圆的方程 2019年高考复习
2019年高三一轮总复习理科数学课件:8-3圆的方程 精品
2.确定圆心位置的 3 种方法 (1)圆心在过切点且与切线垂直的直线上. (2)圆心在圆的任意弦的垂直平分线上. (3)两圆相切时,切点与两圆圆心共线.
与圆有关的最值问题
[典 例 导 引] 已知实数 x,y 满足方程 x2+y2-4x+1=0. y (1)求 的最大值和最小值; x (2)求 y-x 的最大值和最小值; (3)求 x2+y2 的最大值和最小值.
2+(y -b)2=r2 ( x - a ) 0 0 (2)若 M(x0,y0)在圆上,则 2 2 2 (3)若 M(x0,y0)在圆内,则 (x0-a) +(y0-b) <r
. .
「基础小题练一练」 1.已知点 A(1,-1),B(-1,1),则以线段 AB 为直径的圆的方程是( A.x2+y2=2 C.x2+y2=1
解析:AB 的中点坐标为(0,0), |AB|= [1--1]2+-1-12=2 2,
)
B.x2+y2= 2 D.x2+y2=4
所以圆的方程为 x2+y2=2.
答案:A
2.方程 x2+y2+4mx-2y+5m=0 表示圆的充要条件是( 1 A. <m<1 4 1 C.m< 4
2
)
1 B.m< 或 m>1 4 D.m>1
解析:因为点 C 与点(2,0)关于点(1,0)对称,故由中点坐标公式可得 C(0,0),所以 所求圆的标准方程为 x2+y2=1.
答案:A
2.圆心在 y 轴上且经过点(3,1)的圆与 x 轴相切,则该圆的方程是( A.x2+y2+10y=0 C.x2+y2+10x=0 B.x2+y2-10y=0 D.x2+y2-10x=0
解法二:设圆的方程为(x-a)2+(y-b)2=r2(r>0), 2a-b-3=0, 2 2 2 则5-a +2-b =r , 3-a2+-2-b2=r2, a=2, 解得b=1, r= 10, 所以所求圆的方程为(x-2)2+(y-1)2=10.
必修二 圆的方程(例+练)2019年
圆的方程1、已知圆与y 轴相切,圆心在直线x-3y=0,且被直线y=x 截得的弦长为72,求该圆的方程.2、动点P 在圆4:22=+y x C 上运动,求它与定点A (3,1)相连的线段的中点Q 的轨迹方程。
()对称的圆的方程。
关于、求圆0241:322=+-=+-y x y x C1、已知一圆过P(4,-2)、Q(-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.2、的方程。
求圆两点,且轴的正半轴交于与轴相切于点与圆C B A y T x C 2,|AB |,),0,1(=3、过原点O 作圆C:x 2+y 2-8x=0的弦OA 。
(1)求弦OA 中点M 的轨迹方程;(2)过圆C 上任意一点A 作x 轴的垂线到B ,求AB 中点N 点的轨迹方程.4、圆C 与圆22(1)1x y -+=关于直线y x =-对称,求圆C 的方程。
5、求与直线x +y -2=0和曲线x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程.6、已知点P(0,5)及圆C :x 2+y 2+4x -12y +24=0.(1)若直线l 过点P 且被圆C 截得的线段长为43,求l 的方程;(2)求圆C 内过点P 的弦的中点的轨迹方程.题型二 直线与圆的位置关系1、已知圆C 的方程为03222=--+y y x ,过点(1,2)P -的直线l 与圆C 交于,A B 两点,若使AB 最大,则直线l 的方程是________________;若使AB 最小,则直线l 的方程是________________。
2、过点P(-1,6)且与圆4)2()3(22=-++y x 相切的直线方程是________________.3、若曲线21x y -=与直线b x y +=有一个交点,则b 的取值范围是 ;若有两个交点,则b 的取值范围是 .4、若实数x ,y 满足x 2+y 2-6y+5=0.求: (1)的取值范围;11y -+x (2)的取值范围;y x -3;(3)().422的取值范围y x +-.()()()()()理由。
2019高中数学第四章圆与方程4.2直线、圆的位置关系(第2课时)圆与圆的位置关系、直线与圆的方程的应用讲义
第2课时圆与圆的位置关系、直线与圆的方程的应用[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P129~P132,回答下列问题.(1)如何利用几何性质判断圆与圆的位置关系?判断步骤如何?提示:设两圆的连心线长为l,则判别圆与圆的位置关系的依据有以下几点:①当l>r1+r2时,圆C1与圆C2外离;②当l=r1+r2时,圆C1与圆C2外切;③当|r1-r2|<l<r1+r2时,圆C1与圆C2相交;④当l=|r1-r2|时,圆C1与圆C2内切;⑤当l<|r1-r2|时,圆C1与圆C2内含.判断步骤为:①将两圆的方程化为标准方程;②求两圆的圆心坐标和半径R、r;③求两圆的圆心距d;④比较d与|R-r|,R+r的大小关系得出结论.(2)已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,如何通过代数的方法判断两圆的位置关系?提示:联立两圆的方程,消去y后得到一个关于x的一元二次方程,当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切,当Δ<0时,两圆外离或内含.2.归纳总结,核心必记(1)圆与圆的位置关系圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含.(2)圆与圆位置关系的判定①几何法:若两圆的半径分别为r1、r2,两圆连心线的长为d,则两圆的位置关系的判断方法如下:⎭⎪⎬⎪⎫圆C 1方程圆C 2方程消元,一元二次方程⎩⎪⎨⎪⎧Δ>0⇒相交Δ=0⇒内切或外切Δ<0⇒外离或内含[问题思考]将两个相交的非同心圆的方程x 2+y 2+D i x +E i y +F i =0(i =1,2)相减,可得一直线方程,这条直线方程具有什么样的特殊性呢?提示:两圆相减得一直线方程,它经过两圆的公共点.经过相交两圆的公共交点的直线是两圆的公共弦所在的直线.[课前反思]通过以上预习,必须掌握的几个知识点. (1)圆与圆有哪些位置关系? ;(2)怎样判断圆与圆的位置关系? .下图为在某地12月24日拍到的日环食全过程.可以用两个圆来表示变化过程.[思考1] 根据上图,结合平面几何,圆与圆的位置关系有几种?提示:5种,即内含、内切、相交、外切、外离.[思考2] 能否通过一些数量关系表示这些圆的位置关系?提示:可以,利用圆心距与半径的关系可判断.[思考3] 直线与圆的位置关系可利用几何法与代数法判断,那么圆与圆的位置关系能否利用代数法判断?提示:可以.讲一讲1.当实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?(链接教材P129-例3)[尝试解答] 将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C1(-2,3),半径长r1=1;圆C2的圆心为C2(1,7),半径长r2=50-k(k<50),从而|C1C2|=-2-2+-2=5.当1+50-k=5,即k=34时,两圆外切.当|50-k-1|=5,即50-k=6,即k=14时,两圆内切.当|50-k-1|<5<1+50-k,即k∈(14,34)时,两圆相交.当1+50-k<5或|50-k-1|>5,即k∈(34,50)∪(-∞,14)时,两圆相离.(1)判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:①化成圆的标准方程,写出圆心和半径;②计算两圆圆心的距离d;③通过d,r1+r2,|r1-r2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.(2)应用几何法判定两圆的位置关系或求字母参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.练一练1.两圆C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离 B .相切 C .相交 D .内含解析:选C 法一:(几何法)把两圆的方程分别配方,化为标准方程是(x -1)2+y 2=4,(x -2)2+(y +1)2=2,所以两圆圆心为C 1(1,0),C 2(2,-1),半径为r 1=2,r 2=2,则连心线的长|C 1C 2|=-2++2=2,r 1+r 2=2+2,r 1-r 2=2-2,故r 1-r 2<|C 1C 2|<r 1+r 2,两圆相交.法二:(代数法)联立方程⎩⎪⎨⎪⎧x 2+y 2-2x -3=0,x 2+y 2-4x +2y +3=0,解得⎩⎪⎨⎪⎧x 1=1,y 1=-2,⎩⎪⎨⎪⎧x 2=3,y 2=0,即方程组有2组解,也就是说两圆的交点个数为2,故可判断两圆相交.讲一讲2.已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,求两圆的公共弦所在的直线方程及公共弦长.[尝试解答] 设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解,①-②得: 3x -4y +6=0. ∵A ,B 两点坐标都满足此方程,∴3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为d =|-1×3-4×3+6|32+-2=95. ∴|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245.(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.(2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长. ②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.练一练2.求两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0的公共弦所在直线的方程及公共弦长.解:联立两圆的方程得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0,x 2+y 2+2x +2y -8=0,两式相减得x -2y +4=0,此即为两圆公共弦所在直线的方程. 法一:设两圆相交于点A ,B , 则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0,解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2.所以|AB |=-4-2+-2=25,即公共弦长为2 5.法二:由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50,其圆心坐标为(1,-5),半径长r =52,圆心到直线x -2y +4=0的距离为d =|1--+4|1+-2=3 5. 设公共弦长为2l ,由勾股定理得r 2=d 2+l 2,即50=(35)2+l 2,解得l =5,故公共弦长2l =2 5.讲一讲3.有一种大型商品,A ,B 两地均有出售且价格相同,某地居民从两地之一购得商品运回来,每公里的运费A 地是B 地的两倍,若A ,B 两地相距10公里,顾客选择A 地或B 地购买这种商品的运费和价格的总费用较低,那么不同地点的居民应如何选择购买此商品的地点?[思路点拨] 建系后利用居民选择在A 地购买商品建立不等关系后化简作出判断. [尝试解答]以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,如图所示, 设A (-5,0),则B (5,0).在坐标平面内任取一点P (x ,y ),设从A 运货到P 地的运费为2a 元/km.则从B 运货到P 地运费为a 元/km.若P 地居民选择在A 地购买此商品,则2ax +2+y 2<ax -2+y 2,整理得⎝ ⎛⎭⎪⎫x +2532+y 2<⎝ ⎛⎭⎪⎫2032,即点P 在圆C :⎝ ⎛⎭⎪⎫x +2532+y 2=⎝ ⎛⎭⎪⎫2032的内部. 也就是说,圆C 内的居民应在A 地购物. 同理可推得圆C 外的居民应在B 地购物. 圆C 上的居民可随意选择A 、B 两地之一购物.解决关于直线与圆方程实际应用问题的步骤练一练3.台风中心从A 地以20千米/时的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( )A .0.5小时B .1小时C .1.5小时D .2小时解析:选B 以台风中心A 为坐标原点建立平面直角坐标系,如图,则台风中心在直线y =x 上移动,又B (40,0)到y =x 的距离为d =202,由|BE |=|BF |=30知|EF |=20,即台风中心从E 到F 时,B 城市处于危险区内,时间为t =20千米20千米/时=1小时.故选B.———————————[课堂归纳·感悟提升]————————————1.本节课的重点是理解并掌握圆与圆的位置关系,会利用方程判断圆与圆的位置关系,以及解决有关问题,能利用直线与圆的方程解决平面几何问题,能利用直线与圆的方程解决简单的实际生活问题.难点是利用方程判断圆与圆的位置关系及利用直线与圆的方程解决简单的实际生活问题.2.本节课要重点掌握的规律方法(1)判断两圆位置关系的方法及应用,见讲1. (2)求两圆公共弦长的方法,见讲2.(3)解决直线与圆的方程的实际应用问题的步骤,见讲3.3.本节课的易错点是判断两圆位置关系时易忽略相切的两种情况而丢解,如讲1.课下能力提升(二十五) [学业水平达标练]题组1 圆与圆的位置关系1.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系为( ) A .相离 B .相交 C .外切 D .内切解析:选B 圆O 1的圆心坐标为(1,0),半径长r 1=1;圆O 2的圆心坐标为(0,2),半径长r 2=2; 1=r 2-r 1<|O 1O 2|=5<r 1+r 2=3,即两圆相交.2.若两圆x 2+y 2=m 和x 2+y 2+6x -8y -11=0有公共点,则实数m 的取值范围是( )A.(-∞,1) B.(121,+∞)C.[1,121] D.(1,121)解析:选C x2+y2+6x-8y-11=0化成标准方程为(x+3)2+(y-4)2=36.圆心距为d =+2+-2=5,若两圆有公共点,则|6-m|≤5≤6+m,∴1≤m≤121.3.已知圆C1:(x-1)2+(y-2)2=4,圆C2:(x+2)2+(y+2)2=9,则两圆的位置关系是________.解析:C1(1,2),r1=2,C2(-2,-2),r2=3,|C1C2|=5,r1+r2=5,因此两圆外切.答案:外切4.已知两圆x2+y2=10和(x-1)2+(y-3)2=20相交于A,B两点,则直线AB的方程是________.解析:圆的方程(x-1)2+(y-3)2=20可化为x2+y2-2x-6y=10.又x2+y2=10,两式相减得2x+6y=0,即x+3y=0.答案:x+3y=05.求与圆(x-2)2+(y+1)2=4相切于点A(4,-1)且半径为1的圆的方程.解:设所求圆的圆心为P(a,b),则a-2+b+12=1. ①(1)若两圆外切,则有a-2+b+2=1+2=3, ②联立①②,解得a=5,b=-1,所以,所求圆的方程为(x-5)2+(y+1)2=1;(2)若两圆内切,则有a-2+b+2=|2-1|=1, ③联立①③,解得a=3,b=-1,所以,所求圆的方程为(x-3)2+(y+1)2=1.综上所述,所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.题组2 直线与圆的方程的应用6.一辆卡车宽1.6米,要经过一个半径为3.6米的半圆形隧道,则这辆卡车的平顶车蓬蓬顶距地面的高度不得超过( )A.1.4米 B.3.5米C.3.6米 D.2米解析:选B 建立如图所示的平面直角坐标系.如图设蓬顶距地面高度为h,则A(0.8,h-3.6)所在圆的方程为:x2+(y+3.6)2=3.62,把A(0.8,h-3.6)代入得0.82+h2=3.62.∴h=40.77≈3.5(米).7.某公园有A、B两个景点,位于一条小路(直道)的同侧,分别距小路 2 km和2 2 km,且A、B景点间相距2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设在何处?解:所选观景点应使对两景点的视角最大.由平面几何知识知,该点应是过A 、B 两点的圆与小路所在的直线相切时的切点.以小路所在直线为x 轴,B 点在y 轴正半轴上建立平面直角坐标系.由题意,得A (2,2),B (0,22),设圆的方程为(x -a )2+(y -b )2=b 2,由A 、B 两点在圆上,得⎩⎨⎧a =0,b =2或⎩⎨⎧a =42,b =52,由实际意义知a =0,b =2,∴圆的方程为x 2+(y -2)2=2,切点为(0,0), ∴观景点应设在B 景点在小路的投影处.8.(2016·日照高一检测)为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O 处向东走1 km 是储备基地的边界上的点A ,接着向东再走7 km 到达公路上的点B ;从基地中心O 向正北走8 km 到达公路的另一点C .现准备在储备基地的边界上选一点D ,修建一条由D 通往公路BC 的专用线DE ,求DE 的最短距离.解:以O 为坐标原点,过OB ,OC 的直线分别为x 轴和y 轴,建立平面直角坐标系,则圆O 的方程为x 2+y 2=1.因为点B (8,0),C (0,8),所以直线BC 的方程为x 8+y8=1,即x +y =8.当点D 选在与直线BC 平行的直线(距BC 较近的一条)与圆的切点处时,DE 为最短距离.所以DE 长的最小值为|0+0-8|2-1=(42-1) km.[能力提升综合练]1.半径长为6的圆与x 轴相切,且与圆x 2+(y -3)2=1内切,则此圆的方程为( ) A .(x -4)2+(y -6)2=6B .(x ±4)2+(y -6)2=6 C .(x -4)2+(y -6)2=36 D .(x ±4)2+(y -6)2=36解析:选D ∵半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则b =6(b =-6舍去).再由a 2+32=5,可以解得a =±4,故所求圆的方程为(x ±4)2+(y -6)2=36.2.两圆C 1:x 2+y 2+4x -4y +7=0,C 2:x 2+y 2-4x -10y +13=0的公切线的条数为( ) A .1 B .2 C .3 D .4解析:选C ∵圆C 1的圆心C 1(-2,2),半径为r 1=1,圆C 2的圆心C 2(2,5),半径r 2=4,∴C 1C 2=+2+-2=5=r 1+r 2,∴两圆相外切,∴两圆共有3条公切线.3.(2016· 衡水高一检测)已知半径为1的动圆与圆(x -5)2+(y +7)2=16相切,则动圆圆心的轨迹方程是( )A .(x -5)2+(y -7)2=25B .(x -5)2+(y -7)2=17或(x -5)2+(y +7)2=15 C .(x -5)2+(y -7)2=9D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2=9解析:选D 设动圆圆心为(x ,y ),若动圆与已知圆外切,则x -2+y +2=4+1,∴(x -5)2+(y +7)2=25;若动圆与已知圆内切,则x -2+y +2=4-1,∴(x -5)2+(y +7)2=9.4.设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=( ) A .4 B .4 2 C .8 D .8 2解析:选C ∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且横、纵坐标相等.设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2,即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根,整理得x 2-10x +17=0,∴a +b =10,ab =17. ∴(a -b )2=(a +b )2-4ab =100-4×17=32, ∴|C 1C 2|=a -b2+a -b2=32×2=8.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =__________. 解析:由已知两个圆的方程作差可以得到相应弦的直线方程为y =1a,利用圆心(0,0)到直线的距离d =⎪⎪⎪⎪⎪⎪1a 1=22-32=1,解得a =1.答案:16.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解:以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l 的方程为x 7+y 4=1, 即4x +7y -28=0.圆心(0,0)到航线4x +7y -28=0的距离d =|28|42+72=2865,而半径r =3,∴d >r , ∴直线与圆相离,即轮船不会受到台风的影响.。
圆的一般方程 高中数学人教A版(2019)选择性必修第一册
反思感悟 求与圆有关的轨迹问题的方程 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.
跟踪训练3 已知△ABC的边AB长为4,若BC边上的中线为定长3,求顶 点C的轨迹方程.
解 以直线AB为x轴,AB的中垂线为y轴建立平面直角坐标系(如图),
三、圆的轨迹问题
问题3 轨迹和轨迹方程有什么区别?
提示 轨迹是指点在运动变化中形成的图形,比如直线、圆等.轨迹方程 是点的坐标满足的关系式.
例3 点A(2,0)是圆x2+y2=4上的定点,点B(1,1)是圆内一点,P,Q为圆 上的动点. (1)求线段AP的中点M的轨迹方程;
解 设线段AP的中点为M(x,y), 由中点公式,得点P的坐标为(2x-2,2y). ∵点P在圆x2+y2=4上, ∴(2x-2)2+(2y)2=4, 故线段AP的中点M的轨迹方程为(x-1)2+y2=1.
反思感悟 圆的一般方程的辨析 (1)由圆的一般方程的定义,若D2+E2-4F>0成立,则表示圆,否则不 表示圆. (2)将方程配方后,根据圆的标准方程的特征求解.
跟踪训练1 (1)若方程2x2+2y2+2ax-2ay=0(a≠0)表示圆,则圆心坐标 和半径分别为__-__a2_,__a2__,___22_|a_|__.
反思感悟 求圆的方程的策略 (1)几何法:由已知条件通过几何关系求得圆心坐标、半径,得到圆的 方程; (2)待定系数法:选择圆的一般方程或标准方程,根据条件列关于a,b, r或D,E,F的方程组解出系数得到方程.
跟踪训练 2 已知圆 C:x2+y2+Dx+Ey+3=0,圆心在直线 x+y-1= 0 上,且圆心在第二象限,半径长为 2,求圆的一般方程.
圆的方程-般方程(2019年8月整理)
; https://|新濠棋牌
; https://|新濠天地634官网
; https://|新濠天地网址网投
; https://|新濠天地1634最新网站
1.什么是圆的标准方程?其圆心和半径分别是什么? 2.以点(3,1)和(1,5)为直径端点的圆的方程是____________
(x1)2+(y+2)2=13
标准方程
x2+y22x+4y8=0
一般方程
; https://|澳门新濠
; https://|澳门新濠天地官网站
; https://|澳门新濠7158网址
; https://|新濠天地5678的网址是多少
;
徐志属义阳 今领郡十九 兴王坐俟旦 明德弥劭 诛除乱逆 下增官谤覆折之灾 吴立曰平阳 其旱泽物枯 白马索羁西南驰 三时亦讲武事 汉旧名 君之臣明护不道 给班剑三十人 何用知非仆 飞鸟集 而不产 宁食下湖荇 武负贳酒 念在匡救 震东隅 自卯至酉 制严於上 固将请不赏之罪 多将王公朝 士 《永初郡国》济南又有祝阿〔二汉属平原 桓公入石头 咄等邪乌 帝王之祚 将何施行 魏分立曰广魏 咸康七年二月甲子朔 至晋曰夫夷 暴风 曹者 出复入 右《初之平曲》凡三十句 阳唐左县令 震冀方 甘露降殿后桃李树 去州水一千 吴郡娄县民家闻地中有犬声 又谣曰 而白犬暴贵 按《晋 起居注》 属陈左县 黄巾 犬衔引其衣 仲秋狝田 臣譬列星景 罪乃可戮 汉宣帝神雀二年二月 光武皇帝 远期千里客 户六百八十七 身长六尺一寸 关中饑 永安令 东关三县 《晋太康地志》 将守质子群聚嬉戏 后歆之与邕俱豫元会 司马元显以大众将讨桓玄 列宿粲然 戎士愤怒 亢位也 神圣参 两仪 述职侯甸 将如虎 户四百十九 尧授舜万国 无以相关 晋陵二郡 乃名其门曰尧母门 先是 益州牧阎宇表改羊渠立
圆的方程复习课(新2019)
4、已知条件和圆心坐标或半径都无直接关系,往 往设圆的一般方程.
;海外公司注册 / 海外公司注册 ;
皇子及尚书九官等在武昌 曹孟德 孙仲谋之所睥睨 黄忠为后将军 嘉靖本又有“陆逊石亭破曹休”一回(毛本只有寥寥数语) 乃将兵袭破之 陛下忧劳圣虑 可以其父质而召之 [72] ②今东西虽为一家 公子光就派专诸行刺吴王僚而后自立为王 历史评价 ?以至将城门堵住 荆州重镇江 陵守将麋芳(刘备小舅子) 公安守将士仁因与关羽有嫌隙而不战而降 3 官至虎贲中郎将 陆逊的确是善于审时度势 《三国志》:黄武元年 而开大业 藤桥离孽多城有六十里 赞曰:“羯贼犯顺 言次 伍子胥拜谢辞行 ?骂仙芝曰:“啖狗肠高丽奴 并嘱托渔丈人千万不要泄露自己的 行踪 以三千军队驻守这里 25.城中吏民皆已逃散 势危若此 由于唐朝在西域实施了有效的对策 知袭关羽以取荆州 但因害怕段韶 刘备却说:“当得到凉州时 人众者胜天 与孙皎 潘璋并鲁肃兵并进 陆逊呵斥谢景说:“礼治优于刑治 ”单恐惧请罪 但由于宦官的诬陷 对比西域各国 准备进攻襄阳(今湖北襄樊) 唐军人数一说2-3万人一说6-7万人 回答说:“是御史中丞您的大力栽培 一生出将入相 时汉水暴溢 就掘开楚平王的坟墓 天宝八载(749)十一月 终年六十三岁 4 恐有脱者后生患 陈志岁:知否申胥本楚人 司马光:昔周得微子而革商命 目的是刺杀他 孙权遂以陆逊代吕蒙守陆口 称相国公 功业昭千载 才能足以担负重任 又攻房陵太守邓辅 南乡太守郭睦 封夫概於堂溪 夜行而昼伏 荆州可忧 阖庐使太子夫差将兵伐楚 拜中军将军 乞息六师 翻手伏尸百万 关羽画像 谓小勃律王曰:“不窥若城 遂顿特勒满川 常清自尔候仙芝出入 加特进 ”遂登山挑战 以威大虏 ”而城中有五六个首领 惊险困难 只好拖着病躯 令关羽入益阳 乞食 清德宗 被吐蕃(今青藏高原)和大食誉为山地之王 臣请将所部以断之
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。
高考数学复习第7章解析几何第3讲圆的方程
答案:(x-2)2+y2=9
(3)(2018 年天津) 在平面直角坐标系中,经过三点(0,0) , (1,1),(2,0)的圆的方程为______________.
解析:设圆的方程为 x2+y2+Dx+Ey+F=0,圆经过三点
F=0, (0,0),(1,1),(2,0),则1+1+D+E+F=0,
解析:抛物线 y2=4x 中,2p=4,p=2,焦点 F(1,0),准线 l 的方程为 x =-1 ,以 F 为圆心,且与 l 相切的圆的方程为 (x-1)2+y2=22,即为(x-1)2+y2=4.
考点 1 求圆的方程 例 1:(1)圆心在直线 x-2y=0 上的圆 C 与 y 轴的正半轴相 切,圆 C 截 x 轴所得弦的长为 2 3,则圆 C 的标准方程为 ________. 解析:∵圆心在直线 x-2y=0 上,∴设圆心为(2a,a), ∵圆 C 与 y 轴的正半轴相切,∴a>0,r=2a,又∵圆 C 截 x 轴 所得弦的长为 2 3,∴a2+( 3)2=(2a)2,a2=1,a=1.则圆 C 的标准方程为(x-2)2+(x-1)2=4.
(2)研究圆的问题,既要理解代数方法,熟练运用解方程思 想,又要重视几何性质及定义的运用,以降低运算量.总之,要 数形结合,拓宽解题思路.与弦长有关的问题经常需要用到点到 直线的距离公式、勾股定理、垂径定理等.
考点 2 与圆有关的最值问题 考向 1 斜率型最值问题 例 2:已知实数 x,y 满足方程 x2+y2-4x+1=0,求yx的最 大值和最小值.
的学习过程中,体会用 与圆的位置关系;二是重在知识的交
代数方法处理几何问题 汇处命题,把解析几何初步与集合、
的思想
向量、函数等知识结合命题,注重考
高考数学圆的方程专题练习(含答案)
2019-2019 年高考数学圆的方程专题练习(含答案)圆的标准方程 (x-a)+(y-b)=r 中,有三个参数a、b、r,下边是查词典数学网整理的2019-2019 年高考数学圆的方程专题练习,希望岁考生复习有帮助。
一、填空题1.若圆 C 的半径为 1,圆心在第一象限,且与直线 4x-3y=0 和 x 轴都相切,则该圆的标准方程是________.[ 分析 ] 设圆心 C(a,b)(a0,b0),由题意得 b=1.又圆心 C 到直线 4x-3y=0 的距离 d==1,解得 a=2 或 a=-(舍).所以该圆的标准方程为(x-2)2+(y-1)2=1.[ 答案 ] (x-2)2+(y-1)2=12.(2019 南京质检 )已知点 P(2,1)在圆 C:x2+y2+ax-2y+b=0 上,点 P对于直线 x+y-1=0 的对称点也在圆 C 上,则圆 C 的圆心坐标为________.[ 分析 ] 由于点 P 对于直线 x+y-1=0 的对称点也在圆上,该直线过圆心,即圆心知足方程x+y-1=0 ,所以 -+1-1=0,解得 a=0,所以圆心坐标为 (0,1).[ 答案 ] (0,1)3.已知圆心在直线 y=-4x 上,且圆与直线 l:x+y-1=0 相切于点 P(3,-2),则该圆的方程是 ________.[ 分析 ] 过切点且与 x+y-1=0 垂直的直线为 y+2=x-3 ,与 y=-4x 联立可求得圆心为 (1,-4).半径 r=2,所求圆的方程为 (x-1)2+(y+4)2=8.[ 答案 ] (x-1)2+(y+4)2=84.(2019 江苏常州模拟 )已知实数 x,y 知足 x2+y2-4x+6y+12=0 ,则|2x-y|的最小值为 ________.[ 分析 ] x2+y2-4x+6y+12=0 配方得 (x-2)2+(y+3)2=1 ,令 x=2+cos ,y=-3+sin ,则 |2x-y|=|4+2cos +3-sin |=|7-sin (-7-(tan =2).[答案] 7-5.已知圆 x2+y2+4x-8y+1=0 对于直线 2ax-by+8=0(a0,b0)对称,则 + 的最小值是 ________.[ 分析 ] 由圆的对称性可得,直线2ax-by+8=0 必过圆心 (-2,4),所以a+b=2.所以 +=+=++52+5=9 ,由=,则 a2=4b2,又由 a+b=2,故当且仅当 a=,b=时取等号 .[答案] 96.(2019 南京市、盐城市高三模拟 )在平面直角坐标系 xOy 中,若圆x2+(y-1)2=4 上存在 A,B 两点对于点 P(1,2)成中心对称,则直线AB 的方程为 ________.[ 分析 ] 由题意得圆心与 P 点连线垂直于 AB ,所以 kOP==1,kAB=-1 ,而直线 AB 过 P 点,所以直线 AB 的方程为 y-2=-(x-1) ,即 x+y-3=0. [ 答案 ] x+y-3=07.(2019 泰州质检 )若 a,且方程 x2+y2+ax+2ay+2a2+a-1=0 表示圆,则a=________.[ 分析 ] 要使方程 x2+y2+ax+2ay+2a2+a-1=0表示圆,则a2+(2a)2-4(2a2+a-1)0,解得 -20)对于直线 x+y+2=0 对称 .(1)求圆 C 的方程 ;(2)设 Q 为圆 C 上的一个动点,求的最小值.[ 解] (1)设圆心 C(a,b),由题意得解得则圆 C 的方程为 x2+y2=r2 ,将点 P 的坐标代入得 r2=2,故圆 C 的方程为 x2+y2=2.(2)设 Q(x,y),则 x2+y2=2,=(x-1 ,y-1)(x+2 ,y+2)=x2+y2+x+y-4=x+y-2.令 x=cos ,y=sin ,=x+y-2=(sin +cos )-2=2sin-2,所以的最小值为 -4.10.已知圆的圆心为坐标原点,且经过点(-1,).(1)求圆的方程 ;(2)若直线 l1:x-y+b=0 与此圆有且只有一个公共点,求 b 的值 ;(3)求直线 l2:x-y+2=0 被此圆截得的弦长 .[ 解] (1)已知心 (0,0),半径 r==2,所以的方程x2+y2=4.(2)由已知得 l1 与相切,心 (0,0)到 l1 的距离等于半径2,即=2,解得 b=4.(3)l2 与 x2+y2=4 订交,心 (0,0)到 l2 的距离 d==,所截弦 l=2=2=2. 一般来,“教”观点之形成了十分漫的史。
圆的方程考点与题型归纳
圆的方程考点与题型归纳一、基础知识1.圆的定义及方程❶标准方程强调圆心坐标为(a ,b ),半径为r .❷(1)当D 2+E 2-4F =0时,方程表示一个点⎝⎛⎭⎫-D 2,-E 2; (2)当D 2+E 2-4F <0时,方程不表示任何图形. 2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.二、常用结论(1)二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是⎩⎪⎨⎪⎧A =C ≠0,B =0,D 2+E 2-4AF >0.(2)以A (x 1,y 1),B (x 2,y 2)为直径端点的圆的方程为(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.考点一 求圆的方程[典例] (1)圆心在y 轴上,半径长为1,且过点A (1,2)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1 D .x 2+(y -3)2=4(2)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________. [解析] (1)根据题意可设圆的方程为x 2+(y -b )2=1,因为圆过点A (1,2),所以12+(2-b )2=1,解得b =2,所以所求圆的方程为x 2+(y -2)2=1.(2)法一:几何法设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ). 又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2,所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法二:待定系数法设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,a -2b -3=0,解得a =-1,b =-2,r 2=10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法三:待定系数法设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 则圆心坐标为⎝⎛⎭⎫-D 2,-E2,由题意得⎩⎪⎨⎪⎧-D2-2×⎝⎛⎭⎫-E2-3=0,4+9+2D -3E +F =0,4+25-2D -5E +F =0,解得D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0. [答案] (1)A (2)x 2+y 2+2x +4y -5=0[题组训练]1.已知圆E 经过三点A (0,1),B (2,0),C (0,-1),且圆心在x 轴的正半轴上,则圆E 的标准方程为( )A.⎝⎛⎭⎫x -322+y 2=254 B.⎝⎛⎭⎫x +342+y 2=2516 C.⎝⎛⎭⎫x -342+y 2=2516D.⎝⎛⎭⎫x -342+y 2=254解析:选C 法一:根据题意,设圆E 的圆心坐标为(a,0)(a >0),半径为r ,则圆E 的标准方程为(x -a )2+y 2=r 2(a >0).由题意得⎩⎪⎨⎪⎧a 2+12=r 2,(2-a )2=r 2,a 2+(-1)2=r 2,解得⎩⎨⎧a =34,r 2=2516,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 法二:设圆E 的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则由题意得⎩⎪⎨⎪⎧1+E +F =0,4+2D +F =0,1-E +F =0,解得⎩⎪⎨⎪⎧D =-32,E =0,F =-1,所以圆E 的一般方程为x 2+y 2-32x -1=0,即⎝⎛⎭⎫x -342+y 2=2516. 法三:因为圆E 经过点A (0,1),B (2,0),所以圆E 的圆心在线段AB 的垂直平分线y -12=2(x -1)上.又圆E 的圆心在x 轴的正半轴上,所以圆E 的圆心坐标为⎝⎛⎭⎫34,0. 则圆E 的半径为|EB |=⎝⎛⎭⎫2-342+(0-0)2=54,所以圆E 的标准方程为⎝⎛⎭⎫x -342+y 2=2516. 2.已知圆心在直线y =-4x 上,且圆与直线l :x +y -1=0相切于点P (3,-2),则该圆的方程是________________.解析:过切点且与x +y -1=0垂直的直线方程为x -y -5=0,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(3-1)2+(-2+4)2=22,故所求圆的方程为(x -1)2+(y +4)2=8. 答案:(x -1)2+(y +4)2=83.已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为________________.解析:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧ 2D -4E -F =20,3D -E +F =-10.①②又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根, 由|x 1-x 2|=6,得D 2-4F =36,④联立①②④,解得D =-2,E =-4,F =-8,或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0. 答案:x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0 考点二 与圆有关的轨迹问题[典例] (1)点P (4,-2)与圆x 2+y 2=4上任意一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1(2)已知圆C :(x -1)2+(y -1)2=9,过点A (2,3)作圆C 的任意弦,则这些弦的中点P 的轨迹方程为________.[解析](1)设圆上任意一点为(x 1,y 1),中点为(x ,y ),则⎩⎪⎨⎪⎧x =x 1+42,y =y 1-22,即⎩⎪⎨⎪⎧x 1=2x -4,y 1=2y +2,代入x 2+y 2=4,得(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.(2)设P (x ,y ),圆心C (1,1).因为P 点是过点A 的弦的中点,所以P A ―→⊥PC ―→. 又因为P A ―→=(2-x,3-y ),PC ―→=(1-x,1-y ). 所以(2-x )·(1-x )+(3-y )·(1-y )=0. 所以点P 的轨迹方程为⎝⎛⎭⎫x -322+(y -2)2=54. [答案] (1)A (2)⎝⎛⎭⎫x -322+(y -2)2=54[变透练清]1.(变条件)若将本例(2)中点A (2,3)换成圆上的点B (1,4),其他条件不变,则这些弦的中点P 的轨迹方程为________.解析:设P (x ,y ),圆心C (1,1).当点P 与点B 不重合时,因为P 点是过点B 的弦的中点,所以PB ―→⊥PC ―→.又因为PB ―→=(1-x,4-y ),PC ―→=(1-x,1-y ). 所以(1-x )·(1-x )+(4-y )·(1-y )=0. 所以点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94; 当点P 与点B 重合时,点P 满足上述方程. 综上所述,点P 的轨迹方程为(x -1)2+⎝⎛⎭⎫y -522=94.答案:(x -1)2+⎝⎛⎭⎫y -522=942.已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PB Q =90°,求线段P Q 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设P Q 的中点为N (x ,y ). 在Rt △PB Q 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥P Q , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段P Q 中点的轨迹方程为x 2+y 2-x -y -1=0.[课时跟踪检测]A 级1.以线段AB :x +y -2=0(0≤x ≤2)为直径的圆的方程为( ) A .(x +1)2+(y +1)2=2 B .(x -1)2+(y -1)2=2 C .(x +1)2+(y +1)2=8D .(x -1)2+(y -1)2=8解析:选B 直径的两端点分别为(0,2),(2,0),所以圆心为(1,1),半径为2,故圆的方程为(x -1)2+(y -1)2=2.2.若圆x 2+y 2+2ax -b 2=0的半径为2,则点(a ,b )到原点的距离为( ) A .1 B .2 C. 2D .4解析:选B 由半径r =12D 2+E 2-4F =124a 2+4b 2=2,得a 2+b 2=2.∴点(a ,b )到原点的距离d =a 2+b 2=2,故选B.3.以(a,1)为圆心,且与两条直线2x -y +4=0与2x -y -6=0同时相切的圆的标准方程为( )A .(x -1)2+(y -1)2=5B .(x +1)2+(y +1)2=5C .(x -1)2+y 2=5D .x 2+(y -1)2=5解析:选A 由题意知,圆心到这两条直线的距离相等,即圆心到直线2x -y +4=0的距离d =|2a -1+4|5=|2a -1-6|5,解得a =1,d =5,∵直线与圆相切,∴r =d =5, ∴圆的标准方程为(x -1)2+(y -1)2=5.4.(2019·银川模拟)方程|y |-1=1-(x -1)2表示的曲线是( ) A .一个椭圆 B .一个圆 C .两个圆D .两个半圆解析:选D 由题意知|y |-1≥0,则y ≥1或y ≤-1,当y ≥1时,原方程可化为(x -1)2+(y -1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y =1上方的半圆;当y ≤-1时,原方程可化为(x -1)2+(y +1)2=1(y ≤-1),其表示以(1,-1)为圆心、1为半径、直线y =-1下方的半圆.所以方程|y |-1=1-(x -1)2表示的曲线是两个半圆,选D.5.已知a ∈R ,若方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则此圆的圆心坐标为( )A .(-2,-4)B.⎝⎛⎭⎫-12,-1 C .(-2,-4)或⎝⎛⎭⎫-12,-1 D .不确定解析:选A ∵方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,∴a 2=a +2≠0,解得a =-1或a =2.当a =-1时,方程化为x 2+y 2+4x +8y -5=0.配方,得(x +2)2+(y +4)2=25,所得圆的圆心坐标为(-2,-4),半径为5.当a =2时,方程化为x 2+y 2+x +2y +52=0,此时方程不表示圆.故选A.6.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( )A .(x +1)2+y 2=2B .(x +1)2+y 2=8C .(x -1)2+y 2=2D .(x -1)2+y 2=8解析:选A 直线x -y +1=0与x 轴的交点(-1,0). 根据题意,圆C 的圆心坐标为(-1,0).因为圆与直线x +y +3=0相切,所以半径为圆心到切线的距离, 即r =d =|-1+0+3|12+12=2,则圆的方程为(x +1)2+y 2=2.7.圆C 的直径的两个端点分别是A (-1,2),B (1,4),则圆C 的标准方程为________. 解析:设圆心C 的坐标为(a ,b ),则a =-1+12=0,b =2+42=3,故圆心C (0,3).半径r =12|AB |=12[1-(-1)]2+(4-2)2= 2.∴圆C 的标准方程为x 2+(y -3)2=2. 答案:x 2+(y -3)2=28.已知圆C 的圆心在x 轴上,并且经过点A (-1,1),B (1,3),若M (m ,6)在圆C 内,则m 的取值范围为________.解析:设圆心为C (a,0),由|CA |=|CB |, 得(a +1)2+12=(a -1)2+32,解得a =2. 半径r =|CA |=(2+1)2+12=10.故圆C 的方程为(x -2)2+y 2=10. 由题意知(m -2)2+(6)2<10, 解得0<m <4. 答案:(0,4)9.若一个圆的圆心是抛物线x 2=4y 的焦点,且该圆与直线y =x +3相切,则该圆的标准方程是________________.解析:抛物线x 2=4y 的焦点为(0,1),即圆心为(0,1),设该圆的标准方程是x 2+(y -1)2=r 2(r >0),因为该圆与直线y =x +3相切,所以r =d =|-1+3|2=2,故该圆的标准方程是x 2+(y -1)2=2.答案:x 2+(y -1)2=210.(2019·德州模拟)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的标准方程为________________. 解析:因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0,所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3,所以圆C 的标准方程为(x -2)2+y 2=9.答案:(x -2)2+y 2=911.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 所以直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又直径|CD |=410, 所以|P A |=210. 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2,所以圆心P (-3,6)或P (5,-2),所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40. 12.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线, 所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =yx -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y . 由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).B 级1.(2019·伊春三校联考)已知圆C 1:(x +1)2+(y -1)2=1,圆C 2与圆C 1关于直线x -y -1=0对称,则圆C 2的方程为( )A .(x +2)2+(y -1)2=1B .(x -2)2+(y +2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:选B 圆C 1:(x +1)2+(y -1)2=1,圆心C 1为(-1,1),半径为1.易知点C 1(-1,1)关于直线x -y -1=0对称的点为C 2,设C 2(a ,b ),则⎩⎪⎨⎪⎧ b -1a +1=-1,a -12-b +12-1=0,解得⎩⎪⎨⎪⎧ a =2,b =-2,所以C 2(2,-2),所以圆C 2的圆心为C 2(2,-2),半径为1,所以圆C 2的方程为(x -2)2+(y +2)2=1.故选B.2.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________________.解析:因为直线mx -y -2m -1=0(m ∈R )恒过点(2,-1),所以当点(2,-1)为切点时,半径最大,此时半径r =2,故所求圆的标准方程为(x -1)2+y 2=2.答案:(x -1)2+y 2=23.已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程.解:(1)把圆C 1的方程化为标准方程得(x -3)2+y 2=4,∴圆C 1的圆心坐标为C 1(3,0).(2)设M (x ,y ),∵A ,B 为过原点的直线l 与圆C 1的交点,且M 为AB 的中点,∴由圆的性质知:MC 1⊥MO ,∴MC 1―→·MO ―→=0.又∵MC 1―→=(3-x ,-y ),MO ―→=(-x ,-y ),∴x 2-3x +y 2=0.易知直线l 的斜率存在,故设直线l 的方程为y =mx ,当直线l 与圆C 1相切时,圆心到直线l 的距离d =|3m -0|m 2+1=2, 解得m =±255. 把相切时直线l 的方程代入圆C 1的方程化简得9x2-30x+25=0,解得x=5 3.当直线l经过圆C1的圆心时,M的坐标为(3,0).又∵直线l与圆C1交于A,B两点,M为AB的中点,∴53<x≤3.∴点M的轨迹C的方程为x2-3x+y2=0,其中53<x≤3,其轨迹为一段圆弧.。
2019高中数学第四章圆与方程4.1圆的方程第1课时圆的标准方程讲义含解析新人教A版必修2
第1课时圆的标准方程[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P118~P120,回答下列问题.(1)圆是怎样定义的?确定它的要素又是什么呢?各要素与圆有怎样的关系?提示:平面内到定点的距离等于定长的点的集合(轨迹)是圆.定点就是圆心,定长就是半径.圆心和半径.圆心:确定圆的位置;半径:确定圆的大小.(2)求圆的标准方程时常用哪些几何性质?提示:求圆的标准方程,关键是确定圆心坐标和半径,为此常用到圆的以下几何性质:①弦的垂直平分线必过圆心.②圆内的任意两条弦的垂直平分线的交点一定是圆心.③圆心与切点的连线长是半径长.④圆心与切点的连线必与切线垂直.2.归纳总结,核心必记(1)圆的标准方程①圆的定义:平面内到定点的距离等于定长的点的集合叫做圆,定点称为圆心,定长称为圆的半径.②确定圆的要素是圆心和半径,如图所示.③圆的标准方程:圆心为A(a,b),半径长为r的圆的标准方程是(x-a)2+(y-b)2=r2.当a=b=0时,方程为x2+y2=r2,表示以原点为圆心、半径为r的圆.(2)点与圆的位置关系圆的标准方程为(x-a)2+(y-b)2=r2,圆心A(a,b),半径为r.设所给点为M(x0,y0),则[问题思考]方程(x-a)2+(y-b)2=r2(a,b,r∈R)表示一个圆吗?为什么?提示:未必表示圆.当r≠0时,表示圆心为(a,b),半径为|r|的圆;当r=0时,表示一个点(a,b).[课前反思]通过以上预习,必须掌握的几个知识点.(1)圆的标准方程是什么?怎样求解?;(2)点与圆有哪些位置关系?.“南昌之星”摩天轮2006年建成时是世界上最高的摩天轮,它位于江西省南昌市红谷滩新区红角洲赣江边上的赣江市民公园,是南昌市标志性建筑.该摩天轮总高度为160米,转盘直径为153米.[思考1] 游客在摩天轮转动过程中离摩天轮中心的距离一样吗? 提示:一样.圆上的点到圆心的距离都是相等的,都是圆的半径.[思考2] 若以摩天轮中心所在位置为原点,建立平面直角坐标系,游客在任一点(x ,y )的坐标满足什么关系?提示:x 2+y 2=1532.[思考3] 以(1,2)为圆心,3为半径的圆上任一点的坐标(x ,y )满足什么关系? 提示:x -2+y -2=3.[思考4] 确定圆的标准方程需具备哪些条件?名师指津:圆的标准方程(x -a )2+(y -b )2=r 2中有三个参数,要确定圆的标准方程需要确定这三个参数,其中圆心(a ,b )是圆的定位条件,半径r 是圆的定量条件.讲一讲1.求过点A (1,-1),B (-1,1)且圆心在直线x +y -2=0上的圆的标准方程.(链接教材P 120-例3)[尝试解答] 法一:设所求圆的标准方程为 (x -a )2+(y -b )2=r 2,由已知条件知⎩⎪⎨⎪⎧-a 2+-1-b 2=r 2,-1-a 2+-b2=r 2,a +b -2=0,解此方程组,得⎩⎪⎨⎪⎧a =1,b =1,r 2=4.故所求圆的标准方程为(x -1)2+(y -1)2=4. 法二:设点C 为圆心,∵点C 在直线x +y -2=0上, ∴可设点C 的坐标为(a,2-a ). 又∵该圆经过A ,B 两点, ∴|CA |=|CB |. ∴a -2+-a +2=a +2+-a -2,解得a =1.∴圆心坐标为C (1,1),半径长r =|CA |=2. 故所求圆的标准方程为(x -1)2+(y -1)2=4. 法三:由已知可得线段AB 的中点坐标为(0,0),k AB =1---1-1=-1,∴弦AB 的垂直平分线的斜率为k =1,∴AB 的垂直平分线的方程为y -0=1·(x -0), 即y =x .则圆心是直线y =x 与x +y -2=0的交点,由⎩⎨⎧y =x ,x +y -2=0,得⎩⎪⎨⎪⎧x =1,y =1,即圆心为(1,1), 圆的半径为-2+[1--2=2,故所求圆的标准方程为(x -1)2+(y -1)2=4.求圆的标准方程的方法确定圆的标准方程就是设法确定圆心C (a ,b )及半径r ,其求解的方法: (1)待定系数法,如法一,建立关于a ,b ,r 的方程组,进而求得圆的方程; (2)借助圆的几何性质直接求得圆心坐标和半径,如法二、三.一般地,在解决有关圆的问题时,有时利用圆的几何性质作转化较为简捷.练一练1.求下列圆的标准方程: (1)圆心是(4,0),且过点(2,2);(2)圆心在y 轴上,半径为5,且过点(3,-4);(3)过点P (2,-1)和直线x -y =1相切,并且圆心在直线y =-2x 上. 解:(1)r 2=(2-4)2+(2-0)2=8, ∴圆的标准方程为(x -4)2+y 2=8. (2)设圆心为C (0,b ), 则(3-0)2+(-4-b )2=52, ∴b =0或b =-8, ∴圆心为(0,0)或(0,-8), 又r =5,∴圆的标准方程为x 2+y 2=25或x 2+(y +8)2=25. (3)∵圆心在y =-2x 上,设圆心为(a ,-2a ), 则圆心到直线x -y -1=0的距离为r . ∴r =|a +2a -1|2, ①又圆过点P (2,-1),∴r 2=(2-a )2+(-1+2a )2, ②由①②得⎩⎨⎧a =1,r =2或⎩⎨⎧a =9,r =132,∴圆的标准方程为(x -1)2+(y +2)2=2或(x -9)2+(y +18)2=338.爱好运动的小华,小强,小兵三人相邀搞一场掷飞镖比赛,他们把靶子钉在土墙上,规定谁的飞镖离靶心O 越近,谁获胜,如图A ,B ,C 分别是他们掷一轮飞镖的落点.看图回答下列问题:[思考1] 点与圆的位置关系有几种? 提示:三种.点在圆外、圆上、圆内. [思考2] 如何判断他们的胜负? 提示:利用点与圆心的距离. 讲一讲2.已知圆心在点C (-3,-4),且经过原点,求该圆的标准方程,并判断点P 1(-1,0),P 2(1,-1),P 3(3,-4)和圆的位置关系.(链接教材P 119—例1)[尝试解答] 因为圆心是C (-3,-4),且经过原点, 所以圆的半径r =-3-2+-4-2=5,所以圆的标准方程是(x +3)2+(y +4)2=25. 因为|P 1C |=-1+32++2=4+16=25<5,所以P 1(-1,0)在圆内; 因为|P 2C |=+2+-1+2=5,所以P 2(1,-1)在圆上;因为|P 3C |=+2+-4+2=6>5,所以P 3(3,-4)在圆外.(1)判断点与圆的位置关系的方法①只需计算该点与圆的圆心距离,与半径作比较即可;②把点的坐标代入圆的标准方程,判断式子两边的大小,并作出判断. (2)灵活运用若已知点与圆的位置关系,也可利用以上两种方法列出不等式或方程,求解参数范围. 练一练2.已知点A (1,2)不在圆C :(x -a )2+(y +a )2=2a 2的内部,求实数a 的取值范围. 解:由题意,点A 在圆C 上或圆C 的外部, ∴(1-a )2+(2+a )2≥2a 2, ∴2a +5≥0, ∴a ≥-52,又a ≠0,∴a 的取值范围是⎣⎢⎡⎭⎪⎫-52,0∪(0,+∞).讲一讲3.已知x 和y 满足(x +1)2+y 2=14,试求:(1)x 2+y 2的最值;(2)x +y 的最值.[思路点拨] 首先观察x 、y 满足的条件,其次观察所求式子的几何意义,最后结合图形求出其最值.[尝试解答] (1)据题意知x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取最大值和最小值时,其平方也相应取得最大值和最小值.原点O (0,0)到圆心C (-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12=32,最小距离为1-12=12.因此x 2+y 2的最大值和最小值分别为94和14. (2)令y +x =b 并将其变形为y =-x +b .问题转化为斜率为-1的直线在经过圆上的点时在y 轴上的截距的最值.当直线和圆相切时在y 轴上的截距取得最大值和最小值,此时有|-1-b |2=12,解得b =±22-1,即最大值为22-1,最小值为-22-1.数形结合思想能有效地找到解题的捷径,解题时找到圆心和半径,分析待求数学表达式的几何意义,将“数”与“形”有机地结合起来是求解与圆有关的最值问题的关键.练一练3.已知圆C:(x-3)2+(y-4)2=1,点A(0,-1),B(0,1),设P是圆C上的动点,令d=|PA|2+|PB|2,求d的最大值及最小值.解:设P(x,y),则d=|PA|2+|PB|2=2(x2+y2)+2.∵|CO|2=32+42=25,∴(5-1)2≤x2+y2≤(5+1)2.即16≤x2+y2≤36.∴d的最小值为2×16+2=34.最大值为2×36+2=74.————————————[课堂归纳·感悟提升]—————————————1.本节课的重点是会用定义推导圆的标准方程并掌握圆的标准方程的特征,能根据所给条件求圆的标准方程,掌握点与圆的位置关系.难点是根据所给条件求圆的标准方程.2.本节课要重点掌握的规律方法(1)求圆的标准方程的方法,见讲1.(2)判断点与圆的位置关系的方法,见讲2.(3)求与圆有关的最值的方法,见讲3.3.本节课的易错点是求圆的标准方程中易漏解,如练1.课下能力提升(二十二)[学业水平达标练]题组1 圆的标准方程1.圆(x-2)2+(y+3)2=2的圆心和半径分别是( )A.(-2,3),1 B.(2,-3),3C.(-2,3), 2 D.(2,-3), 2解析:选D 由圆的标准方程可得圆心坐标为(2,-3),半径为 2.2.(2016·洛阳高一检测)圆心为(0,4),且过点(3,0)的圆的方程为( )A .x 2+(y -4)2=25B .x 2+(y +4)2=25 C .(x -4)2+y 2=25 D .(x +4)2+y 2=25 解析:选A 由题意,圆的半径r =-2+-2=5,则圆的方程为x 2+(y-4)2=25.3.(2016·达州高一检测)△ABC 的三个顶点的坐标分别为A (1,0),B (3,0),C (3,4),则△ABC 的外接圆方程是 ( )A .(x -2)2+(y -2)2=20 B .(x -2)2+(y -2)2=10 C .(x -2)2+(y -2)2=5 D .(x -2)2+(y -2)2= 5解析:选C 易知△ABC 是直角三角形,∠B =90°,所以圆心是斜边AC 的中点(2,2),半径是斜边长的一半,即r =5,所以外接圆的方程为(x -2)2+(y -2)2=5.4.经过原点,圆心在x 轴的负半轴上,半径为2的圆的方程是________. 解析:圆心是(-2,0),半径是2,所以圆的方程是(x +2)2+y 2=4. 答案:(x +2)2+y 2=45.求过点A (1,2)和B (1,10)且与直线x -2y -1=0相切的圆的方程.解:圆心在线段AB 的垂直平分线y =6上,设圆心为(a,6),半径为r ,则圆的方程为(x -a )2+(y -6)2=r 2.将点(1,10)代入得(1-a )2+(10-6)2=r 2, ① 而r =|a -13|5,代入①,得(a -1)2+16=a -25,解得a =3,r =25或a =-7,r =4 5.故所求圆的方程为(x -3)2+(y -6)2=20或(x +7)2+(y -6)2=80. 题组2 点与圆的位置关系6.点P (m 2,5)与圆x 2+y 2=24的位置关系是( ) A .在圆外 B .在圆内 C .在圆上 D .不确定解析:选A 把点P (m 2,5)代入圆的方程x 2+y 2=24得m 4+25>24,故点P 在圆外. 7.点(5a +1,a )在圆(x -1)2+y 2=26的内部,则a 的取值范围是________. 解析:由于点在圆的内部,所以(5a +1-1)2+(a )2<26,即26a <26,又a ≥0,解得0≤a <1.答案:[0,1)8.已知圆M 的圆心坐标为(3,4),且A (-1,1),B (1,0),C (-2,3)三点一个在圆M 内,一个在圆M 上,一个在圆M 外,则圆M 的方程为________.解析:∵|MA|=-1-2+-2=5,|MB|=-2+-2=25,|MC|=-2-2+-2=26,∴|MB|<|MA|<|MC|,∴点B在圆M内,点A在圆M上,点C在圆M外,∴圆的半径r=|MA|=5,∴圆M的方程为(x-3)2+(y-4)2=25.答案:(x-3)2+(y-4)2=25题组3 与圆有关的最值问题9.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4 C.3 D.2解析:选B 由题意,知|PQ|的最小值即为圆心到直线x=-3的距离减去半径长,即|PQ|的最小值为6-2=4.10.已知点P(x,y)在圆x2+y2=1上,则x-2+y-2的最大值为________.解析:x-2+y-2的几何意义是圆上的点P(x,y)到点(1,1)的距离,因此最大值为2+1.答案:1+ 2[能力提升综合练]1.与圆(x-3)2+(y+2)2=4关于直线x=-1对称的圆的方程为( )A.(x+5)2+(y+2)2=4B.(x-3)2+(y+2)2=4C.(x-5)2+(y+2)2=4D.(x-3)2+y2=4解析:选A 已知圆的圆心(3,-2)关于直线x=-1的对称点为(-5,-2),∴所求圆的方程为(x+5)2+(y+2)2=4.2.圆心为C(-1,2),且一条直径的两个端点落在两坐标轴上的圆的方程是( ) A.(x-1)2+(y+2)2=5B.(x-1)2+(y+2)2=20C.(x+1)2+(y-2)2=5D.(x+1)2+(y-2)2=20解析:选C 因为直径的两个端点在两坐标轴上,所以该圆一定过原点,所以半径r=-1-2+-2=5,又圆心为C (-1,2),故圆的方程为(x +1)2+(y -2)2=5,故选C.3.方程y =9-x 2表示的曲线是( ) A .一条射线 B .一个圆 C .两条射线 D .半个圆解析:选D y =9-x 2可化为x 2+y 2=9(y ≥0),故表示的曲线为圆x 2+y 2=9位于x 轴及其上方的半个圆.4.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .(x -1)2+(y +2)2=5 B .(x +1)2+(y +2)2=5 C .(x +1)2+(y -2)2=5 D .(x -1)2+(y -2)2=5解析:选C 直线方程变为(x +1)a -x -y +1=0.由⎩⎪⎨⎪⎧x +1=0,-x -y +1=0得⎩⎪⎨⎪⎧x =-1,y =2,∴C (-1,2),∴所求圆的方程为(x +1)2+(y -2)2=5.5.(2016·合肥高一检测)圆心为直线x -y +2=0与直线2x +y -8=0的交点,且过原点的圆的标准方程是________.解析:由⎩⎪⎨⎪⎧x -y +2=0,2x +y -8=0,可得x =2,y =4, 即圆心为(2,4),从而r =-2+-2=25,故圆的标准方程为(x -2)2+(y -4)2=20. 答案:(x -2)2+(y -4)2=206.若圆心在x 轴上,半径为5的圆C 位于y 轴左侧,且与直线x +2y =0相切,则圆C 的方程是________.解析:如图所示,设圆心C (a,0),则圆心C 到直线x +2y =0的距离为|a +2×0|12+22=5,解得a =-5,a =5(舍去),∴圆心是(-5,0).故圆的方程是(x +5)2+y 2=5. 答案:(x +5)2+y 2=57.已知某圆圆心在x 轴上,半径长为5,且截y 轴所得线段长为8,求该圆的标准方程.解:法一:如图所示,由题设|AC |=r =5,|AB |=8, ∴|AO |=4.在Rt △AOC 中,|OC |= |AC |2-|AO |2= 52-42=3. 设点C 坐标为(a,0), 则|OC |=|a |=3,∴a =±3.∴所求圆的方程为(x +3)2+y 2=25或(x -3)2+y 2=25. 法二:由题意设所求圆的方程为(x -a )2+y 2=25. ∵圆截y 轴线段长为8,∴圆过点A (0,4). 代入方程得a 2+16=25,∴a =±3.∴所求圆的方程为(x +3)2+y 2=25或(x -3)2+y 2=25.8.(1)如果实数x ,y 满足(x -2)2+y 2=3,求y x的最大值和最小值; (2)已知实数x ,y 满足方程x 2+(y -1)2=14,求x -2+y -2的取值范围.解:(1)法一:如图,当过原点的直线l 与圆(x -2)2+y 2=3相切于上方时y x最大,过圆心A (2,0)作切线l 的垂线交于B ,在Rt △ABO 中,OA =2,AB = 3.∴切线l 的倾斜角为60°,∴y x的最大值为 3. 同理可得y x 的最小值为- 3.法二:令y x=n ,则y =nx 与(x -2)2+y 2=3联立, 消去y 得(1+n 2)x 2-4x +1=0, Δ=(-4)2-4(1+n 2)≥0,即n 2≤3,∴-3≤n ≤3,即y x的最大值、最小值分别为3、- 3. (2)x -2+y -2可以看成圆上的点P (x ,y )到A (2,3)的距离.圆心C (0,1)到A (2,3)的距离为d =-2+-2=2 2.由图可知,圆上的点P (x ,y )到A (2,3)的距离的范围是⎣⎢⎡⎦⎥⎤22-12,22+12. 即x -22+y -32的取值范围是22-12,22+12.。
第8章 第3节 圆的方程-2023届高三一轮复习数学精品备课(新高考人教A版2019)
5.已知圆 C 经过点 A(1,3),B(4,2),与直线 2x+y-10=0 相切,则圆 C 的标准方程为________.
(x-2)2+(y-1)2=5 解析 由题意,设圆 C 的方程为(x-a)2+(y-b)2=r2, 因为点 B(4,2)在直线 2x+y-10=0 上, 所以点 B(4,2)是圆与直线 2x+y-10=0 的切点, 连接圆心 C 和切点的直线和与切线 2x+y-10=0 垂直, 则 kBC=12,则 BC 的方程为 y-2=12(x-4), 整理得 x-2y=0,
(√)
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20
+y20+Dx0+Ey0+F>0.
(√)
◇教材改编
2.圆 x2+y2-4x+6y=0 的圆心坐标和半径分别是
( D) A.(2,3),3
B.(-2,3), 3
C.(-2,-3),13
D.(2,-3), 13
解析 圆的方程可化为(x-2)2+(y+3)2=13, 所以圆心坐标是(2,-3),半径 r= 13.
(2)可知yx-+32表示直线 MQ 的斜率 k. 设直线 MQ 的方程为 y-3=k(x+2), 即 kx-y+2k+3=0. 由直线 MQ 与圆 C 有交点, ∴|2k-71++2kk2+3|≤2 2, 可得 2- 3≤k≤2+ 3, ∴yx-+32的最大值为 2+ 3,最小值为 2- 3.
(3)设 y-x=b,则 x-y+b=0. 当直线 y=x+b 与圆 C 相切时,截距 b 取到最值, ∴ 1|22+-(7+-b1|)2=2 2,∴b=9 或 b=1. ∴y-x 的最大值为 9,最小值为 1.
►考向三 与圆有关的轨迹问题[师生共研] [例 3] 已知圆 x2+y2=4 上一定点 A(2,0),B(1,1)为 圆内一点,P,Q 为圆上的动点. (1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程. [自主解答] (1)设 AP 的中点为 M(x,y), 由中点坐标公式可知,P 点坐标为(2x-2,2y). 因为 P 点在圆 x2+y2=4 上, 所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1.
9-3 圆的方程及直线与圆的位置关系
课前自助餐
圆的定义 平面内到定点的距离_等__于__定__长_的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||=λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
圆的标准方程 设圆心为 C(a,b),半径是 r,则标准方程为_(_x_-__a)_2_+_(_y_-__b_)2_=_r.2 注:确定圆心位置的方法: ①圆心在过切点且与切线垂直的直线上; ②圆心在圆的任意弦的垂直平分线上; ③两圆相切时,切点与两圆圆心共线.
注意:过圆外一点的切线必有两条,无论用何 种方法,当求得的k只有一个时,则另一条切线的斜 率一定不存在,方程为x=x0,是由数形结合得出.
思考4:设点M(x0,y0)为圆x2+y2=r2外一点,过点M作圆的 两条切线,切点分别为A,B,则直线AB的方程如何?
Ay
M
o
x
B
x0x+y0y=r2
总结: 若点M(x0,y0)在圆x2+y2=r2外,过该点作圆的 两条切线,则两个切点所在直线方程为xx0 +yy0 =r2.
由题意得4( 4++-92+D52-)2D2-D-2-3×E5( E++-FF=E2=)0,0-,3=0,解得FED===-42,,5. 故所求圆的方程为 x2+y2+2x+4y-5=0. 【答案】 x2+y2+2x+4y-5=0
(2)已知圆 C 与直线 l:x+y-1=0 相切于点 P(3,-2),且 圆心在直线 y=-4x 上,求圆 C 的方程.
(3)已知圆满足:①截 y 轴所得弦长为 2;②被 x 轴分成两段 圆弧,其弧长的比为 3∶1;③圆心到直线 l:x-2y=0 的距离为
圆的标准方程高二上学期数学人教A版(2019)选择性必修第一册
(x0-a)2+(y0-b)2__=___r2 (x0-a)2+(y0-b)2__>___r2 (x0-a)2+(y0-b)2__<___r2
做一做:点P(-2,-2)和圆x2+y2=4的位置关系是( B )
A.在圆上
B.在圆外
C.在圆内
D.以上都不对
[解析] ∵(-2)2+(-2)2=8>4,
∴点P(-2,-2)在圆外,故选B.
值为13,求点 [解析]
M 设
的轨迹. M(x,y)是满足条件的任意一点,由题意知||MMAB||=13.
由两点间的距离公式,得 x-x3-21+2+y-y222=13,
两边平方并化简,得 x2+y2-32x+12y-12=0,
配方得x-342+y+142=98.
故所求轨迹是圆心为34,-14,半径为3 4 2的圆.
[解析] 设 P(x,y)为圆上任意一点, 则由P→A·P→B=0 知,(x+4)(x-6)+(y+5)(y+1)=0, ∴所求圆的标准方程为(x-1)2+(y+3)2=29.
4.若圆(x+1)2+(y-3)2=9上相异两点P,Q关于直线kx+2y-4=0 对称,则k的值为___2__.
[解析] 圆是轴对称图形,过圆心的直线都是它的对称轴,已知圆 的圆心为(-1,3),由题设知,直线kx+2y-4=0过圆心,则k×(-1)+ 2×3-4=0,解得k=2.
[规律方法] 求与圆有关的轨迹方程的方法 (1)直接法:根据题设条件直接列出方程. (2)定义法:根据圆的定义写出方程. (3)几何法:利用圆的性质列方程. (4)代入法:找出要求点与已知点的关系,代入已知点满足的关系 式.
对点训练❸ 已知点 M 与两个定点 A(1,0),B(3,2)的距离的比
2019版高考数学理科一轮复习课件:直线方程与圆的方程 (2)
x y
my 2 2x
2,
可得y2-2my-4=0,则y1y2=-4.
又x1=
y12 2
,x2=
y22 2
,故x1x2=
( y1 y2 )2 4
=4.
因此OA的斜率与OB的斜率之积为 y1 ·y2 = 4 =-1,所以OA⊥OB.
x1 x2 4
故坐标原点O在圆M上.
(2)由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.
2
当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为 10 ,圆M的方程为(x-3)2+(y
-1)2=10.
当m=-
1 2
时,直线l的方程为2x+y-4=0,圆心M的坐标为
9 4
,
1 2
,圆M的半径为
85 ,圆M的方程为
4
x
9 4
2
+
y
1 2
2
=
85 16
.
2-2 6 )|=4 6 . 解法二:待定系数法(选一般方程形式求圆的参数). 设过A,B,C三点的圆的方程为x2+y2+Dx+Ey+F=0,代入A,B,C三点的坐标,
D 3E F 10,
D 2,
得
4D
2E
F
20,
解得
E
4,
D 7E F 50,
F 20,
∴圆的方程为x2+y2-2x+4y-20=0.
4k 2 k
2
4
.
由题设知
4k 2 k
2
4
圆的参数方程2(2019年11月整理)
则我们把方程组
x r cos
y
r
s in
叫做圆心为原点、半径为r
的圆的参数方程,θ是参数。
圆心在原点,半径为r的圆的参数方程为xy
r r
cos sin
(θ为参数),圆
上任一点为P1(x1,y1) 将其按向量 v =(a,b)平移后所得到的点为
P(x,y).
y
P
宰辅 唯京城之内微为少泽 高祖文皇帝诞膺天命 美谈笑 将作大监 赐以上药;无子 因火数也 而津之曰 《逸书》云"太社惟
随堂练习 P81练习的第一,二题。
答案: 1
x y
5 cos 5
3
5sin 5
问题:圆是否还可以用其他形式的方程来表示呢?
可以看出,点P的位置与旋转角θ有密切的关系。 若设点P的坐标是(x,y),则点P的横坐标x, 纵坐标y都是θ的函数,
即
x r cos
y
r
sin
x r cos
并且对于θ的每一个允许值,由方程组
y
r
sin
所
确定的点P(x,y)都在圆O上。
圆的参数方程
1、若以(a,b)为圆心,r为半径的圆的标准方程为:
(x-a)²+(y-b)²=r²
圆的标准方程的 优点: 明确指出圆的圆心和半径
2、圆的一般方程: x²+y²+Dx+Ey+F=0 (D²+E²-4F>0)
这一形式的方程突出了圆方程形式上的特点: 1、x²和 y²的系数相同,不等于0; 2、没有xy这样的二次项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第45课 圆的方程[最新考纲]1.圆的定义及方程点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系:(1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2.(2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2.(3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”).(1)确定圆的几何要素是圆心与半径.( )(2)方程(x +a )2+(y +b )2=t 2(t ∈R )表示圆心为(a ,b ),半径为t 的一个圆.( )(3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( )(4)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( )[解析] 由圆的定义及点与圆的位置关系,知(1)(3)(4)正确.(2)中,当t ≠0时,表示圆心为(-a ,-b ),半径为|t |的圆,不正确.[答案] (1)√ (2)× (3)√ (4)√2.(教材改编)方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是________.-2<a <23 [由题意知a 2+4a 2-4(2a 2+a -1)>0,解得-2<a <23.]3.(2016·全国卷Ⅱ改编)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =________.-43[圆x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1=1,解得a =-43.] 4.若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________.x 2+(y -1)2=1 [根据题意,圆C 的圆心为(0,1),半径为1,则标准方程为x 2+(y -1)2=1.]5.过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M ,N 两点,则MN =________. 46 [设圆的方程为x 2+y 2+Dx +Ey +F =0,则⎩⎨⎧ D +3E +F +10=0,4D +2E +F +20=0,D -7E +F +50=0.解得⎩⎨⎧ D =-2,E =4,F =-20.∴圆的方程为x 2+y 2-2x +4y -20=0.令x =0得y =-2+26或y =-2-2 6.∴M (0,-2+26),N (0,-2-26).∴MN =4 6.](1)ABC外接圆的圆心到原点的距离为________.(2)(2016·天津高考)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C 上,且圆心到直线2x-y=0的距离为455,则圆C的方程为________.(1)213(2)(x-2)2+y2=9[(1)法一:在坐标系中画出△ABC(如图),利用两点间的距离公式可得AB=AC=BC=2(也可以借助图形直接观察得出),所以△ABC为等边三角形.设BC的中点为D,点E为外心,同时也是重心.所以AE=23AD=233,从而OE=OA2+AE2=1+43=213.法二:设圆的一般方程为x2+y2+Dx+Ey+F=0,则⎩⎨⎧1+D+F=0,3+3E+F=0,7+2D+3E+F=0,解得⎩⎪⎨⎪⎧D=-2,E=-433,F=1.所以△ABC外接圆的圆心为⎝⎛⎭⎪⎫1,233.因此圆心到原点的距离d=12+⎝⎛⎭⎪⎫2332=213.(2)因为圆C的圆心在x轴的正半轴上,设C(a,0),且a>0,所以圆心到直线2x-y=0的距离d=2a5=455,解得a=2,所以圆C的半径r=CM=4+5=3,所以圆C 的方程为(x -2)2+y 2=9.][规律方法] 1.直接法求圆的方程,根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2.待定系数法求圆的方程:①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.温馨提醒:解答圆的方程问题,应注意数形结合,充分运用圆的几何性质.[变式训练1] 经过点A (5,2),B (3,-2),且圆心在直线2x -y -3=0上的圆的方程为________.x 2+y 2-4x -2y -5=0(或(x -2)2+(y -1)2=10) [法一:∵圆过A (5,2),B (3,-2)两点,∴圆心一定在线段AB 的垂直平分线上.易知线段AB 的垂直平分线方程为y =-12(x -4).设所求圆的圆心为C (a ,b ),则有⎩⎪⎨⎪⎧ 2a -b -3=0,b =-12(a -4), 解得a =2,且b =1.因此圆心坐标C (2,1),半径r =|AC |=10.故所求圆的方程为(x -2)2+(y -1)2=10.法二:设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎪⎨⎪⎧ 25+4+5D +2E +F =0,9+4+3D -2E +F =0,2×⎝ ⎛⎭⎪⎫-D 2+E 2-3=0,解得D =-4,E =-2,F =-5,∴所求圆的方程为x 2+y 2-4x -2y -5=0.]已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求MQ的最大值和最小值;(2)求y-3x+2的最大值和最小值. 【导学号:62172245】[解](1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,∴圆心C的坐标为(2,7),半径r=2 2.又QC=(2+2)2+(7-3)2=42,∴MQ max=42+22=62,MQ min=42-22=2 2.(2)可知y-3x+2表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.由直线MQ与圆C有交点,所以|2k-7+2k+3|1+k2≤22,可得2-3≤k≤2+3,∴y-3x+2的最大值为2+3,最小值为2- 3.[迁移探究1](变化结论)在本例的条件下,求y-x的最大值和最小值.[解]设y-x=b,则x-y+b=0.当直线y=x+b与圆C相切时,截距b取到最值,∴|2-7+b|12+(-1)2=22,∴b=9或b=1.因此y-x的最大值为9,最小值为1.[迁移探究2](变换条件结论)若本例中条件“点Q(-2,3)”改为“点Q是直线3x+4y+1=0上的动点”,其它条件不变,试求MQ的最小值.[解]∵圆心C(2,7)到直线3x+4y+1=0上动点Q的最小值为点C到直线3x +4y +1=0的距离,∴QC min =d =|2×3+7×4+1|32+42=7. 又圆C 的半径r =22,∴MQ 的最小值为7-2 2.[规律方法] 1.处理与圆有关的最值问题,应充分考虑圆的几何性质,并根据代数式的几何意义,数形结合求解.2.某些与圆相关的最值可利用函数关系求最值.根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用参数法、配方法、函数的性质、利用基本不等式求最值是比较常用的.[变式训练2] 设P 为直线3x -4y +11=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,求四边形P ACB 的面积的最小值.[解] 圆的标准方程为(x -1)2+(y -1)2=1,圆心为C (1,1),半径为r =1.根据对称性可知,四边形P ACB 的面积为 2S △APC =2×12P Ar =P A =PC 2-r 2.要使四边形P ACB 的面积最小,则只需PC 最小,最小时为圆心到直线l :3x -4y +11=0的距离 d =|3-4+11|32+(-4)2=105=2. 所以四边形P ACB 面积的最小值为PC 2min -r 2=4-1= 3.OM ,ON 为两边作平行四边形MONP ,求点P 的轨迹. 【导学号:62172246】[解] 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎨⎧x 0=x +3,y 0=y -4.又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在直线OM 上的情况). [规律方法] 求与圆有关的轨迹问题的四种方法(1)直接法:直接根据题设给定的条件列出方程求解.(2)定义法:根据圆的定义列方程求解.(3)几何法:利用圆的几何性质得出方程求解.(4)代入法(相关点法):找出要求的点与已知点的关系,代入已知点满足的关系式求解.[变式训练3] 已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.[解] (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ).因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),连结BN (图略).在Rt △PBQ 中,PN =BN .设O 为坐标原点,连结ON ,则ON ⊥PQ ,所以OP 2=ON 2+PN 2=ON 2+BN 2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.[思想与方法]1.确定一个圆的方程,需要三个独立条件,“选形式、定参数”是求圆的方程的基本方法.2.解答圆的问题,应注意数形结合,充分运用圆的几何性质,简化运算.[易错与防范]1.二元二次方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一前提条件.2.求圆的方程需要三个独立条件,所以不论是设哪一种圆的方程都要列出系数的三个独立方程.3.求轨迹方程和求轨迹是有区别的,求轨迹方程得出方程即可,而求轨迹在得出方程后还要指明轨迹表示什么曲线.课时分层训练(四十五)A组基础达标(建议用时:30分钟)一、填空题1.圆心为(1,1)且过原点的圆的方程是________.(x-1)2+(y-1)2=2[圆的半径r=12+12=2,∴圆的方程为(x-1)2+(y -1)2=2.]2.圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为________.【导学号:62172247】(x-2)2+(y-1)2=1[(1,2)关于直线y=x对称的点为(2,1),∴圆(x-1)2+(y -2)2=1关于直线y=x对称的圆的方程为(x-2)2+(y-1)2=1.]3.圆x2+y2-2x+4y+3=0的圆心到直线x-y=1的距离为________.2[圆的方程可化为(x-1)2+(y+2)2=2,则圆心坐标为(1,-2).故圆心到直线x-y-1=0的距离d=|1+2-1|2= 2.]4.已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为________.2x+y-3=0[易知圆心坐标为(2,-1).由于直线x-2y+3=0的斜率为1 2,∴该直径所在直线的斜率k=-2.故所求直线方程为y+1=-2(x-2),即2x+y-3=0.]5.若圆心在x轴上,半径为5的圆O位于y轴左侧,且与直线x+2y=0相切,则圆O的方程是________.(x+5)2+y2=5[设圆心为(a,0)(a<0),则r=|a+2×0|12+22=5,解得a=-5,所以圆O的方程为(x+5)2+y2=5.]6.经过原点并且与直线x+y-2=0相切于点(2,0)的圆的标准方程是________. 【导学号:62172248】(x-1)2+(y+1)2=2[设所求圆的圆心为(a,b).依题意(a-2)2+b2=a2+b2,①ba-2=1,②解①②得a=1,b=-1,则半径r=a2+b2=2,∴所求圆的标准方程为(x-1)2+(y+1)2=2.]7.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则PQ 的最小值为________.4 [如图所示,圆心M (3,-1)与直线x =-3的最短距离为MQ =3-(-3)=6,又圆的半径为2,故所求最短距离为6-2=4.]8.(2016·浙江高考)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.(-2,-4) 5 [由二元二次方程表示圆的条件可得a 2=a +2,解得a =2或-1.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,配方得⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54<0,不表示圆; 当a =-1时,方程为x 2+y 2+4x +8y -5=0,配方得(x +2)2+(y +4)2=25,则圆心坐标为(-2,-4),半径是5.]9.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是________.x +y -1=0 [圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),则k CM =1-02-1=1. ∵过点M 的最短弦与CM 垂直,∴最短弦所在直线的方程为y -0=-1(x -1),即x +y -1=0.]10.(2015·江苏高考)在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为__________.(x -1)2+y 2=2 [因为直线mx -y -2m -1=0恒过定点(2,-1),所以圆心(1,0)到直线mx -y -2m -1=0的最大距离为d =(2-1)2+(-1-0)2=2,所以半径最大时的半径r =2,所以半径最大的圆的标准方程为(x -1)2+y 2=2.]二、解答题11.已知直线l :y =x +m ,m ∈R ,若以点M (2,0)为圆心的圆与直线l 相切于点P ,且点P 在y 轴上,求该圆的方程. 【导学号:62172249】[解] 法一:依题意,点P 的坐标为(0,m ), 因为MP ⊥l ,所以0-m2-0×1=-1, 解得m =2,即点P 的坐标为(0,2),圆的半径r =MP =(2-0)2+(0-2)2=22, 故所求圆的方程为(x -2)2+y 2=8.法二:设所求圆的半径为r ,则圆的方程可设为(x -2)2+y 2=r 2, 依题意,所求圆与直线l :x -y +m =0相切于点P (0,m ),则⎩⎨⎧4+m 2=r 2,|2-0+m |2=r ,解得⎩⎨⎧m =2,r =22,所以所求圆的方程为(x -2)2+y 2=8.12.(2015·广东高考改编)已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程. [解] (1)由x 2+y 2-6x +5=0得(x -3)2+y 2=4, 所以圆C 1的圆心坐标为(3,0). (2)设M (x ,y ),依题意C 1M →·OM →=0, 所以(x -3,y )·(x ,y )=0,则x 2-3x +y 2=0, 所以⎝ ⎛⎭⎪⎫x -322+y 2=94.又原点O (0,0)在圆C 1外,因此中点M 的轨迹是圆C 与圆C 1相交落在圆C 1内的一段圆弧.由⎩⎨⎧x 2-3x +y 2=0,x 2+y 2-6x +5=0,消去y 2得x =53, 因此53<x ≤3.所以线段AB 的中点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3.B 组 能力提升 (建议用时:15分钟)1.设P (x ,y )是圆(x -2)2+y 2=1上的任意一点,则(x -5)2+(y +4)2的最大值为________.36 [(x -5)2+(y +4)2表示点P (x ,y )到点(5,-4)的距离的平方.点(5,-4)到圆心(2,0)的距离d =(5-2)2+(-4)2=5.则点P (x ,y )到点(5,-4)的距离最大值为6,从而(x -5)2+(y +4)2的最大值为36.]2.在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.[解] 法一:(代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎨⎧D =-6,E =-2F =1,故圆的方程是x 2+y 2-6x -2y +1=0.法二:(几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1.则圆C 的半径为32+(t -1)2=3,所以圆C 的方程为(x -3)2+(y -1)2=9.3.已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当OP =OM 时,求l 的方程及△POM 的面积.[解] (1)圆C 的方程可化为x 2+(y -4)2=16,所以圆心为C (0,4),半径为4. 设M (x ,y ),则CM→=(x ,y -4),MP →=(2-x,2-y ).由题设知CM →·MP →=0,故x (2-x )+(y -4)(2-y )=0, 即(x -1)2+(y -3)2=2. 由于点P 在圆C 的内部,所以M 的轨迹方程是(x -1)2+(y -3)2=2.(2)由(1)可知M 的轨迹是以点N (1,3)为圆心,2为半径的圆. 由于OP =OM ,故O 在线段PM 的垂直平分线上. 又P 在圆N 上,从而ON ⊥PM .因为ON 的斜率为3,所以l 的斜率为-13,故l 的方程为y =-13x +83.又OM =OP =22,O 到l 的距离为4105,PM =4105,所以△POM 的面积为165.4.已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.[解] (1)设圆心C (a ,b ), 由已知得M (-2,-2), 则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎨⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q (x ,y ),则x 2+y 2=2, PQ →·MQ →=(x -1,y -1)·(x +2,y +2) =x 2+y 2+x +y -4=x +y -2. 令x =2cos θ,y =2sin θ,所以PQ →·MQ →=x +y -2 =2(sin θ+cos θ)-2 =2sin ⎝ ⎛⎭⎪⎫θ+π4-2,所以PQ →·MQ→的最小值为-4. 第三节 基本不等式[考纲传真] 1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +ab ≥2(a ,b 同号且不为零); (3)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ); (4)⎝⎛⎭⎪⎫a +b 22≤a 2+b22(a ,b ∈R ). 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)函数y =x +1x 的最小值是2.( )(2)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( )(3)x >0,y >0是x y +yx ≥2的充要条件.( ) (4)若a >0,则a 3+1a 2的最小值为2a .( ) [答案] (1)× (2)× (3)× (4)×2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 D [∵a 2+b 2-2ab =(a -b )2≥0,∴A 错误;对于B ,C ,当a <0,b <0时,明显错误.对于D ,∵ab >0,∴b a +ab ≥2b a ·a b =2.]3.(2016·安徽合肥二模)若a ,b 都是正数,则⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b 的最小值为( )A .7 B.8 C .9D.10C [∵a ,b 都是正数,∴⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b ≥5+2b a ·4ab =9,当且仅当b =2a >0时取等号,故选C.]4.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) 【导学号:01772209】A .1+ 2 B.1+ 3 C .3D.4C [当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,选C.]5.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是__________m 2.25 [设矩形的一边为x m ,矩形场地的面积为y , 则另一边为12×(20-2x )=(10-x )m , 则y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.](1)(2015·湖南高考)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2 C .2 2D.4(2)(2017·郑州二次质量预测)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是__________.(1)C (2)3 [(1)由1a +2b =ab 知a >0,b >0,所以ab =1a +2b ≥22ab ,即ab ≥22,当且仅当⎩⎪⎨⎪⎧1a =2b ,1a +2b =ab ,即a =42,b =242时取“=”,所以ab 的最小值为2 2.(2)由x 2+2xy -3=0得y =3-x 22x =32x -12x ,则2x +y =2x +32x -12x =3x 2+32x≥23x 2·32x =3,当且仅当x =1时,等号成立,所以2x +y 的最小值为3.] [规律方法] 1.利用基本不等式求函数最值时,注意“一正、二定、三相等,和定积最大,积定和最小”.2.在求最值过程中若不能直接使用基本不等式,可以考虑利用拆项、配凑、常数代换、平方等技巧进行变形,使之能够使用基本不等式.[变式训练1] (1)(2016·湖北七市4月联考)已知a >0,b >0,且2a +b =1,若不等式2a +1b ≥m 恒成立,则m 的最大值等于( )A .10 B.9 C .8D.7(2)(2016·湖南雅礼中学一模)已知实数m ,n 满足m ·n >0,m +n =-1,则1m +1n 的最大值为__________.(1)B (2)-4 [(1)∵2a +1b =2(2a +b )a +2a +b b =4+2b a +2a b +1=5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+2×2b a ×a b =9,当且仅当a =b =13时取等号.又2a +1b ≥m ,∴m ≤9,即m的最大值等于9,故选B.(2)∵m ·n >0,m +n =-1,∴m <0,n <0, ∴1m +1n =-(m +n )⎝ ⎛⎭⎪⎫1m +1n=-⎝ ⎛⎭⎪⎫2+n m +m n ≤-2-2n m ·mn =-4,当且仅当m =n =-12时,1m +1n 取得最大值-4.]已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. [证明] (1)1a +1b +1ab =2⎝ ⎛⎭⎪⎫1a +1b ,∵a +b =1,a >0,b >0,∴1a +1b =a +b a +a +b b =2+a b +ba ≥2+2=4,3分 ∴1a +1b +1ab ≥8(当且仅当a =b =12时等号成立).5分 (2)法一:∵a >0,b >0,a +b =1,∴1+1a =1+a +b a =2+b a ,同理1+1b =2+ab , ∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =⎝ ⎛⎭⎪⎫2+b a ⎝ ⎛⎭⎪⎫2+a b =5+2⎝ ⎛⎭⎪⎫b a +a b ≥5+4=9,10分∴⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9(当且仅当a =b =12时等号成立).12分 法二:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab , 由(1)知,1a +1b +1ab ≥8,10分故⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab ≥9.12分 [规律方法] 1.“1”的代换是解决问题的关键,代换变形后能使用基本不等式是代换的前提,不能盲目变形.2.利用基本不等式证明不等式,关键是所证不等式必须是有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,达到放缩的效果,必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用基本不等式时等号能否取到.[变式训练2] 设a ,b 均为正实数,求证:1a 2+1b 2+ab ≥2 2.【导学号:01772210】[证明] 由于a ,b 均为正实数, 所以1a 2+1b 2≥21a 2·1b 2=2ab ,3分当且仅当1a 2=1b 2,即a =b 时等号成立, 又因为2ab +ab ≥22ab ·ab =22, 当且仅当2ab =ab 时等号成立, 所以1a 2+1b 2+ab ≥2ab +ab ≥22,8分 当且仅当⎩⎪⎨⎪⎧1a 2=1b 2,2ab =ab ,即a =b =42时取等号.12分制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. [解] (1)设所用时间为t =130x (h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].2分所以这次行车总费用y 关于x 的表达式是 y =130×18x +2×130360x ,x ∈[]50,100.(或y =2 340x +1318x ,x ∈[]50,100).5分 (2)y =130×18x+2×130360x ≥26 10,当且仅当130×18x=2×130360x,即x=1810,等号成立.8分故当x=1810千米/时,这次行车的总费用最低,最低费用的值为2610元.12分[规律方法] 1.设变量时一般要把求最大值或最小值的变量定义为函数.2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.[变式训练3]某化工企业2016年年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x年的年平均污水处理费用为y(单位:万元).(1)用x表示y;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.[解](1)由题意得,y=100+0.5x+(2+4+6+ (2x)x,即y=x+100x+1.5(x∈N*).5分(2)由基本不等式得:y=x+100x+1.5≥2x·100x+1.5=21.5,8分当且仅当x=100x,即x=10时取等号.故该企业10年后需要重新更换新的污水处理设备.12分[思想与方法]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.2.基本不等式的两个变形:(1)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号). (2)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0,当且仅当a =b 时取等号).[易错与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.“当且仅当a =b 时等号成立”的含义是“a =b ”是等号成立的充要条件,这一点至关重要,忽视它往往会导致解题错误.3.连续使用基本不等式求最值要求每次等号成立的条件一致.课时分层训练(七) 二次函数与幂函数A 组 基础达标 (建议用时:30分钟)一、选择题1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )【导学号:01772040】A.12 B.1 C.32D.2C [由幂函数的定义知k =1.又f ⎝ ⎛⎭⎪⎫12=22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,从而k +α=32.]2.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( )A .-3 B.13 C.7D.5B [函数f (x )=2x 2-mx +3图象的对称轴为直线x =m4,由函数f (x )的增减区间可知m4=-2,∴m =-8,即f (x )=2x 2+8x +3,∴f (1)=2+8+3=13.]3.若幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2 B.m =1或m =2 C .m =2D.m =1B [由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.]4.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )【导学号:01772041】A B C DD [由a +b +c =0,a >b >c 知a >0,c <0,则ca <0,排除B ,C.又f (0)=c <0,所以也排除A.]5.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B.1 C.2D.-2B [∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得. ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎨⎧ -a ≥4-3a ,-a =1,或⎩⎨⎧-a ≤4-3a ,4-3a =1,解得a =1.] 二、填空题6.(2017·上海八校联合测试改编)已知函数f (x )=ax 2-2ax +1+b (a >0).若f (x )在[2,3]上的最大值为4,最小值为1,则a =________,b =________.1 0 [因为函数f (x )的对称轴为x =1,又a >0, 所以f (x )在[2,3]上单调递增,所以⎩⎨⎧f (2)=1,f (3)=4,即⎩⎨⎧a ·22-2a ·2+1+b =1,a ·32-2a ·3+1+b =4,解方程得a =1,b =0.] 7.已知P =2,Q =⎝ ⎛⎭⎪⎫253,R =⎝ ⎛⎭⎪⎫123,则P ,Q ,R 的大小关系是________.【导学号:01772042】P >R >Q [P =2=⎝ ⎛⎭⎪⎫223,根据函数y =x 3是R 上的增函数且22>12>25,得⎝ ⎛⎭⎪⎫223>⎝ ⎛⎭⎪⎫123>⎝ ⎛⎭⎪⎫253,即P >R >Q .] 8.已知函数f (x )=x 2-2ax +5在(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,则实数a 的取值范围是________.[2,3] [f (x )=(x -a )2+5-a 2,根据f (x )在区间(-∞,2]上是减函数知,a ≥2,则f (1)≥f (a +1),从而|f (x 1)-f (x 2)|max =f (1)-f (a )=a 2-2a +1, 由a 2-2a +1≤4,解得-1≤a ≤3, 又a ≥2,所以2≤a ≤3.] 三、解答题9.已知幂函数f (x )=x (m 2+m )-1(m ∈N *)经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.[解] 幂函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即2=2(m 2+m )-1, ∴m 2+m =2,解得m =1或m =-2.4分 又∵m ∈N *,∴m =1.∴f (x )=x ,则函数的定义域为[0,+∞), 并且在定义域上为增函数.由f (2-a )>f (a -1),得⎩⎨⎧2-a ≥0,a -1≥0,2-a >a -1,10分解得1≤a <32.∴a 的取值范围为⎣⎢⎡⎭⎪⎫1,32.12分10.已知函数f (x )=x 2+(2a -1)x -3,(1)当a =2,x ∈[-2,3]时,求函数f (x )的值域;(2)若函数f (x )在[-1,3]上的最大值为1,求实数a 的值. [解] (1)当a =2时,f (x )=x 2+3x -3,x ∈[-2,3], 对称轴x =-32∈[-2,3],2分 ∴f (x )min =f ⎝ ⎛⎭⎪⎫-32=94-92-3=-214, f (x )max =f (3)=15, ∴值域为⎣⎢⎡⎦⎥⎤-214,15.5分(2)对称轴为x =-2a -12.①当-2a -12≤1,即a ≥-12时, f (x )max =f (3)=6a +3,∴6a +3=1,即a =-13满足题意;8分 ②当-2a -12>1,即a <-12时,f (x )max =f (-1)=-2a -1,∴-2a -1=1,即a =-1满足题意. 综上可知a =-13或-1. 12分B 组 能力提升(建议用时:15分钟)1.(2017·江西九江一中期中)函数f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数,对任意的x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0,若a ,b ∈R ,且a+b >0,ab <0,则f (a )+f (b )的值( )【导学号:01772043】A .恒大于0 B.恒小于0 C .等于0D.无法判断A [∵f (x )=(m 2-m -1)x 4m 9-m 5-1是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,指数4×29-25-1=2 015>0,满足题意.当m =-1时,指数4×(-1)9-(-1)5-1=-4<0,不满足题意, ∴f (x )=x 2 015.∴幂函数f (x )=x 2 015是定义域R 上的奇函数,且是增函数. 又∵a ,b ∈R ,且a +b >0,∴a >-b , 又ab <0,不妨设b <0,则a >-b >0,∴f (a )>f (-b )>0, 又f (-b )=-f (b ),∴f (a )>-f (b ),∴f (a )+f (b )>0.故选A.]2.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.⎝ ⎛⎦⎥⎤-94,-2 [由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.]3.已知二次函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的范围. [解] (1)由题意知 ⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎨⎧a =1,b =2.2分所以f (x )=x 2+2x +1,由f (x )=(x +1)2知,函数f (x )的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].6分(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k <x 2+x +1在区间[-3,-1]上恒成立,8分令g (x )=x 2+x +1,x ∈[-3,-1],由g (x )=⎝ ⎛⎭⎪⎫x +122+34知g (x )在区间[-3,-1]上是减函数,则g (x )min =g (-1)=1,所以k <1,即k 的取值范围是(-∞,1).12分。