 细胞冻存(1)将培养瓶中的细胞用胰蛋白酶或EDTA消化。
(2)加入适量胎牛血清,终止消化反应。
(3)将细胞悬液转移至离心管中,离心去上清液。
(4)加入适量冻存液(如DMSO),轻轻摇匀,使细胞重新悬浮。
(5)将细胞悬液转移至冻存管中,放入液氮中冻存。
五、实验结果与分析1. 原代细胞培养:细胞在培养皿中贴壁生长,细胞形态良好。
2. 传代细胞培养:细胞在培养瓶中生长旺盛,细胞形态良好。
3. 细胞冻存:冻存细胞复苏后,细胞生长状况良好。
六、实验结论1. 成功掌握了原代细胞培养和传代细胞培养的方法。
2. 了解了细胞培养过程中常见问题的处理方法。
细胞培养技术实验报告
细胞培养技术实验报告引言细胞培养技术是生物学研究中的重要工具,可以用于研究细胞的生长、分化、功能以及疾病的发生机制等。
本实验旨在通过细胞培养技术,培养和研究细胞的生长特性和细胞系的建立。
实验材料和方法实验材料•细胞培养基•细胞培养器具(培养皿、离心管、移液器等)•细胞种子实验方法1.准备培养基:根据所需培养细胞的类型选择适当的培养基,加入适量的血清、抗生素等添加剂。
将培养基分装至培养皿中。
2.细胞分离:取得细胞样本后,使用消化酶等方法将细胞分离,并进行细胞计数。
3.细胞接种:将分离得到的细胞悬浮液加入到准备好的培养基中,使细胞均匀分布于培养皿表面。
4.培养条件:将培养皿放置于恒温培养箱中,保持适当的温度、湿度和CO2浓度,并定期更换培养基。
5.细胞观察和记录:每天观察细胞的形态、生长情况,并记录观察结果。
6.细胞传代:当细胞达到一定的密度时,使用胰蛋白酶等方法将细胞从培养皿上剥离下来,进行传代,以维持细胞的活性和生长。
实验结果和讨论在本实验中,我们成功地培养了人类乳腺癌细胞系,并观察到了其在培养基中的生长情况。
以下是我们的实验结果和讨论:1.细胞形态观察:在培养基中,乳腺癌细胞呈现出典型的悬浮生长形态,细胞体积逐渐增大,呈现出圆形或不规则的形状。
2.细胞增殖:经过连续培养,我们观察到乳腺癌细胞的数量逐渐增加,呈现出指数型增长曲线。
这表明我们成功地建立了乳腺癌细胞系,并且细胞具有较高的增殖能力。
3.细胞活性:通过MTT试验等方法,我们评估了细胞的活性。
实验结果显示,乳腺癌细胞在培养基中具有较高的代谢活性,代表细胞系的良好生长状态。
综上所述,我们通过细胞培养技术成功地建立了乳腺癌细胞系,并观察到了其生长特性和活性。
这为进一步研究乳腺癌的发生机制和新药开发提供了重要的实验平台。
结论细胞培养技术是一种重要的工具,可以用于研究细胞的生长特性和功能。
本实验通过细胞培养技术成功地建立了乳腺癌细胞系,并观察到了其在培养基中的生长和活性。
细胞培养实验报告
细胞培养实验报告引言:细胞培养是一项关键的实验技术,被广泛运用于生物医学研究以及产业生产领域。
本实验旨在通过培养小鼠胚胎成纤维细胞(MEF)并观察其生长、形态特征以及细胞增殖情况,探究细胞培养技术的应用和原理。
实验方法:本实验通过收集小鼠胚胎,将其胚体分离为单个细胞,并在含有完善的培养基的培养皿中进行培养。
细胞培养过程需要细致地调节温度、湿度和培养基组分的浓度,以提供细胞正常生长所需的环境条件。
结果与讨论:1. 细胞形态观察:在培养7天后,我们观察到细胞呈现典型的长条状形态,细胞质呈深染的圆形,细胞核体积大且显著染色。
这些形态特征与前人研究得出的成纤维细胞特征相符,表明成功培养的细胞为成纤维细胞。
2. 细胞增殖情况:为了观察细胞增殖情况,我们定期记录细胞的数量。
结果显示,在培养的前3天内,细胞数量迅速增加,呈指数增长趋势。
然而,在培养达到第4天后,细胞数量的增长速度下降,呈现对数增长趋势。
这与前人研究中发现的细胞生长曲线相吻合,即细胞在培养初期呈现快速增殖,随后进入平台期。
3. 细胞死亡情况:我们也检测了细胞的死亡情况。
结果显示,在培养的前3天内,细胞死亡率较低,细胞具有良好的存活率。
然而,随着培养时间的延长,细胞死亡率逐渐升高。
这可能是由于细胞寿命受到限制,受到培养基中营养物质的消耗和毒性物质的积累的影响。
4. 细胞传代:为了延续细胞的生长,我们进行了细胞传代的实验。
在细胞密度达到一定水平后,我们对细胞进行了传代,并观察到新传代的细胞能够生长并形成典型的细胞群。
这证实了我们成功地培养出了具有传代潜能的细胞。
结论:通过本次实验,我们成功地培养出了小鼠成纤维细胞,并观察到其特征、增殖和传代情况。
这次实验验证了细胞培养技术的可行性,并为细胞生物学和生物医学研究提供了有力的工具。
细胞培养技术的应用将进一步推动生物医学领域的发展,有望为疾病治疗和组织工程等领域带来更多突破。
展望:尽管本次实验获得了较为理想的结果,但仍存在一些值得深入研究的问题。
细胞培养技术实验报告
细胞培养技术实验报告细胞培养技术实验报告细胞培养技术是现代生物学研究中不可或缺的重要手段之一。
通过细胞培养技术,研究人员可以在实验室中培养和研究各种类型的细胞,以便更好地了解细胞的结构、功能和生理特性。
本文将从细胞培养的原理、培养基的配制和培养条件的控制等方面,详细介绍细胞培养技术的相关内容。
一、细胞培养的原理细胞培养的原理是将细胞从生物体中分离出来,置于含有适当营养物质的培养基中,提供适宜的温度、湿度和气体环境,使细胞能够在体外生长和繁殖。
细胞培养的关键是培养基的配制,培养基中必须包含细胞所需的营养物质,如氨基酸、糖类、维生素等,同时还需要添加生长因子、激素和抗生素等物质,以促进细胞的生长和增殖。
二、培养基的配制培养基的配制是细胞培养中的重要环节。
不同类型的细胞需要不同的培养基,因此在进行细胞培养实验时,需要根据具体的细胞类型选择适当的培养基。
一般来说,培养基主要包括基础培养基和补充物两部分。
基础培养基是指提供细胞生长所需的基本营养物质的培养基,如DMEM (Dulbecco's Modified Eagle Medium)、RPMI 1640(Roswell Park Memorial Institute 1640)等。
补充物则是指在基础培养基中添加的各种生长因子、激素和抗生素等物质。
常见的补充物有胎牛血清、胰岛素、转铁蛋白、乳酸等。
在配制培养基时,需要注意各种成分的浓度和比例。
浓度过高或过低都会对细胞的生长和增殖产生影响。
此外,培养基的pH值也是一个重要的参数,一般细胞培养的pH值在7.2-7.4之间。
三、培养条件的控制细胞培养的成功与否,除了培养基的配制外,还与培养条件的控制密切相关。
培养条件主要包括温度、湿度和气体环境等方面。
温度是细胞培养中最重要的因素之一。
不同类型的细胞对温度的要求有所不同,一般来说,人类体细胞的培养温度为37摄氏度,而某些动物细胞则需要较低的温度,如鸟类细胞的培养温度为25摄氏度。
细胞培养的实验报告
细胞培养的实验报告细胞培养的实验报告引言:细胞培养是生物学研究中常用的技术手段之一,它可以为我们提供大量的细胞供应,从而进行各种实验研究。
本实验旨在通过细胞培养技术,观察细胞的生长和分裂情况,并探究不同培养条件对细胞生长的影响。
实验材料与方法:1. 细胞培养基:含有营养物质、生长因子和抗生素的培养基。
2. 细胞培养器:培养细胞的容器,如培养皿、细胞培养瓶等。
3. 细胞培养物:实验中使用的细胞株。
4. 培养箱:提供适宜的温度、湿度和二氧化碳浓度。
5. 显微镜:观察细胞生长和形态的工具。
实验步骤:1. 准备培养基:按照说明书的要求,将培养基与适量的培养液混合均匀。
2. 细胞接种:将细胞株取出,加入培养基中,并使用移液器进行充分混合。
3. 培养条件调节:将培养器放入培养箱中,设置适宜的温度、湿度和二氧化碳浓度。
4. 观察细胞生长:每隔一段时间,用显微镜观察细胞的生长情况,并记录细胞数量和形态变化。
5. 细胞分裂观察:在细胞生长到一定程度后,进行细胞分裂观察,记录细胞分裂的时间和方式。
6. 培养条件对比:将不同培养条件下的细胞生长情况进行对比分析,探究不同条件对细胞生长的影响。
结果与讨论:通过实验观察,我们发现细胞在培养基中能够良好地生长和分裂。
在适宜的培养条件下,细胞数量逐渐增多,并呈现出正常的形态。
细胞分裂的时间和方式也符合细胞生长的规律。
而在不适宜的培养条件下,细胞生长受到抑制,数量较少且形态异常。
进一步的对比分析发现,温度、湿度和二氧化碳浓度是影响细胞生长的重要因素。
过高或过低的温度会导致细胞代谢异常,影响细胞的生长和分裂。
湿度过高则容易导致细菌和霉菌的滋生,对细胞生长产生不利影响。
而二氧化碳浓度的调节则与细胞的酸碱平衡和呼吸有关,过高或过低的浓度都会对细胞的生长产生负面影响。
结论:细胞培养技术是一种重要的生物学研究手段,通过合理调节培养条件可以实现细胞的良好生长和分裂。
本实验通过观察细胞在不同培养条件下的生长情况,发现温度、湿度和二氧化碳浓度对细胞生长具有重要影响。
细胞培养实验报告
细胞培养实验报告摘要:本实验旨在通过细胞培养的方法,观察和研究细胞的生长情况、传代和分化过程。
我们选择了XXX细胞株作为研究对象,并在适当的培养条件下进行培养和观察。
通过实验发现,细胞的生长能力受到培养基成分、温度和培养时间的影响。
细胞的传代实验进一步验证了细胞的增殖能力和稳定性。
此外,我们还进行了细胞分化实验,观察到细胞在特定培养条件下,能够展示出不同的形态和功能。
引言:细胞培养是生物学研究中常用的实验手段之一,也是体外研究细胞生物学行为的重要工具。
通过控制培养条件,可以使细胞在体外自组织和不断增殖,为我们研究细胞的生长、分化和功能提供了便利。
本报告将详细介绍细胞的培养、传代和分化实验的过程和结果。
材料与方法:1. 细胞株选择:选择XXX细胞株作为研究对象。
2. 培养基配制:根据细胞株的需求,配制适当的培养基,包括营养成分、生长因子等。
3. 细胞培养:将细胞接种于培养皿中,放置于恒温培养箱中,培养温度为37℃,CO2含量为5%。
4. 细胞观察:利用显微镜观察细胞的生长情况和形态变化。
5. 细胞传代:当培养皿中的细胞达到一定密度时,将其进行传代,即将细胞分散至新的培养皿中,并继续培养。
6. 细胞分化:在特定的培养条件下,诱导细胞分化形成不同功能细胞。
结果与讨论:1. 细胞培养实验:经过5天的培养,观察到细胞呈现出快速增殖的趋势。
细胞形态呈现为充实和贴壁生长,呈单层排列,细胞核呈椭圆形,并具有较高的核质比。
这表明细胞在适当的培养条件下能够正常生长和增殖。
2. 细胞传代实验:经过3次的传代实验,我们观察到细胞的增殖能力和稳定性。
每次传代后,细胞的形态、生长速度和增殖能力都相对稳定。
这说明细胞在体外培养过程中,能够保持其生物学特性和遗传信息的稳定性。
3. 细胞分化实验:在特定培养条件下,如改变培养基成分或添加特定的诱导因子,我们观察到细胞的形态和功能出现了明显的变化。
例如,在添加特定的分化因子后,细胞能够分化为不同细胞类型,如神经元和肌肉细胞。
细胞培养 实验报告
细胞培养实验报告细胞培养实验报告细胞培养是一项重要的实验技术,广泛应用于生物学、医学和药物研发等领域。
通过细胞培养,科研人员可以研究细胞的生长、分化、增殖以及对外界刺激的响应等生物学特性。
本实验旨在探究细胞培养的基本原理和技术操作,并观察细胞在不同条件下的生长情况。
实验材料与方法1. 材料:- 细胞培养基:含有适当营养物质的培养基,提供细胞生长所需的营养成分。
- 细胞:选择适合实验的细胞系,如HeLa细胞,用于观察细胞的生长情况。
- 试剂:如胰蛋白酶、细胞培养添加剂等,用于处理和培养细胞。
- 培养器具:培养皿、离心管、显微镜等。
2. 方法:- 细胞分离:将细胞培养物中的细胞分离出来,通过胰蛋白酶等酶的作用,使细胞从培养皿上脱落。
- 细胞计数:用显微镜观察并计数细胞数量,以确定细胞的密度。
- 细胞培养:将细胞转移到含有培养基的新培养皿中,提供适宜的条件促进细胞的生长和分裂。
- 细胞观察:使用显微镜观察细胞的形态、生长状态和细胞群落的分布情况。
- 细胞传代:当细胞达到一定密度时,将细胞从原培养皿转移到新的培养皿中,以保持细胞的健康生长。
实验结果与分析在本次实验中,我们选择了HeLa细胞系进行细胞培养实验。
首先,我们将HeLa细胞从冻存管中取出,加入适量的培养基中,并在37摄氏度的恒温培养箱中进行培养。
经过一段时间的培养,我们观察到细胞开始生长并形成细胞群落。
在观察细胞生长的过程中,我们注意到细胞的形态发生了变化。
初始时,细胞呈悬浮状态,形态较小而圆润。
随着培养时间的延长,细胞开始附着在培养皿上,并逐渐变得扁平而呈现典型的上皮细胞形态。
这是因为细胞在培养基中获得了足够的营养和生长因子,从而促进了细胞的增殖和分化。
我们还进行了细胞计数实验,以确定细胞的密度。
通过显微镜观察,在特定的视野范围内,我们计数了细胞的数量,并以此推算出整个培养皿中的细胞密度。
结果显示,随着培养时间的增加,细胞密度逐渐增加,细胞数量呈指数增长的趋势。
细胞培养的实验报告
细胞培养的实验报告细胞培养的实验报告引言:细胞培养是现代生物学研究中非常重要的一项技术,它能够使科研人员对细胞的生长、分化、增殖等过程进行深入研究。
本实验旨在通过细胞培养技术,观察和分析细胞在不同条件下的生长变化,以期对细胞生物学有更深入的了解。
实验材料与方法:1. 细胞培养基:含有营养物质、生长因子和抗生素的培养基。
2. 细胞培养器具:培养皿、培养瓶、离心管等。
3. 细胞:选择合适的细胞系进行培养,本实验选取了人类肺癌细胞系A549。
4. 细胞培养条件:细胞培养箱、恒温恒湿箱等。
实验步骤:1. 细胞的分离和传代:将细胞移植到含有培养基的培养皿中,使细胞附着并生长。
当细胞达到一定密度时,用胰酶等酶类将细胞从培养皿上剥离,然后将细胞转移到新的培养皿中,完成细胞的传代。
2. 细胞的培养和观察:将细胞培养在恒温恒湿箱中,定期观察细胞的生长情况,记录细胞数量、形态和颜色等变化。
3. 细胞的处理和实验操作:根据实验设计的需要,对细胞进行不同处理,如添加药物、改变培养条件等,然后进行相关实验操作,如细胞增殖实验、细胞凋亡检测等。
实验结果与分析:在本实验中,我们观察了A549细胞在不同培养条件下的生长变化。
首先,我们将细胞培养在常规培养基中,观察到细胞呈现出典型的贴壁生长方式,细胞数量逐渐增加,形态呈现出多角形。
随着培养时间的延长,细胞形态逐渐变得规则,细胞数量也逐渐增加。
接下来,我们改变了培养条件,将细胞培养在含有不同浓度药物的培养基中。
结果显示,随着药物浓度的增加,细胞数量逐渐减少,细胞形态也发生了明显的变化。
这表明该药物对细胞的生长和增殖产生了抑制作用。
此外,我们还进行了细胞凋亡检测实验。
通过染色和显微镜观察,我们发现在药物处理组中,细胞出现了明显的凋亡现象,如细胞核的碎裂和细胞体的收缩等。
而在对照组中,细胞呈现出正常的形态和结构。
讨论与结论:通过本实验,我们成功地进行了细胞培养并观察了细胞在不同条件下的生长变化。
细胞培养实验报告
细胞培养实验报告
细胞培养是一种常见的实验技术,用于细胞生物学和生物医学研究中。
通过细胞培养,可以对细胞进行观察、实验和研究,从而更好地理解细胞的生物学特性和生理功能。
在本次实验中,我们进行了细胞培养实验,并得到了一些有意义的结果和结论。
首先,我们准备了所需的培养基、细胞培养器具和细胞样本。
在实验过程中,我们严格按照操作规程进行操作,保证了实验的准确性和可靠性。
在培养细胞的过程中,我们注意了细胞的密度、培养基的配比、培养条件的控制等因素,保证了细胞的正常生长和稳定性。
接着,我们对培养的细胞进行了观察和实验。
我们观察到细胞在培养基中呈现出良好的形态和生长状态,细胞的数量也在逐渐增加。
通过显微镜观察,我们发现细胞的形态和结构都符合正常的细胞特征,没有出现异常情况。
在实验中,我们还对细胞进行了染色、免疫分析等实验,得到了一些有意义的结果。
最后,我们对实验结果进行了分析和总结。
我们得出了一些关于细胞生长、分化、代谢等方面的结论,这些结论对于我们进一步研究细胞生物学和生物医学具有一定的指导意义。
同时,我们也发现了一些实验中存在的问题和不足之处,为今后的实验工作提出了改进和完善的建议。
综上所述,本次细胞培养实验取得了一些有意义的结果和结论,对于我们的研究工作具有一定的参考价值。
在今后的工作中,我们将进一步完善实验方案,提高实验技术水平,不断深入研究细胞的生物学特性和生理功能,为生物医学研究做出更大的贡献。
实验室培育细胞实验报告(3篇)
第1篇一、实验目的1. 掌握细胞培养的基本原理和方法;2. 了解细胞培养过程中的无菌操作和细胞传代技术;3. 观察细胞在体外培养过程中的生长和变化。
二、实验原理细胞培养是将细胞从生物体中取出,在体外模拟生物体内环境,使其在适宜的条件下生长、繁殖和传代。
细胞培养技术是生物学研究的重要手段,广泛应用于医学、生物工程等领域。
三、实验材料与仪器1. 实验材料:小鼠脾脏细胞、胰蛋白酶、细胞培养液、DMSO(二甲基亚砜)、培养瓶、移液器、细胞计数板、显微镜等。
2. 仪器:超净工作台、细胞培养箱、离心机、冰箱等。
四、实验步骤1. 细胞复苏:将冷冻保存的细胞复苏,解冻后用移液器吹打均匀,加入适量培养液,调整细胞浓度;2. 细胞接种:将复苏后的细胞接种于培养瓶中,放入细胞培养箱培养;3. 细胞传代:待细胞长满培养瓶后,用胰蛋白酶消化细胞,调整细胞浓度后,重新接种于新的培养瓶中;4. 细胞观察:定期观察细胞生长情况,记录细胞形态、数量和生长速度;5. 细胞冻存:将细胞传代后,取适量细胞加入DMSO,冷冻保存。
五、实验结果与分析1. 细胞复苏:复苏后的细胞呈圆形,细胞膜完整,无碎片;2. 细胞接种:接种后的细胞在培养箱中生长良好,细胞形态规则,细胞间连接紧密;3. 细胞传代:传代后的细胞生长迅速,细胞数量逐渐增加;4. 细胞观察:细胞在体外培养过程中,形态、数量和生长速度逐渐稳定。
六、实验结论1. 成功掌握了细胞培养的基本原理和方法;2. 掌握了细胞培养过程中的无菌操作和细胞传代技术;3. 观察到细胞在体外培养过程中的生长和变化。
七、实验讨论1. 细胞培养过程中,无菌操作至关重要,应严格遵循无菌操作规程;2. 细胞传代时,应选择合适的胰蛋白酶浓度和消化时间,以减少对细胞的损伤;3. 细胞培养过程中,应定期观察细胞生长情况,及时调整培养条件,以保证细胞生长良好。
八、实验总结本次实验成功进行了细胞培养,掌握了细胞培养的基本原理和方法,为后续的细胞学研究奠定了基础。
细胞培养实验报告
细胞培养实验报告一、实验目的细胞培养是一种在体外模拟体内环境,使细胞生长、分裂和分化的技术。
本次实验的目的是通过细胞培养技术,掌握细胞的培养方法和操作技巧,观察细胞的生长状态和形态变化,为后续的细胞生物学研究和应用奠定基础。
二、实验材料1、细胞株:选用人肝癌细胞株 HepG2。
2、培养基:DMEM 高糖培养基(含 10%胎牛血清、1%双抗)。
3、实验器具:超净工作台、CO2 培养箱、倒置显微镜、移液器、离心管、培养瓶、培养皿等。
4、试剂:胰蛋白酶、PBS 缓冲液等。
三、实验步骤1、细胞复苏从液氮罐中取出冻存的 HepG2 细胞,迅速放入 37℃水浴锅中,轻轻摇动使其快速融化。
将融化后的细胞悬液转移至 15ml 离心管中,加入 5ml 含血清的培养基,轻轻吹打混匀,1000rpm 离心 5min。
弃去上清液,加入 5ml 新鲜培养基重悬细胞,将细胞悬液转移至培养瓶中,置于 37℃、5% CO2 培养箱中培养。
2、细胞传代当细胞生长至 80%-90%汇合时,进行传代培养。
吸去培养瓶中的培养基,用 PBS 缓冲液冲洗细胞 2 次。
加入 1ml 胰蛋白酶,轻轻晃动培养瓶,使胰蛋白酶均匀覆盖细胞表面,置于 37℃培养箱中消化 1-2min。
在倒置显微镜下观察细胞形态,当细胞变圆、间隙增大时,加入5ml 含血清的培养基终止消化,轻轻吹打细胞使其脱落。
将细胞悬液转移至 15ml 离心管中,1000rpm 离心 5min。
弃去上清液,加入 5ml 新鲜培养基重悬细胞,按照 1:2 或 1:3 的比例将细胞接种至新的培养瓶中,置于 37℃、5% CO2 培养箱中继续培养。
3、细胞计数取 01ml 细胞悬液,加入 09ml 台盼蓝染液,轻轻混匀。
吸取少量混合液加入细胞计数板,在显微镜下计数细胞总数和活细胞数(未被染成蓝色的细胞为活细胞)。
计算细胞浓度:细胞浓度(个/ml)=细胞总数/4×104×稀释倍数。
细胞培养小实验实验报告(3篇)
第1篇一、实验目的1. 掌握细胞培养的基本操作流程,包括原代培养和传代培养。
2. 了解细胞培养过程中的无菌操作规范。
3. 观察细胞在体外培养过程中的生长、增殖和形态变化。
二、实验原理细胞培养是从生物体中取出某种组织或细胞,模拟体内生理条件,在人工培养条件下使其生存、生长、繁殖或传代的过程。
细胞培养技术的最大优点是使我们得以直接观察活细胞,并在有控制的环境条件下进行实验,避免了体内实验时的许多复杂因素,还可以与体内实验互为补充。
三、实验用品1. 仪器及器材:显微镜、载玻片、盖玻片、移液枪、培养皿、无菌操作台、无菌操作箱、细胞培养箱、CO2培养箱、细胞计数器等。
2. 试剂:细胞培养液、胰蛋白酶、胎牛血清、抗生素、无菌水等。
四、实验步骤1. 原代细胞培养(1)取动物组织,剪碎后用胰蛋白酶消化,制成细胞悬液。
(2)将细胞悬液加入培养皿,置于CO2培养箱中培养。
(3)观察细胞生长情况,每隔24小时更换一次培养液。
2. 传代培养(1)当细胞达到一定密度时,用胰蛋白酶消化细胞,制成细胞悬液。
(2)将细胞悬液按1:2的比例传代到新的培养皿中。
(3)观察细胞生长情况,每隔24小时更换一次培养液。
3. 细胞计数(1)取适量细胞悬液,加入细胞计数器。
(2)计数细胞数量,计算细胞密度。
4. 细胞形态观察(1)取细胞培养皿,用盖玻片覆盖。
(2)置于显微镜下观察细胞形态、生长情况。
五、实验结果1. 细胞生长情况:原代细胞在培养皿中生长良好,细胞密度逐渐增加。
传代培养后,细胞生长速度略有下降,但总体状况良好。
2. 细胞形态:细胞呈多边形,细胞核清晰可见,细胞间连接紧密。
3. 细胞计数:细胞密度为1×10^6个/mL。
六、实验结论1. 成功进行了原代细胞培养和传代培养。
2. 细胞在体外培养过程中生长良好,细胞形态正常。
3. 细胞培养技术为生物学研究提供了有力工具。
七、实验总结本次实验成功掌握了细胞培养的基本操作流程,了解了无菌操作规范,并观察了细胞在体外培养过程中的生长、增殖和形态变化。
细胞培养实验报告
动物细胞培养一、试验目的。
1、掌握无菌操作技术。
2、掌握原代和传代细胞培养。
3、掌握细胞冷冻和复苏技术。
4、了解培养成纤维细胞的形态。
二、试验原理。
将动物机体的组织从机体中取出,经各种酶(常用胰蛋白酶)、螯合剂(常用EDTA)或机械方法处理,分散成单细胞,置合适的培养基中培养,使细胞得以生存、生长和繁殖,这一过程称原代培养。
细胞在培养瓶长成致密单层后,已基本上饱和,为使细胞能继续生长,同时也将细胞数量扩大,就必须进行传代(再培养)。
传代培养也是一种将细胞种保存下去的方法。
同时也是利用培养细胞进行各种实验的必经过程。
悬浮型细胞直接分瓶就可以,而贴壁细胞需经消化后才能分瓶。
对具有移动特性的稳定细胞系或细胞株进行长期保存,一方面可以作为细胞研究的试验材料,另一方面可以做细胞制品的生产材料。
目前广泛应用的细胞保存方法是低温冷冻保存法,。
细胞的冷冻保存的原则是慢冻快融,这样做是为了防止细胞由于冷冻过程中产生了冰晶而发生细胞破裂。
三、实验器材及药品。
器材:怀孕的小白鼠、培养箱、培养瓶、培养皿、移液器、眼科剪、镊子、酒精灯、离心机、水浴锅、倒置显微镜、CO2培养箱、超净工作台、离心管、高压灭菌锅、试管架等。
药品:小牛血清、DMEM合成培养基、抗生素、DMSO冷冻剂、胰酶、PBS缓冲液等。
四、实验操作。
1、消毒灭菌。
将实验所需用到的工具(如枪头、培养皿、眼科剪、镊子以及每个人的实验服等)集中灭菌、烘干。
配制75%的酒精以备实验时所需。
2、培养基的配制。
分别取10ml的小牛血清、90ml的DMEM合成培养基,将两种培养基混合在一起,再向其中加入1ml的抗生素,吹打混匀就得到了细胞培养的培养液。
3、原代培养。
(1)、准备。
将实验过程中会用到的工具以及药品全部放在超净工作台上进行紫外消毒灭菌。
实验开始前带好乳胶手套,用酒精对手进行消毒。
将怀孕的小白鼠放在酒精中杀死,取出子宫内的胚胎组织。
(2)、剪切与消化。
将胚胎组织放于平板中,用眼科剪将组织块剪碎,剪得越碎越好。
细胞培养实验报告
一、实验目的1. 熟悉细胞培养的基本原理和操作步骤。
2. 掌握哺乳动物细胞原代培养和传代培养的方法。
3. 了解细胞培养在生物学研究中的应用。
二、实验原理细胞培养是将生物体内的细胞取出,在体外模拟体内生理条件下,使其生长、繁殖或传代的过程。
细胞培养技术的最大优点是能够直接观察活细胞,并在有控制的环境条件下进行实验,避免了体内实验时的许多复杂因素,还可以与体内实验互为补充。
细胞培养技术在生物学研究、医学、生物工程等领域中具有广泛的应用。
三、实验用品1. 仪器:显微镜、细胞培养箱、超净工作台、离心机、移液器、培养皿、载玻片、盖玻片等。
2. 试剂:胰蛋白酶、胎牛血清、DMEM培养基、青霉素、链霉素、D-Hank's液、75%酒精等。
四、实验步骤1. 原代细胞培养(1)取动物组织,用D-Hank's液清洗,去除血污。
(2)将组织剪成1mm×1mm×1mm的小块,加入胰蛋白酶,37℃消化30分钟。
(3)消化完成后,用吸管轻轻吹打组织块,使其分散成单个细胞。
(4)加入胎牛血清终止消化,用离心机离心收集细胞。
(5)用DMEM培养基重悬细胞,调整细胞浓度至1×10^6个/ml。
(6)将细胞接种于培养皿中,放入细胞培养箱培养。
2. 传代培养(1)待细胞长满培养皿后,用吸管轻轻吹打细胞,使其从培养皿壁上脱落。
(2)收集细胞,用离心机离心收集细胞。
(3)用DMEM培养基重悬细胞,调整细胞浓度至1×10^6个/ml。
(4)将细胞接种于新的培养皿中,放入细胞培养箱培养。
五、实验结果1. 原代细胞培养过程中,细胞从组织块中脱落,分散成单个细胞,细胞形态呈梭形或圆形。
2. 传代培养过程中,细胞生长旺盛,细胞形态稳定。
六、实验讨论1. 细胞培养过程中,温度、pH值、气体环境等因素对细胞生长影响较大。
实验中应严格控制培养条件,以保证细胞正常生长。
2. 细胞培养过程中,细胞传代次数过多会导致细胞老化,影响实验结果。
实验报告细胞培养
一、实验目的1. 了解细胞培养的基本原理和方法。
2. 掌握哺乳动物细胞原代培养和传代培养的操作步骤。
3. 学习细胞培养过程中无菌操作的重要性。
二、实验原理细胞培养是指从生物体中取出某种组织或细胞,模拟体内生理条件,在人工培养条件下使其生存、生长、繁殖或传代的过程。
细胞培养技术具有直接观察活细胞、避免体内实验的复杂因素、提供大量生物性状相同的细胞等优点,在生物学研究、医学等领域中得到广泛应用。
细胞培养可分为原代培养和传代培养。
原代培养是指直接从体内获取的组织细胞进行首次培养;传代培养是指原代培养的细胞增殖达到一定密度后,将其分散后转移到另一个或几个容器中扩大培养。
传代培养的累积次数即为细胞的代数。
三、实验用品1. 仪器:显微镜、载玻片、盖玻片、培养皿、移液器、离心机、恒温培养箱、超净工作台等。
2. 器材:胰蛋白酶、胎牛血清、DMEM培养基、双抗、无菌水、75%酒精、无菌滤纸等。
3. 试剂:细胞培养液、胰蛋白酶消化液、细胞计数板、染色液等。
四、实验步骤1. 原代培养(1)取动物组织样本,用胰蛋白酶消化处理,得到细胞悬液。
(2)将细胞悬液加入培养皿,放入37℃恒温培养箱中培养。
(3)观察细胞生长情况,待细胞贴壁生长后,用移液器将细胞分散,转移至另一个培养皿中。
(4)重复步骤(3),直至细胞增殖到一定密度。
2. 传代培养(1)取培养皿中的细胞,用胰蛋白酶消化处理,得到细胞悬液。
(2)将细胞悬液加入培养皿,放入37℃恒温培养箱中培养。
(3)观察细胞生长情况,待细胞贴壁生长后,用移液器将细胞分散,转移至另一个培养皿中。
(4)重复步骤(3),直至细胞增殖到一定密度。
3. 细胞计数(1)取一定量的细胞悬液,加入细胞计数板。
(2)在显微镜下观察细胞,计算细胞数量。
(3)根据细胞数量和体积,计算细胞密度。
4. 细胞染色(1)取一定量的细胞悬液,加入染色液。
(2)在显微镜下观察细胞,观察细胞形态和染色情况。
五、实验结果与分析1. 原代培养(1)细胞在培养皿中贴壁生长,呈梭形。
细胞培养试验报告
细胞培养实验报告一、试验准备1、试验目的学习细胞培养,熟悉细胞培养的操作。
2、细胞种类人体成纤维细胞——HDF,第21代3、实验人员朱宏历、俞鸿飞(指导)、董溪溪(指导)4、参照方法刘苹《细胞培养技术》2015版PPT5、试验设备细胞房、离心机、超净台、4℃冰箱、-20℃冰箱、-80℃冰箱、液氮罐、冻存架、带CCD摄像功能的倒置显微镜、程序降温盒、倒置显微镜(细胞房内)、1-1000ul 移液器、恒温水浴锅、电动大容量移液器、二氧化碳培养箱、酒精灯、打火机、细号记号笔、酒精消毒剂喷洒器、定时报警器。
6、试验耗材75%酒精消毒剂、分析纯异丙醇、50ml离心管(无菌分装用)、15ml离心管、2ml 移液器吸嘴、5ml巴氏吸管、一次性培养瓶、10ml一次性塑料移液管、1.5ml冻存管、口罩、鞋套、医用帽(或连体洁净工作服)、灭菌乳胶手套(无粉)7、试验用培养液全培养液:90%DMEM(基础培养液)+ 10%FBS(胎牛血清)冻存液:90%FBS(胎牛血清)+ 10%DMSO(二甲基亚砜)消化液:Trypsin - EDTA(胰蛋白酶0.25% - EDTA 0.2%消化液)二、试验步骤前一天从-20℃冰箱中取出已冻存的FBS及DMEM置于4℃冰箱之中。
DAY1——细胞复苏1. 酒精喷洒操作台面,取出大容量电动移液器、1个10ml一次性移液管、1把5ml巴氏吸管,1盒2ml移液器吸嘴,1个15ml离心管,2个50ml离心管,1个培养瓶用酒精喷洒消毒后置于操作台面右侧。
1. 分装培养液点燃酒精灯,取出大容量电动移液器和10ml一次性移液管,另准备2个50ml 离心管,离心管开盖过火后,以9:1的比例,从FBS离心管中吸5ml至离心管,再吸45mlDMEM培养液至离心管。
共准备2管备用。
完成后,将原DMEM培养液重新置于-20℃冰箱中冻存。
2. 细胞复苏从液氮罐中取出冻存架,搁于罐口,待液氮流尽后置地。
取出HDF细胞冻存管置于37℃恒温水浴锅内解冻约1分钟,观察无冰结晶存在后,立即进细胞房,取15ml离心管过火开盖,取2ml全培养液置于离心管中,再将冻存管过火开盖,吸出细胞冻存液后置于15ml离心管内,而后全部过火盒盖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Practical approach of animal cell cultureBASIC CELL CULTURE PROTOCOLS1. introductionThe culture of animal cells and tissues is now a widely used technique in many different disciplines from the basic sciences of cell and molecular biology to the rapidly evolving applied field of biotechnology. An introduction to the basic procedures is available in many laboratories and frequently features as integral part of undergraduate study in the biological sciences. In general, tissues culture procedures arc simple but require extreme care to avoid contamination. In this pamphlet, we introduce general procedures of cell culture and related techniques of biology. For a detailed and more comprehensive treatment of the subject, the reader may refer to the references.2.Instrumentation1. A Laminar Airflow CabinetFor media preparation, or when handling non-primate cell lines, culture manipulations can he conducted in a small front-opening cabinet. The cabinets are relatively cheap and have equipped with an ultraviolet (UV) light source to prevent contamination of the cabinet surface when not in use hut may not have an internal airflow. Good technique will ensure that this system does not offer operator protection against possible pathogens.If human or other primate cells are used then you require some protection against the possibility of transmission of infectious agents. For this purpose, most cell culture laboratories have an open-fronted laminar flow cabinet, which offers a space containing a vertical flow of filtered air and a horizontal working surface that can be disinfected. Air is drawn into the sterile working area of the cabinet through a high-efficiency particulate air (IIEPA) filter and 70-80%of the air is re-circulated to form an air curtain, which serves to maintain sterile operation and protect the operator. The exhausted air is also forced through a l-IFPA filter. The design is such that there is free access for the operator’s hands but a Perspex cover prevents the operator breathing over the working surface. The cabinet should be located in a corner of the laboratory free from draughts and air movement.The most common[y used cabinet for cell culture is 4fl long and designated as Class ii. The classification is a measure of the biological safety. A Class 11 cabinet is suitable for work with low to moderate toxic or infectious agents.2. IncubatorA water-jacketed (水套) CO2 incubator is generally used to maintain cultures at an optimal temperature and pH for cell growth. The water jacket provides a constant temperature environment with minimal danger of local heating effects in the inner chamber. Carbon dioxide is supplied from a gas cylinder into the optimal p11of the incubator The purpose of this is to maintain the optimal pH of the cultures by the bicarbonate-CO2 buffering system. The desired level of CO2 in the incubator is 5--I 0%, which can he maintained by a controller and gas analyzer(infra-red (红外线) for modern incubators). A water tray is positioned at the bottom of each chamber so that a relatively high Level of humidity can he maintained. This prevents excessive evaporation from the Culture vessels.3. An inverted microscope equipped with phase-contrast optics.4. Refrigerators (-20℃-80℃)Usually a domestic item will be found to be quite efficient and cheaper than special laboratory equipment. While auto-defrost freezers may be bad for some reagents (enzyme, antibodies, ctc.), they arc useful for most tissue culture stocks where their bulk and nature precludes severe cryogenic damage.5. Liquid nitrogen storageA facility for maintaining cell stocks is required unless all cultures are established from primary tissue. Cells are stored in plastic vials, which arc lowered into liquid nitrogen for long-term storage. Cryogenic plastic vials have strong seals to prevent leakage, which could result from large temperature fluctuations. The liquid nitrogen reservoir needs to he replenished at regular intervals. It is high[y recommended that a liquid nitrogen level indicator with alarm is used. This lowers the risk of damaging important cell stocks by inadvertently allowing the liquid nitrogen level to drop too low.6. Culture flasksPre-sterilized plastic flasks suitable for cell culture arc commercially available and are used by most laboratories. The plastic is sulphonated polystyrene, produced so that the surface is amenable for cell attachment and growth. The flasks are sterilized by y -irradiation and are suitable for single use.In the post, culture flasks were made of borosilicated glass. The flasks were re-cycled and required washing and autoclaving before use-a process, which could give, rise to contamination. The use of pre- sterilized and disposable plastic flasks has significantly reduced any contamination arising from the culture vessels.The most popular firms of plastic culture containers are multi-well plates. Petri dishes, and flasks (usually referred to as Tissue culture flasks or T-flasks). The multi-well plates can accommodate many replicates oi small volume cultures. The 24-well plates hold 3 ml per well and are well suited for cell growth experiments, for example to test for toxicity or stimulatory activity. The 96-well plates hold a volume of 0.3 ml per well and are suitable for cloning. Rapid dispensing of solutions into the 96-well plate is made easy by use of a multi-well pipettor.The Petri dishes and T-flasks can accommodate cultures of 2-100 ml and are suitable for both anchorage-dependent and suspension cells. The T-flasks are designated by the surface area available for cellattachment. A canted (angled) neck is provided so that sterile manipulation is easy. It is important to allowequilibrium to develop between the gas phase of the flask and the atmosphere of the incubator chamber, The l>flask caps can be adjusted to fit loosely. You should close the caps tightly once the flasks arc removed fromthe incubator.3. Materials3.1 Balanced Salt SolutionsA balanced salt solution (BSS) is composed of inorganic salts, usually including sodium bicarbonate, and is supplemented with glucose, although glucose and bicarbonate are often omitted. The compositions of some common examples are given in Table 3.1.Balanced Salt Solution a(g/L)Component Hanks Earle Dulbecco (PBS) GeyNaCl 8.00 6.8 8.0 7.0KCl 0.4 0.4 0.2 0.31MgCl2.6H2O 0.1e0.21MgSO4.7H2O 0.2 0.2Na2HPO4.12H2O 0.67 3.17KH2PO40.06 0.2CaCl2(anhyd.)b0.14 0.2 0.1e0.17NaHCO3c0.35 0.2 2.27D-glucose 1.0 1.0 1.0Phenol red d0.02 0.02Note: a. Dissolve each constituent separately uses sterile deionized distilled sterilize by autoclaving.b. Adding CaC½ last, and make up to literc. Adjust to PH 7.2 with 5.6% NaHC03 before using.d. Adding 5 mL/L, of 0.4% Phenol red.e. For washing, these components can’t be added.3.2 Culture MediumCells are cultured in a chemically complex liquid medium suitable for supporting growth for several generations. There are many standard media formulations, which have been developed for the growth of particular cell types.To determine which media to use for a specific cell line, it is advisable to search the literature to see if previous experiments suggest the use of a particular media formulation. Alternations may he performed. some media, such as Dulbecco’s modified Eagles medium (DMEM). have high concentrations of amino acids andvitamins and are suitable for prolonged cell growth. Other media, such as Ham’s F-12, contain a wide range of different components which may be required to satisfy the fastidious requirements of some cell lines. Combinations of standard formulations can also be used for cell growth. For example. a 1:1 v/v mixture of I)MEM and Hams F-12 has been found effective as a good basal medium for serum-free formulations to support the growth of a number of cell lines.Media can he supplied commercially as a I/liquid ready for use or as a liquid or powdered concentrate. The concentrates are much cheaper and are advisable if it is intended to List large volumes of one type of medium. The liquid concentrate (normally TO 7) is provided sterile and requires dilution with pre-sterilized distilled water Powdered medium should he dissolved in water and sterilized by filtration through a 0.22um filter. Filtration can be mediated by a vacuum pump or a peristaltic pump using tor double distillation. There are some unstable components (e.g. glutamine, bicarbonate) in culture medium and so complete liquid medium should not be autoclaved or stored for any length of time. Liquid medium can he purchased free of glutamine or bicarbonate. In this condition it can be stored at 4~C until required.Table 3.1 Commonly used culture mediumMedia CommentsBME Eagle’s basal medium; originally designed for mouse L and HeLa cellsMEM Eagle’s minimal essential medium; used for a wide variety of cell lines.I)MEM Dulbeeoo’s modification of Eagle’s minimal essential medium Has 4X the amino acid andvitamin concentration of MBM.PRMI1640Roswell Park Memorial Institute medium; Used for lymphocyte and hybridoma culturesHam’s F-l2Has a complex composition and is used for a variety of cell linesM199An extremely complex medium (61 components) which can support cell growth without serum3.3 Medium Supplement3.2.1 SerumSerum is normally added to culture media at a concentration of 10%(v/v) to promote cell growth. Cow (bovine) or horse (equine) serum is most commonly used, with fetal calf serum (FCS) being considered particularly effective because of its high content of embryonic growth factors. Table 3.2 lists some of the characteristics of bovine serum.Table 3.2 .1 Typical characteristics of bovine serumpH Osmolarity(mOsm/lProtein content() mg/mlAlbumin content(mg/ml))6.85-7.05 250-295 60-80 30-50Serum is purchased for laboratory use in 100 or 500m1 bottles from a cell culture supplier who will have treated the serum in a particular way. Typically, serum is sterilized by filtration through at least one 0.1 urn filter. Each batch is then tested a variety of microbial and chemical contaminants, including bacteria, fungi, and specific viruses, depending upon the source of the serum.Special treatment of serum offered by suppliers may include the following:• γ-Irradiation involves exposure of the serum h radiation from a 60Co source.• Heat inactivation involves incubation at 56℃for 30 min.• γ-Globulin removal involves ethanol fractionation which reduces the γ--Globulin content of the serum.This is important for monoclonal antibody production from hybridoma ) cultures because γ-Globulin derived from serum could interfere with the extraction or assay of the antibody.• Dialysis usually involves serum dialysis against 0.15 M NRA. This reduces the low molecular weight components of the serum but maintains its osmolarity (渗透压). This treatment eliminates the amino acid, carbohydrate, or nucleotide content of serum and might be required, for example, in a study of nutrient utilization of cells in culture. FCS is the most widely used media supplement. However, it is expensive and often in short supply. The serum is generally tested for performance and cytotoxicity. Performance is measured by the ability of the serum to support high plating efficiency and cell growth. The specifics of these tests are given by each manufacturer3.2.2 AntibioticsAntibiotics are often included in media for short-term cultures in order to reduce the risk of contamination. The optimal concentration of antibiotics should he determined empirically bearing in mind that hey may be cytotoxic. Antibiotics are often used in combination in culture medium, and the following cocktail can be recommended for general use:•Penicillin G (100U/ml) to inhibit the growth of Gram-positive bacteria.•Streptomycin (100mg /ml)to inhibit the growth of many Gram-negative and Gram-positive bacteria. •Amphotericin B (25 ug/ml ) as an anti-fungal agent.However, the use of antibiotics for routine sub-culture or in stock cultures should be discouraged because low levels of bacteria] or fungal contamination maybe masked and may cause problems at a later date. Furthermore, extensive use of antibiotics may cause the selective retention of antibiotic-resistant contaminants, which can cause future problem.3.23 Glutamine(谷胺酰胺)Glutamine 200 mML-glutamine 2.92 g Hank’s BSS 100mlDissolve glutamine in BSS and sterilize by filtration. Aliquots and store at -20℃3.2.4 TrypsinTrypsin is available as crude (Difco 1:250). Crude trypsins contain several other proteases which may he important in cell dissociation but may also he harmful to more sensitive cells. The usual practice is to use crude trypsin unless cell damage reduces viability or reduced growth is observed, when purified trypsin may he used. Pure trypsin has a higher specific activity and should therefore be used at a proportionally lower concentration, e.g., 0.05%.Trypsin solution (1.25%)Trypsin (1:250) 0.25 g PBS 100ml Sterilize by filtration. Aliqutos and store at 20℃4. General Technique for Tissue Culture4.1 SterilizationSolution, glassware, and other items can be sterilized by moist heat in an autoclave. Sterilize for 30 mm at a pressure of 15 lb/in24.2 Cell counting and monitoring4.2.1 Procedure for counting cells using the Dye-exclusion Haemocytometer ProcedureThis method consists of microscopically counting the number of cell in a very small volume of cell suspension. The Haemocytometer is a microscope slide with grids on it to give nine large squares divided by triple lines. Each large square has an area of I mm2. The depth of fluid in the slide chamber is 0.1 mm, and therefore the total volume of fluid over each large square is 0.1 mm3. Cells can also he counted in an electronic cell counter such as the Coulter counter.Trypan blue is often added to the cell suspension before counting. The dye penetrates the membrane of non-viable cells which arc stained blue and which can therefore he distinguished from viable cells. Viability gives an indication of the ability of a cell to divide.These haemocytometer-counting methods are simple and effective but can he laborious if many samples are being analyzed.Materials and equipments:1. 0.4% Ttypan bluc in HBSS: 0.4 g Trypan blue in l00ml HBSS, pass through a 0.22 um filter to remove any debris. Store at 4℃2. Haemocytometer with covetslip3. Hand-held counter4. Microscope— low power, X40 to X100 magnificationsSteps:1. Thoroughly clean the haemocytometer and covet-slip and wipe both with 70% alcohol before use.2. Cover the Neubauer chamber with a precision ground coverslip and press gently until Newton rings are visible. Place a drop of the cell suspension (usually diluted 1:3; 0.lml of cell plus 0.3 ml of 0.4% Thypan blue) at the edge of the coverslip.3. Place the chamber on the stage of an inverted microscope and count all the cells that exclude trypan blue in the four large squares in each corner of the central area. Count cells touching the right and upper lines hut not those touching the left and bottom lines. Nonviable cells absorb the dye and appear blue.4. It is essential to examine the cells within 5 mm of immersing them in Trypan blue.To calculate the viable divide the number of viable cells by the total number of cells that is viable and dead. Healthy cultures should contain more than 90% viable cells.Notes:The following can cause Inaccuracy of the haemocytometer method by affecting the volume of the chamber:• Overflowing the chamber and allowing sample to run into the channels• Incompletely filling the chamber• Air bubbles or debris in the chamber4.2.2 Indirect methods of cell determinationTetrazolium assay (MTT-Cell Proliferation)Methods for cell number determination in vitro are required for many different biological assays. The MTT-cell proliferation assay is a quantitative colorimetric assay for measurements of cellular proliferation, viability, and Cytotoxicity. The assay is based on cleavage of the yellow tetrazolium salt, MTT, which forms water-insoluble, dark blue formazan crystals. This cleavage only takes place in living cells by the mitochondria enzyme succinate-dehydrogenase. The water-insoluble formazan can he solubilized using isopropanol or another organic solvent (DMSO). The optical density of the dissolved material is measured spectrophotometrically; yielding absorbance as a unction of concentration of converted dye, which directly correlates to the number of metabolically active cells in the culture. The assay is simple, and well suited for analysis of large number of samples using 96-well microtier plates and a scanning multiwell spectrophotometer.Materials and equipments• MTT stock solution (5mg/ml): To make 10ml, add 50mg of MTT to PBS, pH7.5, and filterthrough a 0.22-um filter to sterilized and remove the small amount of insoluble residue.• DM50• 96-Well microtitre plate• Micro- E[ISA readerSteps:1.After incubation of cells for the chosen of time, add 20u1/well of the MTT solution (5mg/ml). Incubate the cells for additional 4 hr at 37℃and 5% CO2.2. Discard the medium from the wells and add 200ul DMSO to dissolve the formazan crystals. Measure the color intensity at 570nm (reference filter, 690nm) using a Micro-El ISA reader. For calculating the final cell number, absorbance values are compared with a standard curve for the cell line in question.4.3 Changing the medium and SubcultureChanging the mediumSteps:1. Examine culture carefully for signs of contamination or deterioration.2. Check the criteria of p1], cell density, or concentration and, based on your knowledge of the behavior of the culture, decide whether or not to replace the medium. If feeding is required, proceed as followings.3. Take the flask to sterile work area, remove and discard medium.4.Add same volume of fresh medium, prewarmed to 36.5℃5. Return culture to incubator.6. N ote: when a culture is at a low density and growing slowly, it may he preferable to “half-feed”. In this case, remove only half the medium at step 3 and replace it in step 4 with the same volume as was removed, SubcultureMaterials:Pipettes (sterile), medium (sterile), PBS (sterile). 0.25% trypsin in PBSA, EDTASteps:1. Withdraw medium and discard.2.Add PBS prewash to the side of the flask opposite the cells, so as to avoid dislodging cells, rinse the cells, and discard rinse. This step is designed to remove traces of serum, which would inhibit the action of the trypsin.3.Add trypsin to the side of the flask opposite the cells. Turn the flask over to cover the monolayer completely. Leave 15-30s and withdraw the trypsin, making sure beforehand that the monolayer has not detached.4. Incubate until cells round up.5. Add medium (3ml/ 25cm2) and disperse cells by repeated pipetting over the surface bearing the monolayer. Finally, pipette the cell suspension up and down a few times, with the tip of the pipette resting on the bottom corner of the bottle.6. Counting cells by hemocytometer.7. Dilute to appropriate seeding concentration by simply adding the cell suspension to the total volume of medium required for distribution to fresh culture flasks. This ensures that each flask will contain the same concentration of cells.8. Add 5 ml of cell suspension to each flask, cap the flasks, and return to the incubator.9. To determine when a medium change is required, check the culture every day for a drop in pH. This is usually evidence of depletion of medium by the growing culture. Examine cells under an inverted microscope for signs of cytoplasmic vacuolation, and estimate cell density.10. If only feeding is required, remove and discard medium.4.4 Viability measurementsViability is a measure of the proportion of live cells in a culture, as indicated by the ability of cells to divide or to perform normal metabolism. The most precise of all the methods of viability measurement is thecolony-forming assay. Here the ability of cells to grow is measured directly. A known number of cells at low density is allowed to attach and grow on the surface of a Petri dish. If the cell density is kept low each viable cell will divide and give rise to a colony or cluster of cells. From this, the plating efficiency’ is determined as the number of colonies scored per 100 cells plated X 100.1. Remove the cells from the attachment surface and suspend in solution.2. Add the cell suspension (cell concentration usually 100,200.400 per 35mm dish) to Petri dishes and incubate to allow colonies to form.3. Fix the colonies with methanol/acetic acid and slain with Giemsa staining.4. Count the number of colonies in each dish and calculate the average.4.5 Detection of bacteria and fungi in cell culturesMaterials and equipment:• Dehydrated media for bacterial/fungi cultivation.Steps1. Using an inverted microscope, equipped with phase contrast optics if possible, examine cell culture vessels individually. Cheek each culture first using low power. Batches of media should he tested for optimal growth promotion before use in cell culture quality control.2. After moving the culture to a suitable isolated area, remove aliquots of fluid from cultures that are suspect and retain these for further examination. Alternatively, autoclave and discard all such cultures.3. Prepare wet mounts using drops of the test fluids and observe under high power.4. Prepare smears, heat-fix and stain by any conventional method (e.g. Wright’s stain), and then examine under oil immersion.5. Consult for photomicrographs of representative contaminants and further details.6. Microscopic examination is only sufficient for detection of gross contamination and even some of these cannot he readily detected by simple observation. Therefore, an extensive series of culture tests is also required to provide reasonable assurance that cell lines stock or medium is free of fungi and bacteria.4.6 Fluorescent Procedure for Detecting MycoplasmaMaterials:1.Acetic acid/methanol: To make 90 ml, mix 30 nil of acetic acid with 60 ml of methanol.2.Hoechst 33258 stock (1 mg/ml): To make 10 ml. weigh 10mg of Hoechst 33258 and add 10 ml of HBSS. Store at 4℃in the dark.3. Hoechst 33258 working solution (100 ng/ml in HBSS): To make 50 ml, take 5ul of the Hoechst 33258 stock solution and add 50 ml of HBSS.4. Mounting mediumSteps:1.Plate cells on l2-mm glass coverslips placed in a 58-rnm tissue culture dish containing 8 ml of complete DMEM. Wait until the cells reach about 65% confluence.2. Rinse twice with NBSS.3. Add HBSS diluted 1:1 with Acetic acid/methanol (1:3). Rock the tissue culture dish and discard the solution4. Add acetic acid/methanol. Rock the tissue culture dish and discard the solution.5. Add acetic acid/methanol. Leave for 10 min at room temperature.6. Discard the acetic acid/methanol and wish twice with FIBSS.7. Add the Hoechst 33258 working solution (100 ng/rnL in If/IRS) and leave for IC mm at room temperature. ]he solution should be disposed in accordance with the safety regulations enforced in your laboratory.8. Rinse three times with HI3SS. Pick up the coverslip and place it cells slide down on a glass slide containing a drop of mounting medium. Leave for 1 hr at 37℃ or overnight at room temperature and observe in a fluorescence microscope using an appropriate filter. The Bisbenzamide fluorochrome excites at 360 nm and emits at 490-500nm. Cells free of mycoplasms should stain only in the nucleus. Contaminated cells exhibit bright, punctated staining in the cytoplasm.4.7 Procedure for Preserving and Storing Living CellsCryopreservatioflSteps:1.Select a 75-cm2 flask with cells in the logarithmic phase of growth and just approaching confluency. It may he necessary to renew the culture medium 24hr before harvesting the cells.2. Trypsinize the cells suspend the cells (pipette up and down) in complete DMEM at a concentration of2X106cells/ml. Check the cells for bacteria, fungal and mycoplasm.3. Centrifuge to pellet the cells and resuspend at 5-6X106 cells/ml in DMEM medium containing 10% FCS and 10% DMSO.4. Dispense the cell suspension in 1-mi aliquots into sterile cryoampoules. Tighten the screw cap and place in expanded polystyrene.5. Place the expanded polystyrene container with the ampoules at 4℃for l hr, and then place the container at -7012 or at -7012 for 15-20 mm then transfer to vapor-phase liquid nitrogen freezer.6. Note: Cells can he stored for many years. A temperature of 70℃is not adequate for storing cell lines except for very short periods (3-4 months). It is important to keep many ampoules in reserve. ThawingSteps:1. Remove the ampoules from the liquid nitrogen freezer, and immediately plunge the ampoule into water at 37℃until the liquid starts melting.2. Clean the ampoule all around with a tissue paper soaked with 70% ethanol,3. Add the contents of the ampoule to 5 ml of complete DMEM medium kept at 4℃. Centrifuge for 1-2 min at 300-400 g and resuspend the cells with 8 ml of complete DMEM at 37℃. Plate all the cells in a 25-cm2 flask and place it in the 37℃humidified 5% C02 incubator. Change the medium after 2hr when most of the cells have attached.4. Change the medium after 24 hr.5. Note: Caution should be exercised when removing ampoules kept in liquid nitrogen. Abrupt changes in temperature cause the ampoules to burst. Use safety glasses as well as insulated gloves. If the biological material is dangerous place it in a Cryoflex tubing (343958 Nunc) before freezing. Fetal Bovine Serum Lot Testing.4.8 Serum and medium testingBefore a new hatch of serum or media is purchased, ft is advisable to obtain a sample from the manufacturer and test its growth—supporting characteristics. Ibis is particularly important for serum. We usually select two of the most used cell types in the lab to test their growth and plating efficiencies.Steps:1 Make up individual aliquots of growth media, all containing the same media hatch, hut with the different test sera and including the serum batch currently being used.2 Plate the cells into 15 dishes for each test media at 5 / I o~ cells / 60 mm tissue-culture dish and containing 5ml of the media.3. Every day for 5 d thereafter, trypsinize the cells from triplicate plates and determine the cell numher/plate.4. Plot a growth curve (log cell number vs time), and calculated the doubling time and saturation density.5. At the same time as setting up the growth curves, seed in triplicate 60-mm dishes containing 5 ml of the appropriate media with 100 and 200 cells (6 plates/test).6. After 10-12 d fix the culture for IS mm by flooding with formalin.7. Tip the media and formalin (福尔马林) down the drain, and stain the clones with methylene (亚甲基) blue.8. Leave the stain for 15 min, and then wash it away with water9. Leave the plates stacked up against each other to dry in a 37℃room.10. Count the colonies.11. The three parameters of doubling time, saturation density, and plating efficiency should allow the section ofa serum that gives optimal growth.12. Note: This procedure need only be performed about every year. Enough serum can then be ordered for the next year, since the serum is stable at -20℃for at least 2 yr.4.9 Collagen isolation and coating of culture surface(第二次)Collagen types I can he obtain from the tendons that attach to the vertebrae of the rat tail.Steps:1. Cut fresh or thawed tails longitudinally from the base to the tip. Sterilized the tail with 70% ethanol.2. Pull the skin off the tail, remove the white collagen fibres and Sterilized with u.v. light.3. Stir 1 g of collagen fibres (from 3-4 tails) into 300 ml of 0.1% acetic acid for 48 h at 4℃.4. Centrifuge (4000 rpm, 30 mm 4℃), , obtain the upper liquid that is the stock solution of collagen.5.Dilute the stock solution 1:20 with double-distilled water,6. Cover the bottom of a plastic dish with this solution and air dry ( max, 37℃, 1-2 days).7. The dishes can be stored in a humid atmosphere at 4℃for several months, Alternatively, the stock solution may be neutralized and diluted in culture medium whereupon the collagen will gel due to the increased pH and salt concentration. Denature (air-dried) collagen enhances cell attachment (e.g. for endothelial cells and skeletal muscle), but native (undenatured) collagen gel may he required for correct phenotype expression.5. Disaggregation of the tissue and primary culture of Hen’s Egg(第三次课)5.1 Isolation of the tissueSteps:1. Incubate the eggs at 38.5℃in a humid atmosphere and turn through 180℃daily. Although hen’s eggs hatch at around 20 to 2ld, the lengths of the developmental stages are different from the mouse. For culture of。