华师版数学八年级上册知识点总结

合集下载

八年级华师版数学知识点

八年级华师版数学知识点

八年级华师版数学知识点八年级数学是中学数学中的一部分重要内容。

华师版数学教材是数学教育中的重要出版物之一,本文就华师版数学教材中八年级的数学知识点进行详细介绍。

一、集合及运算集合是由若干个元素组成的整体,用大写字母表示,元素用小写字母表示。

包含关系用“∈”表示。

集合的运算包括交、并、差和补等。

二、分式方程分式方程是由含有分式的方程,需要通过化简、通分、去分母等方法求解。

三、函数函数是一种特殊的关系,可以用图形、波浪线和函数表等表示。

重点掌握一次函数和二次函数的性质。

四、三角形三角形是由三个线段围成的图形,根据角的大小可分为直角三角形、锐角三角形和钝角三角形。

掌握三角形内角和定理和外角和定理,解决三角形的周长、面积和三角函数的应用问题。

五、相似相似是指两个图形形状相同,但大小不同的关系。

重点掌握相似三角形的性质和应用。

六、直线和圆的位置关系直线和圆的位置关系有包含、相切和相离三种情况。

要掌握求解圆的方程和直线与圆的交点的方法。

七、统计统计是研究数据的一种方法,包括数据的收集和整理、统计量的计算和分析、概率的计算等。

重点掌握平均数、中位数和众数等统计量的计算方法和应用。

八、排列组合排列是指从不同元素中选出若干个排成一列的不同方式,重点掌握有放回和无放回的排列方法和公式。

组合是指从不同元素中选出若干个不考虑顺序的方法,重点掌握有放回和无放回的组合方法和公式。

以上为华师版数学教材八年级的数学知识点,掌握好这些知识将对日常生活和未来的学习、工作产生重要影响。

华师大版八年级上册数学知识点

华师大版八年级上册数学知识点

华师大版八年级上册数学知识点
华师大版八年级上册数学知识点如下:
1. 分式与整式
-整式的概念
-分式的概念
-分式的相等性与消去律
-有理数的加法与减法
2. 比例与比
-比例的定义
-比例恒等式与比例方程
-比例的延长与缩短
-平行线分线段成比例
-利用比例解决实际问题
3. 一次函数
-函数的概念
-一次函数的概念
-一次函数的图象与性质
-一次函数的表示与求解
4. 相似与全等
-相似的概念
-全等的概念
-相似三角形的性质
-利用相似解决实际问题
-全等三角形的性质
5. 图形的认识
-点、直线和线段的概念
-角度的概念与计算
-三角形的概念与分类
-四边形的分类与性质
6. 平面直角坐标系
-平面直角坐标系的引入
-平面直角坐标系中的距离
-平面直角坐标系中的中点
-平面直角坐标系中的斜率
-平面直角坐标系中的一次函数方程
以上是华师大版八年级上册数学的一些重要知识点,可能会根据不同版本和教材的差异存在一些差别,建议以教材为准。

华师版数学八年级上册知识点总结

华师版数学八年级上册知识点总结

)无限不循环小数)3)2) 32) 3⎛ ⎝-整数有限小数无限循环小数华师版数学八年级上册知识点双向细目表开方再算乘除,最后算加减,ba 11梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

章节知识点了解理解掌握运用第十六章平行四边形的认识一般地,梯形的分类如下:一般梯形梯形直角梯形特殊梯形等腰梯形等腰梯形的定义:两腰相等的梯形叫做等腰梯形。

等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。

(选择题和填空题可用)梯形的面积: (1)如图,DEABCDSABCD•+=)(21梯形(2)梯形中有关图形的面积:①BACABDSS∆∆=;②BOCAODSS∆∆=;③BCDADCSS∆∆=有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;四边形、矩形、菱形、正方形、。

(完整版)最新华东师大版八年级数学上册知识点总结

(完整版)最新华东师大版八年级数学上册知识点总结
三角形的一切性质。(等腰三角形包括等边三
角形,等腰大于等边)
②等边三角形的三条边相等
判定:①定义:三条边都相
等的三角形是等边三角形
③等边三角形的三个角相等,都为 60º。
③有一个角等于 60º的等腰
三角形是等边三角形
3
② 三 个 角都 相 等的 三角 形
是等边三角形
第十四章:勾股定理
知识点
内容
备注
等边三角形
①等腰三角形的两腰相等
②等腰三角形的两底角相等
③等腰三角形“三线合一”(顶角的平分线,
底边上的中线,底边上的高重合)
④等腰三角形是轴对称图形,只有一条对称轴
⑤等腰三角形的两底角的平分线相等(两条腰
上的中线相等,两条腰上的高相等)
考点:
①若∆, = ,则说明
∆是等腰三角形
②等腰三角形“三线合一”
A
①定义法:在同一三角形中,有两条边相等的
三角形是等腰三角形。
②判定定理:在同一三角形中,有两个角相等
的三角形是等腰三角形(简称:等角对等边)。 B
性质定理:线段垂直平分线上的点到线段两端
点的距离相等
已知:若 EF⊥ ,垂足为点 C,AC=BC,点 D 是直
线 EF 上任意一点
()=
()=
备注
+
逆用:
= ×
例:+ = ×
逆用: = ( ) = ( )
例: = ( ) = ( )
逆用: = ()
例(



( ×





×(


的一个因式
多项式除于单项式
多项式除于单项式,先用这个

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学上册知识点总结

例:
的平方和减去它们的积的 2
逆用

定义:把一个多项式化为几
常考点:
个整式的积的形式;叫做多 ①两种因式分解法一起运用
项式的因式分解 (先提公因式;然后再运用公
因式分解的方法:
式法)
因式分解
①提公因式法
例:
②运用乘法公式法
=
=(a+b)(a-b)
②“1”常Байду номын сангаас要变成“”
例:
第十三章:全等三角形
知识点
2 / 16
常运用于股市与气温的统计
15 / 16
综合考查
①扇形统计图与条形统计图一起考;条形统计图的具体数据为 频数;扇形统计图的百分比为频率;从而可以根据公式计算出
总次数 ②根据统计表;会制作条形统计图(单位值;间隔值要相等)
③根据统计表;会制作扇形统计图(计算百分比和百分数) ④扇形圆心角的度数=百分比

幂的乘方
幂的乘方;底数不变;指数 逆用:

相乘
例:

积的乘方;把积的每一个因 逆用:

式分别相乘;再把所得的幂 例=1
积的乘法
相乘
=
=
同底数幂相处;底数不变; 逆用:
同底数幂的除法 指数相减
例:若=2;则的值是?
单项式与单项式相乘;只要
单项式与单项式相 将它们的系数、相同的字母
乘 的幂分别相乘;对于只在一
⑤扇形的面积之比=各部分所占百分数之比=各部分圆心角之比
16 / 16

个单项式中出现的字母;连

同它的指数一起作为积的一

个因式
乘 单项式与多项式相 单项式与多项式相乘;将单

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学上册知识点总结

最新华东师大版八年级数学(shùxué)上册知识点总结最新华东师大版八年级数学(shùxué)上册知识点总结华师版八年级上册知识点总结第十一章:数的开方知识点平方根内容概念:如果一个数的平方等于a,那么这个数叫做a的平方根算术(suànshù)平方根:正数a的正的平方根记作:a性质:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根概念:如果一个数的立方等于a,那么这个数叫做a的立方根性质:任何实数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0考点:①〔a的取值范围(fànwéi)a≥〕②(的取值范围≥)③(a的取值范围为任意实数)(≥)④==(多项式与多项式多项式与多项式相乘,先用一个多项式的每一项分别(fēnbié)乘以另一个多项式的每一项,再把所得的积相加例:〔某+2〕〔某3〕=+=例:24÷=〔24÷〕〔÷〕〔÷〕=8整式的除法单项式相除,把系数、同底数幂分别相除作为商的因式,对单项式除于单项式于只在被除式中出现的字母,那么连同它的指数一起作为商的一个因式多项式除于单项式,先用这个多项式除于单项式多项式的每一项除于这个单项式,再把所得的商相加例:(9+)÷(3某)=9÷÷+÷=3+例:(a+b)(a-b)=逆用:=(a+b)(a-b)例:(+)=++逆用++=(+)例:()=+逆用+=()常考点:①两种因式分解法一起运用〔先提公因式,然后再运用公式法〕例:++=++=(+)乘法公式平方差公式两数和与这两数差的积,等于这两数的平方差两数和的平方公式两数和的平方,等于这两数的平方和加上它们的积的2倍两数差的平方公式两数差的平方,等于这两数的平方和减去它们的积的2倍定义:把一个多项式化为几个整式的积的形式,叫做多项式的因式分解因式分解的方法:因式分解①提公因式法②运用乘法公式法=(a+b)(a-b)++=(+)+=()②“1〞常常要变成“12〞例:=()=+〔〕第十三章:全等三角形知识点全等三角形内容性质:全等三角形的对应边和对应角相等三角形全等的判定:1.〔边边边〕S.S.S.:如果两个三角形的三条边都对应地相等,那么这两个三角形全等。

初二数学华师大版知识点

初二数学华师大版知识点

初二数学华师大版知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

八年级下册数学复习资料正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。

八年级l上册数学华师大版知识点

八年级l上册数学华师大版知识点

八年级l上册数学华师大版知识点八年级数学是初中阶段的一门重要学科,华师大版数学教材是国内优秀的初中数学教材之一。

本文将为大家介绍八年级上册数学华师大版的知识点。

一、代数式与整式1.代数式代数式是用字母、数字及运算符号等表示数的式子。

如:3x+5、4ab-2a。

2.整式整式是指符号为数或代数式,且只包含有限项的代数式。

如:3x²+5x+2,即为一个整式。

二、一元一次方程一元一次方程是指只有一个未知数的一次方程.解一元一次方程的步骤:将式子变形,让未知数单独一边,把已知数单独一边,然后将未知数的系数移项相乘得到答案。

如:3x+5=14 → 3x=9 → x=3三、数学中的函数函数是一种特殊的关系,它在数学中非常重要。

函数的概念是指,只要满足对于一个自变量,存在对应的唯一因变量,那么这个关系就可以称之为函数。

如:y=2x+1,其中x是自变量,y是因变量。

四、整式的加减法同类项是指,含有相同代数因式的代数式之和。

同类项相加,只需保留同类项的系数即可。

如:3a+4b-2a-6b= 3a-2a+4b-6b= a-2b五、整式的乘法整式乘法遵循分配律和乘法结合律,就是把每一项都分别乘上另一个多项式的每一项,然后相加。

如:(a+b)(c+d)= ac+ad+bc+bd六、数轴与实数数轴是指一条直线,它上面的点和实数一一对应。

数轴上的原点表示0。

数轴上负数的位置在原点的左边,正数的位置在原点的右边。

如:在数轴上标出-3,-2.5,1.5,3.5这几个数的位置:七、二元一次方程组二元一次方程组是指一个含有两个未知数的两个一次方程,求解过程中需要使用代数解和图形解两种方法。

如:{2x+y=5 x-y=1代数解:将第二个方程变形,得到x=y+1,代入第一个方程,得到2(y+1)+y=5,因此y=1,得到x=2。

图形解:将两个方程分别转化为直线的解析式,然后画图,求得两个直线的交点坐标,即为方程的解。

八、数形结合数形结合是数学中重要的一个概念,它可以让我们清晰理解数学概念。

华东师大八年级数学上册知识点

华东师大八年级数学上册知识点

八年级上册知识点第11章数的平方平方根与立方根一、平方根的概念如果一个数的平方等于a,那么这个数叫做a的平方根。

二、平方根的性质1.一个正数有两个平方根,它们互为相反数。

2.0有一个平方根,就是它本身。

3.负数没有平方根。

三、算术平方根正数a的正的平方根,叫做a的算术平方根,记作a,读作“根号a”;另一个平方根是它的相反数,即-a。

因此,正数a的平方根可以记作±a,其中a称为被开方数。

0的算术平方根是0,负数没有算术平方根。

四、平方根与算术平方根的区别与联系1.概念不同;2.表示方法不同;3.个数及取值不同。

五、开平方求一个非负数的平方根的运算,叫做开平方。

六、立方根1.概念:如果一个数的立方等于a,那么这个数叫做a的立方根。

2.性质:任何数(正数、负数和0)的立方根只有一个。

3.表示:数a的立方根,记作3a,读作“三次根号a”。

其中a称为被开方数,3是根指数。

4.一个正数只有一个正的立方根,一个负数只有一个负的立方根,0的立方根是0。

七、开立方求一个数的立方根的运算,叫做开立方。

实数一、无理数1.无线不循环小数叫做无理数。

2.无理数与有理数的区别(1)有理数是有限小数或无限循环小数,而无理数是无限不循环小数。

(2)所有的有理数都能写成分数的形式(整数可以看成分母是1的分数),而无理数不能写成分数的形式。

二、实数及其分类1.实数的概念有理数和无理数统称为实数,即实数包括有理数和无理数。

2.实数的分类(1)按概念分类正整数整数0有理数负整数正分数分数实数负分数正有理数无理数负有理数(2)按正负分类正整数正有理数正实数正分数实数0负整数负有理数负实数负分数负无理数三、实数与数轴上点的关系实数与数轴上的点意义对应。

四、实数的有关概念1.一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0。

2.一个数的绝对值是非负数,即a≥0,因此,在实数范围内,绝对值最小的数是零.两个相反数的绝对值相等.第12章整式的乘除幂的运算一、同底数幂的意义及同底数幂的乘法法则1.同底数幂的意义同底数幂是指底数相同的幂。

华东师大版八级数学上册知识点总结

华东师大版八级数学上册知识点总结

②? ������������������ 是等
已知:DA=DB
腰三角形,因此
结论:点 D 在线段 AB 的垂直平分线上
具有等腰三角
形的一切性质
性质定理:角平分线上的点到角两边的距离相

已知:OP 平分∠AOB,且 PD⊥ ������������,PE⊥ ������������,
结论:PE=PD
的 除
于只在被除式中出现的字母, 则连同它的指数一起作为商
=(24÷ ������)(������������ ÷ ������)(������������ ÷ ������������)


的一个因式
=8������������
多项式除于单项式 多项式除于单项式,先用这个 多项式的每一项除于这个单 例 :
备注
逆用:������������+������ = ������������ × ������������
例:������������+������=������������ × ������������
幂的乘方,底数不变,指数相
乘 (������������)������ = ������������������
角平分线
互逆命题与 互逆定理 尺规作图 等边三角形
点的距离相等
若直线 EF 是线
已知:若 EF⊥ ������������,垂足为点 C,AC=BC,点 D
段 AB 的垂直平
是直线 EF 上任意一点
分线,
结论:DA=DB
则:
性质定理的逆定理:到线段两端点距离相等的
① DA=DB
点在线段的垂直平分线上
������������ + ������������������ + ������������ = (������ + ������)������ ������������ − ������������������ + ������������ = (������ − ������)������

华师大版八年级数学上册知识点归纳总结

华师大版八年级数学上册知识点归纳总结

华师大版八年级数学上册知识点归纳总结证明·:AB //FC ,: 噜乙A =LA.C F.在!::i.AD E和l:J.CFE中.贮竺�D E =邓,:.� 山WE 兰A C FE .全等三角形的性质全等三角形的性质是中考必考内容`常用上明两条线段相等或两个角相等�(无乒中名l 已知: A 如闵M -3-9.AB/! CD , E. 是店的中点,CE =D E .求证:(l)LA EC=乙B ED ;(2)AD =B C . 关已词平行线的性质、全等三角形的判定和性证明(l )':.AB f/CD 喊...乙邸c=L5-CD ,LAED立即C ·:cE=DE, 付...乙ED C=L E C D .:. LABD =乙BEC ,:. 乙AEC=LB1ID .i'1)':E 是B 的中点'.赢.AE =B E .在凶E D 和应E C中.·-1�:� 瓦.£.B EC E D =E C, ·互�E D 竺NJEC(S.A .S .}.: . AD =BC. 尺规作图一种作图方式是不足尺规作图关处是它所使用的工具是不是没有刻度的直尺和吩枝如作图工具是没有刻度的立尺和囡规忒是尺规作图,否则不是近年来有关尺规作图问题时常在考试中出戊,气为选择还和块空见但也时含出现几何综合超. ,'i l ,'l i ','l I l B 如图M -3,-11所示,已知如6.4.B C 中.乙er=,90•, 利用尺规按下列要求作图(保陌作图拫迹):(1炸L.ACB的平分线CD ,交AB于点D;.(2)延,长AC到点E,使C�CB,连接BE .在你作出的图形}中,试判断C D 与B双内位悝关系,井证明你的结论厂M -3r-一II 关诅词尺规作图l 邓)作C D //B E. • .., 明:·:e n 早分LAC B 且乙从邓=90•.,.飞Ltf CD .;;;L JJ,C D=45仑·叉·:CE=CB , :. LEBC'= L B E c=4S "'. ·: 乙B CD=乙E B C =4s •,CJ 4如图M -J -]O 所示.在fiAB C中,L C =殉,:乙B =30句,以A 为阅心.任意长为半径面弧分别:关罚词分,虳过程可知AD 是乙B .4C 的平分线,故OO正确.因为乙C =90•,乙B =:3,o •停ch 、、B 所以乙B A C ""'60户,所以图M -3一lO 乙BAD =LC ,A D =L B =3o •所以AD=DB,故@正确.因为AD 司DB,由线段垂直平分线的判定定理可得点D 在AB 的中垂线上故@正确.答案C / 亡勹. 图M -3一1.21.M -3-12. ;. CD//BE.命题与定理这种题型在每年中考中都会高频出现逌常以某些概念、性质.定理及易混淆知识点为及材,以选择处、判断题的形式勺\。

(完整版)华师大版八年级数学上册知识点总结

(完整版)华师大版八年级数学上册知识点总结

八年级数学上册复习提纲第11章数的开方§11.1平方根与立方根一、平方根1、平方根的定义:如果一个数的平方等于a,那么这个数叫做a的平方根。

(也叫做二次方根)即:若x2=a,则x叫做a的平方根。

2、平方根的性质:(1)一个正数有两个平方根。

它们互为相反数;(2)零的平方根是零;(3)负数没有平方根。

二、算术平方根1、算术平方根的定义:正数a的正的平方根,叫做a的算术平方根。

2、算术平方根的性质:(1)一个正数的算术平方根只有一个且为正;(2)零的算术平方根是零;(3)负数没有算术平方根;(4)算术平方根的非负性:≥0。

a三、平方根和算术平方根是记号:平方根±(读作:正负根号a);算术a平方根(读作根号a)a即:“±”表示a的平方根,或者表示求a的平方根;“”表示a的a a算术平方根,或者表示求a的算术平方根。

其中a叫做被开方数。

∵负数没有平方根,∴被开方数a必须为非负数,即:a≥0。

四、开平方:求一个非负数的平方根的运算,叫做开平方。

其实质就是:已知指数和二次幂求底数的运算。

五、立方根1、立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根。

(也叫做三次方根)即:若x3=a,则x叫做a的立方根。

2、立方根的性质:(1)一个正数的立方根为正;(2)一个负数的立方根为负;(3)零的立方根是零。

3、立方根的记号:(读作:三次根号a),a称为被开方数,“3”称为3a根指数。

中的被开方数a的取值范围是:a为全体实数。

3a六、开立方:求一个数的立方根的运算,叫做开立方。

其实质就是:已知指数和三次幂求底数的运算。

七、注意事项:1、“±”、“”、“”的实质意义:“±”→问:哪个数的平方是a a3a aa;“”→问:哪个非负数的平方是a;“”→问:哪个数的立方是a。

a3a2、注意和中的a的取值范围的应用。

a3a如:若有意义,则x取值范围是。

(∵x-3≥0,∴x≥3)x3(填:x ≥3)若有意义,则x 取值范围是 。

华师大版数学八年级上册知识点汇总

华师大版数学八年级上册知识点汇总

华师大版数学八年级上册知识点汇总第一章数的开方重点知识点知识点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a 性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a 333333)(aa aa a a -=-==知识点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数知识点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式:(1)任何一个实数a 的绝对值是非负数,即|a |≥0;(2)任何一个实数a 的平方是非负数,即2a ≥0;0≥(0a ≥).非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.第二章整式的乘除重点知识点知识点一、幂的运算1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.知识点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.知识点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.22()()a b a b a b +-=-知识点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.()2222a b a ab b +=++;2222)(b ab a b a +-=-知识点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点四、因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法等.知识点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项考虑完全平方;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.第三章全等三角形重点知识点知识点一、全等三角形的性质和判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定2——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).全等三角形判定3——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).全等三角形判定4——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).知识点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等.(2)可以从已知出发,看已知条件确定证哪两个三角形全等.(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等.(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.3.判定直角三角形全等的特殊方法——斜边直角边定理斜边直角边定理(或简记为HL):斜边和一条直角边分别相等的两个直角三角形全等.知识点诠释:判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.知识点二、等腰三角形1.等腰三角形的性质及其作用性质1:等腰三角形的两个底角相等(简称“等边对等角”).性质1用之证明同一个三角形中的两角相等,是证明角相等的一个重要依据.性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).性质2用来证明线段相等,角相等,垂直关系等.2.等腰三角形的判定如果一个三角形中有两个角相等,那么这两个角所对的边也相等(简称“等角对等边”).知识点诠释:等腰三角形的判定是证明两条线段相等的重要定理,是将三角形中的角的相等关系转化为边的相等关系的重要依据.等腰三角形的性质定理和判定定理是互逆定理.3.等边三角形的性质和判定:性质:等边三角形三个内角都相等,并且每一个内角都等于60°.判定:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.知识点诠释:由等边三角形的“三线合一”可得:在直角三角形中,30°所对的直角边等于斜边的一半.知识点三、尺规作图、命题、定理与逆命题、逆定理1.尺规作图只能使用圆规和没有刻度的直尺这两种工具作几何图形的方法称为尺规作图.知识点诠释:(1)要熟练掌握直尺和圆规在作图中的正确应用,对于作图要用正确语言来进行表达.(2)掌握五种基本作图:作一条线段等于已知线段;作一个角等于已知角;作已知角的平分线;经过一已知点作已知直线的垂线;作已知线段的垂直平分线.并能利用本章的知识理解这些基本作图的方法.2.命题与逆命题判断一件事件的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.知识点诠释:(1)对于命题的定义要正确理解,也即是通过这句话可以确定一件事是发生了还是没发生,如果这句话不能对于结果给予肯定或者否定的回答,那它就不是命题.(2)每一个命题都可以写成“如果…,那么…”的形式,“如果”后面为题设部分,“那么”后面为结论部分.(3)所有的命题都有逆命题.原命题正确,它的逆命题不一定正确.3.定理与逆定理数学中,有些命题可以从基本事实或者其他真命题出发,用逻用推理的方法判断它们是正确的,并且可以作为进一步判断其他命题真假的依据,这样的真命题叫做定理.如果一个定理的逆命题也是真命题,那就称它为原定理的逆定理.知识点诠释:(1)定理的作用不仅在于它揭示了客观事物的本质属性,而且可以作为进一步确认其他命题真假的依据.(2)一个命题是真命题,但是它的逆命题不一定是真命题的,所以不是每个定理都有逆定理.知识点四、角平分线、线段垂直平分线的性质定理及其逆定理1.角平分线性质定理及其逆定理角平分线上的点到角两边的距离相等;逆定理:角的内部到角两边的距离相等的点在角的平分线上.知识点诠释:性质定理的前提条件是已经有角平分线了,即角被平分了;逆定理则是在结论中确定角被平分,一定要注意着两者的区别,在使用这两个定理时不要混淆了.2.线段垂直平分线(也称中垂线)的性质定理及其逆定理线段的垂直平分线上的点到线段两端的距离相等;逆定理:到线段两端距离相等的点在线段的垂直平分线上.知识点诠释:性质定理的前提条件是线段已经有了中垂线,从而可以得到线段相等;逆定理则是在结论中确定线段被垂直平分,一定要注意着两者的区别,前者在题设中说明,后者则在最终的结论中得到,所以在使用这两个定理时不要混淆了.第四章勾股定理重点知识点知识点一、勾股定理1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.知识点二、勾股定理的逆定理1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)知识点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.第五章数据的收集与表示重点知识点知识点一、数据的收集1.收集数据的步骤(1)明确调查问题;(2)确定调查对象;(3)选择调查方法;(4)展开调查;(5)记录结果;(6)分析结果,得出结论.2.频数与频率频数表示每个对象出现的次数;频率表示每个对象出现的次数与总次数的比值.频数与频率都能够反映每个对象出现的频繁程度.但在总次数不相等时,应比较频率而不是频数.知识点诠释:收集数据时,通常采用画“正”字的方法记录数据出现的频数.知识点二、数据的表示1.统计表和统计图:统计表:利用表格将要统计的数据填入相应的表格内,表格统计法可以很好地整理数据;统计图:利用“条形图”、“扇形图”、“折线图”描述数据,这样做的最大优点是将表格中的数据所呈现出来的信息直观化.2.三种统计图(1)条形统计图是用宽度相同的条形的高低或长短来表示数据的统计图,它可以很直观地反映出数据的数量特征,便于比较大小,但不能清楚地反映各部分占总体的百分比.如果有两个研究对象,常常把这两个对象的相应数据并列表示在同一幅条形统计图中.(2)扇形统计图是用整个圆代表所研究的总体,用圆中各个扇形代表组成总体的各个部分,扇形圆心角的大小反映出各组成部分的数量在总数量中所占份额的大小.从扇形上可清楚地看出各部分量和总数量之间的关系,但不能直接表示出各个项目的具体数据.(3)折线统计图是用折线表示数量变化规律的统计图.如果关注的是某种现象随时间变化而发生的变化,常常以时间为水平放置的数轴,以折线的起伏直观地反映出数量随时间所发生的相应变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况,但不能清楚地反映数据的分布情况.知识点诠释:三种统计图都有各自的优缺点,在实际生活中我们常常将它们结合起来使用.。

八年级数学知识点华师大版

八年级数学知识点华师大版

八年级数学知识点华师大版初二数学知识点数据的收集、整理与描述一.知识框架二.知识概念1.全面调查:考察全体对象的调查方式叫做全面调查.2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查.3.总体:要考察的全体对象称为总体.4.个体:组成总体的每一个考察对象称为个体.5.样本:被抽取的所有个体组成一个样本.6.样本容量:样本中个体的数目称为样本容量.7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数.8.频率:频数与数据总数的比为频率.9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距.数学知识点初二【统计的初步认识】1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。

2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

3、能够看出折线统计图所提供的信息,并回答相关的问题。

补充内容:1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。

2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。

课后练习1.统计学的基本涵义是(D)。

A.统计资料B.统计数字C.统计活动D.是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。

2.要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。

A.每一个国有工业企业B.该地区的所有国有工业企业C.该地区的所有国有工业企业的生产经营情况D.每一个企业3.要了解20个学生的学习情况,则总体单位是(C)。

A.20个学生B.20个学生的学习情况C.每一个学生D.每一个学生的学习情况4.下列各项中属于数量标志的是(B)。

八年级上华师版数学知识点

八年级上华师版数学知识点

八年级上华师版数学知识点在八年级华师版数学中,我们学习了很多知识点,其中包括有理数、整式、方程、不等式、比例、百分数、平面图形和三角形等等。

本文将梳理和总结这些知识点,帮助大家更好地回顾和掌握。

一、有理数1. 有理数的概念:有理数是整数和分数的统称。

2. 有理数的四则运算:有理数的加、减、乘、除运算,按照算术运算法则进行,要注意分母相同或者通分化简。

3. 有理数的大小比较:有理数的大小比较,我们可以将其转化成同号比较、同分比较和通分比较三种情况来解决。

二、整式1. 整式的概念:整式是由数字、变量和它们的积来表示的表达式,其中变量的指数必须是非负整数。

2. 整式的四则运算:整式的加、减、乘、除运算,按照代数运算法则进行,要注意合并同类项,化简因式。

三、方程1. 方程的概念:方程是含有未知数的等式,其中等号两边的表达式必须相等。

2. 一元一次方程:一元一次方程是形如ax+b=0的方程,可以通过加减反运算和消元法来解决。

四、不等式1. 不等式的概念:不等式是表示大小关系的符号不相等的式子,包括大于、小于、大于等于和小于等于等形式。

2. 一元一次不等式:一元一次不等式是形如ax+b<0或ax+b>0的不等式,可以通过解关于x的方程和绘制数轴法来解决。

五、比例1. 比例的概念:比例是两个具有相同单位的比较大小的数的比值,通常用冒号或分数形式表示。

2. 比例的性质:比例具有比例延伸、比例反比例、比例合成和比例分解等性质。

六、百分数1. 百分数的概念:百分数是百分之一的分数,它表示的是一个数与100的乘积。

2. 百分数的应用:百分数在日常生活中有很多应用,比如百分数的加减、倍数配凑、整数商和利率利息等。

七、平面图形1. 基本平面图形:八年级数学中的基本平面图形有直线、射线、线段、角、三角形、四边形、圆和正方形等。

2. 平面图形的性质:不同的平面图形具有不同的性质,比如三角形分顶、四边形定理和圆的性质等。

八年级上册华师大数学知识点

八年级上册华师大数学知识点

八年级上册华师大数学知识点一、实数实数包括有理数和无理数两部分。

1. 有理数有理数是可以表示为两整数之比的数,包括正整数、负整数、零、正分数和负分数。

2. 无理数无理数是不能表示为两整数之比的数,包括正无理数和负无理数。

二、代数式代数式是指由数和字母按照一定的方式组成的式子。

1. 结构代数式一般由系数、字母和指数三个部分组成。

2. 简化通过合并同类项、分配律、消去括号等方式,将代数式简化为最简形式,方便计算。

三、一次函数一次函数是指形如y=kx+b的函数,其中k和b是常数,k称为斜率,b称为截距。

一次函数可以用图像表示出来,在直角坐标系中为一条直线。

1. 斜率斜率是指直线的倾斜程度,可以用两点间的纵坐标差与横坐标差的比值来表示。

2. 图像一次函数的图像为一条直线,其截距为y轴截距,斜率为曲线的斜率。

四、二次函数二次函数是指形如y=ax²+bx+c的函数,其中a、b、c是常数,a不等于0。

在直角坐标系中,二次函数的图像为一条开口朝上或开口朝下的曲线。

1. 零点二次函数的零点是指函数值为0的点,可以用求根公式求解。

2. 最值二次函数的最值是指函数值最大或最小的点,可以通过求解顶点来得到。

五、集合集合是指将具有一定相同特征的元素放在一起形成的一种概念。

1. 元素集合中的每一个成员都被称为元素。

2. 包含关系当一个集合的所有元素都是另一个集合的元素时,就称前者包含后者。

六、概率与统计概率与统计是数学中重要的分支,包括样本空间、事件、概率、频率等概念。

1. 样本空间样本空间是指所有可能出现的结果的集合。

2. 频率与概率频率是指某一事件发生的次数与总次数的比值,而概率是指某一事件发生的可能性大小。

七、三角形三角形是数学中最基本的图形之一,具有重要的几何性质。

1. 角度和定理三角形内所有角度的和为180°。

2. 边长关系三角形中任意两边之和大于第三边,并且任意两边之差小于第三边。

以上就是八年级上册华师大数学知识点的主要内容,希望能够帮助同学们更好的理解和掌握数学知识。

八年级数学华师上册知识点

八年级数学华师上册知识点

八年级数学华师上册知识点八年级数学华师上册是初中数学的重要部分之一,而我们要在这本书里掌握很多重要的数学知识点。

在这篇文章中,我们将会详细介绍这本书中常见的数学知识点,包括数学符号、代数、等式、解方程、图形等方面。

希望这篇文章能够帮助大家更好地理解并掌握八年级数学华师上册的知识点。

一、数学符号在数学中,我们会遇到很多符号,其中最为常见的就是加减乘除符号和等于符号。

此外,还有很多表示数学运算和关系的符号,例如大于、小于、不等于等。

在数学中,这些符号都有特定的意义,掌握这些符号也是数学学习不可缺少的一部分。

二、代数代数是数学中一个重要的分支,处理的是未知数和常数之间的关系。

在八年级数学华师上册中,我们将会学到一元一次方程、一元二次方程、因式分解等内容。

切记,在代数中,我们需要做的就是解决未知数和常数之间的关系,因此,一定要认真理解代数问题中的各个概念。

三、等式等式与代数同样紧密相关。

我们以方程为例,解方程的本质就是在寻找两个数之间的关系。

方程是一种表达式,它通常含有一个未知数(或变量)和常数,而等式就是指两个代数式之间平等的关系。

在八年级数学华师上册中,我们将会学到很多解方程的方法,同时也需要掌握等式的性质。

四、解方程解方程是初中数学中最为重要的部分之一。

我们将会学习到各种解方程的方法,例如化简方程、移项等方法。

当然,解方程的时候,需要注意的是方程的各种属性和规律,不能随意地推导和运算。

掌握这些方法和技巧,能够有效地解决各种类型的方程问题。

五、图形图形是数学中的另一个重要方面。

在八年级数学华师上册中,我们将会学习到各种各样的图形,包括三角形、四边形、圆等等。

此外,我们也需要掌握如何计算图形的周长和面积等基本概念。

总结八年级数学华师上册是初中数学学习中不可或缺的一部分,其中的数学知识点丰富多样,需要我们认真学习和掌握。

本文介绍了数学符号、代数、等式、解方程、图形等各个方面的知识点,希望能够帮助学生更好地理解和掌握八年级数学华师上册的知识点,为下一步的数学学习打下坚实的基础。

八年级华师数学上册知识点

八年级华师数学上册知识点

八年级华师数学上册知识点八年级数学上册包括了初中数学知识的重点内容,这些知识点是我们日常学习数学时必须掌握的。

本文将给出这些知识点的详细解释和练习建议,希望能够帮助同学们更好地掌握学科,取得优异成绩。

一、代数式代数式是我们初中数学习到的最基础的概念,也是后续学习的基石。

初步学习的代数式有基本的加减运算、乘法公式和分配律以及代数式的去括号。

在掌握这些基础知识的同时,同学们需要通过大量的习题来加深对知识的理解,特别是在应用题目上加强实践,帮助自己更好地理解代数式。

二、直线和角本章节主要介绍了初中数学中的直线和角的概念。

不仅需要熟练掌握直线的定义、性质和分类以及角的度量和运算,还需要熟悉直线与角之间的关系。

三、三角形三角形也是初中数学中的重要知识之一,包括对三角形的性质和分类、三角形的面积公式和周长等运算。

对于同学们而言,需要深入理解三角形的各种性质和推导,这有助于问答题的解答。

四、圆本章节的内容主要涉及到了圆的定义、性质和相关概念,如圆内角的性质、切圆角和相交弧等。

因为圆是出现频率较高的几何概念,所以同学们也可以通过大量习题来加深对圆的理解。

五、数轴数轴是初中数学中比较简单的概念,但是同学们在学习数轴时需要注意对于正负整数的理解和运算。

同时,同学们还需要理解绝对值的意义和性质,这对于后续章节也非常重要。

六、函数函数是初中数学中较为复杂的知识点之一,需要同学们深入理解各种函数的定义和性质,如一次函数、二次函数和指数函数等等。

对于函数的运算和图像运用也需要我们掌握,在函数章节中可以通过例题和习题来加强对函数的理解。

七、统计统计是初中数学中比较容易掌握的章节,通过统计同学们可以了解数据的分布和趋势,通过练习样本图和频率分布表等习题可以加深对统计学的理解和应用。

结语通过了解本篇文章所提到的八年级数学上册的主要知识点,进行适当的练习,相信同学们都可以更好地掌握初中数学的核心内容。

同时,同学们也可以结合教材、日常练习和课堂练习等方式进行多种角度的学习和提高,争取在数学学习中获得更好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正数和零的算术平方根都只有一个,零的算术平方根是零。一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
无理数:无限不循环小数叫做无理数。
实数的分类
实数与数轴的点是一一对应的
六种运算:加、减、乘、除、乘方、开方
实数的运算顺序:先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
定义:图形绕着某一定点旋转一定的角度后能与自身重合的图形称为旋转对称图形。
定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
性质:(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
如:
第十四章
勾股定理
勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即
勾股定理的逆定理:如果三角形的三边长a,b,c有关系 ,那么这个三角形是直角三角形。
勾股数:满足 的三个正整数,称为勾股数。
第十五章
平移与旋转
定义:在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
平方差公式:两数和与这两数差的积,等于它们的平方差,
即 。
完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即 口决:首平方,尾平方,2倍乘积在中央;
华师版数学八年级上册知识点双向细目表
章节
知识点
了解
理解
掌握
运用
第十二章
数的开方
平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。
立方根:一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三次方根)。
算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作 。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。
(4)平行四边形是中心对称图形,对称中心是对角线的交点。
若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
推论:夹在两条平行线间的平行线段相等。
平行四边形的判定
(1)定义:两组对边分别平行的四边形是平行四边形
(2)定理1:两组对角分别相等的四边形是平行四边形
判定:如果两个三角形的边、角分别对应相等,那么这两个三角形全等。
用轴对称、平移和旋转及其组合进行简单图案设计。
第十六章
平行四边形的认识
平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质
(1)平行四边形的对边平行且相等。
(2)平行四边形相邻的角互补,对角相等
(3)平行四边形的对角线互相平分。
章节
知识点
了解
理解
掌握
运用
第十五章
平移与旋转
如果两个多边形是全等图形,也成为全等多边形,两个全等的多边形,经过变换而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
性质:全等多边形的对应边相等、对应角相等。
判定:边、角分别对应相等的两个多边形全等。
性质:全等三角形的对应边相等、对应角相等。
运算律:加法交换律、加法结合律、乘法交换律、
乘法结合律、乘法对加法的分配律
实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
第十三章
整式的乘除
同底数幂的乘法法则: (m,n都是正数)
幂的乘方法则: (m,n都是正数)
.
章节
知识点
了解
理解
掌握
运用
第十三章
整式的乘除
(a+b)n≠an+bn(a、b均不为零)。
积的乘方法则: (n为正整数)。
同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).
任何不等于0的数的0次幂等于1,即
单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
(3)定理2:两组对边分别相等的四边形是平行四边形
(4)定理3:对角线互相平分的四边形是平行四边形
(5)定理4:一组对边平行且相等的四边形是平行四边形
性质:平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
定义:在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
性质:旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.
主要公式:(1)平方差公式:
(2)完全平方公式:
利用分组来分解因式的方法叫做分组分解法.如:
二次三项式 的分解:
章节
知识点
了解
理解
掌握
运用
第十三章
整式的乘除
对于二次三项式 ,将a和c分别分解成两个因数的乘积, , ,且满足 ,往往写成 的形式,将二次三项式进行分解.
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
两个图形通过翻折、平移和旋转能够完全重合的两个图形叫做全等图形
一个图形经过翻折、平移和旋转等变换所得到的新图形一定与原图形全等;反过来,两个全等的图形经过上述变换后一定能够互相重合。
单项式除以单项式:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式,先把这个多项式的每一成几个整式的积的形式,这种变形叫做把这个多项式分解因式.
因式分解与整式乘法是互逆关系
如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法.如:
相关文档
最新文档