多元统计课后作业
多元统计分析第二章部分课后习题
第二章课后习题1.现选取内蒙古、广西、贵州、云南、西藏、宁夏、新疆、甘肃和青海等9个内陆边远省区。
选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等五项能够较好的说明各地区社会经济发展水平的指标,验证一下边远及少数民族聚居区的社会经济发展水平与全国平均水平有无显著差异。
边远及少数民族聚居区社会经济发展水平的指标数据地区人均GDP(元)三产比重(%)人均消费(元)人口增长(%)文盲半文盲(%)内蒙古506831.121418.2315.83广西407634.220409.0113.32贵州234229.8155114.2628.98云南435531.3205912.125.48西藏371643.5155115.957.97宁夏427037.3194713.0825.56新疆622935.4 274512.8111.44甘肃345632.8161210.0428.65青海436740.9204714.4842.92资料来源:《中国统计年鉴(1998)》,北京,中国统计出版社,1998。
五项指标的全国平均水平为:)15.789.5297232.8701.6212(0'=μ解:(1)先利用SPSS软件检验各变量是否遵从多元正态分布(见输出结果1-1)输出结果1-1正态性检验Kolmogorov-Smirnov a Shapiro-Wilk统计量Df Sig. 统计量df Sig.人均GDP .219 9 .200*.958 9 .781 三产比重.145 9 .200*.925 9 .437 人均消费.209 9 .200*.873 9 .131 人口增长.150 9 .200*.949 9 .682 文盲半文盲.246 9 .124 .898 9 .242 *. 这是真实显著水平的下限。
a. Lilliefors 显著水平修正上表给出了对每一个变量进行正态性检验的结果,因为该例中样本数n=9,所以此处选用Shapiro-Wilk 统计量。
应用多元统计分析课后习题答案高惠璇
第三章 多元正态总体参数的检验
3-2 设X~Nn(μ,σ2In), A,B为n阶对称阵.
若AB =0 ,证明X′AX与X′BX相互独立.
证明的思路:记rk(A)=r. 因A为n阶对称阵,存在正交阵Γ,使得
Γ ′AΓ=diag(λ1,…,λr 0,..,0) 令Y=Γ′X,则Y~Nn(Γ′μ,σ2In),
(2x12
x22
2x1x2
22x1
14x2
65)
1 2 1 2
1
2
exp
1
212
2 2
(1
2
)
[
2 2
(
x1
1 ) 2
21 2(x1
1)(x2
2
)
2 1
(
x2
2
)
2
]
比较上下式相应的系数,可得:
1 2
2 2
1 2
2
1
2 1
1
1 2 1
2 1
1
2
1/
21
2 2
2
2
2 1
21 22 21 21
f (x; , ) a
a0 (2 ) p/ 2 |
(x )1
|1/ 2 ,当0 a
(x )
1
ba02
时,
其中 b2 2 ln[a(2 ) p/2 | |1/ 2 ] 2 ln[aa0 ] 0, 20
第二章 多元正态分布及参数的估计
因 0,的特征值记为1 2 p 0, i对应
3-1 设X~Nn(μ,σ2In), A为对称幂等 阵,且rk(A)=r(r≤n),证明
证明 因A为对称幂等阵,而对称幂等阵的
应用多元统计分析课后题答案
c) c)2
2( x1
a)( x2
c)]
其中 a x1 b , c x2 d 。求 (1)随机变量 X1 和 X 2 的边缘密度函数、均值和方差; (2)随机变量 X1 和 X 2 的协方差和相关系数; (3)判断 X1 和 X 2 是否相互独立。
(1)解:随机变量 X1 和 X 2 的边缘密度函数、均值和方差;
12
2 2
1/
2
exp
1 2
(x
μ)
12 21
12
2 2
1
(x
μ)
。
2.3 已知随机向量 ( X1 X 2 ) 的联合密度函数为
f
( x1 ,
x2 )
2[(d
c)( x1
a)
(b a)(x2 (b a)2 (d
μ)
1 n 1
n i 1
E(Xi
-
μ)(
X i
-
μ)
nE(X
μ)(X
μ)
Σ
。
故 S 为 Σ 的无偏估计。 n 1
2.9.设 X(1) , X(2) , ..., X(n) 是从多元正态分布 X ~ N p (μ, Σ) 抽出的一个简单随机样本,试求 S
c) 2(x1 a)(x2 a)2(d c)2
c)]
dx2
2(d c)(x1 a)x2 d dc 2[(b a)t 2(x1 a)t] dt
(b a)2 (d c)2
多元统计分析第二章部分课后习题
年第二章课后习题1•现选取内蒙古、广西、贵州、云南、西藏、宇夏、新疆、甘肃和青海等9个内陆边远省区。
选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等五项能够较好的说明各地区社会经济发展水平的指标,验证一下边远及少数民族聚居区的社会经济发展水平与全国平均水平有无显著差异。
五项指标的全国平均水平为:“° = (6212.01 32.87 2972 9.5 15.78/解:(1)先利用SPSS软件检验各变量是否遵从多元正态分布(见输出结果1-1)输出结果]a. Li 11 iefors显著水平修正上表给岀了对每一个变量进行正态性检验的结果,因为该例中样本数n二9,所以此处选用Shapiro-Wilk统计量。
则Sig.值分别为0. 781、0. 437、0. 131、0.682、0.242均大于显著性水平,由此可以知道,人均GDP、三产比重、人均消费、人口增长、文盲半文盲这五个变量组成的向量均服从正态分布,即我们认为这五个指标可以较好对各地区社会经济发展水平做出近似的度量。
(2)提出原假设及备选假设Hi :(3)做出统讣判断,最后对统讣判断作出具体的解释SPSS的GLM模块可以完成多元正态分布有关均值与方差的检验。
依次点选Analyze —>General Linear Mode^ IMultivariate ..................... 进入Multivariate 对话框,将人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等这五项指标选入Dependent列表框,将分类指标选入Fixed Factor (s)框,点击OK运行,则可以得到如下结果(见输出结果1-2)。
输出结果1-2a.设计:截距+分类b.精确统计虽少年易学老难成,上面第一张表是样本数据分别来自边远及少数民族聚居区社会经济发展水平、全国的个数。
多元统计分析习题与答案
多元统计分析习题与答案多元统计分析是一种在社会科学研究中广泛应用的方法,它通过同时考虑多个变量之间的关系,帮助研究者更全面地理解和解释现象。
在本文中,我将分享一些多元统计分析的习题和答案,希望能够帮助读者更好地掌握这一方法。
习题一:相关分析假设你正在研究一个学生的学习成绩和他们每天花在学习上的时间之间的关系。
你收集了100个学生的数据,学习成绩用分数表示,学习时间用小时表示。
以下是你的数据:学习成绩(X):75, 80, 85, 90, 95, 70, 65, 60, 55, 50学习时间(Y):5, 6, 7, 8, 9, 4, 3, 2, 1, 0请计算学习成绩和学习时间之间的相关系数,并解释其含义。
答案一:首先,我们需要计算学习成绩和学习时间之间的协方差和标准差。
根据公式,协方差可以通过以下公式计算:协方差= Σ((X - X平均) * (Y - Y平均)) / (n - 1)其中,X和Y分别表示学习成绩和学习时间,X平均和Y平均表示它们的平均值,n表示样本数量。
标准差可以通过以下公式计算:标准差= √(Σ(X - X平均)² / (n - 1))根据以上公式,我们可以得出学习成绩和学习时间之间的协方差为-22.5,标准差分别为18.03和2.87。
然后,我们可以通过以下公式计算相关系数:相关系数 = 协方差 / (X标准差 * Y标准差)根据以上公式,我们可以得出相关系数为-0.93。
由于相关系数接近于-1,可以得出结论:学习成绩和学习时间之间存在强烈的负相关关系,即学习时间越长,学习成绩越低。
习题二:多元线性回归假设你正在研究一个人的身高(X1)、体重(X2)和年龄(X3)对其收入(Y)的影响。
你收集了50个人的数据,以下是你的数据:身高(X1):160, 165, 170, 175, 180, 185, 190, 195, 200, 205体重(X2):50, 55, 60, 65, 70, 75, 80, 85, 90, 95年龄(X3):20, 25, 30, 35, 40, 45, 50, 55, 60, 65收入(Y):5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500请利用多元线性回归分析,建立一个预测人的收入的模型,并解释模型的结果。
多元统计分析第三版课后练习题含答案
多元统计分析第三版课后练习题含答案1. 组间差异比较题目有两组数据,分别为A组和B组,经过检验发现两组数据的方差不相等,则应该使用那种方法进行比较?答案当两组数据的方差不相等时,应该使用Welch’s t检验方法进行比较,而不是常规的Student’s t检验方法。
2. 主成分分析题目主成分分析(PCA)是一种常用的数据降维方法。
在PCA分析中,如何选择主成分的个数?答案选择主成分的个数要根据实际情况而定。
一般来说,我们可以参考数据的累计方差贡献率,将累计贡献率大于80%的主成分选出来作为数据的主要特征,进而进行后续的数据分析处理。
3. 线性回归模型题目在线性回归模型中,如何衡量模型的拟合程度?答案模型的拟合程度可以通过R方(R-squared)值来衡量。
R方值越接近1,说明模型越拟合数据,反之则说明拟合程度不高。
但需要注意的是,仅仅使用R方值来衡量一个模型的好坏还不够,也需要考虑其它因素的影响,如是否存在共线性等问题。
4. 混淆矩阵题目什么是混淆矩阵(Confusion Matrix)?在分类问题中,混淆矩阵的作用是什么?答案混淆矩阵是用来评估分类模型的准确度,它可以将分类问题的结果与实际结果进行比较分析。
一般来说,混淆矩阵包含4个参数:真阳性(True Positive, TP)、假阳性(False Positive, FP)、真阴性(True Negative, TN)和假阴性(False Negative, FN)。
在分类问题中,混淆矩阵的作用主要有以下三个:1.衡量模型的质量。
通过混淆矩阵,我们可以计算出分类模型的准确率、精度、召回率等指标来评估模型的质量。
2.选择模型的阈值。
分类模型的阈值是指将不同的样本劃分到不同的分类中的界限值。
通过混淆矩阵,我们可以选择不同的阈值,以获得更好的模型表现。
3.确定模型需要改进的方面。
通过混淆矩阵,我们可以识别出模型中需要改进的方面,从而进一步优化模型。
多元统计分析李高荣课后答案
多元统计分析李高荣课后答案1、如果对某公司在一个城市中的各个营业点按彼此之间的路程远近来进行聚类,则最适合采用的距离是A、欧氏距离B、绝对值距离C、马氏距离D、各变量标准化之后的欧氏距离答案:绝对值距离2、不适合用于对变量聚类的方法有A、最短距离法B、最长距离法C、类平均法D、k均值法答案:k 均值法3、容易产生链接倾向,不适合对分离得很差的群体进行聚类的系统聚类法有A、最短距离法B、最长距离法C、类平均法D、重心法E、离差平方和法答案:最短距离法4、大的类之间不易合并,而小的类之间易于合并的系统聚类法有A、最短距离法B、最长距离法C、类平均法D、重心法E、离差平方和法答案:离差平方和法5、R型聚类分析的分类对象是样品。
正确错误答案:错误6、距离和相似系数的定义与变量的尺度无关。
正确错误答案:错误7、在聚类分析中,可以采用只满足非负性和对称性而不满足三角不等式的“距离”。
正确错误答案:正确8、所有的系统聚类法都满足单调性。
正确错误答案:错误9、k均值法的聚类结果与初始凝聚点的选择无关。
答案:错10、k均值法的类个数需事先指定。
答案:错11、设x和y是两个随机向量,则x和y的协差阵与y和x的协差阵A、相等B、互为转置C、没有关系D、不相等,但阶数一定相同答案:互为转置12、在实际问题中,我们实际所使用的判别规则一般是A、从总体出发得到的B、从样本出发得到的C、尽可能地从总体出发得到D、时常从总体出发得到,也时常从样本出发得到答案:从样本出发得到的13、在样本容量n不是很大的情形下,以下一般最能给出好的误判概率估计值的非参数方法是A、回代法B、划分样本C、交叉验证法D、正态假定下误判概率的估计答案:交叉验证法14、以下哪种系统聚类法的类与类之间的距离定义不止一种。
A、最短距离法B、最长距离法C、类平均法D、重心法E、离差平方和法答案:类平均法15,以下哪种系统聚类法不具有单调性。
A、最短距离法B、最长距离法C、类平均法D、重心法E、离差平方和法答案:重心法16、聚类变量个数为多少时,一般最不建议使用系统聚类法等正规聚类方法直接进行聚类。
应用多元统计分析课后习题答案详解北大高惠璇二部分习题解答公开课一等奖优质课大赛微课获奖课件
2
e e dx2
2
1 e
1 2
(
x12
8
x1
16)
2
1
2
e dx
1 2
(
x2
x1
7
)2
2
1 e
1 2
(
x1
4)2
2
X1 ~ N (4,1).
类似地有
f2 (x2 ) f (x1, x2 )dx1
1
e
1 4
(
x2
3)
2
2 2
X 2 ~ N (3,2).
第10页 10
第二章 多元正态分布及参数预计
22 22
22 14
12
4 3
第13页
13
第二章 多元正态分布及参数预计
故X=(X1,X2)′为二元正态随机向量.且
E(
X
)
4 3
,
D(
X
)
1 1
21
解三:两次配办法
(1)第一次配方 : 2x12 2x1x2 x22 (x1 x2 )2 x12
因2x12
2x1x2
x22
(x1,
x2
)
2 1
11
x1 x2
,
而
2 1
11 11
1011
1 0
BB,
令y
y1 y2
11
10
x1 x2
x1
x1
x2
,
则2
x12
2x1x2
x22
y12
y22
(2)第二次配方.由于
x1 x2
y2 y1
y2
第14页 14
应用多元统计分析课后习题答案详解北大高惠璇五部分习题解答公开课一等奖优质课大赛微课获奖课件
第21页 21
第五章 判别分析
当X
G2时,W
(X
)
~
N1
(
2
,
2 2
),
且
2
( (2)
)a
1 2
d
2
,
2 2
d2
P(1| 2)
P{W ( X )
0|
X
G2}
P{W ( X ) 2 2
0 2 } 2
P{U 1 d 2 / d} 1 (1 d ).
2
2
其中 U W ( X ) 2 ~ N (0,1). 2
D22 (x) 1.5625 ln 22 2.9488,
D32 (x) 0.25 ln1 0.25,
因样品到G1广义平方距离最小,因此将样品x=2.5
判归G1.
第6页
6
第五章 判别分析
解二:利用定理5.2.1推论,计算 qt ft (x), (t 1,2,3)
当样品x=2.5时,
f1(x)
W ( X ) ( X )1( (1) (2) ), 1 ( (1) (2) ),
2 判别准则为 判X G1 , 当W ( X ) 0,
判X G2 , 当W ( X ) 0, 试求错判概率P(2 |1)和P(1| 2).
解 : 记a 1 ( (1) (2) ),W ( X ) ( X )a是X的
其中W ( X ) a( X *)
( X * )1( (1) (2) ) ,
* 1 ( (1) (2) ).
2
第10页 10
第五章 判别分析
5-4 设有两个正态总体G1和G2,已知(m=2)
(1)
1105, (2)
《多元统计分析(第5版)》课后习题答案
对数据进行标准化处理主要为了消除变量的量纲以及量纲差别较大时所带 来的影响,尤其当变量间的单位不同且量级差别特别大时,使用不做任何处理的 数据进行计算,可能会得到极不合理的结果。
2. 欧氏距离与马氏距离的优缺点是什么? 欧氏距离是计算点与点之间距离的常用方法,其缺点是坐标的各维度对计算
则y12的密度函数为:
������(������)
=
2ϕ(√������)
∙
1 2√������
=
2 √2������
exp
(−
������ 2)
∙
1 2√������
=
1 √2������������
exp
(−
������ 2)
,
������ ≥ 0
即
������(������)
=
{
1 √2������������
证 明 : 不 妨 设 Σ = diag(������12, … , ���������2��� ),X 的 均 值 向 量 为 μ = (������1, … , ������������) , 则
X~N(μ, Σ). X的概率密度函数为:
��������������)
因此,X的分量是相互独立的随机变量。
5. y1与y2是相互独立的随机变量,且y1~N(0,1),y2~N(3,4)。 (a)求y12的分布。
(b)如果y = [(y2-y31)/2],写出y′y关于y1与y2的表达式,并写出y′y的分布。 (c)如果y = [yy12]且y~N(μ, Σ),写出y′Σ−1y关于y1与y2的表达式,并写出y′Σ−1y 的分布。
应用多元统计分析课后习题答案高惠璇第六章习题解答
目录
习题一:多元线性回归分析 习题二:主成分分析 习题三:因子分析 习题四:聚类分析
01
习题一:多元线性回归分析
多元线性回归模型的建立
总结词:多元线性回归模型是用来研究多个自变量与因变量之间线性关系的统计方法。
多元线性回归模型的参数估计
总结词:参数估计是多元线性回归模型建立的重要步骤,常用的方法有最小二乘法和加权最小二乘法等。
步骤4
重新计算每个聚类的中心,并更新聚类中心。
步骤5
重复步骤3和4,直到聚类中心收敛或达到预设的最大迭代次数。
算法
常见的聚类算法包括K-means、层次聚类、DBSCAN等。
聚类分析的步骤与算法
感谢您的观看
THANKS
01
主成分在几何上表示数据集的投影方向,即数据在各主成分上的投影点形成的直线方向。
02
第一主成分是数据点散布最广的方向,第二主成分是数据点散布次广的方向,以此类推。
主成分的几何意义
03
习题三:因子分析
因子分析的基本概念
因子分析是一种多元统计分析方法,用于从一组变量中提取公因子,并对这些公因子进行解释。
习题四:聚类分析
聚类分析的目标是发现数据的内在结构,以便对数据进行更深入的理解和分类。
聚类分析广泛应用于数据挖掘、模式识别、图像处理等领域。
聚类分析是一种无监督学习方法,通过将数据点或观测值分组,使得同一组(即聚类)内的数据尽可能相似,而不同组之间的数据尽可能不同。
聚类分析的基本思想
设$X = {x_1, x_2, ..., x_n}$为数据集,其中每个$x_i$是一个$p$-维向量。
正的因子载荷表示正相关,负的因子载荷表示负相关。
多元统计学课程设计作业
多元统计学课程设计作业一、教学目标本课程旨在通过多元统计学的学习,让学生掌握多元统计分析的基本概念、原理和方法,培养学生运用多元统计学知识分析和解决实际问题的能力。
具体的教学目标如下:1.知识目标:使学生了解多元统计学的基本概念、原理和方法,包括因子分析、聚类分析、主成分分析等内容。
2.技能目标:培养学生运用多元统计学方法分析数据、解决实际问题的能力。
3.情感态度价值观目标:培养学生对多元统计学的兴趣,使其认识到多元统计学在科学研究和实际工作中的重要性。
二、教学内容本课程的教学内容主要包括以下几个部分:1.多元统计学基本概念:包括多元统计学的基本定义、特点和应用范围。
2.因子分析:介绍因子分析的基本原理、方法及其在实际应用中的例子。
3.聚类分析:讲解聚类分析的基本方法、步骤及其在实际应用中的案例。
4.主成分分析:阐述主成分分析的基本思想、算法及其在数据降维中的应用。
5.案例分析:通过具体案例,使学生掌握多元统计学方法在实际问题分析中的运用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。
具体包括:1.讲授法:通过讲解多元统计学的基本概念、原理和方法,使学生掌握相关知识。
2.案例分析法:通过分析实际案例,让学生学会将多元统计学方法应用于解决实际问题。
3.讨论法:学生进行小组讨论,培养学生的合作意识和解决问题的能力。
4.实验法:安排实验课,让学生动手操作,巩固所学知识。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:选用权威、实用的多元统计学教材作为主要教学资料。
2.参考书:推荐学生阅读一些多元统计学的经典著作,以丰富其知识体系。
3.多媒体资料:制作多媒体课件,以便生动、直观地展示课程内容。
4.实验设备:为学生提供必要的实验设备,如计算机、统计软件等。
五、教学评估本课程的教学评估将采取多元化、全面评估的方式进行,主要包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和理解能力。
应用多元统计分析课后习题答案高惠璇第七章习题解答
04
习题4解答
题目
• 题目:在多元线性回归中,如果 一个自变量与其他自变量高度相 关,那么这个自变量是否应该被 包括在回归模型中?为什么?
解答
01
解答:在多元线性回归中,如果一个自变量与其他自变量 高度相关,那么这个自变量是否应该被包括在回归模型中 ,需要视具体情况而定。
解答
• 当$x < 0$时,$P(X \leq x) = \frac{1}{2}e^{x}$,所以$p(x) = \frac{1}{2}e^{x}$。
解答
• 接下来,我们计算期望值
• 当$x \geq 0$时,$E(X) = \int{0}^{\infty}xp(x)dx = \int{0}^{\infty}\frac{1}{2}xe^{-xdx} = \frac{1}{2}e^{-x}|_{0}^{\infty} = 0$。
• 因此,$E(X) = 0$。
01
03 02
解答
• 当$x \geq 0$时,$P(X^2 \leq x) = P(X \leq \sqrt{x}) = \frac{1}{2}e^{-\sqrt{x}}$,所以 $p_1(x) = \frac{1}{2}\sqrt{x}e^{\sqrt{x}}$。
答案
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
证明过程如上所述,结论 正确。
答案1
答案2
答案3
03
习题3解答
题目
题目:设随机变量$X$的 分布函数为$F(x) = begin{cases}
0 & x notin mathbf{R}
frac{1}{2}e^{-|x|} & x in mathbf{R}
多元统计分析第二章部分课后习题
第二章课后习题1.现选取内蒙古、广西、贵州、云南、西藏、宁夏、新疆、甘肃和青海等9个内陆边远省区。
选取人均GDP、第三产业比重、人均消费支出、人口自然增长率及文盲半文盲人口占15岁以上人口等五项能够较好的说明各地区社会经济发展水平的指标,验证一下边远及少数民族聚居区的社会经济发展水平与全国平均水平有无显著差异。
边远及少数民族聚居区社会经济发展水平的指标数据地区人均GDP(元)三产比重(%)人均消费(元)人口增长(%)文盲半文盲(%)内蒙古506831.121418.2315.83广西407634.220409.0113.32贵州234229.8155114.2628.98云南435531.3205912.125.48西藏371643.5155115.957.97宁夏427037.3194713.0825.56新疆622935.4274512.8111.44甘肃345632.8161210.0428.65青海436740.9204714.4842.92资料来源:《中国统计年鉴(1998)》,北京,中国统计出版社,1998。
五项指标的全国平均水平为:)15.789.5297232.8701.6212(0'=μ解:(1)先利用SPSS软件检验各变量是否遵从多元正态分布(见输出结果1-1)输出结果1-1上表给出了对每一个变量进行正态性检验的结果,因为该例中样本数n=9,所以此处选用Shapiro-Wilk 统计量。
则Sig.值分别为0.781、0.437、0.131、0.682、0.242均大于显著性水平,由此可以知道,人均GDP 、三产比重、人均消费、人口增长、文盲半文盲这五个变量组成的向量均服从正态分布,即我们认为这五个指标可以较好对各地区社会经济发展水平做出近似的度量。
(2)提出原假设及备选假设0:μμ=H 01:μμ≠H (3)做出统计判断,最后对统计判断作出具体的解释SPSS 的GLM 模块可以完成多元正态分布有关均值与方差的检验。
应用多元统计分析课后习题答案详解北大高惠璇习题解答公开课一等奖优质课大赛微课获奖课件
di*k dk*j , 对一切i, k, j.
故d*=ad是一个距离.
(3) 设d为一个距离,c>0为常数,显然有
①
d
* ij
dij dij c
0,且仅当X (i)
ห้องสมุดไป่ตู้
X ( j)时di*j
0;
②
d
* ij
dij dij
c
d
d ji ji
c
d
* ji
,
对一切i,
j;
第4页
4
第六章 聚类分析
DL
D ( L 1) pq
且新类Gr与其它类Gk距离由递推公式可知
D(L) rk
min(
D(L pk
1)
,
D(L qk
1)
)
D ( L 1) pq
D( L )
(k p, q)
设第L+1步从类间距离矩阵 D(L)
D(L) ij
出发,
第20页 20
第六章 聚类分析
因
D(L) rk
D ( L 1) pq
证实:设第L次合并Gp和Gq为新类Gr后,并类距离DL =Dpq,且必有Dpq2≤Dij2 . 新类Gr与其它类Gk距离平方递 推公式 ,当γ=0,αp≥0,αq≥0, αp+αq+ β ≥1 时
Dk2r
p Dp2k
q Dq2k
Dp2q
( p
q
)Dp2q
D
2 pq
这表明新距离矩阵中类间距离均≥ Dpq = DL ,故有
(a c) [n (a c)] 1 (a c)(b d )
n
n
故二值变量相关系数为:
何晓群多元统计分析课后答案
何晓群多元统计分析课后答案【篇一:何晓群版多元统计分析数据】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.00 1326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00 198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez italian uno due tre quattro cinque sei sette otto nove diecipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiechungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenennorwegian en to tre fire fem seks sju ate ni tidanish en to tre fire fem seks syv otte ni tidutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人) x5 交通和通讯支出(元/人)x2 衣着支出(元/人) x6 娱乐、教育和文化服务支出(元/人) x3家庭设备、用品及服务支出(元/人)x7 居住支出(元/人)x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1 人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人) x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人) x4 人均其他副食支出(元/人) x8 人均其他非商品支出(元/人)第四章数据例4-3x1 人均食品支出(元/人) x5 人均交通和通信支出(元/人)x2 人均衣着支出(元/人) x6 人均文教娱乐用品及服务支出(元/人) x3 人均住房支出(元/人) x7 人均医疗保健支出(元/人)【篇二:何晓群多元统计分析(数据)】据例3-1x1 职工标准工资收入x5 单位得到的其他收入 x2 职工奖金收入 x6 其他收入 x3 职工津贴收入 x7 性别 x4 其他工资性收入 x8 就业身份 x1 540.00 1137.00 1236.00 1008.00 1723.00 1080.001326.00 1110.00 1012.00 1209.00 1101.00x2 0.0 125.00 300.00 0.0 419.00 569.00 0.0 110.00 88.00 102.00 215.00x3 0.0 96.00 270.00 96.00 400.00 147.00 300.00 96.00 298.00 179.00 201.00x4 0.0 0.0 0.0 0.0 0.0 156.00 0.0 0.0 0.0 67.00 39.00x5 0.0 109.00 102.00 86.0 122.00 210.00 148.00 80.00 79.00198.00 146.00x6 6.00 812.00 318.00 246.00 312.00 318.00 312.00 193.00 278.00 514.00 477.00x7 男女女男男男女女女男男x8 国有集体国有集体国有集体国有集体国有集体集体例3-3english one two three four five six seven eight nine tenspanish uno dos tres cuatro cinco seix siete ocho nueve diez norwegian en to tre fire fem seks sju ate ni tiitalian uno due tre quattro cinque sei sette otto nove diecidanish en to tre fire fem seks syv otte ni tipolish jeden dwa trzy cztery piec szesc siedem osiem dziewiec dziesiecdutch een twee drie vier vijf zes zeven acht negen tiengerman ein zwei drei vier funf sechs siebcn acht neun zehnhungarian egy ketto harom negy ot hat het nyolc kilenc tizfinnish yksi kaksi kolme neua viisi kuusi seitseman kahdeksau yhdeksan kymmenenfrench un deux trois quatre einq six sept huit neuf dix例3-4x1 食品支出(元/人)x5交通和通讯支出(元/人)x2 衣着支出(元/人)x6 娱乐、教育和文化服务支出(元/人) x3 家庭设备、用品及服务支出(元/人)x7居住支出(元/人) x4 医疗保健支出(元/人)x8 杂项商品和服务支出(元/人)辽宁浙江河南甘肃青海x1 1772.14 2752.25 1386.76 1552.77 1711.03x2 568.25 569.95 460.99 517.16 458.57x3 298.66 662.31 312.97 402.03 334.91x4 352.20 541.06 280.78 272.44 307.24x5 307.21 623.05 246.24 265.29 297.72x6 490.83 917.23 407.26 563.10 495.34x7 364.28 599.98 547.19 302.27 274.48x8 202.50 354.39 188.52 251.41 306.45例3-5x1人均粮食支出(元/人) x5 人均衣着支出(元/人) x2 人均副食支出(元/人)x6 人均日用杂品支出(元/人) x3 人均烟、酒、饮料支出(元/人)x7 人均水电燃料支出(元/人)人均其他副食支出(元/人)人均其他非商品支出(元/人)第四章数据例4-3x1人均食品支出(元/人)x5 人均交通和通信支出(元/人) x2 人均衣着支出(元/人)x6 人均文教娱乐用品及服务支出(元/人) x3人均住房支出(元/人)x7 人均医疗保健支出(元/人)【篇三:多元统计分析期末试题】>1、若x(?)~np(?,?),(??1,2,?n) 且相互独立,则样本均值向量2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。
何晓群版—多元统计分析课后练习答案
3、试述 K-均值聚类的方法原理。 K-均值法是一种非谱系聚类法,把每个样品聚集到其最近形心(均值)类中,
它是把样品聚集成 K 个类的集合,类的个数 k 可以预先给定或者在聚类过程中 确定,该方法应用于比系统聚类法大得多的数据组。步骤是把样品分为 K 个初 始类,进行修改,逐个分派样品到期最近均值的类中(通常采用标准化数据或非 标准化数据计算欧氏距离)重新计算接受新样品的类和失去样品的类的形心。重 复这一步直到各类无元素进出。
计算:边远及少数民族聚居区社会经济发展水平的指标数据.xls
T 2 =9* (-2003.23 2.25 -1006.11 2.71 12.01)*s^-1* (-2003.23 2.25
-1006.11 2.71 12.01)’=9*50.11793817=451,06144353 F 统计量=45.2>6.2 拒绝零假设,边缘及少数民族聚居区的社会经济发展水平与 全国平均水平有显著差异。
缺点:夸大了变化微小的变量的作用。受协方差矩阵不稳定的影响,马氏距 离并不总是能顺利计算出。
3、当变量 X1 和 X2 方向上的变差相等,且与互相独立时,采用欧氏距离与统计 距离是否一致?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a.预测变量: (常量), V3, V2。
b.因变量: V4
模型汇总b
模型
更改统计量
R方更改
F更改
df1
df2
Sig. F更改
Durbin-Watson
1
.885
42.155
2
11
.000
1.838
b.因变量: V4
Anovab
模型
平方和
df
均方
F
Sig.
1
回归
46788.618
2
23394.309
实用多元统计分析习题
1.设河流的一个断面的年径流量为y,该断面的上游流域的年平均降水量x1,年平均饱和差x2,现共有14年的观测记录:
年份
x1
x2
y
1
720
1.80
290
2
553
2.67
135
3
575
1.75
234
4
548
2.07
182
5
572
2.49
145
6
453
3.59
69
7
540
1.88
205
V4
1.000
.603
-.878
V2
.603
1.000
-.324
V3
-.878
-.324
1.000
Sig.(单侧)
V4
.
.011
.000
V2
.011
.
.129
V3
.000
.129
.
N
V4
14
14
14
V2
14
14
14
V3
14
14
14
模型汇总b
模型
R
R方
调整R方
标准估计的误差
1
.941a
.885
.864
置信水平α=0.05,β1、β2都通过了显著性检验,因为β1=0.007,β2=0都小于0.05
(3)、β1置信区间:(0.096,0.488)
β2置信区间:(-115.034,-60.261)
(4)、复相关系数为0.941 ,R Square为0.885,调整R Square为0.864
(5)、(a)点估计:
设某年x1=600,x2=2.50,求E(y)的点估计及置信水平为0.95的置信区间
解:通过spss17的操作,现求得以下结果:
描述性统计量
均值
标准偏差
N
V4
176.6429
63.78643
14
V2
583.2857
77.70499
14
V3
2.3229
.55514
14
相关性
V4
V2
V3
Pearson相关性
V2
.292
.089
.356
3.286
.007
.096
.488
V3
-87.647
12.443
-.763
-7.044
.000
-115.034
-60.261
a.因变量: V4
系数a
模型
相关性
共线性统计量
零阶
偏
部分
容差
VIF
1
V2
.603
.704
.337
.895
1.118
V3
-.878
-.905
-.722
8
579
2.22
151
9
515
2.41
131
10
56
3.03
106
11
547
1.83
200
12
568
1.90
224
13
720
1.98
271
14
700
2.90
130
试求y关于x1、x2的二元线形回归方程:
对回归方程和每个回归系数的显著性作检验
求出每一个回归系数的置信水平为0.95的置信区间
求出回归方程的复相关系数
.895
1.118
a.因变量: V4
系数相关a
模型
V3
V2
1
相关性
V3
1.000
.324
V2
.324
1.000
协方差
V3
154.824
.359
V2
.359
.008
a.因变量: V4
共线性诊断a
模型
维数
方差比例
特征值
条件索引
(常量)
V2
V3
1
1
2.949
1.000
.00
.00
.01
2
.045
8.062
42.155
.000a
残差
6104.596
11
554.963
总计
52893.214
13
a.预测变量: (常量), V3, V2。
b.因变量: V4
系数a
模型
非标准化系数
标准系数
B的95.0%置信区间
B
标准误差
试用版
t
Sig.
下限
上限
1
(常量)
209.875
67.350
3.116
.010
61.639
358.111
.01
.11
.62
3
.005
23.243
.99
.89
.37
a.因变量: V4
残差统计量a
极小值
极大值
均值
标准偏差
N
预测值
27.5286
262.4000
176.6429
59.99270
14
残差
-33.40628
41.47138
.0000021.Leabharlann 698914标准预测值
-2.486
1.429
.000
1.000
y=209.875+0.292x1-87.647x2=209.875+0.292*600-87.647*2.5=165.9575
置信水平为0.95的置信区间为(152.0198,179.9705)
14
标准残差
-1.418
1.760
.000
.920
14
因变量: V4
(1)、非标准化回归方程(:
y=209.875+0.292x1-87.647x2 (P(Sig.=0.010)<0.05)
(2)、上面是方差分析表,y关于x1和x2的线性回归方程通过了显著性检验,均方残差MSE为554.963,F统计量值为42.155,P值为0,说明回归方程在0的统计意义上是显著的. (b)回归系数的显著性检验