九年级数学练习册答案人教版

合集下载

九年级上人教版数学练习册答案.pdf

九年级上人教版数学练习册答案.pdf

1 数学·九年级上·人教版第二十一章 二次根式第1节 二次根式1.C 2.B 3.A 4.D 5.A 6.<槡7.7 犪2+犫槡28.(1)狓≥-1;(2)任何实数;(3)犿≤0;(4)犿=2;(5)犪>0;(6)犪>39.(1)80;(2)74;(3)910.4 11.1或-1 12.2犫+犮-犪第2节 二次根式的乘除1.D 2.C 3.C 4.狓≥25.48 32 306.8狓槡狔狔 --槡犪 -槡犫犪7.-1-槡犪 8.< <9.(1)槡-11;(2)(1-犪)1-槡犪;(3)-2犪犫10.(1)-2;(2)2槡11.306cm212.(1)槡117;(2)槡82;(3)槡5513.014.提示:平方后比较,槡槡2+6<槡槡3+5.第3节 二次根式的加减练习一(加减运算)1.B 2.03.(1)槡-142;(2)285槡10;(3)169槡34.(1)0;(2)105.(1)槡246;(2)槡槡6-56.(1)2;(2)槡-657.1槡8.-29.114练习二(混合运算)1.D 2.B 3.A 4.3 45 槡5.326.(狓2+3)(狓+槡3)(狓-槡3)槡7.1-468.(1)狓=-1;(2)狓≤0槡9.1+310.甲的对,被开方数根要大于零11.200112.∵犪槡-4+3犪-槡犫=0而犪槡-4≥0,3犪-槡犫≥0∴犪槡-4=0,且3犪-槡犫=0解之得 犪=4,犫=12∴犪2+犫2=42+122=160.13.提示:作一个腰为1的等腰直角三角形犃犅犆,以其斜边犃犆为直角边作直角三角形犃犆犈,其中犈犆=1.则以点犃为圆心,以直角三角形犃犆犈的斜边长为半径画弧,它与数轴正半轴的交点即为表示槡3的点,即可找到槡3+1的点.图12 人教版·数学·九年级(上)第二十二章 一元二次方程第1节 一元二次方程1.4狓2-5狓+3=0 4 -5 32.D 3.C 4.C 5.B6.狓2+2狓-1=0.7.设最小的整数为狀,则狀2+狀-272=0.8.设这个人行道的宽度为狓m,则(24-2狓)(20-2狓)=32.9.设中粳“6427”稻谷的出米率的增长率为狓,则稻谷产量的增长率为2狓.根据题意,得500(1+2狓)·70%(1+狓)=462,化简可得:50狓2+75狓-8=0.10.(1)设11、12月的平均月增长率为狓,则100(1+狓)+100(1+狓)2=231;(2)1100吨.11.设最短的直角边长为狓,则长直角边为狓+14,可得狓(狓+14)=120.12.设兔舍平行于旧墙的长为狓m,则宽为12(35-狓)m.根据题意,得狓·12(35-狓)=150,化简得:狓2-35狓+300=0,解得狓1=15,狓2=20.第2节 降次———解一元二次方程练习一1.B 2.C3.(1)狓1=2,狓2=4;(2)狓1=2,狓2=10.4.(1)狓1,2=1±槡63;(2)狓1=8,狓2=-193.5.(1)狓1=0,狓2=2;(2)狓=56.狓1=-2,狓2=1 7.1s8.13±槡347≈32分9.4或1.0 10.8,911.若一元二次方程犪狓2+犫狓+犮=0的两个根是狓1、狓2,则二次三项式犪狓2+犫狓+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都运用的是配方法.(2)第一种方法出现分式犫2犪,配方比较繁;两边开方时分子、分母都出现“±”,相除后为何只有分子上有“±”,不好理解;还易误认为4犪槡2=2犪.所以,第二种方法好.13.(1)狓2+7狓+6=(狓+1)(狓+6);(2)狓2-7狓-60=(狓-12)(狓+5);(3)狆2+7狆-18=(狆+9)(狆-2);(4)犫2+11犫+28=(犫+4)(犫+7).14.(1)犿1=-1,犿2=-2;(2)狓1=1,狓2=6;(3)犿1=3,犿2=4;(4)狓1=4,狓2=2.练习二1.B 2.0或-2 3.0 -1 14.145.13 6.2.5m7.设三、四月份平均每月增长的百分率为狓,依题意得60×(1-10%)(1+狓)2=96.解得狓=13≈33.3%.8.设2007年年获利率为狓,则2008年的年获利率为(狓+0.1),100(1+狓)(1+狓+0.1)=156,解得狓=20%,0.1+狓=30%.9.因为8<狓<14,通过估算可知狓=10.10.设应挖狓m,则(64-4狓)(162-2狓)=9600,解得狓=1m.11.A 12.C 13.C 14.D 15.C16.2 17.10 18.犽>119.(1)方程无实数根;(2)方程有两个不相等的实数根;20.(1)答案不唯一.根据一元二次方程根的判别式,只要满足犿<5的实数即可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;(2)答案不唯一.要依赖(1)中的犿的值,由根与系数的关系可得答案.α=0,β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)=9犿2-6犿+1=(3犿-1)2 3  参考答案与提示要使狓1≠狓2,∴Δ>0,得犿≠13.另解:由狓2+(犿-1)狓-2犿2+犿=0得狓1=犿,狓2=1-2犿,由狓1≠狓2解得.(2)∵狓1=犿,狓2=1-2犿,狓12+狓22=2∴犿2+(1-2犿)2=2解得犿1=-15,犿2=1.另解:也可用韦达定理来解.22.(1)狓1=-1,狓2=-1,狓1+狓2=-2,狓1·狓2=1(2)狓1=槡3+132,狓2=槡3-132,狓1+狓2=3,狓1·狓2=-1(3)狓1=1,狓2=-73,狓1+狓2=-43,狓1·狓2=-73猜想:犪狓2+犫狓+犮=0的两根为狓1与狓2,则狓1+狓2=-犫犪,狓1·狓2=犮犪,应用:另一根为槡2-3,犮=123.依题意有:狓1+狓2=-2(犿+2) ①狓1狓2=犿2-5②狓12+狓22=狓1狓2+16③Δ=4(犿+2)2-4(犿2-5)≥0烅烄烆④由①②③解得:犿=-1或犿=-15,又由④可知犿≥-94,∴犿=-15(舍去),故犿=-1.24.由一元二次方程根与系数关系可知:狓1+狓2=2犽-3,狓1·狓2=2犽-4.(1)狓1+狓2>0,狓1·狓2>0即2犽-3>0,2犽-4>0所以犽>2;(2)狓1+狓2>0,狓1·狓2<0即2犽-3>0,2犽-4<0所以32<犽<2;(3)不妨设狓1>3,狓2<3,则狓1-3>0,狓2-3<0,即(狓1-3)(狓2-3)<0所以犽>72.第3节 实际问题与一元二次方程练习一1.C 2.A3.设这两年平均增长的百分率为狓,则8(1+狓)2=9,解得狓≈6%.4.设三、四月份的平均增长率为狓,则1000(1-10%)(1+狓)2=1296,解得狓=20%.5.由题意得10-狓()102=25%,解得狓=5.6.提示:设金边宽为狓cm,则(60+2狓)(40+2狓)-60×40=1375×60×40.7.设垂直墙面的边长为狓m,则另一边长为(33-2狓)m,列方程得狓(33-2狓)=130,解得狓1=6.5,狓2=10.当狓=6.5时,33-2狓=20>18不符合要求,舍去;当狓=10时,33-2狓=13<18符合要求.故花坛的长为13m,宽为10m.8.(1)∵四月份用电180度,交电费,恰好为每度0.2元,∴四月份用电没超过犪度,五月份用电250度,交电费56元,每度超过0.2元.∴五月份用电超过了犪度.(2)由题意得,(250-犪)·犪625+0.2犪=56整理得,犪2-375犪+56×625=0即(犪-200)(犪-175)=0,∴犪1=200,犪2=175又∵犪≥180,∴犪=200.9.(1)18000千克;(2)在果园出售,毛收入为18000×1.1=19800元;在市场出售,毛收入为18000×1.3-18×8×25=19800元;虽然,两个收入相同,但市场出售还要费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)[1+(1+狓)+(1+狓)2]=57000,解得狓=0.5=50%.4 人教版·数学·九年级(上)10.(1)狔=(30-2狓)狓;(2)10,8;(3)不是;狓=7.5时,最大为112.5m2.练习二1.设甬路宽度为狓m,根据题意得(40-2狓)(26-狓)=144×6,解得狓1=2,狓2=44(不合题意,舍去),所以甬路宽为2m.2.根据题意可得方程(50-2-狓)×(30-2狓)=50×302,化简可得 狓2-63狓+345=0,解得: 狓1≈6.06,狓2=56.94,经检验,狓2不合题意舍去,所以狓的值约取6.06m.图23.设狓s后两只蚂蚁与犗点组成的三角形面积等于450cm2.(1)若这只蚂蚁在犗犃上,根据题意得12(50-2狓)·3狓=450,解得狋1=10,狋2=15.(2)若这只蚂蚁在犗犅上,根据题意得12(2狓-50)·3狓=450,解得狋1=30,狋2=-5(不合题意,舍去).所以分别在10s,15s,30s时两只蚂蚁与犗点组成的三角形面积等于450cm2.4.设有狀个人参加聚会,则在这狀个人中任何1个人,他(她)都要与除自己以外的(狀-1)个人握手;又因为甲与乙握手与乙与甲握手是同一次握手,所以握手总次数为12狀(狀-1).所以,狀(狀-1)=56.和这个问题所列方程相同的实际问题很多,如:(1)狀个村庄,每两个之间都有一条公路,若有人统计共有28条公路,问共有多少个村庄?(2)在某两地的铁路线上,共有28个不同的火车站,问这条铁路共有多少个不同的票价?(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表队参加?(4)空间狀个点,任意三点不共线,可以连28条不同的直线,求空间共有多少个点?(5)平面上有28条直线,若任意两条不平行,任意三条不共点,则有多少个交点?和这个问题列方程的思想一样的实际问题很多,如:(1)春节前后,几个人互打电话问候,若共打了20次电话,问共有几人?(2)元旦前后,几个同学互相赠送贺年卡,若共赠送了20张贺年卡,问共有几人?(3)在某两地的铁路线上,共有20个不同的火车站,问这条铁路共需设计多少个不同的火车票?5.(1)由题意设2月,3月每月增长的百分率为狓,则25[1+(1+狓)+(1+狓)2]=91,解得狓=0.2=20%.即2月、3月份每月平均增长的百分率为20%.(2)显然,3月份的生产收入为25×(1+0.2)2=25×1.44=36(万元)设治理狀个月后所投资金开始见效,则有91+36(狀-3)-111≥20狀,狀≥8.即治理8个月后所投资金开始见效.6.设商品降低了狓个100元,则优惠价是(3500-100狓)元,每个商品的利润是[(3500-100狓)-2500]元,销售量为(8+2狓)个,由题意得[(3500-100狓)-2500](8+2狓)=8×(3500-2500)(1+12.5%),解得狓1=1,狓2=5.所以,优惠价应定为3000元或3400元.到底定为多钱,要视具体情况而定.7.(1)70,4,2007.(2)设2009年和2010年两年绿地面积的年平均增长率为狓,根据题意,得70(1+狓)2=84.7.整理后,得(1+狓)2=1.21.解这个方程,得狓1=0.1,狓2=-2.1(不合题意,舍去).故所求平均增长率为10%.第二十三章 旋 转第1节 图形的旋转1.C 2.B 3.D 4.A 5  参考答案与提示5.相同 相等 旋转中心6.45° 90° 7.犅犆犇 犆 60°8.底角是60°,腰与底相等的等腰梯形9.图略 10.五角星图311.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆槡=3m.(2)画出犃点经过的路径,如图4所示.图4∵∠犃犅犃1=180°-60°=120°,犃1犃2=犃犆槡=3m,∴犃点所经过的路径长=120180×π×槡2+3=43π槡+3≈5.9(m).第2节 中心对称1.B 2.C 3.C 4.C5.关于原点对称6.3 7.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)(2)将得到的这组图形以一条边的中点为旋转中心旋转.(图6)(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的图形.图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋转90°后或绕点犆逆时针旋转90°后能与正方形犃犅犆犇重合,所以可以作为旋转中心(不是对称中心但包含对称中心)的点有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)图8(2)把△犃犅犆绕犃犆的中点犗旋转180°即可(如图9).6 人教版·数学·九年级(上)图9四边形是菱形,平行四边形.13.答案不唯一,下面举出三例,如图10所示.图10第3节 课题学习 图案设计1.左右,上下2.圆心 逆时针 90°3.45°(答案不唯一)4.3 犗 90° 矩形犃犅犉犎 犉犎5.旋转变换,平移变换(答案不唯一)6.平移变换,旋转变换(答案不唯一)7.提示:(1)犃犉=犆犈;(2)两次旋转变换(答案不唯一)8.图案如图11所示,四边形犈犗犆犎的面积是4cm2.图119.(1)平移后的小船如图12所示.图12(2)如图12所示,点犃′与点犃关于直线犔成轴对称,连接犃′犅交直线犔于点犘,则点犘为所求.10.答案不唯一,下面举出两例(如图13所示).图1311.略第二十四章 圆第1节 圆练习一1.A 2.B 3.A槡4.63 5.306.50° 7.8 8.200°9.50° 10.15°11.64° 12.30° 13.︵犅犇的中点14.以犕为圆心,以大于犕到⊙犗的最小距离且小于犕到⊙犗的最大距离为半径画圆,与⊙犗的交点即分别为犃、犅.15.1cm或7cm 16.258cm槡17.35cm18.75°练习二1.B 2.C 3.B 4.A 5.96.2.5m7.50° 8.130° 槡9.53cm图1410.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆=。

新课程课堂同步练习册(九年级数学下册人教版)答案

新课程课堂同步练习册(九年级数学下册人教版)答案

数学课堂同步练习册(人教版九年级下册)参考答案第二十六章 二次函数26.1 二次函数及其图象(一)一、 D C C 二、 1. ≠0,=0,≠0,=0,≠0 =0, 2. x x y 62+=3. )10(x x y -= ,二三、1. 23x y = 2.(1)1,0,1 (2)3,7,-12 (3)-2,2,0 3. 2161x y = §26.1 二次函数及其图象(二)一、 D B A 二、1. 下,(0,0),y 轴,高 2. 略 3. 答案不唯一,如22x y -= 三、1.a 的符号是正号,对称轴是y 轴,顶点为(0,0) 2. 略3. (1) 22x y -= (2) 否 (3)()6-;(),6-§26.1 二次函数及其图象(三)一、 BDD 二、1.下, 3 2. 略 三、1. 共同点:都是开口向下,对称轴为y 轴.不同点:顶点分别为(0,0);(0,2);(0,-2) .2. 41=a 3. 532+-=x y §26.1 二次函数及其图象(四)一、 DCB 二、1. 左,1, 2. 略 3. 向下,3-=x ,(-3,0) 三、1. 3,2a c ==- 2. 13a =3. ()2134y x =-§26.1 二次函数及其图象(五)一、C D B 二、1. 1=x ,(1,1) 2. 左,1,下,2 3.略三、1.略2.(1)()212y x =+- (2)略 3. (1)3)2(63262--=-===x y k h a(2)直线2223x =>-小2.(1)()212y x =+- (2)略 §26.1 二次函数及其图象(六) 一、B B D D 二、1.23)27,23(=x 直线 2. 5;5;41<-3. < 三、1. ab ac a b x a y x y x y 44)2(32)31(36)4(2222-++=---=--= 略2. 解:(1)设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,.解这个方程组,得 224a b c =⎧⎪=⎨⎪=-⎩.∴所求抛物线的解析式为2224y x x =+-.(2)222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,. §26.2 用函数观点看一元二次方程一、 C D D 二、1.(-1,0);(2,0) (0,-2) 2. 一 3. 312-或; 231<<-x ; 312x x <->或 三、1.(1)1x =-或3x = (2)x <-1或x >3(3)1-<x <3 2.(1)()21232y x =--+ (2)()20和()20 §26.3 实际问题与二次函数(一)一、 A C D 二、1. 2- 大 18 2. 7 3. 400cm 2三、1.(1)当矩形的长与宽分别为40m 和10m 时,矩形场地的面积是400m 2(2)不能围成面积是800m 2的矩形场地.(3)当矩形的长为25m 、宽为25m 时,矩形场地的面积最大,是625m 22.m ,矩形的一边长为2x m .其相邻边长为((2041022xx -+=-+∴该金属框围成的面积(121022S x x ⎡⎤=⋅-++⎣⎦(2320x x =-++ (0<x<10-当30x ==-.此时矩形的一边长为)260x m =-,相邻边长为((()10210310m -+⋅-=.()21003300.S m =-=-最大26.3 实际问题与二次函数(二)一、A B A 二、1. 2 2. 250(1)x + 3.252或12.5 三、1. 40元 当5.7=x 元时,625=最大W 元 2. 解:(1)降低x 元后,所销售的件数是(500+100x ),y=-100x 2+600x+5500 (0<x ≤11 )(2)y=-100x 2+600x+5500 (0<x ≤11 )配方得y=-100(x -3)2+6400 当x=3时,y 的最大值是6400元。

人教版九年级数学上册课本练习题答案

人教版九年级数学上册课本练习题答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为 x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约 1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴ AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则 AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=± 1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2) x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75整理,得x2-20x+75=0解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s (2)设小球滚动5m用了x s·(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ... 描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3 ∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t 又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0 习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x-x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D复习题第4题答案(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略复习题第5题答案解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬 ,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\'B\\\\\'C\\\\\'D\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第1题答案练习第2题答案练习第3题答案。

人教版数学九年级全册综合练习题(含答案)

人教版数学九年级全册综合练习题(含答案)

人教版数学九年级全册综合练习题一、选择题1.如图,2016年里约奥运会,某运动员在10米跳台跳水比赛时估测身体(看成一点)在空中的运动路线是抛物线y=−x2+x(图中标出的数据为已知条件),运动员在空中运动的最大高度离水面为()米.A. 10B. 10C. 9D. 102.已知△ABC∽△DEF,面积比为9∶4,则△ABC与△DEF的对应边之比为( )A.3∶4B.2∶3C.9∶16D.3∶23.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为x cm的小正方形,做成一个底面积为y cm2的无盖的长方体盒子,则y与x之间的函数关系式为()A.y=x2-70x+1200B.y=x2-140x+4800C.y=4x2-280x+4800D.y=4800-4x24.如图,∠B=90°,AB=BC=CD=DE,那么下列结论正确是( )A.∠1+∠2+∠3=135°B.△ABD∽△EBAC.△ACD∽△ECAD.以上结论都不对5.下面几何体的主视图是( )A.B.C.D.6.在同一直角坐标系中,函数y=-与y=ax+1(a≠0)的图象可能是( ) A.B.C.D.7.若反比例函数y=的图象位于第二、四象限内,则k的取值范围是( )A.k>-2B.k<0C.k>0D.k<-28.如图所示,矩形ABCD中,AB=9,BC=6,若矩形AEFG与矩形ABCD位似,位似比为,则C、F 之间的距离为( )A.B. 2C. 3D. 129.下列选项中,函数y=对应的图象为( )A.B.C.D.10.如图,△ABC中,∠A=92°,AB=9,AC=6,将△ABC按下列四种图示中的虚线剪开,则剪下的三角形与原三角形相似的有( )A. 4个B. 3个C. 2个D. 1个二、填空题11.如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值为________.12.如图,已知△ABC的三个顶点均在正方形网格的格点上,则cos A的值为__________.13.若实数a,b满足a+b2=1,则a2+b2的最小值是________.14.两三角形的相似比为1∶4,它们的周长之差为27 cm,则较小三角形的周长为__________.15.在Rt△ABC中,∠C=90°,BC=2,AC=1,现给出下列结论:①sin A=;②cos B=;③tan A=2;④sin B=,其中正确的是____________.16.如图,已知圆锥的高AO等于圆锥的底面半径OB的倍,则∠α=________度.17.网格中的每个小正方形的边长都是1,△ABC每个顶点都在网格的交点处,则sin A=__________.18.方程:(2x+1)(x-1)=8(9-x)-1的根为____________.19.若函数y=(k-2)是反比例函数,则k=______.20.如果一个二次函数图象的对称轴在y轴的右侧,且在对称轴右侧y随x的增大而减小,那么这个二次函数的解析式可以是________________(只要写出一个符合条件的解析式).三、解答题21.已知二次函数y=2x2+m.(1)若点(-2,y1)与(3,y2)在此二次函数的图象上,则y1_________y2(填“>”、“=”或“<”);(2)如图,此二次函数的图象经过点(0,-4),正方形ABCD的顶点C、D在x轴上,A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.22.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8 m,窗高CD=1.2 m,并测得OE=0.8 m,OF=3 m,求围墙AB的高度.23.如图,已知抛物线的顶点在第四象限,顶点到x轴的距离为3,抛物线与x轴交于原点O(0,0)及点A,且OA=4.(1)求该抛物线的解析式;(2)若线段OA绕点O顺时针旋转45°到OA′,试判断点A′是否在该抛物线上,并说明理由.24.柳市乐华电器厂对一批电容器质量抽检情况如下表:(1)从这批电容器中任选一个,是正品的概率是多少?(2)若这批电容器共生产了14000个,其中次品大约有多少个?25.解方程:(3x﹣1)2=6.26.如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64;cos 40°≈0.77;tan 40°≈0.84)27.在锐角△ABC中,AB=15,BC=14,S△ABC=84,求:(1)tan C的值;(2)sin A的值.28.某学校的学生为了对小雁塔有基本的认识,在老师的带领下对小雁塔进行了测量.测量方法如下:如图,间接测得小雁塔地部点D到地面上一点E的距离为115.2米,小雁塔的顶端为点B,且BD⊥DE,在点E处竖直放一个木棒,其顶端为C,CE=1.72米,在DE的延长线上找一点A,使A、C、B三点在同一直线上,测得AE=4.8米.求小雁塔的高度.答案解析1.【答案】D【解析】∵y=−x2+x=-(x2-x)=-(x-)2+,∴抛物线的顶点坐标是(,),∴运动员在空中运动的最大高度离水面为10+=10(米).2.【答案】D【解析】∵△ABC∽△DEF,面积比为9∶4,∴△ABC与△DEF的对应边之比3∶2.故选D.3.【答案】C【解析】由题意可得y=(80-2x)(60-2x)=4x2-280x+4800.4.【答案】C【解析】∵AB=BC,∠B=90°,∴∠1=45°.设AB=BC=CD=DE=1,则AC=,CE=2,∴=,==,∵∠ACD=∠ACE,∴△ACE∽△DCA,故选C.5.【答案】D【解析】主视图有3列,从左往右小正方形的个数为2,1,1故选D.6.【答案】B【解析】A.由函数y=-的图象可知,a>0,由y=ax+1(a≠0)的图象可知,a<0,故选项A错误.B.由函数y=-的图象可知,a>0,由y=ax+1(a≠0)的图象可知,a>0,且交y轴于正半轴,故选项B正确.C.y=ax+1(a≠0)的图象应该交y轴于正半轴,故选项C错误.D.由函数y=-的图象可知,a<0,由y=ax+1(a≠0)的图象可知,a>0,故选项D错误.故选B.7.【答案】D【解析】由题意,得k+2<0,解得k<-2,故选D.8.【答案】A【解析】连接AF、FC,∵矩形AEFG与矩形ABCD位似,∴A、F、C在同一条直线上,EF∥BC,∵AB=9,BC=6,∴AC==3,∵矩形AEFG与矩形ABCD位似,位似比为,∴CF=AC=,故选A.9.【答案】A【解析】∵y=中x≠0,∴当x>0时,y>0,此时图象位于第一象限;当x<0时,y>0,此时图象位于第二象限.故选A.10.【答案】C【解析】第一、二个图形中剪下的三角形与原三角形有两个角对应相等,故与原三角形相似;第三、四个图形中剪下的三角形与原三角形的对应边不成比例,故与原三角形不相似.故选C.11.【答案】3【解析】过点A作AB⊥x轴于点B,∵点A(t,4)在第一象限,OA与x轴所夹的锐角为α,tanα=,∴tanα===.解得t=3.12.【答案】【解析】如图所示,连接BD,设每个小正方形边长为1,可得∠CDB=90°,BD=,AD=2,AB=,故cos A===.故答案为.13.【答案】【解析】∵a+b2=1,∴b2=1-a,∴a2+b2=a2+1-a=(a-)2+≥,∴当a=时,a2+b2有最小值.14.【答案】9 cm【解析】令较大的三角形的周长为x cm.小三角形的周长为(x-27) cm,由两个相似三角形对应中线的比为1∶4,得1∶4=(x-27)∶x,解之得x=36,x-27=36-27=9 cm.15.【答案】②③【解析】∵在Rt△ABC中,∠C=90°,BC=2,AC=1,∴AB=,∴①sin A===,故此选项错误;②cos B===,故此选项正确;③tan A==2,故此选项正确;④sin B===,故此选项错误.故答案为②③.16.【答案】60【解析】设圆锥的底面半径OB为x,则圆锥的高AO等于x. ∴tanα==,又∵tan 60°=,∴∠α=60°.17.【答案】【解析】如图,作AD⊥BC于D,CE⊥AB于E,由勾股定理得AB=AC=2,BC=2,AD=3,可以得知△ABC是等腰三角形,由面积相等可得,BC·AD=AB·CE,即CE==,sin A===,故答案为.18.【答案】-8或【解析】(2x+1)(x-1)=8(9-x)-1整理得2x2-x-1=72-8x-12x2+7x-72=0,则(x+8)(2x-9)=0,解得x1=-8,x2=.19.【答案】-2【解析】根据反比例函数的定义列出方程解出k的值即可.若函数y=(k-2)是反比例函数,则解得k=-2,故答案为-2.20.【答案】y=-x2+2x【解析】根据抛物线在对称轴的右侧,y随x的增大而减小,则a<0;根据二次函数图象的对称轴在y轴的右侧,->0,则b>0,即可得到解析式.21.【答案】解:(1)x=-2时,y1=2×(-2)2+m=4+m,x=3时,y=2×32+m=18+m,∵18+m-(4+m)=14>0,∴y1<y2;故答案为<;(2)∵二次函数y=2x2+m的图象经过点(0,-4),∴m=-4,∵四边形ABCD为正方形,又∵抛物线和正方形都是轴对称图形,且y轴为它们的公共对称轴,∴OD=OC,S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),∵点B在二次函数y=2x2-4的图象上,∴2n=2n2-4,解得n1=2,n2=-1(舍负),∴点B的坐标为(2,4),∴S阴影=S矩形BCOE=2×4=8.【解析】(1)把两点的横坐标代入二次函数解析式求出纵坐标,再相减计算即可得解;(2)先把函数图象经过的点(0,-4)代入解析式求出m的值,再根据抛物线和正方形的对称性求出OD=OC,并判断出S阴影=S矩形BCOE,设点B的坐标为(n,2n)(n>0),把点B的坐标代入抛物线解析式求出n的值得到点B的坐标,然后求解即可.22.【答案】解延长OD,∵DO⊥BF,∴∠DOE=90°,∵OD=0.8 m,OE=0.8 m,∴∠DEB=45°,∵AB⊥BF,∴∠BAE=45°,∴AB=BE,设AB=EB=x m,∵AB⊥BF,CO⊥BF,∴AB∥CO,∴△ABF∽△COF,∴=,=,解得x=4.4.经检验:x=4.4是原方程的解.答:围墙AB的高度是4.4 m.【解析】首先根据DO=OE=0.8 m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得=,然后代入数值可得方程,解出方程即可得到答案.23.【答案】解:(1)根据题意可知:抛物线的顶点坐标为(2,-3),设抛物线的解析式为y=a(x-2)2-3,由于抛物线经过原点,即4a-3=0,解得a=.故抛物线的解析式为y=(x-2)2-3;(2)设点A′坐标为(x,y),则直线OA′的解析式为y=-x①,根据旋转的性质可知:OA′=OA=4,即x2+y2=16②,由①②可得x=2,y=-2,即点A′坐标为(2,-2),把点A′坐标为(2,-2)代入解析式y=(x-2)2-3;-2≠(2-2)2-3,即点A′不在该抛物线上.【解析】(1)首先求出抛物线的顶点坐标,设抛物线的解析式为y=a(x-2)2-3,由于抛物线经过原点,进而求出a的值即可;(2)设点A′坐标为(x,y),先求出直线OA′的解析式,根据OA′=OA=4,求出点A′的坐标,进而判断点A′是否在该抛物线上.24.【答案】解:(1)六次抽查正品频率分别为:180÷200=0.9,390÷400=0.975,576÷600=0.96,768÷800=0.96,960÷1000=0.96,1176÷1200=0.98,所以正品概率估计为0.96;或(180+390+576+768+960+1176)÷(200+400+600+800+1000+1200)=;(2)其中次品大约有14000×=500个.【解析】(1)先计算出6次抽检的正品的频率,再估算其概率即可;(2)总数×次品的概率即为所求的次品数.25.【答案】解:由原方程,得3x﹣1=±,∴x=,∴x1=,x2=.【解析】原问题实际上是求3x﹣1的平方根.所以利用直接开平发法解方程即可26.【答案】解过点A作AC⊥OB,垂足为点C,在Rt△ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin ∠AOC·AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙.【解析】过点A作AC⊥OB,垂足为点C,解三角形求出AC的长度,进而作出比较即可.27.【答案】解(1)过A作AD⊥BC于点D.∵S△ABC=BC·AD=84,∴×14×AD=84,∴AD=12.又∵AB=15,∴BD==9.∴CD=14-9=5.在Rt△ADC中,AC==13,∴tan C==.(2)过B作BE⊥AC于点E.∵S△ABC=AC·EB=84,∴BE=,∴sin ∠BAC===.【解析】(1)过A作AD⊥BC于点D,利用面积公式求出高AD的长,从而求出BD、CD、AC的长,此时再求tan C的值就不那么难了.(2)同理作AC边上的高,利用面积公式求出高的长,从而求出sin A的值.28.【答案】解由题意可得△AEC∽△ADB,则=,故=,解得DB=43,答:小雁塔的高度为43 m.【解析】直接利用相似三角形的判定与性质得出=,进而得出答案.。

人教版初中数学九年级上册《课本习题参考答案》第九页-六六页

人教版初中数学九年级上册《课本习题参考答案》第九页-六六页

第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x- x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3 ∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5 ∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE 与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第2题答案练习第3题答案复习题第1题答案如下图所示:复习题第2题答案解:图(2)是由图(1)这个基本图案绕着图案的中心旋转90〬,180〬, 270〬后与原图形所形成的复习题第3题答案解:图中这4个图形都是中心对称图形,其对称中心为O点,如下图所示:复习题第4题答案如下图所示:解:依题意可知△EBC可以看做是△DAC以点C为旋转中心、逆时针旋转60〬°得到的复习题第6题答案解:依题意可知:右边倾斜的树以其根部为旋转中心,旋转一定的角度使树成直立的状态,再以与树干平行的一条直线为对称轴作树的对称图形,即可得到左边直立的树复习题第7题答案解:矩形FABE,菱形EBCD都为中心对称图形,过对称中心的任意一条直线,都可将图形分成面积相等的两部分如下图所示,直线MN可把这张纸分成面积相等的两部分复习题第8题答案解:当梯形是下底角为60〬且上底等于腰长的等腰梯形时,可以经过旋转和轴对称形成题中图(2)的图案第62页练习答案练习题答案第66页练习答案练习第1题答案练习第2题答案。

九年级上册(人教版)数学练习题含答案

九年级上册(人教版)数学练习题含答案

狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长人教版九年级上册数学测试《第二十一章二次根式》练习题一、填空题(每小题2分,共20分)221.在、、、、中是二次根式的个数有______个. a3x1ab1x2. 当= 时,二次根式取最小值,其最小值为。

x1x3. 化简的结果是_____________ 824. 计算:= ·23 a5. 实数在数轴上的位置如图所示:化简:a 21102. a1(a2)______26. 已知三角形底边的边长是cm,面积是cm,则此边的高线长. 61227.若则. a b c a2b3c40,201020108. 计算:= (32)(32)122x29. 已知,则 = x3x102x11111112233410. 观察下列各式:,,,……,请你将334455猜想到的规律用含自然数的代数式表示出来是.n(n≥1)线二、选择题(每小题3分,共24分)11. 下列式子一定是二次根式的是()22x x2x2x2A. B. C. D. x2x12. 下列二次根式中,的取值范围是的是() 1狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长1A.2-x B.x+2 C.x-2 D. x-213. 实数在数轴上的对应点的位置如图所示,式子a,b,ca①②③④中c b c0a b a cbc acab acb 203 211正确的有()A.1个B.2个C.3个D.4个 14. 下列根式中,是最简二次根式的是()222 A. B. C. D. 12a12b0.2b5abx y15. 下列各式中,一定能成立的是()2222A. B. ( 2.5)(2.5)a(a)22C. D. x2x1x1x 9x3x3116.设的整数部分为,小数部分为,则的值为() a42ba b22A.B.C.D.2211221m17. 把根号外的因式移到根号内,得()mmA. B. C. D.m m m2218. 若代数式的值是常数,则的取值范围是() a(2a)(a4)2a≥4a≤2a2a42≤a≤4A.B.C.D.或三、解答题(76分) 19. (12分)计算: 212 (1) (2) 184(253)22 1 2狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长11410 (3) (4) 451081125()(32)232822xx2x1x120. (8分)先化简,再求值:,其中. x32x2x2x 1 3狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长421.(8分)已知:,求:的值。

新课程课堂同步练习册(九年级数学上册人教版)答案

新课程课堂同步练习册(九年级数学上册人教版)答案

《新课程课堂同步练习册·数学(人教版九年级上册)》参考答案 第二十一章 二次根式§21.1二次根式(一)一、1. C 2. D 3. D二、1.7±,23x ≤4. 1 三、1.50m 2.(1)2x ≥ (2)x >-1 (3)0m ≤ (4)0=m §21.1二次根式(二)一、1. C 2.B 3.D 4. D二、1.3π-,3π- 2.1 3.2)4(± ;2)7(±三、1.7-或-32.(1)5;(2)5; (3)4; (4)18; (5)0.01;(6)1x +; 3. 原式=2a b b a a --+-=- §21.2二次根式的乘除(一) 一、1.C 2. D 3.B二、1.< 2.1112+⨯-=-n n n (1,n n ≥为整数) 3.12s 4.三、1.(1)(2)(3)36 (4)–108 2.10cm 23§21.2二次根式的乘除(二)一、1.C 2.C 3.D二、1.a >3 2. 3.(1; 4. 6三、1.(1) (2) 2.(1)87(2)5(3)213.258528=÷nn ,因此是2倍. §21.2二次根式的乘除(三)一、1.D 2.A 3.B二、1.2=x 2.33, 3.1 4.33三、1.(1)1 (2)10 2. 33=x 3.(26-; 423=S§21.3二次根式的加减(一)一、1.C 2.A 3.C二、1.(答案不唯一,如:20、45) 2. 3<x <33 3. 1三、1.(1)34 (2)216- (3)2 (4)332. 10 §21.3二次根式的加减(二)一、1.A 2.A 3.B 4.A二、1. 1 2. 6+, 3. n m -三、1.(1)13- (2)253- (3)(4)22.因为25.45232284242324321824≈=⨯=++=++)()(>45 所以王师傅的钢材不够用. §21.3二次根式的加减(三) 一、1. C 2.B 3.D二、 1. 32; 2. 0, 3. 1 (4)(x x三、 1.(1)6 (2)5 2.(1) (2)92第二十二章 一元二次方程§22.1一元二次方程(一)一、1.C 2.D 3.D 二、1. 2 2. 3 3. –1三、1.略 2.222(4)(2)x x x -+-= 一般形式:212200x x -+= §22.1一元二次方程(二)一、1.C 2.D 3.C 二、1. 1(答案不唯一) 2.123. 2 三、1.(1)2,221-==x x (2)1233,44x x ==-(3)12t t ==- (4)1222x x ==- 2.以1为根的方程为2(1)0x -=, 以1和2为根的方程为(1)(2)0x x --= 3.依题意得212m +=,∴1m =± .∵1m =-不合题意,∴1m =. §22.2降次-解一元二次方程(一)一、1.C 2.C 3.D 二、1. 1233,22x x ==- 2. 1m ≥ 3. -1三、1.(1)43t =±(2)x =(3)1x =-± (4)1x =2.解:设靠墙一边的长为x 米,则401922xx -⋅= 整理,得 2403840x x -+=, 解得 1216,24x x == ∵墙长为25米, ∴1216,24x x ==都符合题意. 答:略. §22.2降次-解一元二次方程(二) 一、1.B 2.D 3. C二、1.(1)9,3 (2)-5 (3)24m ,2m2.3±3. 1或32-三、1.(1)1211x x ==2)12y y ==3)21,221==x x (4)124,3x x =-= 2.证明:2211313313()61212x x x --+=-++≤§22.2降次-解一元二次方程(三) 一、1.C 2.A 3.D二、1. 9m 4≤2. 243. 0三、1.(1)121x x 12==, (2)12x x ==(3)121x 2x 3==, (4)12y 1y 2=-=,2.(1)依题意,得()222m+141m 0∆=--⨯⨯≥⎡⎤⎣⎦∴21-≥m ,即当21-≥m 时,原方程有两个实数根. (2)由题意可知()222m+141m ∆=--⨯⨯⎡⎤⎣⎦>0 ∴m >12-, 取m 0=,原方程为2x 2x 0-= 解这个方程,得12x 0x 2==,.§22.2降次-解一元二次方程(四) 一、1.B 2.D 3.B二、1.-2,2x = 2. 0或43 3. 10 三、1.(1)12305x x ==-, (2)3,2121-==x x (3)12113y y ==, (4)1,221==x x (5)1217x x == (6)19x =-,22x =2.把1x =代入方程得 ()222114132m m m +⨯+⨯+=,整理得2360m m +=∴120,2m m ==-§22.2降次-解一元二次方程(五) 一、1.C 2.A 3.A二、1.2660x x --=,1,1-,66-. 2、6或—2 3、4三、1.(1)12x 7x 3==, (2)12x x ==, (3)3121==x x (4) 12x 7x 2==-, 2.∵ 221=+x x ∴ 2=m 原方程为2230x x --= 解得 1x 3=,21x =-3.(1)()224(3)411b ac m -=--⨯⨯-944m =-+134m =->0 ∴ m <134(2)当方程有两个相等的实数根时,则1340m -=, ∴134m =, 此时方程为04932=+-x x , ∴1232x x == §22.2降次-解一元二次方程(六)一、1.B 2.D 3.B 二、1. 1 2. -3 3. -2 三、1.(1)51=x ,52-=x (2)21±=x (3)121==x x (4)没有实数根2.(1).4412,4112x x x x -=+∴=-+Θ.21=∴x 经检验21=x 是原方程的解. 把21=x 代人方程0122=+-kx x ,解得3=k . (2)解01322=+-x x ,得.1,2121==x x ∴方程0122=+-kx x 的另一个解为1=x .3.(1)()22244114b ac k k -=-⨯⨯-=+>0,∴方程有两个不相等的实数根. (2)∵12x x k +=-,121x x ⋅=-,又1212x x x x +=⋅ ∴1k -=- ∴1k =§22.3实际问题与一元二次方程(一)一、1.B 2.D二、1.2)1()1(x a x a a -+-+ 2.222)1()1(+=-+x x x 3.()21a x +三、1.解:设这辆轿车第二年、第三年平均每年的折旧率为x ,则776.7)1%)(201(122=--x ,解得%101.01==x ,9.12=x (舍去). 答:略2.解:设年利率为x ,得1320)1](1000)1(2000[=+-+x x , 解得%101.01==x ,6.12-=x (舍去).答:略§22.3实际问题与一元二次方程(二)一、1.C 2.B二、1. 15,10 2. cm 20 3. 6三、1.解:设这种运输箱底部宽为x 米,则长为)2(+x 米,得151)2(=⨯+x x ,解得5,321-==x x (舍去),∴这种运输箱底部长为5米,宽为3米.由长方体展开图知,要购买矩形铁皮面积为:)(35)23()25(2m =+⨯+,∴要做一个这样的运输箱要花7002035=⨯(元).2.解:设道路宽为x 米,得50423220232202=+-⨯-⨯x x x , 解得34,221==x x (舍去).答:略§22.3实际问题与一元二次方程(三)一、1.B 2.D二、1. 1或2 2. 24 3. 15- 三、1.设这种台灯的售价为每盏x 元,得()()[]1000040x 1060030x =---, 解得80x 50x 21==,当50x =时,()50040x 10600=--;当80x =时,()20040x 10600=-- 答:略2.设从A 处开始经过x 小时侦察船最早能侦察到军舰,得22250)3090()20(=-+x x ,解得1328,221==x x ,1328Θ>2,∴最早2小时后,能侦察到军舰. 第二十三章 旋 转§23.1图形的旋转(一)一、1.A 2.B 3.D二、1. 90 2. B 或C 或BC 的中点 3. A 60 4. 120°,30° 5 . 三、EC 与BG 相等 方法一:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG∴∠EAB=∠CAG=90°∴把△EAC 绕着点A 逆时针旋转90°,可与△BAG 重合 ∴EC=BG 方法二:∵四边形ABDE 和ACFG 都是正方形 ∴AE=AB ,AC=AG ∠EAB=∠CAG=90° ∴∠EAB+∠BAC=∠CAG+∠BAC 即 ∠EAC=∠BAG ∴△EAC ≌△BAG ∴EC=BG §23.1图形的旋转(二)一、1.C 2.C 3.D 二、1. 2,120° 2. 120或240 3. 4三、1.如图 2.如图3.(1)旋转中心是时针与分针的交点; (2)分针旋转了108o.4.解:(1)HG 与HB 相等. 连接AH ∵正方形ABCD 绕着点A 旋转得到正方形AEFG ∴AG=AD=AB=AE ,∠G=∠B=90°又∵AH=AH ∴△AGH ≌△ABH ∴HG=HB (2)∵△AGH ≌△ABH ∴∠GAH = ∠BAH∴214323()233AGH ABH S S cm ∆∆==⨯=由123223GH ⨯=得:233GH cm =在Rt △AGH 中,根据勾股定理得:2223432233AH cm GH ⎛⎫=+== ⎪ ⎪⎝⎭∴∠GAH=30°∴旋转角∠DAG = 90°-2∠GAH = 90°-2×30°= 30°§23.2中心对称(一)一、1.C 2.D 3.B二、1.对称中心 对称中心 2.关于点O 成中心对称3 .△CDO 与△EFO 三、1.(略)2.(1)A 1的坐标为(1,1),B 1的坐标为(5,1),C 1的坐标为(4,4).(2)A 2()1,1--, B 2的坐标为()5,1--, C 2的坐标为()4,4-- 画图如下: 3.画图如下:BB ′=2OB =5221222222=+=+BC OC§23.2中心对称(二)一、1.D 2.C 3.二、1.矩形、菱形、正方形 2.正六边形、正八边形(边数为偶数的正多边形均正确) 三、1.关于原点O 对称(图略) 2.解:∵矩形ABCD 和矩形AB 'C 'D '关于A 点对称∴AD=AD ',AB=AB ',DD '⊥BB ' ∴四边形BDB 'D '是菱形 3.解:(1)AE 与BF 平行且相等 ∵△ABC 与△FEC 关于点C 对称∴AB 平行且等于FE ∴四边形ABFE 是平行四边形 ∴AE 平行且等于BF (2)122cm (3)当∠ACB=60°,四边形ABFE 为矩形,理由如下: ∵∠ACB=60°,AB=AC ∴AB=AC=BC ∵四边形ABFE 是平行四边形∴AF=2AC ,BE=2BC ∴AF=BE ∴四边形ABFE 为矩形B′OCBAAB C D§23.2中心对称(三)一、1.B 2.D 3.D二、1. 四 2.3y x =(任一正比例函数) 3. 三 三、1.如图2、解:由已知得212x x +=-, 244y y += 解得1x =-,2y =∴()22120x y +=⨯-+= 3.(1)D 的坐标为(3,-4)或(-7,-4)或(-1,8) (2)C 的坐标为(-1,-2),D 的坐标为(4,-2), 画图如图:§23.3 课题学习 图案设计 一、1.D 2.C二、1.72° 2.基本图案绕(2)的O 点依次旋转60°、120°、180°、240°、300°而得到. 三、1.(略)2.如图3.(1)是,6条 (2)是(3)60°、120°、180°、240°、300°第二十四章 圆§24.1.1圆一、1.A 2.B 3.A二、1. 无数 经过这一点的直径 2. 303. 半径 圆上 三、1.提示:证对角线互相平分且相等 2.提示:证明:OCD OAB ∠=∠ §24.1.2 垂直与弦的直径一、1.B 2.C 3. D二、1.平分 弧 2. 3≤OM ≤53. 63三、1. 120o2. (1)、图略 (2)、10cm §24.1.3 弧、弦、圆心角一、1. D 2. C 3. C 二、1.(1) ∠AOB=∠COD,= (2) ∠AOB=∠COD, AB=CD (3) =, AB=CD2. 15°3. 2 三、1. 略2.(1)连结OM 、ON ,在Rt △OCM 和Rt △ODN 中OM=ON ,OA=OB ,∵AC=DB ,∴OC=OD ,∴Rt △OCM ≌Rt △ODN ,∴∠AOM=∠BON , ∴AM=BN-5-4CBA65-3-2-1-6-5-4-3-2-1432174653210yxD-5-4CBA65-3-2-1-6-5-4-3-2-1432174653210yx⌒ ⌒§24.1.4圆周角一、1.B 2. B 3.C二、1.28o 2. 43.60°或120°三、1.90o提示:连接AD 2.提示:连接AD §24.2.1点和圆的位置关系 一、1.B 2.C 3. B二、1.d <r d r = ,d >r 2. OP >63. 内部, 斜边上的中点, 外部 三、1.略 2. 5cm§24.2.2直线与圆的位置关系(一) 一、1. B 2. D 3. A二、1.相离, 相切 2.相切 3. 4三、1.(1)相交, 相切 §24. 2.2直线与圆的位置关系(二) 一、1.C 2.B二、1.过切点的半径 垂直于 2.3、30°三、1.提示: 作OC ⊥AQ 于C 点 2.(1)60o(2)§24.2.2直线与圆的位置关系(三)一、1.C 2.B 3.C二、1. 115o 2. 90o 10cm 3. 1﹕2 三、1. 14cm 2. 提示:连接OP ,交AB 与点C. §24.2.3圆与圆的位置关系一、1.A 2.C 3. D二、1. 相交 2. 83. 2 3 10三、1.提示:分别连接1212,,O O O B O B ;可得1216030OO O O B O AB ∠=∴∠=2.提示:半径相等,所以有AC=CO ,AO=BO ;另通过说明∠AEO=90°,则可得AE=ED. §24.3正多边形和圆(一)一、1. B 2. C 3.C二、1.内切圆 外接圆 同心圆 2.十五3.2cm 三、1.10和5 2. 连结OM ,∵MN ⊥OB 、OE =21OB =21OM ,∴∠EMO =30°,∴∠MOB =60°,∴∠MOC =30°,∠MOB =6360︒、∠MOC =12360︒.即MB 、MC 分别是⊙O 内接正六边形和正十二边形的边长.§24.3正多边形和圆(二) 一、1.C 2. B二、1. 72 2. 四 每条弧 连接各等分点3. 2a π三、1. 22. 边长为4,面积为32 §24.4.1 弧长和扇形的面积一、1. B 2. D 3.C二、1.o 3602π, 2. π3434- 3.83π三、1. 10.5 2. 112π(2cm )§24.4.2 圆锥的侧面积和全面积一、1.A 2. B 3.B 二、1. 130π2cm 2. 215cmπ3. 2π三、1. (1)20π (2)220 2. S 48π=全第二十五章 概率初步§25.1.1随机事件(一)一、1. B 2. C 3.C二、1. 随机 2.随机 3.随机事件,不可能事件 4.不可能三、1. B ; A 、C 、D 、E ; F 2.(1)随机事件 (2)必然事件 (3)不可能事件 §25.1.1随机事件(二) 一、1.D 2.B 3. B二、1.黑色扇形 2.判断题 3. C 4.飞机三、1.(1)不一样,摸到红球的可能性大 ;(2)他们的说法正确2.事件A >事件C >事件D >事件B §25.1.2概率的意义(一) 一、 1. D 2. D二、1. 折线在0.5左右波动, 0.5 2. 0.5,稳定 3. 1,0,0<P(A)<1 三、1. (1)B,D (2)略2.(1)0.68,0.74,0.68,0.692,0.705,0.701 (2)接近0.7 (3)70% (4)2520§25.1.2概率的意义(二) 一、1. D 2. C 二、1.明 2. 75 3.1584. 16三、1.(1)不正确 (2)不一定2.(1)201 (2) 201 3.(1)0.6 (2)60%,40% (3)白球12只,黑球8只. §25.2用列举法求概率(一) 一、1.B 2. C 3.B 二、1.31 2. 72 3. 51 4.41 三、1.(1)“摸出的球是白球”是不可能事件,它的概率为0;(2)“摸出的球是黄球”是随机事件,它的概率为0.4;(3)“摸出的球是红球或黄球”是必然事件,它的概率为1. 2.50000013. 不唯一,如放3只白球,1只红球等§25.2用列举法求概率(二) 一、1.B 2.C 3.C二、1.83 2.23 3.112 4.NM L N ++ 三、1.(1)31 (2)61 (3)212.摸出两张牌和为偶数的概率是95,摸出两张牌和为奇数的概率是94,所以游戏有利于小张,不公平;可以改为,如果摸出两张牌,牌面数字之和为3,小张胜.牌面数字之和为5,则小王胜. 3.(1)16 (2)12 (3)12§25.2用列举法求概率(三) 一、1.A 2. B 3. B 二、1.3652. 1613.214.31三、1.(1)12;(22.(1)由列表(略)可得:P (数字之和为5)14=;(2)因为P (甲胜)14=,P (乙胜)34=,甲胜一次得12分,要使这个游戏对双方公平,乙胜一次的得分应为:1234÷=分.3.(1)根据题意可列表或树状图如下:从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P(和为奇数)23=(2)不公平.∵小明先挑选的概率是P(和为奇数)23=,小亮先挑选的概率是P(和为偶数)13=,∵2133≠,∴不公平.§25.2用列举法求概率(四)一、1.A 2.D 3. D二、(1)红、白、白,(2)923. 94.13三、1.列表或树状图略:由表或图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6)536=,P(和为7)636=.∴P(和为6)<P(和为7),∴小红获胜的概率大.2.(1)31(2)31(3)31.3.(1)树状图为:(2)由图可知评委给出A选手所有可能的结果有8种.对于A选手,“只有甲、乙两位评委给出相同结论”有2种,即“通过-通过-待定”、“待定-待定-通过”,所以对于A选手“只有甲、乙两位评委给出相同结论”的概率是14.(1,2)(1,3)(1,4)2 3 41(2,1)(2,3)(2,4)1 3 42(3,1)(3,2)(3,4)1 2 43(4,1)(4,2)(4,3)1 2 34第一次摸球第二次摸球通过通过待定待定通过通过待定通过待定通过待定通过待定甲乙丙§25.3利用频率估计概率(一) 一、1. B 2. C 二、1. 常数 2.25013. 210, 270 三、1. (1)0.025,0.063,0.058,0.050,0.050,0.050 (2) 0.050 (3)20002. (1)0.75,0.8,0.8,0.85,0.83,0.8,0.78 (2)0.8(3)不一定.投10次篮相当于做10次实验,每次实验的结果都是随机的,所以投10次篮的结果也是随机的,但随着投篮次数的增加,他进球的可能性为80%. 3.(1)0.25,0.33,0.28,0.33,0.32,0.30,0.33,0.31,0.31,0.31 (2)0.31 (3)0.31§25.3利用频率估计概率(二) 一、1.A 2. B二、1. 0.98 2. 3, 2, 1 3.271 三、1. (1)92(2)略 2.先随机从鱼塘中捞取a 条鱼,在鱼上做下记号,经过一段时间饲养后,再从中捞取b 条鱼,记录下其中有记号的鱼有c 条,则池塘中的鱼估计会有ab c§25.4 课题学习 一、1.D 2. B二、1.概率 2.Z 3.31三、1.(1) 91 (2) 31 (3) 322.(1)这个游戏的结果共有四种可能:正正. 正反. 反正. 反反,所以甲赢的概率为41,因乙赢的概率为21,因此这个游戏有利于乙,不公平; (2)若要使游戏公平只需使两人赢的概率相同,我们可以改规则为“若出现两个正面或两个反面,则甲赢;若出现一正一反,则乙赢”.。

人教版九年级数学上册课后习题参考答案

人教版九年级数学上册课后习题参考答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为 xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为 x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约 1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴ AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则 AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=± 1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2) x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%复习题21第11题答案解:设矩形的一边长为x cm,则与其相邻的一边长为(20-x)cm,由题意得:x(20-x)=75整理,得x2-20x+75=0解得x1=5,x2=15,从而可知矩形的一边长15cm,与其相邻的一边长为5cm当面积为101cm2时,可列方程x(20-x)=101,即x2-20x+101=0∵△=-4<0∴次方程无解∴不能围成面积为101cm2的矩形复习题21第12题答案解:设花坛中甬道的宽为x m.梯形的中位线长为1/2 (100+180)=140(m),根据题意得:1/2(100+180)×80×1/6=80∙x∙2+140x-2x2整理,得3x2-450x+2800=0解得x1=(450+)/6=75+5/3,x2=(450-)/6=75-5/3因为x=75+5/3不符合题意,舍去所以x=75-5/3≈6.50(m)故甬道的宽度约为6.50m复习题21第13题答案(1)5/4=1.25(m/s),所以平均每秒小球的滚动速度减少1.25m/s (2)设小球滚动5m用了x s·(5+(5-1.25x))/2x=5,即x2-8x+8=0解得x1=4+2(舍),x2=4-2≈1.2答:小球滚动5 m 约用了1.2s第9页练习答案练习第1题答案练习第2题答案第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:x ... -2 -1 0 1 2 ...y=4x2... 16 4 0 4 16 ...y=-4x2... -16 -4 0 -4 -16 ...y=(1/4)x2... 1 1/4 0 1/4 1 ... 描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3 ∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t 又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0 习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x-x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D复习题第4题答案(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略复习题第5题答案解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬 ,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第1题答案练习第2题答案练习第3题答案。

人教版初中数学九年级上册《课本习题参考答案》第四页1-10

人教版初中数学九年级上册《课本习题参考答案》第四页1-10

人教版数学九年级上册课后答案第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1(2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25(4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25,4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6)x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1∙x2=-8(2)x1+x2=-1/5,x1∙x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1∙x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1∙x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时,20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24 m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18 解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2)x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,(4)3x(x+1)=3x+3,原方程化为x2=1,直接开平方,得x=±1,∴x1=1,x2=-1(5)4x2-4x+1=x2+6x+9,原方程化为(2x-1)2=(x+3)2,∴[(2x-1)+(x+3)][(2x-1)-(x+3)]=0,即(3x+2)(x-4)=0,,3x+2=0或x-4=0,∴x1=-2/3,x2=4∴a=7,b=-,c=-5,b2-4ac=(-)2-4×7×(-5)=146>0∴x= [-(-)±]/(2×7)=(±)/14,∴x1=(+)/14,x2=(-)/14习题21.3第2题答案解:设相邻两个偶数中较小的一个是x,则另一个是(x+2).根据题意,得x(x+2)=168∴x2+2x-168=0∴x1=-14,x2=12.当x=-14时,x+2=-12当x=12时,x+2=14答:这两个偶数是-14,-12或12,14习题21.3第3题答案解:设直角三角形的一条直角边长为xcm,由题意可知1/2x(14-x)=24,∴x2-14x+48=0∴x1=6,x2=8当x=6时,14-x=8当x=8时,14-x=6∴这个直角三角形的两条直角边的长分别为6cm,8cm习题21.3第4题答案解:设每个支干长出x个小分支,则1+x+x2=91整理得x2+x-90=0,(x-9)∙(x+10)=0解得x1=9,x2=-10(舍)答:每个支干长出来9个小分支习题21.3第5题答案解:设菱形的一条对角线长为x cm,则另一条对角线长为(10-x)cm,由菱形的性质可知:1/2 x∙(10-x)=12,整理,的x2-10x+24=0,解得x1=4,x2=6.当x=4时,10-x=6当x=6时,10-x=4所以这个菱形的两条对角线长分别为6cm和4cm.由菱形的性质和勾股定理,得棱长的边长为:所以菱形的周长是4cm习题21.3第6题答案解:设共有x个队参加比赛,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=90/2,即1/2x(x-1)=45整理,得x2-x-90=0解得x1=10,x2=-9因为x=-9不符合题意,舍去所以x=10答:共有10个队参加比赛习题21.3第7题答案解:设水稻每公顷产量的年平均增长率为x,则7200(1+x)2=8450解得x1=1/12,x2=-25/12因为x=- 25/12 不符合题意,舍去所以x= 1/12≈0.083=8.3%答:水稻每公顷产量的年平均增长率约为8.3%习题21.3第8题答案解:设镜框边的宽度应是x cm,根据题意得:(29+2x)(22+2x)-22×29=1/4×29×22整理,得8x2+204x-319=0解得x= [-204±]/16所以x1=[-204+)]/16,x2=[-204-)]/16因为x= [-204-)]/16<0不合题意,舍去所以x= [-204+)]/16≈1.5答:镜框边的宽度约1.5cm习题21.3第9题答案解:设横彩条的宽度为3x cm,则竖彩条的宽为2x cm.根据题意得:30×20×1/4=30×20-(30-4x)(20-6x),整理,得12x2-130x+75=0解得x1=[65+5)]/12,x2=(65-5)/12因为30-4x>0,且20-6x>0所以x<10/3所以x= (65+5)/12不符合题意,舍去所以x=(65-5)/12≈0.6所以3x≈1.8,2x≈1.2答:设计横彩条的宽度约为1.8cm,竖彩条的宽度约为1.2cm习题21.3第10题答案(1)设线段AC的长度为x,则x2=(1-x)×1,解得x1=(-1+)/2,x2=(-1-)/2(舍),∴AC=(-1+)/2(2)设线段AD的长度为x,则x2=((-1+)/2-x)∙(1+)/2,解得x1=(3-)/2,x2=-1(舍),∴AD=(3-)/2(3)设线段AE的长度为x,则x2=((3-)/2-x)∙(3-)/2,解得x1=-2+,x2=(1-)/2 (舍)∴AE=-2+【规律方法:若C为线段AB上一点,且满足AC2=BC∙AB,则AC/AB=(-1)/2∙(-1)/2也叫作黄金比,C点为黄金分割点,一条线段上有两个黄金分割点.】第6页练习答案练习题答案复习题21第1题答案(1)196x2-1=0,移项,得196x2=1,直接开平方,得14x=±1,x=±1/14,∴原方程的解为x1=1/14,x2=-1/14(2)4x2+12x+9=81,原方程化为x2+3x-18=0∵a=1,b=3,c=-18,b2-4ac=32-4×1×(-18)=81>0∴x1=-6,x2=3(3)x2-7x-1=0∵a=1,b=-7,c=-1,b2-4ac=(-7)2-4×1×(-1)=53>0,(4)2x2+3x=3,原方程化为2x2+3x-3=0,∵a=2,b=3,b=-3,b2-4ac=32-4×2×(-3)=33>0,∴x= (-3± )/(2×2)=(-3±)/4,∴x1=(-3+)/4,x2=(-3-)/4(5)x2-2x+1=25,原方程化为x2-2x-24=0,因式分解,得(x-6)(x+4)=0,∴x-6=0或x+4=0,∴x1=6,x2=-4(6)x(2x-5)=4x-10,原方程化为(2x-5)(x-2)=0,,2x-5=0或x-2=0,∴x1=5/2,x2=2(7)x2+5x+7=3x+11,原方程化为x2+2x-4=0,∵a=1,b=2,c=-4,b2-4ac=22-4×1×(-4)=20>0∴x= (-2±)/(2×1)=(-2±2)/2=-1±∴x1=-1+,x2=-1-(8)1-8x+16x2=2-8x,原方程化为(1-4x)(-1-4x)=0,1-4x=0或-1-4x=0,∴x1=1/4,x2=-1/4复习题21第2题答案解:设其中一个数为(8-x),根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0,解得x1=6.5,x2=1.5当x=6.5时,8-x=1.5当x=1.5时,8-x=6.5答:这两个数是6.5和1.5复习题21第3题答案解:设矩形的宽为x cm,则长为(x+3)cm由矩形面积公式可得x(x+3)=4整理,得x2+3x-4=0解得x1=-4整理,得x2+3x-4=0解得x1=-4,x2=1因为矩形的边长是正数,所以x=-4不符合题意,舍去所以x=1所以x+3=1+3=4答:矩形的长是4cm,宽是1cm复习题21第4题答案解:设方程的两根分别为x1,x2(1)x1+x2=5,x1∙x2=-10(2)x1+x2=-7/2,x1∙x2=1/2(3)原方程化为3x2-2x-6=0,∴x1+x2=2/3,x1∙x2=-2(4)原方程化为x2-4x-7=0,∴x1+x2=4,x1∙x2=-7复习题21第5题答案解:设梯形的伤低长为x cm ,则下底长为(x+2)cm,高为(x-1)cm,根据题意,得1/2 [x+(x+2)]∙(x-1)=8,整理,得x2=9,解得x1=3,x2=-3.因为梯形的低边长不能为负数,所以x=-3不符合题意,舍去,所以x=3,所以x+2=5,x-1=2.画出这个直角梯形如下图所示:复习题21第6题答案解:设这个长方体的长为5x cm,则宽为2 x cm,根据题意,得2x2+7-4=0,解得x1=1/2,x2=-4.因为长方体的棱长不能为负数,所以x=-4不合题意,舍去,所以x= 1/2.所以这个长方体的长为5x=1/2×5=2.5(cm),宽为2x=1(cm).画这个长方体的一个展开图如下图所示.(注意:长方体的展开图不唯一)复习题21第7题答案解:设应邀请x个球队参加比赛,由题意可知:(x-1)+(x-2)+…+3+2+1=15,即1/2 x(x-1)=15解得x1=6,x2=-5因为球队的个数不能为负数所以x=-5不符合题意,应舍去所以x=6答:应邀请6个球队参加比赛复习题21第8题答案解:设与墙垂直的篱笆长为x m,则与墙平行的篱笆为(20-2x)m根据题意,得x(20-2x)=50整理,得x2-10x+25=0解得x1=x2=5所以20-2x=10(m)答:用20m长的篱笆围城一个长为10m,宽为5m的矩形场地.(其中一边长为10m,另两边均为5m)复习题21第9题答案解:设平均每次降息的百分率变为x,根据题意得:2.25%(1-x)2=1.98%整理,得(1-x)2=0.88解得x1=1 -x2=1+因为降息的百分率不能大于1所以x=1+不合题意,舍去所以x=1-≈0.0619=6.19%答:平均每次降息的百分率约是6.19%复习题21第10题答案解:设人均收入的年平均增长率为x,由题意可知:12000(x+1)2=14520,解这个方程,得x+1=±x=-1或x=--1又∵x=--1不合题意,舍去∴x=(-1)×100%=10%答:人均收入的年平均增长率是10%。

数学配套练习册九年级上册答案人教版

数学配套练习册九年级上册答案人教版
是一个非负数
18(8分)L=13--------------------2分
S侧面积=65π---------------6分
19(8分)(1)画法正确 4分(其中无痕迹扣1分)
(2)π…….. 2分
或3π…….. 2分
20、(1)10个------------------2分
-----------------4分
〔数学配套练习册九年级上册答案人教版〕
一、选择:1-5 CBCCD 6-10 BABCB
二、填空:
11 、不唯一,如绕O顺时针旋转90度;或先下1,再右3;或先右3,再下1
12、3ቤተ መጻሕፍቲ ባይዱ0 13、8,7
14、 15、 16、
三、解答题:
17(6分)、化简得 .--------------------------4分
(2)不存在…….. 4分(其中过程3分)
21、(1)b=2或—2…….. 5分(其中点坐标求出适当给分)
(2) ……..5分(其中点坐标求出适当给分)
22、(1)证明完整…….. 4分
(2)菱形-------4分(写平行四边形3分)
(3)S梯形= ----------------4分
23、(1) k=4…….. 3分
(2)答案a=1,b=3------------5分(其中求出B(-2,-2)给3分)
(3) 提示:发现OC⊥OB,且OC=2OB
所以把三角形AOC绕O顺时针旋转90度,再把OA的像延长一倍得(2,-8)
再作A关于x轴对称点,再把OA的像延长一倍得(8,-2)
所以所求的E坐标为(8,-2)或(2,-8)各2分,共4分

人教版九年级数学上册课本练习题答案

人教版九年级数学上册课本练习题答案

第21章第4页练习第1题答案解:(1)5x2-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1 (2)4x2-81=0,二次项系数为4,一次项系数为0,常数项为-81(3)4x2+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25 (4)3x2-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1【规律方法:化为一般形式即把所有的项都移到方程的左边,右边化为0的行驶,在确定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包含前面的符号。

】第4页练习第2题答案解:(1)4x2=25, 4x2-25=0(2)x(x-2)=100,x2-2x-100=0(3)x∙1=(1-x)2-3x+1=0习题21.1第1题答案(1)3x2-6x+1=0,二次项系数为3,一次项系数-6,常数项为1(2)4x2+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81(3)x2+5x=0,二次项系数为1,一次项系数为5,常数项为0(4)x2-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1(5)x2+10=0,二次项系数为1,一次项系数为0,常数项为10(6)x2+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2习题21.1第2题答案(1)设这个圆的半径为Rm,由圆的面积公式得πR2=6.28,∴πR2-6.28=0(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x2-3x-18=0习题21.1第3题答案方程x2+x-12=0的根是-4,3习题21.1第4题答案设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x∙(x+1)=132,∴x2+x-132=0习题21.1第5题答案解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式得:(0.5-x)=0.06∴x2-0.5x+0.06=0习题21.1第6题答案解:设有n人参加聚会,根据题意可知:(n-1)+(n-2)+(n-3)+…+3+2+1=10,即(n(n-1))/2=10,n2-n-20=0习题21.2第1题答案(1)36x2-1=0,移项,得36x2=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x1=1/6,x2=-1/6(2)4x2=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x1=9/2,x2=-9/2(3)(x+5)2=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x1=0,x2=-10(4)x2+2x+1=4,原方程化为(x+1)2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x1=1,x2=-3习题21.2第2题答案(1)9;3(2)1/4;1/2(3)1;1(4)1/25;1/5习题21.2第3题答案(1)x2+10x+16=0,移项,得x2+10x=-16,配方,得x2+10x+52=-16+52,即(x+5)2=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x1=-2,x2=-8(2)x2-x-3/4=0,移项,得x2-x=3/4,配方,得x2-x=3/4,配方,得x2-x+1/4=3/4+1/4,即(x-1/2)2=1,开平方,得x- 1/2=±1,∴原方程的解为x1=3/2,x2=-1/2(3)3x2+6x-5=0,二次项系数化为1,得x2+2x-5/3=0,移项,得x2+2x=5/3,配方,得x2+2x+1=5/3+1,即(x+1)2=8/3,(4)4x2-x-9=0,二次项系数化为1,得x2-1/4x-9/4=0,移项,得x2-1/4 x= 9/4,配方,得x2-1/4x+1/64=9/4+1/64,即(x-1/8)2=145/64,习题21.2第4题答案(1)因为△=(-3)2-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根(2)因为△=(-24)2-4×16×9=0,所以与原方程有两个相等的实数根(3)因为△=-4×1×9=-4<0,因为△=(-8)2-4×10=24>0,所以原方程有两个不相等的实数根习题21.2第5题答案(1)x2+x-12=0,∵a=1,b=1,c=-12,∴b2-4ac=1-4×1×(-12)=49>0,∴原方程的根为x1=-4,x2=3.∴b2-4ac=2-4×1×(-1/4)=3>0,(3)x2+4x+8=2x+11,原方程化为x2+2x-3=0,∵a=1,b=2,c=-3,∴b2-4ac=22-4×1×(-3)=16>0,∴原方程的根为x1=-3,x2=1.(4)x(x-4)=2-8x,原方程化为x2+4x-2=0,∵a=1,b=4,c=-2,∴b2-4ac=42-4×1×(-2)=24>0,(5)x2+2x=0,∵a=1,b=2,c=0,∴b2-4ac=22-4×1×0=4>0,∴原方程的根为x1=0,x2=-2.(6) x2+2x+10=0,∵a=1,b=2,c=10,∴b2-4ac=(2)2-4×1×10=-20<0,∴原方程无实数根习题21.2第6题答案(1)3x2-12x=-12,原方程可化为x2-4x+4=0,即(x-2)2=0,∴原方程的根为x1=x2=2(2)4x2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x1=-6,x2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0∴x-1=0或3x-2=0∴原方程的根为x1=1,x2=2/3(4)(2x-1)2=(3-x)2,原方程可化为[(2x-1)+(3-x)][(2x-1)-(3-x)]=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0∴原方程的根为x1=-2,x2=4/3习题21.2第7题答案设原方程的两根分别为x1,x2(1)原方程可化为x2-3x-8=0,所以x1+x2=3,x1·x2=-8(2)x1+x2=-1/5,x1·x2=-1(3)原方程可化为x2-4x-6=0,所以x1+x2=4,x1·x2=-6(4)原方程可化为7x2-x-13=0,所以x1+x2=1/7,x1·x2=-13/7习题21.2第8题答案解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,根据题意得:1/2 x(x+5)=7,所以x2+5x-14=0,解得x1=-7,x2=2,因为直角三角形的边长为:答:这个直角三角形斜边的长为cm习题21.2第9题答案解:设共有x家公司参加商品交易会,由题意可知:(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x1=10,x2=-9,∵x必须是正整数,∴x=-9不符合题意,舍去∴x=10答:共有10家公司参加商品交易会习题21.2第10题答案解法1:(公式法)原方程可化为3x2-14x+16=0,∵a=3,b=-14,c=16,∴b2-4ac=(-14)2-4×3×16=4>0,∴x=[-(-14)±]/(2×3)=(14±2)/6,∴原方程的根为x1=2,x2=8/3解法2:(因式分解法)原方程可化为[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,即(2-x)(3x-8)=0,∴2-x=0或3x-8=0,∴原方程的根为x1=2,x2=8/3习题21.2第11题答案解:设这个矩形的一边长为x m,则与其相邻的一边长为(20/2-x)m,根据题意得:x(20/2-x)=24,整理,得x2-10x+24=0,解得x1=4,x2=6.当x=4时,20/2-x=10-4=6当x=6时, 20/2-x=10-6=4.故这个矩形相邻两边的长分别为4m和6m,即可围城一个面积为24m2的矩形习题21.2第12题答案解设:这个凸多边形的边数为n,由题意可知:1/2n(n-3)=20解得n=8或n=-5因为凸多边形的变数不能为负数所以n=-5不合题意,舍去所以n=8所以这个凸多边形是八边形假设存在有18条对角线的多边形,设其边数为x,由题意得:1/2 x(x-3)=18解得x=(3±)/2因为x的值必须是正整数所以这个方程不存在符合题意的解故不存在有18条对角线的凸多边形习题21.2第13题答案解:无论p取何值,方程(x-3)(x-2)-p2=0总有两个不相等的实数根,理由如下:原方程可以化为:x2-5x+6-p2=0△=b2-4ac=(-5)2-4×1×(6-p2)=25-24+4p2=1+4p2∵p2≥0,,1+4p2>0∴△=1+4p2>0∴无论P取何值,原方程总有两个不相等的实数根习题21.3第1题答案(1)x2+10x+21=0,原方程化为(x+3)(x+7)=0,或x+7=0,∴x1=-3,x2=-7.(2) x2-x-1=0∵a=1,b=-1,c=-1,b2-4ac=(-1)2-4×1×(-1)=5>0,(3)3x2+6x-4=0,∵a=3,b=6,c=-4,b2-4ac=62-4×4×3×(-4)=84>0,。

九年级上册(人教版)数学练习题含答案

九年级上册(人教版)数学练习题含答案

狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长人教版九年级上册数学测试《第二十一章二次根式》练习题一、填空题(每小题2分,共20分)221.在、、、、中是二次根式的个数有______个. 2.当= 时,二次根式取最小值,其最小值为。

3. 化简的结果是 4. 计算:= ·23 a 5. 实数在数轴上的位置如图所示:化简:a 2102.26. 已知三角形底边的边长是cm,面积是cm,则此边的高线长.6122若则.,201020108. 计算:122已知,则观察下列各式:,,,……,请你将334455猜想到的规律用含自然数的代数式表示出来是.n(n≥1)线二、选择题(每小题3分,共24分) 11. 下列式子一定是二次根式的是(). B. C. D.下列二次根式中,的取值范围是的是() 1狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长1A.2-x B.x+2 C.x-2 D. x-213. 实数在数轴上的对应点的位置如图所示,式子a,b,ca①②③④中c正确的有()A.1个B.2个C.3个D.4个 14. 下列根式中,是最简二次根式的是()222 A. B. C. D. 1下列各式中,一定能成立的是()2222A.B.22C. D.16.设的整数部分为,小数部分为,则的值为()b22A.B.C.D.222把根号外的因式移到根号内,得() m mA. B. C. D.2218. 若代数式的值是常数,则的取值范围是()A.B.C.D.或三、解答题(76分) 19. (12分)计算:212 (1) (2)2狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长11432820. (8分)先化简,再求值:,其中. 3狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长421. (8分)已知:,求:的值。

(y)22. (8分)如图所示,有一边长为8米的正方形大厅,它是由黑白完全相同的方砖密铺面成.求一块方砖的边长. 4狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长23. (8分)如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)C QABP 5狼专刊(喀夏2013)知识改变命运,优秀材料帮助你、我、他成长24. (10分)阅读下面问题:;;,……。

九年级数学练习册答案

九年级数学练习册答案

九年级数学练习册答案九年级数学练习册答案一:数学配套练习册答案配套练习册的作业最好当天完成。

下面要为大家分享的就是数学配套练习册答案,希望你会喜欢!数学配套练习册答案(一)有理数的乘法基础知识1~2:D;B;B4、-12;-105、1/86、07、(1)35(2)-360(3)-4.32(4)21.6(5)1/6(6)2/3(7)60(8)-2能力提升8、43℃9、4探索和研究10、1/100数学配套练习册答案(二) 科学记数法基础知识12345CBCBB6、(1)3.59×10;-9.909×107、68、6×109、3.75×1010、6.37×1011、4270012、1.29×10m13、(1)2×10(2)-6.9×1014、(1)-30000000(2)87400(3)-98000能力提升15、(1)1.08×10 (2)6.1×10(3)1.6×1016、(1)70×60×24×365=3.6792×10(次)(2)若人正常寿命60~80岁,则3.679×10×60 1亿,所以一个正常人一生的心跳次数能达到1亿次17、-2.7×1018、9.87×10 1.02×1019、3.1586×10s探索研究20、4.32×10个,4.32×10个数学配套练习册答案(三)相反数基础知识1~4:B;A;C;A5、14/9;16;36、1.1;27、3.68、-2.59、110、图略;-5 -3 -2 -1/3 0 1/3 2 3 5 11、(1)54(2)-3.6(3)-5/3(4)2/512、(1)-0.5(2)1/5(3)-2mn(4)a能力提升13、214、∵a-2=7,∴a=915、0探究研究16、3;互为相反数九年级数学练习册答案二:课堂精炼九年级上册数学答案一、选择题1.A2.D3.D4.D5.C6.B8.B9.B10.D二、填空题11.312.513.-114.=15.20三、应用题16.解:设我省每年产出的农作物秸杆总量为a,合理利用量的增长率是x,由题意得:30%a(1+x)2=60%a,即(1+x)2=2∴x1≈0.41,x2≈-2.41(不合题意舍去)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本练习册答案针对九年级数学下册,采用人教版教材,确保与学生所学内容完全对应。答案由专业教育团队根据教材知识点和难度精心编制,旨在帮助学生巩固课堂所学,提升数学解题能力。通过核对答案,学生可以及时发现并纠正自己在练习过程中的错误,从而更好地掌握数学知识和解题技巧。同时பைடு நூலகம்本答案也作为教师备课和辅导的重要参考,有助于教师更准确地了解学生的学习情况,提供更有针对性的指导。所有答案均经过严格审核,确保准确无误,为学生和教师提供可信赖的学习支持。
相关文档
最新文档