华师版八年级上册数学期末试卷
华师版八年级数学上册第一学期期末测试卷(含答案)
华师版八年级数学上册第一学期期末测试卷(含答案)第一学期期末测试卷一、选择题(每题3分,共30分)1.9的平方根是(。
)。
A。
±3B。
±1/3C。
3D。
-32.下列运算正确的是(。
)。
A。
x3·x4=x12B。
(x3)4=x7C。
x8÷x2=x6D。
(3b3)2=6b63.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是(。
)。
A。
8、15、17B。
7、24、25C。
3、4、5D。
2、3、74.已知∠AOB,求作射线OC,使OC平分∠AOB,那么作法的合理顺序是(。
)。
①作射线OC;②在射线OA和OB上分别截取OD,OE,使OD=OE;③分别以D、E为圆心,大于DE的长为半径在∠AOB内作弧,两弧交于点C.A。
①②③B。
②①③C。
②③①D。
③①②5.如图是丽水PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是(。
)。
A。
汽车尾气约为建筑扬尘的3倍B。
表示建筑扬尘的占7%C。
表示煤炭燃烧对应的扇形圆心角度数为126°D。
煤炭燃烧的影响最大6.如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为(。
)。
A。
40°B。
30°C。
70°D。
50°7.下列分解因式正确的是(。
)。
A。
-ma-m=-m(a-1)B。
a2-1=(a-1)2C。
a2-6a+9=(a-3)2D。
a2+3a+9=(a+3)28.如图,在△ABC中,AB=AC,D是BC的中点,AC 的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是(。
)。
A。
1B。
2C。
3D。
49.如图,数轴上点A、B分别对应数1、2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是(。
)。
A。
3B。
5C。
6D。
华师大版八年级数学上册期末测试题含答案
华师大版八年级数学上册期末测试题含答案注意:本测试题分为两个部分,第一部分是选择题,共计60分;第二部分是解答题,共计40分。
请同学们认真阅读题目,按要求作答。
第一部分:选择题(共60分,每小题3分)1. 设x为正整数,则下列各数中最大的是:(A)300 (B)3x (C)2x (D)4x2. 若x+5=7,则x的值为:(A)-5 (B)7 (C)0 (D)23. 下列各数中,最大的是:(A)0.3 (B)0.03 (C)0.003 (D)0.00034. 甲、乙两个图书馆,甲馆的藏书量是乙馆的2倍减10本,如果乙馆藏书量为x,写出甲馆藏书量的代数式是:(A)2x-10 (B)2x+10 (C)10-2x (D)x-105. 用三角形的边长表示周长作为x,若三角形的一条边为5cm,另外两条边为(2x-1)cm和x-1cm,则x的值是:(A)12 (B)13 (C)10 (D)11......第二部分:解答题(共40分)1. 计算下列各式的值:(1)5x - 3y,其中x=4,y=2(2)3x^2 - 2x + 1,其中x=2(3)2ab + 3a + 4b,其中a=1/2,b=1/32. 一工人在一天内用10台挖土机挖沟,第一小时挖了1/5的沟,第二小时挖了1/4的沟,如此递增,一共用了多少小时挖完沟?3. 英华山是中国五大名山之一,是世界文化与自然遗产。
山区海拔2800多米,山顶处矗立着仙人石。
某天观测到,海拔在山顶高度的48%的地方。
请计算山顶的实际高度。
......答案:第一部分:选择题1. (B)3x2. (D)23. (A)0.34. (A)2x-105. (B)13......第二部分:解答题1.(1) 5x - 3y = 5 * 4 - 3 * 2 = 20 - 6 = 14(2) 3x^2 - 2x + 1 = 3 * 2^2 - 2 * 2 + 1 = 12 - 4 + 1 = 9(3) 2ab + 3a + 4b = 2 * (1/2) * (1/3) + 3 * (1/2) + 4 * (1/3)= 1/3 + 3/2 + 4/3 = 2/6 + 9/6 + 8/6 = 19/62. 第一小时挖的沟:1/5第二小时挖的沟:1/4第三小时挖的沟:1/3以此类推,可以得到挖完沟所需的时间总和:1/5 + 1/4 + 1/3 + ... + 1/10 = 0.853. 海拔在山顶高度的48%的地方,即0.48 * 2800 = 1344m......通过这样的一份期末测试题,同学们可以巩固和提升对八年级数学知识的理解和应用能力。
华师大版八年级上册数学期末测试卷及含答案
华师大版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.a+a=a 2B.a 2·a 3=a 6C.(-a 3) 2=a 5D.a 7÷a 5=a 22、如图,已知,若,,则的度数为()A. B. C. D.3、下列运算正确的是()A.3x 2+4x 2=7x 4B.(﹣x)﹣9÷(﹣x)﹣3=x ﹣6C.x 2﹣x2=1 D.﹣x(x 2﹣x+1)=﹣x 3﹣x 2﹣x4、下列计算结果正确的是()A.﹣2x 2y 3•x 3y 3=﹣2x 6y 9B.12x 6y 4÷2x 3y 3=6x 3yC.3x 3y 2﹣x 2y 3=xyD.(﹣2a﹣3)(2a﹣3)=4a 2﹣95、已知a,b都是正整数,且a> ,b< ,则a-b的最小值是()A.1B.2C.3D.46、关于,下列说法错误的是()A.它是一个无理数B.它可以用数轴上的一个点来表示C.若,则 D.它可以表示体积为6的正方形的棱长7、如图,在中,是的中点,作于点,连接,下列结论:①;②;③;④;其中正确的个数是()A.1B.2C.3D.48、如图,在等腰△ABC中,AB=AC,∠A=20°,AB上一点D,且AD=BC,过点D作DE∥BC且DE=AB,连接EC,则∠DCE的度数为()A.80°B.70°C.60°D.45°9、在中,、、的对应边分别是a、b、c,下列条件中不能说明是直角三角形的是()A. B. C.D.10、有理数、在数轴上的对应点的位置如图所示,下列各式正确的是()A.-a<0B.b<0C.a>bD.|a|<|b|11、某中学开展“阳光体育一小时”活动,根据学校实际情况,如图决定开设“A:踢毽子,B:篮球,C:跳绳,D:乒乓球”四项运动项目(每位同学必须选择一项),为了解学生最喜欢哪一项运动项目,随机抽取了一部分学生进行调查,丙将调查结果绘制成如图的统计图,则参加调查的学生中最喜欢跳绳运动项目的学生数为()A.240B.120C.80D.4012、计算的结果是()A. B. C. D.13、下列计算正确的是()A.a 2+2a 2=3a 4B.(-2x 2) 3=-8x 6C.(m-n) 2=m 2-n 2D.b 10÷b 2=b 514、数5的算术平方根为()A. B.25 C.±25 D.±15、如图,等腰△ABC的周长为17,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.11B.12C.13D.16二、填空题(共10题,共计30分)16、从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将其裁成四个相同的梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算两个图形阴影部分的面积,可以验证的公式为________17、如图,已知△AOC≌△BOC,∠ACB=92°,∠B=98°,则∠1=________度。
2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)
2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。
华师大版八年级上册数学期末试卷及答案
初二数学上学期期末水平测试一、选择题1,4的平方根是( )A.2B.4C.±2D.±42,下列运算中,结果正确的是( )A.a 4+a 4=a 8B.a 3·a 2=a 5C.a 8÷a 2=a 4D.(-2a 2)3=-6a 6 3,化简:(a +1)2-(a -1)2=( )A.2B.4C.4aD.2a 2+2 4,矩形、菱形、正方形都具有的性质是( )A.每一条对角线平分一组对角B.对角线相等C.对角线互相平分D.对角线互相垂直5,如图1所示的图形中,中心对称图形是( )图16,如图2,已知等腰梯形ABCD 中,AD ∥BC ,∠A =110°,则∠C =( )A.90°B.80°C.70°D.60° 二、填空题7,化简:5a -2a = . 8,9的算术平方根是_______.9,如图8,若□ABCD 与□EBCF 关于BC 所在直线对称,∠ABE =90°,则∠F =___°10,如图11,将矩形纸片ABCD 的一角沿EF 折叠,使点C 落在矩形ABCD 的内部C ′处,若∠EFC =35°,则∠DEC ′= 度.AD CB图2三、解答题11,化简:a(a-2b)-(a-b)2.12,先化简,再求值. (a-2b)(a+2b)+ab3÷(-ab),其中a=2, b=-1.13,如图13是4×4正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图13中黑色部分是一个中心对称图形.14,如图14,在一个10×10的正方形DEFG网格中有一个△ABC.(1)在网格中画出△ABC向下平移3个单位得到的△A1B1C1.(2)在网格中画出△ABC绕C点逆时针方向旋转90°得到的△A2B2C.15,给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法图13图14CBAD GFE运算,并把结果因式分解.16,现有一张矩形纸片ABCD(如图15),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在梯形AECD内,记为点B′.(1)请用尺规,在图中作出△AEB′.(保留作图痕迹);(2)试求B′、C两点之间的距离.图1517,2008年,举世瞩目的第29届奥运盛会将在北京举行.奥运五环,环环相扣,象征着全世界人民的大团结.五环图中五个圆环均相等,其中上排三个、下排两个,且上排的三个圆心在同一直线上;五环图是一个轴对称图形.(1)请用尺规作图,在图16中补全奥运五环图,心怀奥运.(不写作法,保留作图痕迹)(2)五环图中五个圆心围一个等腰梯形.如图17,在等腰梯形ABCD 中,AD ∥BC .假设BC =4,AD =8,∠A =45°,求梯形的面积.18,把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H(如图18).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.DCABGHF E 图18 ABCD45°图17。
华师大版八年级上册数学期末考试题及答案
华师大版八年级上册数学期末考试题及答案华师大版八年级上册数学期末考试试卷一、选择题(每小题3分,共24分)1.下列说法中,正确的是()A。
(√(-6))²=-6B。
带根号的数都是无理数C。
27的立方根是±3D。
立方根等于-1的实数是-12.下列运算正确的是()A。
a³·a²=a⁵B。
(a²b)³=a⁶b³C。
a⁸÷a²=a⁶D。
a+a=a²3.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A。
如果∠A-∠B=∠C,那么△ABC是直角三角形B。
如果a²=b²+2c²,那么△ABC是直角三角形且∠C=90°C。
如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D。
如果a²:b²:c²=9:16:25,那么△ABC是直角三角形4.如图,在数轴上表示实数的点可能是()A。
点PB。
点QC。
点MD。
点N5.下列结论正确的是()A。
有两个锐角相等的两个直角三角形全等B。
一条斜边对应相等的两个直角三角形全等C。
顶角和底边对应相等的两个等腰三角形全等D。
两个等边三角形全等6.三角形的三边长为a,b,c,且满足(a+b)²=c²+2ab,则这个三角形是()A。
等边三角形B。
钝角三角形C。
直角三角形D。
锐角三角形7.如图,已知点P到AE、AD、BC的距离相等,下列说法:①点P在∠BAC的平分线上;②点P在∠CBE的平分线上;③点P在∠BCD的平分线上;④点P在∠BAC,∠CBE,∠BCD的平分线的交点上。
其中正确的是()A。
①②③④B。
①②③C。
④D。
②③8.如图,在△ACB中,有一点P在AC上移动,若AB=AC=5,BC=6,则AP+BP+CP的最小值为()A。
4.8B。
8C。
华师大版八年级上册数学期末考试试题含答案
华师大版八年级上册数学期末考试试卷一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的.1.(4分)在下列实数中,无理数是()A.B.C.D.0.20200200022.(4分)下列运算正确的是()A.a5•a4=a20 B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a43.(4分)若一个数的平方根等于它本身,则这个数是()A.0 B.1 C.0或1 D.0或±14.(4分)分解因式3x3﹣12x,结果正确的是()A.3x(x﹣2)2B.3x(x+2)2C.3x(x2﹣4)D.3x(x﹣2)(x+2)5.(4分)以下列各组数为边长,不能组成直角三角形的是()A.3、4、5 B.7、24、25 C.6、8、10 D.3、5、76.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数分布统计图7.(4分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣88.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48 11.(4分)下面给出五个命题:①若x=﹣1,则x3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x2=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有()A.4个B.3个C.2个D.1个12.(4分)因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b 分解因式正确的结果为()A.(x+3)(x﹣4)B.(x+4)(x﹣3)C.(x+6)(x﹣2)D.(x+2)(x﹣6)二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上13.(4分)16的平方根是.14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= .15.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为万元.16.(4分)若直角三角形的两小边为5、12,则第三边为.17.(4分)根据(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为.18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= .三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.19.(8分)计算:(π﹣2)0+|﹣3|﹣+(﹣)﹣2.20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求证:AE=DF.四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题:(1)调查的总人数为;(2)补全条形统计图;(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF 的延长线于点D.(1)求证:AE=CD;(2)若AB=4,求BD的长.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤.25.(10分)若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)请你写一个最小的三位“丰利数”是,并判断20 “丰利数”.(填是或不是);(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG 的关系.(不要求证明,直接写出结果)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内1.(4分)在下列实数中,无理数是()A.B.C.D.0.2020020002【解答】解:为无理数,,,0.2020020002为有理数.故选:C.2.(4分)下列运算正确的是()A.a5•a4=a20 B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a4【解答】解:A、a5•a4=a9,故此选项错误;B、(a4)3=a12,正确;C、a12÷a6=a6,故此选项错误;D、(﹣3a2)2=9a4,故此选项错误;故选:B.3.(4分)若一个数的平方根等于它本身,则这个数是()A.0 B.1 C.0或1 D.0或±1【解答】解:若一个数的平方根等于它本身,则这个数是:0.故选:A.4.(4分)分解因式3x3﹣12x,结果正确的是()A.3x(x﹣2)2B.3x(x+2)2C.3x(x2﹣4)D.3x(x﹣2)(x+2)【解答】解:3x3﹣12x=3x(x2﹣4)=3x(x+2)(x﹣2).故选:D.5.(4分)以下列各组数为边长,不能组成直角三角形的是()A.3、4、5 B.7、24、25 C.6、8、10 D.3、5、7【解答】解:A、∵32+42=25=52,∴能组成直角三角形,故本选项正确;B、∵72+242=625=252,∴能组成直角三角形,故本选项正确;C、62+82=100=102,∴能组成直角三角形,故本选项正确;D、32+52=34≠72=49,∴不能组成直角三角形,故本选项错误.故选:D.6.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.折线统计图C.扇形统计图D.频数分布统计图【解答】解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:B.7.(4分)若(x+m)(x﹣8)中不含x的一次项,则m的值为()A.8 B.﹣8 C.0 D.8或﹣8【解答】解:∵(x+m)(x﹣8)=x2﹣8x+mx﹣8m=x2+(m﹣8)x﹣8m,又结果中不含x的一次项,∴m﹣8=0,∴m=8.故选:A.8.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;B、AB=AC,∠BDA=∠CDA,AD=AD,不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD≌△ACD,故本选项错误;D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误;故选:B.9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定【解答】解:∵△ABC的两边BC和AC的垂直平分线分别交AB于D、E,∴AD=CD,BE=CE,∵边AB长为10cm,∴△CDE的周长为:CD+DE+CE=AD+DE+BE=AB=10cm.故选:A.10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是()A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48【解答】解:∵Rt△ABC中∠B=90°,AB=8,BC=6,∴AC===10,∴AC为直径的圆的半径为5,∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24.故选:C.11.(4分)下面给出五个命题:①若x=﹣1,则x3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若x2=4,则x=2;⑤面积相等的两个三角形全等,是真命题的个数有()A.4个B.3个C.2个D.1个【解答】解:①若x=﹣1,则x3=﹣1,正确;②角平分线上的点到角的两边距离相等,正确;③相等的角是对顶角,错误;④若x2=4,则x=±2,故此选项错误;⑤面积相等的两个三角形全等,错误.故选:C.12.(4分)因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b 分解因式正确的结果为()A.(x+3)(x﹣4)B.(x+4)(x﹣3)C.(x+6)(x﹣2)D.(x+2)(x﹣6)【解答】解:甲看错了a的值:x2+ax+b=(x+6)(x﹣2)=x2+4x﹣12,∴b=﹣12乙看错了b的值:x2+ax+b=(x﹣8)(x+4)=x2﹣4x﹣32,∴a=﹣4∴x2+ax+b分解因式正确的结果:x2﹣4x﹣12=(x﹣6)(x+2)故选:D.二、填空题:(本大题共6小题,每小题4分,共24分)13.(4分)16的平方根是±4 .【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= 80 .【解答】解:∵(a+b)(a﹣b)=a2﹣b2,∴a2﹣b2=10×8=80,故答案为:8015.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 2 万元.【解答】解:他家用于教育的支出的费用=×6=2(万元).故答案为2.16.(4分)若直角三角形的两小边为5、12,则第三边为13 .【解答】解:∵直角三角形的两小边为5、12,∴第三边==13,故答案为:13.17.(4分)根据(x﹣1)(x+1)=x2﹣1,(x﹣1)(x2+x+1)=x3﹣1,(x﹣1)(x3+x2+x+1)=x4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为22018﹣1 .【解答】解:22017+22016+22015+…+23+22+2+1=(2﹣1)(22017+22016+22015+…+23+22+2+1)=22018﹣1.故答案为:22018﹣1.18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= 4 .【解答】解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.19.(8分)计算:(π﹣2)0+|﹣3|﹣+(﹣)﹣2.【解答】解:原式=1+3﹣﹣8+4=﹣.20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求证:AE=DF.【解答】证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∵,∴△ABE≌△DCF(ASA),∴AE=DF.四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.【解答】解:∵|x﹣2|+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x=(9x2﹣4y2+4y2﹣6xy+2xy﹣3x2)÷4x=(6x2﹣4xy)÷4x=1.5x﹣y=1.5×2﹣(﹣1)=3+1=4.22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题:(1)调查的总人数为80 ;(2)补全条形统计图;(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?【解答】解:(1)调查的总人数为:36÷45%=80人,故答案为:80;(2)开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”所占的百分比为:1﹣10%﹣25%﹣45%=20%,则骑自行车的人数为80×20%=16人,补全统计图如图所示;(3)现在骑自行车的人数约为2000×=900人.23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?【解答】解:由题意可得:设AE=xkm,则EB=(2.5﹣x)km,∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,∴AC2+AE2=BE2+DB2,∴1.52+x2=(2.5﹣x)2+12,解得:x=1.答:图书室E应该建在距点A1km处,才能使它到两所学校的距离相等.24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF 的延长线于点D.(1)求证:AE=CD;(2)若AB=4,求BD的长.【解答】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC与△ECA中∴△DBC≌△ECA(A AS).∴AE=CD.(2)由(1)得AE=CD,AC=BC,∴Rt△CDB≌Rt△AEC(HL)∵AB=4.∴AC=4∴BD=EC=BC=AC,∴BD=2.五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤.25.(10分)若一个整数能表示成a2+b2(a、b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.(1)请你写一个最小的三位“丰利数”是100 ,并判断20 是“丰利数”.(填是或不是);(2)已知S=x2+y2+2x﹣6y+k(x、y是整数,k是常数),要使S为“丰利数”,试求出符合条件的一个k值(10≤k<200),并说明理由.【解答】解:(1)∵62=36,82=64,∴最小的三位“丰利数”是:62+82=100,∵20=42+22,∴20是“丰利数”故答案为:101;是;…4分(各2分)(2)S=x2+y2+2x﹣6y+k,…6分=(x2+2x+1)+(y2﹣6y+9)+(k﹣10),=(x+1)2+(y﹣3)2+(k﹣10),…8分当(x+1)2、(y﹣3)2是正整数的平方时,k﹣10为零时,S是“丰利数”,故k的一个值可以是10…10分备注:k的值可以有其它值:0+4+1,得k=11;9+0+4,得k=14.26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F.(1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由.(2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG 的关系.(不要求证明,直接写出结果)【解答】解:(1)结论:DE+DF=BG.理由:连结AD.则△ABC的面积=△ABD的面积+△ACD的面积,即AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG,(2)证明:如图2,连结AD.则△ABC的面积=△ABD的面积+△ACD的面积,即AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG;(3)DE﹣DF=BG,证明:如图3,连接AD,则△ABC的面积=△ABD的面积﹣△ACD的面积,即AB•DE﹣AC•DF=AC•BG,∵AB=AC,∴D E﹣DF=BG.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
华师大版八年级上册数学期末考试试题及答案
华师大版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1 )A .7B .﹣1C .1D .﹣72.下列计算不正确的是( )A .(-a)3 • (-a)4 • (-a)=a 8B .(x 3)5 = (x 5)3C .(x+3y) (x-3y) =x 2-3y 2D .m 4÷m = m 33.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 24.()()22a b a b --+是下列哪一个多项式因式分解的结果( )A .4a 2—b 2B .4a 2+b 2C .-4a 2-b 2D .-4a 2+b 25.老师对本班80名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是( )A .32 人B .28 人C .8 人D .12 人6.若a + b = 3,a 2-b 2=6,则a - b 等于( )A .1B .2C .-2D .-17.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是( )A .B .C .D . 8.如图,AD 平分∠BAC ,AB =AC ,则图中全等三角形的对数是( )A.2对B.3对C.4对D.5对9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.如图,四边形ABCD是长方形,把ΔACD沿AC翻折到ΔACD',AD'与BC交于点E,若AD=4,DC=3,则BE的长是()A.58B.23C.78D.1?二、填空题11.-5是________的立方根.12.已知BD丄AN于点B,交AE于点O,OC丄AM于点C,且OB= OC,如果∠OAB=25°,则∠ADB=________.13.在一个边长为12.75?cm的正方形内挖去一个边长为7.25?cm的正方形,则剩下部分的面积为______2cm.BC的14.如图,在已知的ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连结CD,若CD= AC,∠A=50°,则∠B=________.15.如图,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD,连结AC.若AC=8,则四边形ABCD的面积为_________.三、解答题16.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣.17.已知a+b=3,ab = 2,求代数式a3b+2a2b2+ab3的值.18.已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.19.如图,曲柄连杆装置是很多机械上不可缺少的,曲柄OA绕O点圆周运动,连杆AP拉动活塞作往复运动.当曲柄的A旋转到最右边时,如图(1),OP长为8cm;当曲柄的A旋转到最左边时,如图(2)OP长为18cm.(1)求曲柄OA和连杆AP分别有多长;(2)求:OA⊥OP时,如图(3),OP的长是多少.20.为了绿化环境,北京临川学校七年级部分同学积极参加植树活动,今年植树节时,该年级同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)七年级参加植树的共有多少名同学?(2)条形统计图中,m=,n=.(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.21.用尺规作图:任意画一个锐角∠AOB,如图.在OB上任取一点C.过点C作CM//OA,CN OA于乂(不必写出作法,但要保留作图痕迹)22.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1) 观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2) 若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.23.如图,在RtΔABC 中,∠ABC=90°,AB=20,BC=15,A D为AC边上的动点,点D 从点C出发,沿边CA往A运动,当运动到点A时停止,设点D运动的时间为t秒,速度为每秒2个单位长度.(1)当t为何值时,ΔCBD是直角三角形;(2)若ΔCBD是等腰三角形,求t的值.参考答案1.A【解析】根据算术平方根的计算即可得到结论.【详解】,故选A .【点睛】本题主要考查算术平方根,比较基础.2.C【分析】根据同底数幂的乘法,幂的乘方和积的乘方,同底数幂的除法以及平方差公式求出每个式子的值,再得出选项即可.【详解】解:A 、(-a)3 • (-a)4 • (-a)=a 8,计算正确,故本选项不符合题意;B 、(-x 2)5=-a 10,计算正确,故本选项不符合题意;C 、(x+3y) (x-3y) =x 2-9y 2,计算错误,故本选项符合题意;D 、m 4÷m = m 3,计算正确,故本选项不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,幂的乘方和积的乘方,同底数幂的除法以及平方差公式等知识点,能求出每个式子的值是解此题的关键.3.C【详解】解:由题意可得,正方形的边长为(m+n ),故正方形的面积为(m+n )2.又∵原矩形的面积为4mn ,∴中间空的部分的面积=(m+n )2-4mn=(m-n )2.故选C .4.D【分析】把每个能分解因式的选项分解因式,即可得到答案.【详解】解:()()22422,a b a b a b -=+- 故A 错误;224a b +不能分解因式,故B 错误;224a b --不能分解因式,故C 错误;()()()22224422.a b a b a b a b -+=--=-+- 故D 正确;故选D .【点睛】本题考查的是利用平方差公式进行因式分解,掌握平方差公式是解题的关键.5.A【分析】根据频数和频率的定义求解即可.【详解】解:本班A 型血的人数是800.4=32⨯(人)故选:A .【点睛】本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键. 6.B【分析】根据平方差公式将a 2-b 2=6进行变形,再把a+b=3代入求值即可.【详解】解:∵a+b=3,∴a 2-b 2=(a+b )(a-b )=3(a-b )=6,∴a-b=2,故选:B .【点睛】此题主要考查了因式分解的应用,熟练掌握平方差公式是解答此题的关键.7.C【分析】求证是否为直角三角形,这里给出三边的长,根据两小边的平方和等于最长边的平方逐一验证即可得到答案.【详解】解:A 、22222222272425,152024,222025,+=+≠+≠故A 不正确;B 、22222272425,152024,+=+≠故B 不正确;C、222222+=+=故C正确;72425,152025,D、22222272025,152425,+≠+≠故D不正确.故选:C.【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足222a b c,那么这个三角形是直角三角形.+=8.B【分析】根据角平分线的性质及全等三角形的判定可求得图中的全等三角形有3对,分别是:△ABD≌△ACD,△BED≌△CED,△ABE≌△ACE.【详解】∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB=AC,AD=AD,AE=AE,∴△ABD≌△ACD,△ACE≌△ABE(SAS),∴BD=CD,∠BDE=∠CDE,∵DE=DE,∴△CED≌△BED(SAS),所以共有3对全等三角形,故选B.【点睛】本题考查了全等三角形的判定定理和性质定理,能综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.9.C【详解】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.10.C【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD ∥BC ,∠B=90°,再根据折叠性质得∠DAC=∠D′AC ,而∠DAC=∠ACB ,则∠D′AC=∠ACB ,所以AE=EC ,设BE=x ,则EC=4-x ,AE=4-x ,然后在Rt △ABE 中利用勾股定理建立方程可计算出BE 的长度.【详解】解:∵四边形ABCD 为矩形,∴AB=DC=3,BC=AD=4,AD ∥BC ,∠B=90°,∵△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,∴∠DAC=∠D′AC ,∵AD ∥BC ,∴∠DAC=∠ACB ,∴∠D′AC=∠ACB ,∴AE=EC ,设BE x =,则4EC x =-,=4AE x -,在Rt ABE ∆中,由勾股定理得:222AB BE AE +=,即:()22234x x +=-, 解得:78x =,即:BE 的长度为78, 故选:C .【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;也考查了矩形的性质和勾股定理;牢记折叠的性质是解决本题的关键.11.125.-【分析】由立方与立方根互为逆运算,所以由()35-可的答案.【详解】-=-解:()35125,-的立方根,∴-是1255-故答案为:125.【点睛】本题考查的是立方根的含义,掌握立方根及求一个数的立方根是解题的关键.12.40°【分析】先根据DB⊥AN于B,OC⊥AM于点C,且OB=OC,得出AE平分∠MAN,再根据∠OAB=25°,得出∠MAN=50°,最后根据DB⊥AN于B,求得∠ADB即可.【详解】解:∵DB⊥AN于B,OC⊥AM于点C,且OB=OC,∴AE平分∠MAN,∵∠OAB=25°,∴∠MAN=50°,∵DB⊥AN于B,∴Rt△ABD中,∠ADB=40°.故答案为:40°【点睛】本题主要考查了角平分线的性质定理的逆定理,解决问题的关键是掌握:角的平分线上的点到角的两边的距离相等.13.110cm2【详解】根据题意可得:剩下的面积=2212.757.25-=(12.75+7.25)×(12.75-7.25)=20×5.5=110.考点:平方差公式的应用14.25︒【分析】先根据等腰三角形的性质可得50ADC A ∠=∠=︒,再根据三角形的外角性质可得B BCD ADC ∠+∠=∠,然后根据垂直平分线的性质可得CD BD =,最后根据等腰三角形的性质可得B BCD ∠=∠,由此即可得出答案.【详解】CD AC =,50A ∠=︒,50ADC A ∴∠=∠=︒,50B BCD ADC ∴∠+∠=∠=︒,由作图过程可知,直线MN 是BC 的垂直平分线,CD BD ∴=,B BCD ∴∠=∠,250B ∴∠=︒,解得25B ∠=︒,故答案为:25︒.【点睛】本题考查了等腰三角形的性质、垂直平分线的作图与性质等知识点,掌握垂直平分线的作图与性质是解题关键.15.32【分析】作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ,先证明△ABM ≌△ADN (AAS ),得到AM=AN ,△ABM 与△ADN 的面积相等,求出正方形AMCN 的面积即可解决问题.【详解】解:如图,作AM ⊥BC 、AN ⊥CD ,交CD 的延长线于点N ,∵∠BAD=∠BCD=90°,∴四边形AMCN 为矩形,∠MAN=90°,∵∠BAD=90°,∴∠BAM=∠DAN ,在△ABM 与△ADN 中,BAM DAN AMB AND AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△ADN (AAS ),∴AM=AN ,∴△ABM 与△ADN 的面积相等,∴四边形ABCD 的面积=正方形AMCN 的面积,设AM=a ,由勾股定理得:222AC AM MC =+,∵AC=8,∴2264a =,∴232a =,故答案为:32.【点睛】本题主要考查了全等三角形的判定与性质,勾股定理,正方形的判定及性质,解题的关键是作辅助线,构造全等三角形.16.5【解析】试题分析:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.原式的第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,第三项先计算乘方运算,再计算除法运算,合并得到最简结果,最后把ab 的值代入化简后的式子计算即可求出值.试题解析:解:原式=4﹣a 2+a 2﹣5ab+3ab=4﹣2ab ,当ab=﹣12时,原式=4+1=5.考点:整式的混合运算—化简求值..17.2()ab a b +,18【分析】先把32232a b a b ab ++分解因式,再整体代入求值即可.【详解】解:32232a b a b ab ++()222ab a ab b =++2()ab a b =+.将3a b +=,2ab =代入得,原式22318=⨯=.【点睛】本题考查的是利用因式分解求代数式的值,掌握因式分解的方法:提公因式法,公式法是解题的关键.18.证明见解析.【分析】要证明∠B=∠ANM ,只要证明△BAD ≌△NAM 即可,根据∠BAC=∠DAM ,可以得到∠BAD=∠NAM ,然后再根据题目中的条件即可证明△BAD ≌△NAM ,本题得以解决.【详解】证明:∵∠BAC=∠DAM ,∠BAC=∠BAD+∠DAC ,∠DAM=∠DAC+∠NAM , ∴∠BAD=∠NAM .在△BAD 和△NAM 中,∵AB=AN ,∠BAD=∠NAM ,AD=AM ,∴△BAD ≌△NAM (SAS ),∴∠B=∠ANM .【点睛】本题考查全等三角形的判定和性质,根据题目条件选择适当的判定定理是关键.19.(1) AP=13cm ,OA=5cm (2) OP=12cm【分析】(1)、设AP=a ,OA=b ,根据图一和图二列出二元一次方程组,从而得出答案;(2)、根据Rt △OAP 的勾股定理得出答案.【详解】(1)设AP=a ,OA=b ,由题意818a b a b -=⎛ +=⎝, 解得135a b =⎛ =⎝, ∴AP=13cm ,OA=5cm .(2)当OA ⊥OP 时,在Rt △PAO 中,,∴OP=12cm .点睛:本题主要考查的是二元一次方程组的应用以及勾股定理的实际应用,属于基础题型.根据题意列出方程组是解决这个问题的关键.20.(1)50;(2)10,7;(3)72°.【解析】试题分析:(1)根据植4株的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n 的值;用总人数减去其他植树的人数,就是m 的值,从而补全统计图;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数. 试题解析:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50. (2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7(人).m=50﹣(4+18+11+7)=10(人).(3)所求扇形圆心角的度数为:360×1050=72°. 点睛:此题主要考查了扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.21.详见解析【分析】利用尺规作图作∠MCB=∠O ,利用尺规作图过C 作AO 的垂线.【详解】如图所示,直线CM 和CN 即为所求..【点睛】本题考查了作图-基本作图,熟悉尺规作图是解题的关键.22.(1)AP=CQ,证明见解析(2)△PQC是直角三角形,证明见解析【分析】根据等边三角形的性质利用SAS判定△ABP≌△CBQ,从而得到AP=CQ;设PA=3a,PB=4a,PC=5a,由已知可判定△PBQ为正三角形从而可得到PQ=4a,再根据勾股定理判定△PQC 是直角三角形.【详解】(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BP=BQ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC 中∵PQ 2+QC 2=16a 2+9a 2=25a 2=PC 2∴△PQC 是直角三角形.【点睛】此题考查勾股定理的逆定理,等边三角形的性质,全等三角形的判定与性质,解题关键在于作辅助线23.(1) 4.5t =或12.5秒时,CBD 是直角三角形;(2)7.5t =或6.25或9秒时,CBD 是等腰三角形.【分析】(1)根据CD=速度×时间,得到CD ,利用勾股定理列式求出AC ,再分①∠CDB=90°时,利用△ABC 的面积列式计算即可求出BD ,然后利用勾股定理列式求解得到CD ,再根据时间=路程÷速度计算;②∠CBD=90°时,点D 和点A 重合,然后根据时间=路程÷速度计算即可得解;(2)分①CD=BC 时,CD=15;②CD=BD 时,根据等腰三角形的性质、直角三角形的性质可求CD ;③BD=BC 时,过点B 作BF ⊥AC 于F ,根据等腰三角形三线合一的性质可得CD=2CF ;依此解答.【详解】解:(1)由题意知2CD t =,90ABC ∠=︒,20AB =,15BC =,∴25AC =,252AD AC CD t =-=-.①90CDB ∠=︒时,1122ABC SAC BD AB BC =⋅=⋅,即1125201522BD ⨯⨯=⨯⨯, 解得12BD =,∴9CD ,则92 4.5t =÷=;②90CBD ∠=︒时,点D 和点A 重合,25212.5t =÷=. 综上所述, 4.5t =或12.5秒时,CBD 是直角三角形.(2)①CD BC =时,15CD =,∴1527.5t =÷=;②CD BD =时,C DBC ∠=∠.∵90C A DBC DBA ︒∠+∠=∠+∠=,∴D A BA ∠=∠,∴BD AD=,∴112.52CD AD AC===,∴12.52 6.25t=÷=;③BD BC=时,如图,过点B作BF AC⊥于F.根据等腰三角形三线合一的性质可知2CD CF=.则CF DF=,∵12BF=,∴9CF=,∴29218CD CF==⨯=,∴1829t=÷=.综上所述,7.5t=或6.25或9秒时,CBD是等腰三角形.【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,难点在于要分情况讨论,作出图形更形象直观.。
华师大版八年级上册数学期末考试试卷含答案
华师大版八年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.计算:|﹣13| ) A .1 B .23 C .0 D .﹣12.下列运算正确的是( )A .()325x x -=-B .235x x x +=C .347x x x ⋅=D .3321x x -= 3.下列命题为假命题的是( )A .三角形三个内角的和等于180°B .三角形两边之和大于第三边C .三角形的面积等于一条边的长与该边上的高的乘积的一半D .同位角相等4.下列结论正确的是( )A .有两个锐角相等的两个直角三角形全等;B .顶角和底边对应相等的两个等腰三角形全等C .一条斜边对应相等的两个直角三角形全等;D .两个等边三角形全等.5.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,12 6.浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是( )A .此次调查的总人数为5000人B .扇形图中的m 为10%C .样本中选择公共交通出行的有2500人D .若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人二、填空题7.81的平方根是__________;6427-的立方根是__________.8.在实数-50,π________.9.计算:20192019313103⎛⎫⎛⎫-⋅-= ⎪ ⎪⎝⎭⎝⎭__________.10.已知12x y +=,6-=x y ,则22x y -=__________.11.分解因式:2233x y -=____.12.请用“如果…,那么…”的形式写一个命题______________13.如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)14.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .15.已知直角三角形的两边长分别为5和12,则第三边长的平方是__________.16.用反证法证明“等腰三角形的底角是锐角”时,首先应假设_____17.在一个不透明的盒子中装有n 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n 的值大约是_____. 18.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.三、解答题19.(1)计算:()()3232342132392xy x x xy y x y ⎡⎤-⋅-⋅⋅÷⎢⎥⎣⎦; (2)先化简,再求值: ()()()2223x y x y x y x ++-+-,其中20182x =,201912y ⎛⎫= ⎪⎝⎭.20.利用我们学过的知识,可以推导出下面这个形式优美的等式:()()()22222212a b c ab bc ac a b b c c a ⎡⎤+++++=+++++⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐美、简洁美. (1)请你检验这个等式的正确性;(2)猜想:222a b c ab bc ac ++---=12[ ]. (3)灵活运用上面发现的规律计算:若2018a =-,2016b =,2017c =-,求222a b c ab bc ac ++++-的值.21.如图,在Rt ABC 中.()1利用尺规作图,在BC 边上求作一点P ,使得点P 到AB 的距离(PD 的长)等于PC 的长; ()2利用尺规作图,作出()1中的线段PD .(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)22.如图所示,△ADF 和△BCE 中,∠A=∠B ,点D ,E ,F ,C 在同一直线上,有如下三个关系式:①AD=BC ;②DE=CF ;③BE ∥AF .请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.23.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)请补全条形统计图;(3)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.24.如图1,在ABC ∆中,90ACB ∠=,AC BC =,直线MN 经过点C ,且AD MN ⊥于点D ,BE MN ⊥于点E .易得DE AD BE =+(不需要证明).(1)当直线MN 绕点C 旋转到图2的位置时,其余条件不变,你认为上述结论是否成立?若成立,写出证明过程;若不成立,请写出此时DE AD BE 、、之间的数量关系,并说明理由;(2)当直线MN 绕点C 旋转到图3的位置时,其余条件不变,请直接写出此时DE AD BE 、、之间的数量关系(不需要证明).参考答案1.C【分析】先计算绝对值、算术平方根,再计算减法即可得.【详解】原式=13﹣13=0,故选C.【点睛】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序与运算法则及算术平方根、绝对值性质.2.C【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【详解】A、(-x2)3=-x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3-x3=x3,此选项错误;故选:C.【点睛】此题考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.3.D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;B、三角形两边之和大于第三边,所以B选项为真命题;C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,D、两直线平行,同位角相等,所以D选项为假命题.故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.B【详解】试题解析:A两个锐角相等的两个直角三角形不全等,故该选项错误;B中两角夹一边对应相等,能判定全等,故该选项正确;C一条斜边对应相等的两个直角三角形不全等,故该选项错误;D中两个等边三角形,虽然角相等,但边长不确定,所以不能确定其全等,所以D错误.故选B.5.A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选A.【点睛】考查勾股定理的逆定理,如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.6.D【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【详解】A .本次抽样调查的样本容量是2000÷40%=5000,此选项正确;B .扇形统计图中的m 为1-(50%+40%)=10%,此选项正确;C .样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;D .若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有5×40%=2(万人),此选项错误;故选:D .【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.7.±9 43- 【分析】根据平方根及立方根的定义即可求出答案.【详解】根据平方根的定义可知81的平方根是±9, 6427-的立方根是43-. 故答案为:±9,43-. 【点睛】本题考查了平方根及立方根的知识,难度不大,主要是掌握平方根及立方根的定义. 8.π【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【详解】根据实数比较大小的方法,可得π>0>−5,故实数-50,π中最大的数是π.故答案为π.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.1【分析】把带分数化为假分数,然后逆运用积的乘方的性质进行计算即可得解.【详解】20192019313103⎛⎫⎛⎫-⋅- ⎪ ⎪⎝⎭⎝⎭20192019310103⎛⎫⎛⎫=-⋅- ⎪ ⎪⎝⎭⎝⎭2019310103⎛⎫= ⎪⎝⎭20191=1=.故答案为:1.【点睛】本题考查了积的乘方,同底数幂的乘法,熟记性质并灵活运用是解题的关键.10.72【分析】利用平方差公式对22x y -变形为()()x y x y +-,即可求解.【详解】∵12x y +=,6-=x y ,∴()()2212672x y x y x y -=+-=⨯=.故答案为:72.【点睛】本题主要考查了平方差公式的应用,解题的关键是牢记公式的结构特征和形式.11.3()()x y x y +-【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:()()()2222333=3x y x y x y x y -=-+-,故答案为:3()()x y x y +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.答案不唯一【解析】本题主要考查了命题的定义任何一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论. 答案不唯一,例如:如果两个角是同位角,那么这两个角相等.13.可添∠ABD=∠CBD 或AD=CD .【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD或AD=CD.【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.14.22【分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.15.169或119【分析】求第三边的长必须分类讨论,分12是斜边或直角边两种情况,然后利用勾股定理求解.【详解】分两种情况:①当5和12为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方22=+=;512169②12为斜边长时,由勾股定理得:第三边长的平方22=-=;125119综上所述:第三边长的平方是169或119;故答案为:169或119.【点睛】本题考查了勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键,注意分类讨论,避免漏解.16.等腰三角形的底角是钝角或直角【详解】根据反证法的第一步:假设结论不成立设,可以假设“等腰三角形的两底都是直角或钝角”.故答案是:等腰三角形的两底都是直角或钝角.17.100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】由题意可得,3n=0.03,解得,n=100,故估计n大约是100,故答案为100.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.18.14【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【详解】90分及90分以上的频率为:1-12%-24%-36%=28%,∵全班共有50人,∴90分及90分以上的人数为:50×28%=14(人).故答案为:14.【点睛】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.19.(1)83x xy;(2)xy,1 2【分析】(1)先根据积的乘方、幂的乘方和同底数幂乘法法则进行计算,再根据多项式除单项式的运算法则计算即可;(2)根据完全平方公式、多项式乘多项式的运算法则去括号,再合并同类项化成最简式,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)()()3232342132392xy x x xy y x y ⎡⎤-⋅-⋅⋅÷⎢⎥⎣⎦332242*********x x x y x x y y y ⎡⎤=⋅-⋅⋅÷⎢⎥⎣⎦5104252(27)99x y y y x x =-÷52425104292799x y x y x y x y =÷-÷83y x x =-;(2)()()()2223x y x y x y x ++-+-222222223x xy xy y y x x x y =++---++xy =,当20182x =,201912y ⎛⎫= ⎪⎝⎭时,原式201920182018201820182018111111122212222222⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.20.(1)证明见解析;(2)222 ()()()a b b c c a -+-+-;(3) 3【分析】(1)右边利用完全平方公式化简,去括号合并即可验证;(2)猜想:(2222221[()())2a b c ab bc ac a b b c c a ⎤++---=-+-+-⎦;(3)根据 201820162017a b c =-==-,,,将原式变形,计算即可得到结果.【详解】(1)右边(2221[()())2a b b c c a ⎤=+++++⎦()22222212222a ab b b bc c c ac a =++++++++22212222ab 2bc 2ac 2a b c =+++++222a b c ab bc ac =+++++=左边,故等式成立; (2)(2222221 [()())2a b c ab bc ac a b b c c a ⎤++---=-+-+-⎦ 右边(2221[()())2a b b c c a ⎤=-+-+-⎦ ()22222212222a ab b b bc c c ac a =-++-++-+ 22212222ab 2bc 2ac 2a b c =++--- 222a b c ab bc ac =++---=左边,∴猜想成立,故答案为:(222[()())a b b c c a ⎤-+-+-⎦;(3)根据(1) (2)的规律,猜想:(2222221[()())2a b c ab bc ac a b b c c a ⎤++++-=++++-⎦, 右边()22222212222a ab b b bc c c ac a =++++++-+ 22212222ab 2bc 2ac 2a b c =++++- 222a b c ab bc ac =++++-=左边,∴猜想成立;∵ 201820162017a b c =-==-,,, ∴(2222221[()())2a b c ab bc ac a b b c c a ⎤++++-=++++-⎦ (2221[(20182016)(20162017)20172018)2⎤=-++-+-+⎦ (2221[(2)1)12⎤=-+-+⎦ ()14112=++ 3=.【点睛】本题考查了完全平方公式,熟练掌握题中已知等式的灵活运用是解本题的关键. 21.()1作图见解析; (2)作图见解析.【分析】()1由点P 到AB 的距离(PD 的长)等于PC 的长知点P 在BAC ∠平分线上,再根据角平分线的尺规作图即可得(以点A为圆心,以任意长为半径画弧,与AC、AB分别交于一点,然后分别以这两点为圆心,以大于这两点距离的一半长为半径画弧,两弧交于一点,过点A 及这个交点作射线交BC于点P,P即为要求的点);()2根据过直线外一点作已知直线的垂线的尺规作图即可得(以点P为圆心,以大于点P到AB的距离为半径画弧,与AB交于两点,分别以这两点为圆心,以大于这两点间距离一半长为半径画弧,两弧在AB的一侧交于一点,过这点以及点P作直线与AB交于点D,PD 即为所求).【详解】()1如图,点P即为所求;()2如图,线段PD即为所求.【点睛】本题考查了作图-复杂作图、角平分线的性质定理等知识,解题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.22.如:AD=BC,BE∥AF,则DE=CF;理由见解析【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【详解】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,A B AFD BEC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCE(AAS),∴DF=CE ,∴DF ﹣EF=CE ﹣EF ,∴DE=CF .【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.23.(1)2000;(2)补图见解析;(3)36万人.【详解】分析:(1)将A 选项人数除以总人数即可得;(2)用总人数乘以D 选项人数所占百分比求得其人数,据此补全图形即可得; (3)用总人数乘以样本中C 选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人, (2)D 选项的人数为2000×25%=500, 补全条形图如下:(3)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1) 不成立,DE=AD-BE ,理由见解析;(2) DE=BE-AD【分析】(1)DE 、AD 、BE 之间的数量关系是DE=AD-BE .由垂直的性质可得到∠CAD=∠BCE,证得△ACD ≌△CBE ,得到AD=CE ,CD=BE ,即有DE=AD-BE ;(2)DE 、AD 、BE 之间的关系是DE=BE-AD .证明的方法与(1)一样.【详解】(1)不成立.DE 、AD 、BE 之间的数量关系是DE=AD-BE ,理由如下:如图,∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,CD=BE ,∴DE=CE-CD=AD-BE ;(2)结论:DE=BE-AD .∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,AC CB =,∴∠ACD+∠CAD=90°,又∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ACD 和△CBE 中,90ADC CEB CAD BCE AC CB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB(AAS),∴AD=CE ,DC=BE ,∴DE=CD-CE=BE-AD .【点睛】本题考查了旋转的性质、直角三角形全等的判定与性质,旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.。
华师大版八年级上册数学期末测试卷(参考答案)
华师大版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列说法正确的是()A.等腰三角形的高、中线、角平分线互相重合B.等腰三角形的两个底角相等C.顶角相等的两个等腰三角形全等D.等腰三角形一边不可以是另一边的2倍2、下列计算正确的是()A. =±3B.a 0=1C.3 -2 =1D.2÷3× =3、下列说法正确的是()A.同位角相等B.矩形对角线垂直C.对角线相等且垂直的四边形是正方形D.等腰三角形两腰上的高相等4、下面各式计算正确的是()A. B. C. D.5、一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间6、 =()A. B. C. D.7、如图,已知等边三角形△ABC边长为a,等腰三角形△BDC中,∠BDC=120º,∠MDN=60º,角的两边分别交AB,AC于点M,N,连结MN.则△AMN的周长为()A. aB.2 aC.3 aD.4 a8、若x,y均为正整数,且2x+1•4y=128,则x+y的值为()A.4B.5C.4或5D.69、下列计算结果正确的是()A. B. C. ÷ D.10、下列等式成立的是()A. B. C. D.11、方程的根为()A. B. C. 或 D.以上都不对12、我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a =3,b=4,则该矩形的面积为( )A.20B.24C.D.13、若a2=4,b2=9,且ab<0,则a-b的值为()A.-2B.±5C.-5D.514、如图,在中,,以点为旋转中心,把顺时针旋转得,记旋转角为, 为,当旋转后满足时,与之间的数量关系为()A. B. C. D.15、如图,在网格(每个小正方形的边长均为1)中选取9个格点(格线的交点称为格点),如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.2 <r<B. <r<3C. <r<5D.5<r<二、填空题(共10题,共计30分)16、计算:(﹣3xy2)2÷(2xy)=________.17、分解因式:2a2-a=________.18、某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C的仰角为45°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走4米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度为________.19、如图,在菱形ABCD中,,对角线,则菱形ABCD的面积为________.20、如图,DE是⊙O的直径,弦AB⊥CD,垂足为C,若AB=6,CE=1,则OC=________,CD=________.21、如图,△ABC中,∠BAC=110°,AB、AC的垂直平分线分别交BC于点E、F,则∠EAF的度数为________.22、如图,商场(点M)距公路(直线l)的距离(MA)为3km,在公路上有一车站(点N),车站距商场(NM)为4km,公交公司拟在公路上建一个公交车站停靠站(点P),要求停靠站到商场与到车站的距离相等,则停靠站到车站的距离(NP)的长为________.23、如图,AC与BD交于点P,AP=CP,从以下四个论断①AB=CD,②BP=DP,③∠B=∠D,④∠A=∠C中选择一个论断作为条件,则不一定能使△APB≌△CPD 的论断是________(限填序号).24、因式分解:9a3b-ab________.25、若a+ =3,则a﹣=________.三、解答题(共5题,共计25分)26、计算:.27、如图,已知在△ABC中,∠A=90°,D是BC中点,且DE⊥BC于D,交AB 于E,求证:BE2﹣EA2=AC2.28、“尊敬的老师:因为我家里有事了,所以向老师请假了,请假2天了,请老师准假了,谢谢了.”这是小明同学向老师写的请假条.老师见后,对此请假条马上批注,“小明同学:你的请假条中了字用了太多了,以后少用了,明白没有了现在准假了,就这样了.”问请假条和批语中“了”的频数各是多少?频率各是多少?是小明还是老师用“了”更频繁?29、如图,点C是AB的中点,AD=CE,CD=BE,求证:∠D=∠E.30、如图:在平行四边形ABCD中,对角线AC与BD交于点O,过点O的直线EF 分别与AD、BC交于点E、F,EF⊥AC,连结AF、CE.(1)求证:OE=OF;(2)请判断四边形AECF是什么特殊四边形,请证明你的结论.参考答案一、单选题(共15题,共计45分)1、B2、D3、D4、B5、B6、A7、B8、C9、D10、C11、C12、B13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
华师大版八年级上册数学期末考试试题附答案
华师大版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.9的算术平方根是( )A.3 B.9 C.±3 D.±92.如图,BC丄OC,CB =1,且OA = OB,则点A在数轴上表示的实数是()A.B.C.-2 D3.下列说法:①任何正数的两个平方根的和等于0;②任何实数都有一个立方根;③无限小数都是无理数;④实数和数轴上的点一一对应.其中正确的有()A.1个B.2个C.3个D.4个4.下列运算中,结果是a5的是()A.a2• a3B.a10÷a2C.(a2)3D.( - a)55.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+66.用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B'''∠=∠的依据是()A.SAS B.SSS C.ASA D.AAS7.如图,已知BF=CE,∠B=∠E,那么添加下列一个条件后,仍无法判定△ABC≌△DEF 的是( )A.AB=DE B.AC∥DF C.∠A=∠D D.AC=DF8.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等D.以上均不正确9.如图,ABC 中,∠C=90°,AC=3,AB = 5,点D 是边BC 上一点,若沿将ACD 翻折,点C刚好落在边上点E处,则BD等于()A.2 B.52C.3 D.10310.在一张长为10cm,宽为8cm的矩形纸片上,要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的顶点A重合,其余的两个顶点都在矩形边上),这个等腰三角形有几种剪法()A.1 B.2 C.3 D.4二、填空题11.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1米),却踩伤了花草.12.因式分解:3x—12xy2 =__________.13.若等腰三角形的顶角为100,则它腰上的高与底边的夹角是________度.14.如图,ΔABC的面积为8 cm2,AP垂直∠B的平分线BP于P,则ΔPBC的面积为________.15.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P 的运动时间为t秒,当t的值为__秒时,△ABP和△DCE全等.三、解答题16.计算:[xy(3x—2)—y(x2—2x)]÷xy.17.若△ABC 的三边a、b、c 满足|a —15 | +(b—8)2.试判断△ABC的形状,并说明理由.18.先化简,再求值:2(2)2()()()a a b a b a b a b +++--+,其中1,12a b =-=.19.学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求该校七年一班此次预选赛的总人数;(2)补全条形统计图,并求出书法所在扇形圆心角的度数;(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?20.如图,已知△ABC ,利用尺规..,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空:(1)作∠ABC 的平分线BD 交AC 于点D ; (2)作BD 的垂直平分线交AB 于E ,交BC 于F ;(3)在(1)、(2)条件下,连接DE ,线段DE 与线段BF 的关系为 .21.已知:如图,在△ABC 中,AD ⊥BC ,垂足是D ,E 是线段AD 上的点,且AD =BD ,DE =DC .⑴ 求证:∠BED =∠C ;⑵ 若AC =13,DC =5,求AE 的长.22.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边三角形ACE和BCD,联结AD、BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.23.如图,ABC 中,AB = AC=2,∠B = 40°,点D 在线段BC上运动(点D不与B,C 重合),连结AD,作∠ADE=40°,DE 交线段AC于E.(1)当∠BAD=20°时,∠EDC= °;(2) 请你回答:“当DC等于时,ABD≅DCE”,并把“DC等于”作为已知条件,证明ABD≅DCE;(3)在D点的运动过程中,ADE的形状也在改变,判断当∠BAD等于时,ADE 是等腰三角形.(直接写出结果,不写过程)参考答案1.A【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根.所以结果必须为正数,由此即可求出9的算术平方根.【详解】∵32=9,∴9的算术平方根是3.故选A.【点睛】此题主要考查了算术平方根的定义,易错点正确区别算术平方根与平方根的定义.2.B【分析】根据数轴上的点,可知OC=2,且BC=1,BC⊥OC,根据勾股定理可求OB长度,且OA=OB,故A点所表示的实数可知.【详解】解:根据数轴上的点,可知OC=2,且BC=1,BC⊥OC,根据勾股定理可知:又∵∴A表示的实数为故选:B.【点睛】本题考查了实数与数轴的表示、勾股定理,解题的关键在于利用勾股定理求出OB的长度.3.C【详解】①一个正数有两个平方根,它们互为相反数,和为0,故①正确;②立方根的概念:如果一个数的立方等于a,那么这个数就叫做a的立方根,故②正确;③无限不循环小数是无理数,无限循环小数是有理数,故③错误;④实数和数轴上的点一一对应,故④正确,所以正确的有3个,故选C.4.A【分析】根据同底数幂的乘法法则、同底数幂的除法法则、幂的乘方、及乘方的意义逐项计算即可.【详解】A. a2• a3=a5,故正确;B. a10 a2=a8,故不正确;C. (a2)3=a6,故不正确;D. ( - a)5=-a5,故不正确;故选A.【点睛】本题考查了幂的运算,熟练掌握幂的运算法则是解答本题的关键.同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘.5.C【分析】由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.【详解】设拼成的矩形一边长为x,则依题意得:(m+3)2-m2=3x,解得,x=(6m+9)÷3=2m+3,故选C.6.B【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.【详解】解:作图的步骤:①以O 为圆心,任意长为半径画弧,分别交O A 、OB 于点D 、C ;②任意作一点O ′,作射线O ′B ′,以O ′为圆心,OC 长为半径画弧,交O ′B ′于点C ′; ③以C ′为圆心,CD 长为半径画弧,交前弧于点D ′; ④过点D ′作射线O ′A ′.所以∠A ′O ′B ′就是与∠AOB 相等的角; 作图完毕.在△OCD 与△O ′C ′D ′,''''''OC O C OD O D CD C D =⎧⎪=⎨⎪=⎩, ∴△OCD ≌△O ′C ′D ′(SSS ), ∴∠A ′O ′B ′=∠AOB , 显然运用的判定方法是SSS . 故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键. 7.D 【分析】根据全等三角形的判定定理分别进行分析即可. 【详解】A .∵BF =CE ,∴BF -CF =CE -CF ,即BC =EF .∵∠B =∠E ,AB =DE ,∴∆ABC ≌∆DEF (SAS ),故A 不符合题意. B .∵AC ∥DF ,∴∠ACE =∠DFC ,∴∠ACB =∠DFE (等角的补角相等)∵BF =CE ,∠B =∠E ,∴BF -CF =CE -CF ,即BC =EF ,∴∆ABC ≌∆DEF (ASA ),故B 不符合题意.C.∵BF=CE,∴BF-CF=CE-CF,即BC=EF.而∠A=∠D,∠B=∠E,∴∆ABC≌∆DEF(AAS),故C不符合题意.D.∵BF=CE,∴BF-CF=CE-CF,即BC=EF,而AC=DF,∠B=∠E,三角形中,有两边及其中一边的对角对应相等,不能判断两个三角形全等,故D符合题意.故选D.【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.A【分析】过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,因为是两把完全相同的长方形直尺,可得CE=CF,再根据角的内部到角的两边的距离相等的点在这个角的平分线上可得OP平分∠AOB【详解】如图所示:过两把直尺的交点C作CF⊥BO与点F,由题意得CE⊥AO,∵两把完全相同的长方形直尺,∴CE=CF,∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),故选A.【点睛】本题主要考查了基本作图,关键是掌握角的内部到角的两边的距离相等的点在这个角的平分线上这一判定定理.9.B 【分析】根据勾股定理,求出BC 的长度,设 BD=x ,则DC= 4-x ,由折叠可知:DE= 4-x ,BE=2,在 Rt BDE 中,222BD =BE DE +,根据勾股定理即可求出x 的值,即BD 的长度. 【详解】∵∠C= 90°,AC=3,AB=5∴BC=,设BD=x ,则DC= 4-x ,由折叠可知:DE=DC=4-x ,AE=AC=3,∠AED= ∠C=90°, ∴ BE= AB -AE = 2.在 Rt BDE 中,222BD =BE DE +, 即:222x =2(4-x)+, 解得:x=52,即BD=52,故选:B . 【点睛】本题主要考查了折叠的性质、勾股定理,解题的关键在于写出直角三角形BDE 三边的关系式,即可求出答案. 10.B 【解析】 有两种情况:①当∠A 为顶角时,如图1,此时AE =AF =5cm .②当∠A 为底角时,如图2,此时AE =EF =5cm .故选B .11.8【分析】先根据勾股定理求出斜边的长,与直角边进行比较即可求得结果.【详解】解:由题意得,斜边长米,则少走(6+8-10)×2=8步路, 故答案为8.【点睛】本题考查的是勾股定理的应用,属于基础应用题,只需学生熟练掌握勾股定理,即可完成.12.()()31212x y y +-【分析】提取公因式3x 后,剩下的式子符合平方差公式的特点,可以继续分解.【详解】解:23x 12xy -=23x(14y )-=3x(12y)(12y)-+,故答案为:3x(12y)(12y)-+.【点睛】本题考查因式分解,解题的关键是掌握提取公因式和平方差公式.13.50【分析】已知给出了等腰三角形的顶角为100°,要求腰上的高与底边的夹角可以根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半求解.∵等腰三角形的顶角为100°∴根据等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半; ∴高与底边的夹角为50°.故答案为50.【点睛】本题考查了等腰三角形的性质:等腰三角形的一腰上的高与底边的夹角等于顶角的一半;作为填空题,做题时可以应用一些正确的命题来求解.14.24cm【分析】延长AP 交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:延长AP 交BC 于E ,如图所示:∵AP 垂直∠B 的平分线BP 于P ,∴∠ABP=∠EBP ,∠APB=∠BPE=90°,在△APB 和△EPB 中∠=∠⎧⎪=⎨⎪∠=∠⎩APB EPB BP BPABP EBP , ∴△APB ≌△EPB (ASA ),∴S △APB =S △EPB ,AP=PE ,∴△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴S △PBC =S △PBE +S △PCE =12S △ABC =4cm 2,故答案为4cm 2.本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S △PBC =S △PBE +S △PCE =12S △ABC .15.1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】因为AB =CD ,若∠ABP =∠DCE =90°,BP =CE =2,根据SAS 证得△ABP ≌△DCE ,由题意得:BP =2t =2,所以t =1,因为AB =CD ,若∠BAP =∠DCE =90°,AP =CE =2,根据SAS 证得△BAP ≌△DCE , 由题意得:AP =16﹣2t =2,解得t =7.所以,当t 的值为1或7秒时.△ABP 和△DCE 全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,要注意分类讨论.16.2x .【分析】根据整式的除法和加减法法则即可得.【详解】原式()()2322xy y x y x x x y x ÷--÷=-,()322x y x xy x --÷=-,()322x x =---,322x x =--+,2x =.【点睛】本题考查了整式的除法和加减法,熟记整式的运算法则是解题关键.17.直角三角形,理由见解析【分析】根据绝对值、平方、二次根式的非负性即可列出式子求出a 、b 、c 的值,再根据勾股定理的逆定理即可判断三角形形状.【详解】解:根据2a-15(b-8)0+中,绝对值、平方、二次根式的非负性,即可得出a=15,b=8,c=17,发现22217=158+, 根据勾股定理的逆定理,即可得出ABC 是直角三角形.【点睛】此题主要考查勾股定理逆定理的应用,解题的关键是根据非负性求出各边的长. 18.2223a b -,52-. 【解析】试题分析: 根据整式的乘法去括号,再合并同类项,最后代入求出即可.试题解析:a (a+2b )+2(a+b )(a-b )-(a+b )2=a 2+2ab+2a 2-2b 2-a 2-2ab-b 2=2223a b -,当a=-12,b=1时,原式=2(-12)2-3×12=52-. 19.(1)七年一班此次预选赛的总人数是24人;(2)120︒,图见解析;(3)本次比赛全学年约有40名学生获奖【分析】(1)用七年一班版画人数除以版画的百分数即可求得七年一班的参赛人数;(2)用七年一班总的参赛人数减去版画、独唱、独舞的参赛人数即可求得书法的参赛人数,再用七年一班书法的参赛人数除以七年一班总的参赛人数再乘以360°即可求得七年一班书法所在扇形圆心角的度数,根据求得的数据补全统计图即可;(3)用参赛总人数除以七年一班的参赛人数,再乘以2即可求解.【详解】(1)625%24÷=(人),故该校七年一班此次预选赛的总人数是24人;(2)书法参赛人数=246468---=(人),书法所在扇形圆心角的度数=824360120÷⨯︒=︒;补全条形统计图如下:(3)480242202÷⨯=⨯40=(名)故本次比赛全学年约有40名学生获奖.【点睛】本题考查了条形统计图与扇形统计图的知识,解题的关键是读懂两种统计图,从两种统计图中找到相关数据进行计算.20.(1)详见解析;(2)详见解析;(3)平行且相等.【解析】【分析】(1)先BD 平分∠ABC 交AC 于D;(2)作EF 垂直平分BD,交AB 于点E,交BC 于点F;(3)由于EF 垂直平分BD,则EB=ED,而BD 平分∠EBF ,则可判断△BEF 为等腰三,角形,所以BE=BF,所以有DE=BF.设EF 与BD 交点为M,因为EF 垂直平方BD ,所以BM=DM,∠BMF 和∠EMD=90°,DE=BF 所以三角形MED ≌△BFM ,∠DBF=∠EDB ,所以DE 和BF 平行且相等.【详解】解:(1)如图,BD 为所作;(2)如图,EF 为所作;(3)DE 和BF 平行且相等.【点睛】本题考查了作图-复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.7【分析】(1)可以通过证明△ADC ≌△BDE 可得∠BED =∠C ;(2)先根据勾股定理求出AD ,由上一问△ADC ≌△BDE 可得ED =EC ,AD =BD ,即可求出AE .【详解】证明:(1)∵ AD ⊥BC, ∴ ∠BDE =∠ADC =90°,∵在△ADC 和△BDE 中,BD AD BDE ADC DE DC =⎧⎪∠∠⎨⎪=⎩=,∴△ADC ≌△BDE ,∴ ∠BED =∠C .(2)∵ ∠ADC =90°,AC =13,DC =5, ∴AD =12∵ △BDE ≌△ADC , DE =DC =5∴ AE =AD -DE =12-5=7.【点睛】题目中出现较多的角相等,边相等可以考虑用三角形全等的方法解决问题.22.(1)AD=BE .(2)成立,见解析;(3)∠APE=60°.【分析】(1)直接写出答案即可.(2)证明△ECB ≌△ACD 即可.(3)由(2)得到∠CEB=∠CAD ,此为解题的关键性结论,借助内角和定理即可解决问题.【详解】解:(1)∵△ACE 、△CBD 均为等边三角形,∴AC=EC ,CD=CB ,∠ACE=∠BCD ,∴∠ACD=∠ECB ;在△ACD 与△ECB 中,AC ECACD ECB CD CB=⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECB (SAS ),∴AD=BE ,故答案为AD=BE .(2)AD=BE 成立.证明:∵△ACE 和△BCD 是等边三角形∴EC=AC ,BC=DC ,∠ACE=∠BCD=60°,∴∠ACE+∠ACB=∠BCD+∠ACB ,即∠ECB=∠ACD ;在△ECB 和△ACD 中,EC ACECB ACD BC DC=⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ACD (SAS ),∴BE=AD .(3))∠APE 不随着∠ACB 的大小发生变化,始终是60°.如图2,设BE 与AC 交于Q ,由(2)可知△ECB ≌△ACD ,∴∠BEC=∠DAC又∵∠AQP=∠EQC ,∠AQP+∠QAP+∠APQ=∠EQC+∠CEQ+∠ECQ=180°∴∠APQ=∠ECQ=60°,即∠APE=60°.考点:全等三角形的判定与性质;等边三角形的性质.23.(1)20;(2)2;2;证明见解析;(3)30°或60°【分析】(1)根据外角等于不相邻两内角和可解题;(2)当DC=AB=2时,即可求证△ABD ≌△DCE ;(3)分类谈论,①若AD=AE 时;②若DA=DE 时,③若EA=ED 时,即可解题.【详解】解:(1)∵∠BAD=20°,∠B=40°,∴∠ADC=60°,∵∠ADE=40°,∴∠EDC=20°.(2)DC=AB=2时,∵AB = AC=2,∴∠B=∠C ,∵∠BAD=180°-∠B-∠ADB=180°-40°-∠ADB=140°-∠ADB ,∠CDE=180°-∠ADE-∠ADB=180°-40°-∠ADB=140°-∠ADB ,∴∠BAD=∠CDE .在△ABD 和△DCE 中,B CBAD EDC AB CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△DCE (AAS );(3)∵AB=AC ,∴∠B=∠C=40°,①若AD=AE 时,则∠ADE=∠AED=40°,∵∠AED >∠C ,∴△ADE不可能是等腰三角形;②若DA=DE时,即∠DAE=∠DEA=1(180°-40°)=70°,2∵∠BAC=180°-40°-40°=100°,∴∠BAD=100°-70°=30°;③若EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°-40°=60°,∴当∠BAD=30°或60°时,△ADE是等腰三角形.【点睛】本题考查了全等三角形的判定,三角形外角的性质,等腰三角形的判定和性质.运用分类讨论解本题是解题的关键.。
华东师大版八年级数学上册期末测试卷及答案【完整】
华东师大版八年级数学上册期末测试卷及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.当22a a +-有意义时,a 的取值范围是( ) A .a ≥2 B .a >2 C .a ≠2 D .a ≠-25.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么△ABC 中BC 边上的高是( )A .102B .104C .105D .510.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A .33B .6C .4D .5二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.函数32y x x =-+x 的取值范围是__________. 3.在△ABC 中,AB=15,AC=13,高AD=12,则ABC ∆的周长为____________.4.如图,已知∠XOY=60°,点A 在边OX 上,OA=2.过点A 作AC ⊥OY 于点C ,以AC 为一边在∠XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD ∥OY 交OX 于点D ,作PE ∥OX 交OY 于点E .设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、D6、C7、B8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-12、23x -<≤3、32或424、2≤a+2b ≤5.56、32°三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、112x -;15.3、(1)见解析;(2)经过,理由见解析4、(1) 65°;(2) 25°.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。
华师大版八年级上册数学期末考试试题及答案
华师大版八年级上册数学期末考试试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)4的平方根是()A.±2 B.﹣2 C.2 D.162.(4分)在实数0,2,,3中,最大的是()A.0 B.2 C. D.33.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D 4.(4分)“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.5.(4分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12 D.a2•a3=a66.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17 B.16 C.8 D.47.(4分)因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)8.(4分)下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:210.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米11.(4分)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组12.(4分)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)因式分解:x2﹣6x+9= .(4分)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF= .14.15.(4分)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.16.(4分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为.三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M 为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)4的平方根是()A.±2 B.﹣2 C.2 D.16【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.(4分)在实数0,2,,3中,最大的是()A.0 B.2 C. D.3【解答】解:2<<3,实数0,2,,3中,最大的是3.故选D.3.(4分)如图,数轴上有A,B,C,D四个点,其中表示绝对值相等的两个实数的点是()A.点A与点D B.点B 与点D C.点B与点C D.点C与点D 【解答】解:|﹣2|=2,|﹣1|=1=|1|,|3|=3,故选:C.4.(4分)“I am a good student.”这句话中,字母“a”出现的频率是()A.2 B.C.D.【解答】解:这句话中,15个字母a出现了2次,所以字母“a”出现的频率是.故选B.5.(4分)下列计算正确的是()A.33=9 B.(a﹣b)2=a2﹣b2C.(a3)4=a12 D.a2•a3=a6【解答】解:A、33=27,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a3)4=a12,正确;D、a2•a3=a5,故此选项错误;故选:C.6.(4分)下列各数中,可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是()A.17 B.16 C.8 D.4【解答】解:A、17是奇数不是偶数,B、16是偶数,并且是8的2倍,C、8是偶数,并且是8的1倍,D、4是偶数,是8的,所以,不是8的倍数,所以可以用来证明命题“任何偶数都是8的整数倍”是假命题的反例是4.故选D.7.(4分)因式分解x2y﹣4y的结果是()A.y(x2﹣4)B.y(x﹣2)2C.y(x+4)(x﹣4)D.y(x+2)(x﹣2)【解答】解:x2y﹣4y=y(x2﹣4)=y(x+2)(x﹣2).故选:D.8.(4分)下列说法中正确的个数有()①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④a,0,都是单项式;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1.A.2个B.3个C.4个D.5个【解答】解:①0是绝对值最小的有理数,正确;②无限小数是无理数,错误;③数轴上原点两侧的数互为相反数,错误;④a,0,都是单项式,错误;⑤﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1,正确;所以正确的有①⑤,共2个;故选A.9.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选B.10.(4分)国家八纵八横高铁网络规划中“京昆通道”的重要组成部分──西成高铁于2017年12月6日开通运营,西安至成都列车运行时间由14小时缩短为3.5小时.张明和王强相约从成都坐高铁到西安旅游.如图,张明家(记作A)在成都东站(记作B)南偏西30°的方向且相距4000米,王强家(记作C)在成都东站南偏东60°的方向且相距3000米,则张明家与王强家的距离为()A.6000米B.5000米C.4000米D.2000米【解答】解:如图,连接AC.依题意得:∠ABC=90°,AB=4000米,BC=3000米,则由勾股定理,得AC===5000(米).故选:B.11.(4分)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A.1组B.2组C.3组D.4组【解答】解:第①组AB=DE,∠B=∠E,∠C=∠F,满足AAS,能证明△ABC≌△DEF.第②组AB=DE,∠B=∠E,BC=EF满足SAS,能证明△ABC≌△DEF.第③组∠B=∠E,BC=EF,∠C=∠F满足ASA,能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故选C.12.(4分)已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4 B.8 C.12 D.16【解答】解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.二、填空题(本大题共4小题,每小题4分,共16分.请将最后答案直接写在相应题中的横线上.)13.(4分)因式分解:x2﹣6x+9= (x﹣3)2.【解答】解:x2﹣6x+9=(x﹣3)2.14.(4分)如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF= 70°.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.15.(4分)小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是25n2.【解答】解:∵m2﹣10mn+■是一个二项式的平方,∴■=(5n)2=25n2,故答案为:25n2.16.(4分)如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为20cm .【解答】解:如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==20;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=.∵20<2,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20.故答案为:20cm三、解答题(本大题共6小题,共56分)17.(9分)计算:(1)+×(﹣)2(2)x3•x6+x20÷x10﹣x n+8÷x n﹣1(3)(a2b+2ab2﹣b3)÷b﹣(a+b)(a﹣b).【解答】解:(1)原式==3+1=4(2)原式=x9+x10﹣x9=x10(3)原式=a2+2ab﹣b2﹣(a2﹣b2)=a2+2ab﹣b2﹣a2+b2=2ab18.(8分)已知多项式A=(x+1)2﹣(x2﹣4y).(1)化简多项式A;(2)若x+2y=1,求A的值.【解答】解:(1)A=(x+1)2﹣(x2﹣4y)=x2+2x+1﹣x2+4y=2x+1+4y;(2)∵x+2y=1,由(1)得:A=2x+1+4y=2(x+2y)+1∴A=2×1+1=3.19.(8分)如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.【解答】解:(1)如图,DE为所作;(2)∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=50°,∵∠AEC=∠EAB+∠B∴∠AEC=50°+50°=100°.20.(9分)中国共产党与世界政党高层对话会于2017年12月3日在北京落下帷幕.某社区为了解居民对此次大会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对大会的关注程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了多少120名居民?(2)关注程度为“很强”的居民占被调查居民总数的百分比是多少?(3)请将条形统计图补充完整.【解答】解:(1)这次调查的居民总数为:18÷15%=120(人);(2)关注程度为“很强”的居民占被调查居民总数的百分比是:.(3)关注程度为“较强”的人数是:120×45%=54(人),补全的条形统计图为:21.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.【解答】解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)22.(12分)如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M 为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M即为△ABC的费尔马点.试说明这种作法的依据.【解答】解:(1)证明:∵△ABE为等边三角形,∴AB=BE,∠ABE=60°.而∠MBN=60°,∴∠ABM=∠EBN.在△AMB与△ENB中,∵,∴△AMB≌△ENB(SAS).(2)连接MN.由(1)知,AM=EN.∵∠MBN=60°,BM=BN,∴△BMN为等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.∴当E、N、M、C四点共线时,AM+BM+CM的值最小.此时,∠BMC=180°﹣∠NMB=120°;∠AMB=∠ENB=180°﹣∠BNM=120°;∠AMC=360°﹣∠BMC﹣∠AMB=120°.(3)由(2)知,△ABC的费尔马点在线段EC上,同理也在线段BF 上.因此线段EC与BF的交点即为△ABC的费尔马点.考试中答题策略和几个答题窍门对于中学生来说,最终都要参加升学考试,而考试的遗憾莫过于实有的水平未能充分发挥出来,致使十几年的辛劳毁于两小时的“经验”不足。
初二上册数学期末试卷华师
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 3/4D. 0.1010010001……2. 下列各数中,无理数是()A. √4B. √9C. √25D. √163. 下列各式中,正确的是()A. a² = b²B. (a + b)² = a² + b²C. (a - b)² = a² - b²D. (a + b)² = a² + b² + 2ab4. 若a > b,则下列不等式中正确的是()A. a² > b²B. a - b > 0C. a + b > 0D. a² < b²5. 下列各数中,能被3整除的数是()A. 17B. 18C. 19D. 206. 下列各式中,分母为奇数的分数是()A. 1/2B. 2/3C. 3/4D. 4/57. 若x² = 25,则x的值为()A. ±5B. ±2C. ±1D. ±108. 下列各式中,表示两个数的积的式子是()A. a + bB. a - bC. a × bD. a ÷ b9. 下列各数中,能被4整除的数是()A. 24B. 25C. 26D. 2710. 下列各式中,正确的是()A. a² = b²B. (a + b)² = a² + b²C. (a - b)² = a² - b²D. (a + b)² = a² + b² + 2ab二、填空题(每题3分,共30分)11. 2的平方根是______,-3的立方根是______。
12. 0.3的百分数是______%,0.004的千分数是______%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
取算术平方根 输出y
是有理数
是无理数 输入x
图4
八年级数学上期期末水平测试
一、选择题
1、有一个数值转换器,原理如下:当输入的x 为64时,输出的y 是( ) A 、8 B 、22 C 、32 D 、23
2、下列运算中,结果正确的是( )
A.a 4+a 4=a 8
B.a 3·a 2=a 5
C.a 8÷a 2=a 4
D.(-2a 2)3=-6a 6 3、化简:(a +1)2-(a -1)2=( )
A.2
B.4
C.4a
D.2a 2+2 4、下列说法中,正确的是( )
.A 直角三角形中,已知两边长为3和4,则第三边长为 5;
B 三角形是直角三角形,三角形的三边 为a ,b ,c 则满足 a 2-b 2=c 2;
C 以三个连续自然数为三边长能构成直角三角形;
D ⊿ABC 中,若 ∠A ∶∠B ∶∠C=1∶5∶6,则⊿ABC 是直角三角形. 5、矩形、菱形、正方形都具有的性质是( )
A.每一条对角线平分一组对角
B.对角线相等
C.对角线互相平分
D.对角线互相垂直
6、如图1所示的图形中,中心对称图形是( )
A B 图1 C D
7、如图4,在平面四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A =125°,则∠BCE =( ) A.55°
B.35°
C.25°
D. 30°
图5
图6
A E
B C
D
图4
8、如图5所示,将长为20cm,宽为2cm的长方形白纸条,折成图6所示的图形并在
其一面着色,则着色部分的面积为()
A.34cm2
B.36cm2
C.38cm2
D.40cm2
二、填空题
9、9的算术平方根是_______.
10、在数轴上与表示3的点的距离最近的整数点所表示的数是.
11、如图8,若□ABCD与□EBCF关于BC所在直线对称,∠ABE=90°,则∠F =__。
12、如图9,正方形ABCD的边长为4,MN∥BC分别交AB,CD于点M,N,在MN
上任取两点P,Q,那么图中阴影部分的面积是.
13、如图10,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点
P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F.则阴影部分的面
积是_______.
14、如图11,将矩形纸片ABCD的一角沿EF折叠,使点C落在矩形ABCD的内部C′
处,若∠EFC=35°,则∠DEC′=度.
15、如图12,将一块斜边长为12cm,∠B=60°的直角三角板ABC,绕点C沿逆时针方
向旋转90°至△A′B′C′的位置,再沿CB向右平移,使点B′刚好落在斜边AB上,那
么此三角板向右平移的距离是cm.
三、解答题
16、计算: 32
8)23(|32|16
1
)2
1(+---+--
17、先化简,再求值. (a -2b )(a +2b )+ab 3÷(-ab ),其中,a=2 ,b =-1.
18、□ABCD 中,AE 平分∠BAD ,DE=4cm ,CE=2cm ,求□ABCD 的周长。
19、如图所示的一块地∠ADC=90°
AD=12m CD=9m AB=39m BC=36m
求这块地的面积。
20、给出三个多项式:
12x 2+x -1,12x 2+3x +1,1
2
x 2-x ,请你选择其中两个进行加法运算,并把结果因式分解.
21、如图14,在一个10×10的正方形DEFG 网格中有一个△ABC . (1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1. (2)在网格中画出△ABC 绕C 点逆时针方向旋转90°得到的△A 2B 2C .
图14
C
B
A
D
G
F
E
22、如图,在矩形ABCD中, AE平分∠BAD,∠1=15°.
(1)求∠2的度数 (2)求证:BO=BE
23把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H (如图18).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
D C
G
H
F
A B
E
图18
参考答案:
一、1,C;2,B;3,C;4,D;5,C;6,B;7,B;8,B;
二、3.
三、21,原式=2-3+1=0.
22,原式=a2-2ab-(a2-2ab+b2)=a2-2ab-a2+2ab-b2=-b2.
23,原式=a2-4b2+(-b2)=a2-5b2,当a=2,b=-1时,原式=22-5(-1)2=-1.
25,(1)和(2)如图:
26,答案不惟一.如,选择多项式:1
2x2+x-1,1
2
x2+3x+1.作加
法运算:(1
2x2+x-1)+(1
2
x2+3x+1)=x2+4x=x(x+4).
1、有一个数值转换器,原理如下:当输入的x为64时,输出的y是()
取算术平方根 输出y
是有理数
是无理数 输入x
图4
A 、8
B 、
22
C 、32
D 、23。