初中数学全等三角形截长补短

合集下载

八年级数学 全等三角形问题中常见的辅助线——截长补短法

八年级数学 全等三角形问题中常见的辅助线——截长补短法

CCBA全等三角形问题中常见的辅助线——截长补短法例1、如图,中,AB =2AC ,AD 平分,且AD =BD ,ABC ∆BAC ∠求证:CD ⊥AC例2、如图,AD ∥BC , AE , BE 分别平分∠DAB ,∠CBA ,CD 过点E ,求证;AB =AD +BC例3、如图,已知在内,,,P ,Q 分别在BC ,CA 上,ABC 060BAC ∠=040C ∠=并且AP ,BQ 分别是,的角平分线。

求证:BQ +AQ =AB +BPBAC ∠ABC ∠B A DO E CB A 例4、如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分,ABC ∠求证: 0180=∠+∠C A 例5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB -AC >PB -PC例6、已知中,,、分别平分和,、ABC ∆60A ∠= BD CE ABC ∠.ACB ∠BD CE交于点,试判断、、的数量关系,并加以证明.O BE CD BC例7、如图,点为正三角形的边所在直线上的任意一点(点除外),作M ABD AB B ,射线与外角的平分线交于点,与有怎样的数60DMN ∠=︒MN DBA ∠N DM MN 量关系?变式练习:如图,点为正方形的边上任意一点,且与外角的平分M ABCD AB MN DM ⊥ABC ∠线交于点,与有怎样的数量关系?N MD MN 例8、如图所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .求证:AE =BC +CE .NEB M A DMEDCB A NCD EB M ANMD CB A FEDC B A DN M CB A例9、已知:如图,ABCD 是正方形,∠FAD =∠FAE .求证:BE +DF =AE .例10、如图所示,是边长为2的正三角形,是顶角为的等腰三ABC ∆BDC ∆120 角形,以为顶点作一个的,点、分别在、上,求D 60 MDN ∠M N AB AC的周长.AMN ∆变式练习如图所示,是边长为4的正三角形,是顶角为的等腰三角形,以ABC ∆BDC ∆120为顶点作一个的,点、分别在、上,求的周长.D 60MDN ∠M N AB AC AMN ∆CE DB A例11、五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE例12、如图,在四边形ABCD中,AD∥BC,点E是AB上一个动点,若∠B=600,AB=BC,且∠DEC=60O,判断AD+AE与BC的关系并证明你的结论。

初二数学 全全等三角形截长补短知识归纳总结附解析

初二数学 全全等三角形截长补短知识归纳总结附解析

初二数学 全全等三角形截长补短知识归纳总结附解析一、全等三角形截长补短1.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.2.如图,在ABC 中,AB AC =,30ABC ∠<︒,D 是边BC 的中点,以AC 为边作等边三角形ACE ,且ACE △与ABC 在直线AC 的异侧,连接BE 交DA 的延长线于点F ,连接FC 交AE 于点M .(1)求证:FB FC =;(2)求证:FEA FCA ∠=∠;(3)若8FE =,2AD =,求AF 的长.3.阅读题:如图1,OM 平分AOB ∠,以O 为圆心任意长为半径画弧,交射线OA ,OB 于C ,D 两点,在射线OM 上任取一点E (点O 除外),连接CE ,DE ,可证OCE ODE △△≌,请你参考这个作全等的方法,解答下列问题:(1)如图2,在ABC 中,2A B ∠=∠,CD 平分ACB ∠交AB 于点D ,试判断BC 与AC 、AD 之间的数量关系;(2)如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,20AB =,8AD =,求ABC 的面积.4.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF .(1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC 交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.5.如图,△ABC 中,AB=AC ,∠EAF=12∠BAC ,BF ⊥AE 于E 交AF 于点F ,连结 CF .(1)如图 1 所示,当∠EAF 在∠BAC 内部时,求证:EF =BE +CF .(2)如图 2 所示,当∠EAF 的边 AE 、AF 分别在∠BAC 外部、内部时,求证:CF =BF +2BE .6.如图,四边形ABCD 为矩形,F 为对角线BD 上一点,过点F 作FE BD ⊥交AD 于点H ,交BA 的延长线于点E ,连接AF ,当FD FE =时,求证:2AH AB AF +=.7.如图,在正方形ABCD 中,点E 、F 均为中点,连接AF 、DE 交于点P ,连接PC ,证明:2PE PF PC +=.8.如图,在正方形ABCD 中,点F 是CD 的中点,点E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+.9.已知等腰ABC ∆中,AB AC =,点D 在直线AB 上,//DE BC ,交直线AC 于点E ,且BD BC =,CH AB ⊥,垂足为H .(1)当点D 在线段AB 上时,如图1,求证BH DE DH +=;(2)当点D 在线段BA 的延长线上时,如图2;当点D 在线段AB 延长线时,如图3,线段BH ,DE ,DH 又有怎样的数量关系?请直接写出你的猜想,不需要证明. 10.在平行四边形ABCD 中,DE 平分ADC ∠交BC 于点E ,连接AE .点O 是DE 的中点,连接CO 并延长交AD 于点F ,在CF 上取点G ,连接AG .(1)若4tan 3B =,5AB =,6BC =,求ABE △的周长. (2)若60B EAG ∠=∠=︒,求证:AF CG =.【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D作DM⊥AB于M,由 CA=CB,90ACB=︒,得ABC是等腰直角三角形,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;(2)如图2,设∠ACB=α,则∠CAB=∠CBA=90°−12α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA =40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB 上截取AK=AC,连接DK,根据全等三角形的性质得到∠ACB=∠AKD=100°,CD=DK,根据等腰三角形的性质得到DH=BH,于是得到结论.【详解】(1)如图1,过D作DM⊥AB于M,∴在ABC中,AC BC=,∴∠ABC=45°,∵∠ACB=90°,AD是角平分线,∴CD=MD,∴∠BDM=∠ABC=45°,∴BM=DM,∴BM=CD,在RT△ADC和RT△ADM中,CD MD AD AD ⎧⎨⎩==, ∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== ∴△CAD ≌△KAD (SAS ),∴∠ACD =∠AKD =α,∴∠BKD =180°−α,∵BK =BD , ∴∠BDK =180°−α,∴在△BDK 中,180°−α+180°−α+90°−12α=180°, ∴α=108°,∴∠ACB =108°;(3)如图3,在AB 上截取AH =AD ,连接DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD =∠CAD =20°,∴∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,由(1)得,△CAD ≌△KAD ,∴∠ACB =∠AKD =100°,CD =DK ,∴∠DKH =80°=∠DHK ,∴DK =DH =CD ,∵∠CBA =40°,∴∠BDH =∠DHK -∠CBA =40°,∴DH =BH ,∴BH =CD ,∵AB =AH +BH ,∴AB =AD +CD .【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.2.(1)见解析;(2)见解析;(3)4【分析】(1)利用AD 所在直线是BC 的垂直平分线,点F 在直线AD 上即可得出结论. (2)由ACE △是等边三角形,得AC=AE=AB 推得ABF FEA ∠=∠.易证ABF ≌ACF (SSS ),ABF FCA FEA ∠=∠=∠即可,(3)延长AD 至点P 处,使DP AD ,连接CP .先证直角三角形ADC ≌PDC△(SAS ),推出AC CP CE ==,ACD PCD ∠=∠.再证60EFC EAC ∠=∠=︒.求出,FBD 30FCD ∠=∠=︒.用ACD ∠表示30ECF ACD ∠=︒+∠.而30FCP ACD ∠=︒+∠,得ECF FCP ∠=∠.可证ECF △≌PCF (SAS ),可推得AF EF AP =-即可.【详解】(1)证明:∵AB AC =,D 是边BC 的中点,∴AD 所在直线是BC 的垂直平分线,又∵点F 在直线AD 上∴FB FC =.(2)证明:∵ACE △是等边三角形,∴60EAC ACE ∠=∠=︒,AC AE =.∵AB AC =,∴AB AE =,∴ABF FEA ∠=∠.由(1)可知,FB FC =,又∵AF AF =,AB AC =,∴ABF ≌ACF (SSS ),∴ABF FCA ∠=∠,∴FEA FCA ∠=∠. (3)解:如图,延长AD 至点P 处,使DP AD ,连接CP .∵AB AC =,D 是边BC 的中点,∴90ADC PDC ∠=∠=︒.∵ACE △是等边三角形,∴AC CE =,60EAC ∠=︒.∵AD DP =,ADC PDC ∠=∠,CD CD =,∴ADC ≌PDC △(SAS ),∴AC CP CE ==,ACD PCD ∠=∠.由(2)可知,FEA FCA ∠=∠,∵AMC FME ∠=∠,∴60EFC EAC ∠=∠=︒.由(1)可知,BF CF =, ∴()18060260BFD CFD ∠=∠=︒-︒÷=︒,∴906030FCD ∠=︒-︒=︒.∵FCA FCD ACD ∠=∠-∠,∴30FCA ACD ∠=︒-∠.∵ECF ECA FCA ∠=∠-∠,∴()303030ECF ECA ACD ECA ACD ACD ∠=∠-︒-∠=∠-︒+∠=︒+∠. ∵FCP FCD PCD ∠=∠+∠,∴30FCP ACD ∠=︒+∠,∴ECF FCP ∠=∠.∵FC FC =,CE CP =,∴ECF △≌PCF (SAS ),∴FE FP =,∴2FE FA AP AF AD =+=+,∴2822=4AF EF AD =-=-⨯.【点睛】本题考查线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,掌握线段垂直平分线性质,等边三角形性质,三角形全等判定与性质,会利用引辅助线构造三角形全等转化线与线关系,角与角关系来解决问题.3.(1)BC=AC+AD ;(2)△ABC 的面积为80.【分析】(1)在CB 上截取CE=CA ,则由题意可得AD=DE ,∠CED=∠A ,再结合∠A=2∠B 可得DE=BE ,从而得到BC=AD+AC ;(2)在AB 上截取AE=AD ,连结CE ,过C 作CF ⊥AB 于F 点,由题意可得EC=BC ,从而得到EF 的长度,再由勾股定理根据EC 、EF 的长度求得CF 的长度,最后根据面积公式可以得到解答 .【详解】解:(1)如图,在CB 上截取CE=CA ,则由题意得:△CAD ≌△CED ,∴AD=DE ,∠CED=∠A ,∵∠A=2∠B ,∴∠CED=2∠B ,又∠CED=∠B+∠EDB ,∴∠B+∠EDB=2∠B ,∴∠EDB=∠B ,∴DE=BE ,∴BC=BE+CE=DE+CE=AD+AC ;(2)如图,在AB 上截取AE=AD ,连结CE ,过C 作CF ⊥AB 于F 点,∴由题意可得:△CDA ≌△CEA ,∴EC=CD=BC=10,AE=AD=8,∵CF ⊥AB ,∴EF=FB=208622AB AE --==,∴8CF ==, ∴112088022ABC S AB CF =⨯=⨯⨯=. 【点睛】本题考查三角形全等的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的判定和性质、勾股定理是解题关键.4.(1)见解析;(2)EFAE BF =+;(3)222MN EN FM =+,见解析 【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解;(3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=, 又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+. (3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠,CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB ∠=∠,∴CFM MCF ∠=∠,∴MC MF =,同理可证:CN EN =,∴在Rt MCN △中,由勾股定理得:22222MN CN CM EN FM =+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键. 5.(1)见解析;(2)见解析【分析】(1)在EF 上截取EH BE =,由“SAS ”可证ACF AHF ∆≅∆,可得CF HF =,可得结论;(2)在BE 的延长线上截取EN BE =,连接AN ,由“SAS ”可证ACF ANF ∆≅∆,可得CF NF =,可得结论.【详解】解:证明:(1)如图,在EF 上截取EH BE =,连接AH ,EB EH =,AE BF ⊥,AB AH ∴=,AB AH =,AE BH ⊥,BAE EAH ∴∠=∠,AB AC =,AC AH ∴=,12EAF BAC ∠==∠ BAE CAF EAF ∴∠+∠=∠,BAE CAF EAH FAH ∴∠+∠=∠+∠,CAF HAF ∴∠=∠,在ACF ∆和AHF ∆中,AC AH CAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ACF AHF SAS ∴∆≅∆,CF HF ∴=,EF EH HF BE CF ∴=+=+;(2)如图,在BE 的延长线上截取EN BE =,连接AN ,AE BF ⊥,BE EN =,AB AC =,AN AB AC ∴==,AN AB =,AE BN ⊥,BAE NAE ∴∠=∠,12EAF BAC ∠==∠ 1(2)2EAF NAE BAC NAE ∴∠+∠=∠+∠ 12FAN CAN ∴∠=∠, FAN CAF ∴∠=∠,在ACF ∆和ANF ∆中,AC AN CAF NAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ACF ANF SAS ∴∆≅∆,CF NF ∴=,2CF BF BE ∴=+.【点睛】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键. 6.见解析【分析】过点F 作FN AF ⊥交AB 的延长线于点N ,先证明()EFN DFA ASA △≌△,可得N DAF ∠=∠,FN AF =,从而可以证明()AHF NBF ASA △≌△,可证得AH BN =,即可得证2AH AB +=.【详解】证明:如图,过点F 作FN AF ⊥交AB 的延长线于点N ,EF DF ⊥,EA AD ⊥,90E ABD ∴∠+∠=︒,90ADF ABD ∠+∠=︒,E ADF ∴∠=∠,90AFN EFD ∠=∠=︒,AFD EFN ∴∠=∠,在EFN 和DFA 中,,,,EFN DFA EF DF E ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EFN DFA ASA ∴△≌△,N DAF ∴∠=∠,FN AF =,又90AFN ∠=︒, 2AN AF ∴=,90AFN EFB ∠=∠=︒,AFH BFN ∴∠=∠,在AHF △和NBF 中,,,,AFH NFB AF NF HAF N ∠=∠⎧⎪=⎨⎪∠=∠⎩()AHF NBF ASA ∴△≌△,AH BN ∴=,2AH AB BN AB AN AF ∴+=+==.【点睛】本题考查了全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键. 7.见解析【分析】延长DE 至N ,使得EN PF =,连接CN ,先证明()ADF DCE SAS △≌△,可得AFD DEC ∠=∠,即CFP CEN ∠=∠,再通过证明()CEN CFP SAS △≌△,可得CN CP =,ECN PCF ∠=∠,即可证明NCP 是等腰直角三角形,即2PN PE NE PC =+=,从而得证2PE PF PC +=.【详解】证明:如图,延长DE 至N ,使得EN PF =,连接CN ,在正方形ABCD 中, E 、F 分别是BC 、CD 的中点,CE DF ∴=,在ADF 和DCE 中,,90,,AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩()ADF DCE SAS ∴△≌△,AFD DEC ∴∠=∠,CFP CEN ∴∠=∠,在CEN 和CFP 中,,,,CE CF CEN CFP EN PF =⎧⎪∠=∠⎨⎪=⎩()CEN CFP SAS ∴△≌△,CN CP ∴=,ECN PCF ∠=∠,90PCF BCP ∠+∠=︒,90ECN BCP NCP ∴∠+∠=∠=︒,NCP ∴△是等腰直角三角形, 2PN PE NE PC ∴=+=.即2PE PF PC +=.【点睛】本题考查了正方形的性质和全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键.8.见解析【分析】过F 作FH ⊥AE 于H ,得出FH=FD ,然后证明△FHE ≌△FCE ,再通过等价转换可证得AE=EC+CD .【详解】证明:过F 作FH ⊥AE 于H ,如图,∵AF 平分∠DAE ,∠D=90°,FH ⊥AE ,∴∠DAF=∠EAF ,FH=FD ,又∵DF=FC=FH ,FE 为公共边,∴△FHE ≌△FCE (HL ).∴HE=CE .∵AE=AH+HE ,AH=AD=CD ,HE=CE ,∴AE=EC+CD .【点睛】本题考查角平分线的性质,角平分线上的点到角的两边距离相等,也考查了等量代换的思想,属于比较典型的题目.9.(1)见解析;(2)图2:BH DE DH -=;图3:DE BH DH -=【分析】(1)在线段AH 上截取HM=BH ,连接CM ,CD ,证明△DMC ≌△DEC ,即可可得DE=DM 则结论可得;(2)当点D 在线段BA 延长线上时,在BA 的延长线上截取MH=BH ,连接CM ,DC ,由题意可证△BHC ≌△CHM ,可得∠B=∠CMB ,由题意可得∠B=∠AED ,即可证△DMC ≌△DEC ,可得DE=DM ,则可得DH=BH-DE ;当点D 在线段AB 延长线上时,在线段AB 上截取BH=HM ,连接CM ,CD ,由题意可证△BHC ≌△CHM ,可得∠B=∠CMB ,由题意可得∠B=∠AED ,即可证△DMC ≌△DEC ,可得DE=DM ,则可得DE=DH+BH ..【详解】解:(1)证明:在AH 上截取HM BH =,连接CM ,CD .∵CH AB ⊥,HM BH =∴CM BC =.∴B CMB ∠=∠.∵AB AC =∴B ACB ∠=∠.∵//DE BC ,∴ADE B AED ACB ∠=∠=∠=∠,CDE BCD ∠=∠.∴AED BMC ∠=∠.∴DEC DMC ∠=∠.∵BD BC =,∴BDC BCD EDC ∠=∠=∠.∵CD CD =,∴ΔΔCDM CDE ≅.∴DM DE =.∴DE BH DM HM DH +=+=.(2)当点D 在线段BA 延长线上时,DH=BH-DE如图:在BA 的延长线上截取MH=BH ,连接CM ,DC∵AB=AC∠ABC=∠ACB ,∵BD=BC,∴∠BDC=∠DCB∵DE∥BC∠E=∠ACB=∠B=∠EDB∵CH=CH,BH=MH,∠BHC=∠CHM∴△BHC≌△CHM∴∠B=∠M∴∠E=∠M∵∠MDC=∠B+∠DCB,∠EDC=∠BDC+∠EDB ∴∠MDC=∠EDC又∵∠E=∠M,DC=CD∴△DEC≌△DMC∴DE=DM∵DH=MH-DM∴DH=BH-DE当点D在线段AB延长线上时,DE=BH+DH如图在线段AB上截取BH=HM,连接CM,CDBH=HM,CH=CH,∠CHB=∠MHC=90°∴△MHC≌△BHC∴∠ABC=∠BMC∵AB=AC∴∠ABC=∠ACB,∵BD=BC∴∠BDC=∠BCD∵BC∥DE∴∠BCD=∠CDE,∠ACB=∠AED∴∠BDC=∠CDE,∠BMC=∠AED,且CD=CD ∴△CDM≌△CDE∴DE=DM∵DM=DH+HM∴DE=DH+BH.【点睛】本题考查了三角形综合题,等腰三角形的性质,全等三角形的性质和判定.添加恰当的辅助线证全等是本题的关键.10.(1)256+;(2)见解析【分析】(1)构建直角三角形,得出AH 、BH ,然后利用角平分线的性质以及平行四边形的性质,进行等量互换,即可得解;(2)首先在AB 上截取BQ BE =,然后判定DOF EOC ≌△△和AEQ GAF ≌△△,进行等量转换,即可得证.【详解】(1)过点A 作AH BC ⊥于点H ,如图所示:4tan 3B ∠=,5AB =, 4AH ∴=,3BH =DE 平分ADC ∠,12∠∠∴=,AD BC ∵∥,13∠∠∴=23∴∠=∠,5DC EC ∴==,1BE ∴=,2EH ∴=,25AE ∴=256ABE C ∴=+△;(2)在AB 上截取BQ BE =,连接EQ ,如图所示:CD CE =,CO DE ⊥,OD DE ∴=①AD BC ∵∥,DFO ECO ∴∠=∠,ADE CED ∠=∠②③由①②③得:DOF EOC ≌△△,DF CE ∴=,又AD BC =,AD DF BC CE ∴-=-,即AF BE =60EAG ∠=︒,60BAE FAG ∴∠+∠=︒,60DFC ∠=︒,60FGA FAG ∴∠+∠=︒,CD=CFBAE FGA ∴∠=∠④又120FAG AQE ∠=∠=︒,EQ AF =⑤⑥由④⑤⑥得:AEQ GAF ≌△△,AQ FG ∴=,又AB CF =,AB AQ CF FG ∴-=-,即BQ CG =,AF CG ∴=.【点睛】此题主要考查利用三角函数值构建直角三角形以及全等三角形的判定与性质,熟练掌握,即可解题.。

全等三角形之截长补短法

全等三角形之截长补短法

全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。

全等三角形-截长补短法

全等三角形-截长补短法

“截长补短”的思想在几何证明中的运用【学习目标】(30秒)用“截长补短法”解决线段的和、差问题。

【重、难点】(30秒)用“截长补短法”解决线段的和、差问题。

【操作思考】(2 分钟)1、画一画:线段AB=CD+EF线段CD=AB-EF线段 AB线段 CD线段 EF(通过让学生在纸上画出线段的和和差的图形来说明线段的截长补短)导学设计教学重难点用“截长补短法”解决线段的和、差问题。

教具准备三角尺、翻折全等三角形的纸张模型、多媒体课件.导学流程一、导入新课 , 揭示目标 (1 分钟 )线段 AB=10cm线段 CD=6cm线段 EF=4cm语言;画三条线段思考两条线段和与差能否等于第三条线段。

师生对照课件解读学习目标用“截长补短法”解决线段的和、差问题。

【归纳小结】( 2 分钟)截长补短法”:“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。

典题解析( 3+4+6 分钟)例 1、如图,在ABC 中, AD 是∠ BAC 的平分线,∠C=2 ∠B. 求证: AB=AC+CD思路点拨:延长AC 到 E,使 CE=CD, 连接 DE.二、归纳小结截长补短法:“ 截长” 就是将题中的某条线段截成题中的几条线段之和;“ 补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。

三.典题解析例 1、思路点拨:延长AC 到 E,使ACE=CD, 连接 DE. 或者在 AB 上截取 AG ,使 AG =AC ,连接 DG。

追问 ; 这个图形的基本图形是怎样的图形?请把它画出来。

CDB证明:在AB上取一点E,使AE=AC,连接DE,∵AD 平分∠ BAC∴ ∠ EAD=∠ CADAE=AC ,∠EAD= ∠ CAD AD=AD ;∴△ AED ≌△ ACD ( SAS)∴∠ AED= ∠ C=2∠ BED=CD例 2、已知,如图 1-1 ,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ ABC.展示分配:一、三小组展示,其他小组质疑,提问。

截长补短法全等三角形

截长补短法全等三角形

截长补短法全等三角形全等三角形是指两个三角形的对应边长和对应角度都相等的情况下,它们是完全相等的。

而截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。

在几何学中,截长补短法是一种常用的构造方法,可以用来证明两个三角形全等。

它的基本思想是通过截取和补充边长,使得两个三角形的对应边长和对应角度完全相等,从而达到全等的目的。

为了更好地理解截长补短法,我们可以通过一个具体的例子来说明。

假设我们需要证明两个三角形ABC和DEF全等,其中已知∠A=∠D,AB=DE,BC=EF。

根据截长补短法,我们可以进行如下的构造:1. 在BC的延长线上截取一段长度等于EF的线段,记为BC'。

2. 在AC'上截取一段长度等于DE的线段,记为AC。

通过以上的构造,我们可以得到以下的结论:1. 由于BC'=EF,且BC=EF,所以BC=BC',即三角形ABC和DEF的两条边相等。

2. 由于AC=DE,且∠A=∠D,所以三角形ABC和DEF的两个角相等。

3. 由于AB=DE,所以三角形ABC和DEF的第三条边相等。

根据截长补短法,我们可以得到三角形ABC和DEF全等的结论。

除了上述的例子,截长补短法还可以应用于更复杂的情况。

例如,当我们需要证明两个三角形全等时,已知两个角度相等并且其中一条边长相等,我们可以通过截长补短法来构造第二条边,从而得到全等的结果。

截长补短法在几何学中有着广泛的应用。

它不仅可以用来证明三角形的全等,还可以用来解决各种与全等三角形相关的问题。

通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。

截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。

通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。

在解决几何问题时,我们可以尝试使用截长补短法,从而更好地理解和应用全等三角形的性质。

三角形全等证明常用辅助线作法(倍长中线、截长补短)

三角形全等证明常用辅助线作法(倍长中线、截长补短)

倍长中线专题初中阶段三角形有三条重要的、也是最基本的线段:三角形的高线、中线、角平分线。

三种线段各有其重要信息反馈,就中线而言,它具有的功能:①必有相等的线段②必有相等的面积③必有倍长中线构成全等。

本专题只讨论倍长中线的问题。

【基本原理】:如图所示,AD是△ABC的中线,延长AD至E点,使DE=AD,得到△ADC≌△EDB。

口诀:图形有中线,倍长延中线,连接另一端,全等尽呈现。

【模型实例】:如图,在△ABC 中,AD 是BC 边的中线,E 是AD 上一点,连接BE 并延长交AC 于F 点,AF=EF ,求证:AC=BE证明: 如图所示。

延长AD 至G 点,使DG=AD ,连接BG 。

在△ADC 与△GDB 中,⎪⎩⎪⎨⎧=∠=∠=CD BD GDB ADC GD AD∴△ADC ≌△GDB∴BG =AC ,∠1=∠G又因为AF=EF∴∠1=∠2=∠3∴∠3=∠G∴BG=BE (等角对等边)∴AC=BE②证全等①作倍长中线 ③列出需要用的结果④转化替代 ⑤得出结果【练习1】:如图,在在△ABC中,D为BC的中点,求证:AD+>AB2AC【练习2】:如图,在△ABC中,D为B C的中点,且AD是角平分线。

求证:AB=AC【练习3】:AD是△ABC的中线,分别以AB边、AC边为直角边向外作等腰直角三角形,求证:EF=2AD【练习4】:在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于F点。

试探究线段AB与AF、CF之间的数量关系,并证明你的结论。

截长补短专题要证明两条线段之和等于第三条线段,可以采用“截长补短”法。

①截长法:把较长的线段截取一段等于两较短线中的一条;②补短法:把两条较短的线段补成一条,再证与长线段相等。

【模型实例】:如图,△ABC中,∠1=∠2,∠B=2∠C。

求证:AC=AB+BD 方法一:截长(利用角平分线构建全等三角形)分析:如图,在AC上截AE=AB,连接DE。

构造全等三角形之截长补短

构造全等三角形之截长补短
【例2】如图,AB∥CD,CE,BE分别平分∠BCD与∠CBA,点E在AD上.求证:BC=AB+CD、
【例3】如图,在正方形ABCD中,E为BC上的一点,F为CD上的一点,且∠EAF=45,求BE,DF,EF之间的数量关系.
【例4】如图,CE、CB分别就是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.
【过关检测】
1如图,已知△ABC中,AH⊥BC于H,∠C=35°,∠B=70°,求证AB+BH=HC.
2、在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于点P,BQ平分∠ABC交AC于点Q,且AP与BQ相交于点O、求证:AB+BP=BQ+AQ、
3、如图,△ABC就是正三角形,△BDC就是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究BM、MN、NC之间的关系,并说明理由.
构造全等三角形之截长补短
【笔记】
截长补短法作辅助线,适合于证明线段的与差、倍、分等类的题目(例:EF=DE+BF,CD=2CE)
截长:在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短:通过延长短边或旋转等方式使两短边拼合到一起。
【例1】如下图所示,△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD、
3、已知,如图3-1,∠1=∠2,P为BN上一点,且PD⊥BC于点D,AB+BC=2BD、求证:∠BAP+∠BCP=180°
4、如图,已知在△ABC中,AD就是BC边上的中线,E就是AD上一点,连接BE并延长交AC于点F,AF=EF,求证:AC=BE.
4、已知,AD就是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明.

全等三角形-截长补短法

全等三角形-截长补短法

全等三角形-截长补短法全等三角形截长补短法在初中数学的几何世界里,全等三角形是一个极为重要的概念。

而在解决与全等三角形相关的问题时,有一种巧妙的方法,那就是截长补短法。

首先,我们来理解一下什么是截长补短法。

简单来说,截长就是在较长的线段上截取一段等于较短的线段;补短则是将较短的线段延长,使其与较长的线段相等。

这种方法的核心思想是通过对线段的巧妙处理,构造出全等三角形,从而解决问题。

为了更清晰地理解截长补短法,我们来看几个具体的例子。

例 1:已知在△ABC 中,∠B = 2∠C,AD 平分∠BAC 交 BC 于点D。

求证:AB + BD = AC证明:在 AC 上截取 AE = AB,连接 DE因为 AD 平分∠BAC,所以∠BAD =∠EAD又因为 AD = AD,AB = AE所以△ABD ≌△AED(SAS)所以 BD = ED,∠B =∠AED因为∠AED =∠C +∠EDC,∠B = 2∠C所以 2∠C =∠C +∠EDC所以∠C =∠EDC所以 ED = EC所以 AB + BD = AE + EC = AC这就是通过截长的方法,成功构造出全等三角形,解决了问题。

再来看一个补短的例子。

例 2:在△ABC 中,AB > AC,∠1 =∠2,P 为 AD 上任意一点。

求证:AB AC > PB PC证明:延长 AC 至 E,使 AE = AB,连接 PE因为 AB = AE,∠1 =∠2,AP = AP所以△ABP ≌△AEP(SAS)所以 PB = PE在△PEC 中,EC > PE PC因为 EC = AE AC = AB AC所以 AB AC > PB PC通过补短,将线段之间的关系转化为三角形三边的关系,从而得出结论。

截长补短法在解决一些较为复杂的几何问题时,往往能起到意想不到的效果。

比如在一些证明线段和差关系、角的大小关系等问题中,它可以帮助我们找到解题的突破口。

然而,要熟练运用截长补短法,并非一蹴而就。

初中数学全全等三角形截长补短知识归纳总结附解析

初中数学全全等三角形截长补短知识归纳总结附解析

初中数学全全等三角形截长补短知识归纳总结附解析一、全等三角形截长补短1.(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点,且∠EAF=60°,请探究图中线段BE,EF,FD之间的数量关系是什么?小明探究此问题的方法是:延长FD到点G,使DG=BE,连结AG.先证明△ABE≌△ADG,得AE=AG;再由条件可得∠EAF=∠GAF,证明△AEF≌△AGF,进而可得线段BE,EF,FD之间的数量关系是.(2)拓展应用:如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠BAD.问(1)中的线段BE,EF,FD之间的数量关系是否还成立?若成立,∠EAF=12请给出证明;若不成立,请说明理由.2.如图,△ABC为等边三角形,直线l经过点C,在l上位于C点右侧的点D满足∠BDC=60°.(1)如图1,在l上位于C点左侧取一点E,使∠AEC= 60°,求证:△AEC≌△CDB;(2)如图2,点F、G在直线l上,连AF,在l上方作∠AFH =120°,且AF=HF,∠HGF =120°,求证:HG+BD=CF;(3)在(2)的条件下,当A、B位于直线l两侧,其余条件不变时(如图3),线段HG、CF、BD的数量关系为.3.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.4.已知,90POQ ∠=,分别在边OP ,OQ 上取点A ,B ,使OA OB =,过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C .点E ,F 分别是射线OP ,OQ 上动点,连接CE ,CF ,EF . (1)求证:OA OB AC BC ===;(2)如图1,当点E ,F 分别在线段AO ,BO 上,且45ECF ∠=时,请求出线段EF ,AE ,BF 之间的等量关系式;(3)如图2,当点E ,F 分别在AO ,BO 的延长线上,且135ECF ∠=时,延长AC交EF 于点M ,延长BC 交EF 于点N .请猜想线段EN ,NM ,FM 之间的等量关系,并证明你的结论.5.问题提出,如图1所示,等边△ABC 内接于⊙O ,点P 是AB 上的任意一点,连结PA ,PB ,PC .线段PA 、PB 、PC 满足怎样的数量关系?(尝试解决)为了解决这个问题,小明给出这样种解题思路:发现存在条件CA=CB ,∠ACB=60°,从而将CP 绕点逆时针旋转60°交PB 延长线于点M ,从而证明△PAC ≌△MBC ,请你完成余下思考,并直接写出答案:PA 、PB 、PC 的数量关系是 ; (自主探索)如图2所示,把原问题中的“等边△ABC”改成“正方形ABCD”,其余条件不变,①PC 与PA ,PB 有怎样的数量关系?请说明理由:②PC+PD 与PA ,PB 的数量关系是 .(直接写出结果)(灵活应用)把原问题中的“等边△ABC”改成“正五边形ABCDE”,其余条件不变,则PC+PD+PE 与PA+PB 的数量关系是 .(直接写出结果)6.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).7.如图,在正方形ABCD 中,点E 、F 均为中点,连接AF 、DE 交于点P ,连接PC ,证明:2PE PF PC +=.8.如图,在等边△ABC 中,BD =CE ,连接AD 、BE 交于点F . (1)求∠AFE 的度数; (2)求证:AC•DF =BD•BF ;(3)连接FC ,若CF ⊥AD 时,求证:BD =12DC .9.如图1,在正方形ABCD 中,点P 为AD 延长线上一点,连接AC 、CP ,过点C 作CF ⊥CP 交于C ,交AB 于点F ,过点B 作BM ⊥CF 于点N ,交AC 于点M . (1)若AP=78AC ,BC=4,求S △ACP ; (2)若CP ﹣BM=2FN ,求证:BC=MC ;(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且A B≠BC ,AC=AP ,取CP 中点E ,连接EB ,交AC 于点O ,猜想:∠AOB 与∠ABM 之间有何数量关系?请说明理由.10.已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC ,求证:BC =AC +CD .【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析. 【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题. 【详解】 (1)EF =BE +DF , 理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD ︒=⎧⎪∠=∠=⎨⎪=⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF , 在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ; 故答案为:EF =BE +DF . (2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°, ∴∠B =∠ADG , 在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△ADG (SAS ), ∴AE =AG ,∠BAE =∠DAG , ∵∠EAF =12∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF , 在△AEF 和△GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴△AEF ≌△AGF (SAS ), ∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF=BE+DF.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.2.(1)证明见解析;(2)证明见解析;(3)HG=CF+BD.【分析】(1)先利用角的和差证明∠BCD=∠EAC,然后利用AAS即可证明△AEC≌△CDB;(2)在l上C点左侧取一点E,使∠AEC=60°,连接AE,依次证明△AEC≌△CDB和△HGF≌△FEA即可得出结论;(3)在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,依次证明△ACE≌△CBM和△HGF≌△FEA即可得出结论.【详解】解:(1)证明:∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∴∠BCD+∠ACE=120°,∵∠AEC=60°,∴∠ACE+∠EAC=120°,∴∠BCD=∠EAC,在△AEC和△CDB中∵60 AEC BDCBCD EACAC BC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△AEC≌△CDB(AAS);(2)证明:如图2,在l上C点左侧取一点E,使∠AEC=60°,连接AE,由(1)知:△AEC≌△CDB,∴BD=CE,∵∠AEC=60°,∴∠AEF =120°,∵∠AFH =120°,∴∠AFE+∠FAE=∠AFE+∠GFH=60°,∴∠FAE=∠GFH,∵∠HGF=∠AEF=120°,AF=FH,∴△HGF≌△FEA(AAS),∴GH=EF,∴CF=EF+CE=HG+BD;(3)解:HG=CF+BD,理由是:如图3,在l上位于C点右侧取一点E,使∠AED=60°,连接AE,在l上取一点M,使BM=BD,∵∠BDC=60°,∴△BDM是等边三角形,∴∠BMD=60°,∵∠AED=60°,∴∠AEC=∠CMB=120°,∵∠ACB=60°,∴∠ACE+∠BCE=∠ACE+∠CAE=60°,∴∠CAE=∠BCE,∵AC=BC,∴△ACE≌△CBM(AAS),∴CE=BM=BD,由(2)可证△HGF≌△FEA(AAS),∴GH=FE,∵EF=CF+CE∴HG=CF+BD.故答案为:HG=CF+BD.【点睛】本题考查等边三角形的性质和判定,全等三角形的性质和判断,三角形外角的性质等.掌握一线三等角的模型,能借助一线三等角证明对应角相等是解题关键.3.(1)EF=BE+DF;(2)结论EF=BE+DF仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;(2)延长FD到点G,使DG=BE.连结AG,即可证明ABE≌ADG,可得AE=AG,再证明AEF≌AGF,可得EF=FG,即可解题;(3)连接EF,延长AE、BF相交于点C,然后与(2)同理可证.【详解】解:(1)EF=BE+DF,证明如下:DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG , ∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF , 在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ; 故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG , ∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF , ∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°, ∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°, ∴符合探索延伸中的条件, ∴结论EF =AE +BF 成立,即EF =2×(45+60)=210(海里). 答:此时两舰艇之间的距离是210海里. 【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF ≌△AGF 是解题的关键. 4.(1)见解析;(2)EF AE BF =+;(3)222MN EN FM =+,见解析【分析】(1)连接AB ,通过90POQ ∠=,OA OB =得到AOB 为等腰直角三角形,进而得到45OAB OBA ∠=∠=,根据过点A 平行于OQ 的直线与过点B 平行于OP 的直线相交于点C ,可推出45CBA ∠=,45BAC ∠=,最后通过证明AOB ≌ACB △,可以得出结论;(2)在射线AP 上取点D ,使AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合45ECF ∠=,90ACB ∠=推导证明ECD ≌ECF △,得到ED EF =,最后等量代换线段即可求解; (3)延长AO 到点D ,使得AD BF =,连接CD ,通过证明CAD ≌CBF ,得到CD CF =,ACD BCF ∠=∠,再结合135ECF ∠=,推导证明ECD ≌ECF △,得到D CFM ∠=∠,根据D CFB ∠=∠,等量代换可知CFM CFB ∠=∠,又因为//AC OQ ,推出MCF CFB ∠=∠,进而得到MC MF =,同理可证CN EN =,最后根据勾股定理即可求解.【详解】解:(1)证明:连接AB .90POQ ∠=,OA OB =,∴AOB 为等腰直角三角形,∴45OAB OBA ∠=∠=,又//BC OP ,且90POQ ∠=,∴BC OQ ⊥,∴90CBF ∠=,∴45CBA ∠=,同理,45BAC ∠=,在AOB 与ACB △中OAB CAB AB ABOBA CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴AOB ≌ACB △()ASA ,∴90AOB ACB ∠=∠=,OA OB AC BC ===;(2)如图1,在射线AP 上取点D ,使AD BF =,连接CD .在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,45ECF ∠=,90ACB ∠=,∴45ACE BCF ∠+∠=,∴45ACE ACD ECD ∠+∠=∠=,∴ECD ECF ∠=∠,在ECD 与ECF △中CD CF ECD ECF CE CE =⎧⎪∠=∠⎨⎪=⎩∴ECD ≌ECF △()SAS ,∴ED EF =,又ED AD AE BF AE =+=+,∴EF AE BF =+. (3)222MN EN FM =+.证明如下:如图2,延长AO 到点D ,使得AD BF =,连接CD .∴90CAD CBF ∠=∠=,在CAD 与CBF 中CA CB CAD CBF AD BF =⎧⎪∠=∠⎨⎪=⎩,∴CAD ≌CBF ()SAS ,∴CD CF =,ACD BCF ∠=∠,90ACD DCB ∠+∠=,∴90BCF DCB DCF ∠+∠==∠,∴90FCD BCA ∠=∠=,135ECF ∠=,∴36090135135ECD ∠=--=,∴ECF ECD ∠=∠,在ECD 与ECF △中EC EC ECD ECF CD CF =⎧⎪∠=∠⎨⎪=⎩,∴ECD ≌ECF △()SAS ,∴D CFM ∠=∠, CAD ≌CBF ,∴D CFB ∠=∠,∴CFM CFB ∠=∠,//AC OQ ,∴MCF CFB ∠=∠,∴CFM MCF ∠=∠,∴MC MF =,同理可证:CN EN =,∴在Rt MCN △中,由勾股定理得:22222MN CN CM EN FM =+=+.【点睛】本题综合考查了全等三角形的性质和判定,勾股定理以及正方形的有关知识,通过添加辅助线构造全等三角形,通过证明全等三角形得到线段之间的关系是解题的关键.5.【尝试解决】PA+PB=PC ;【自主探索】①PC PA =;理由见解析;②1)()PC PD PA PB +=+;【灵活应用】2)()PC PD PE PA PB ++=+.【分析】尝试解决:利用旋转性质证明△PAC ≌△MBC ,得到PA=BM ,得到PM 等于PB 与PA 的和,再证明△PCM 是等边三角形,得到PM 等于PC ,即可得到结果;自主探索:①在PC 上截取QC=PA ,证出△CBQ 全等于△ABP ,得到△PBQ 是等腰直角三角形,PQ 等于PB 倍,即可得到结果;②同①方法,即可得到PD 与PA 和PB 的关系,即可求出PC+PD 与PA 和PB 的关系; 灵活应用:类比(自主探索)中的方法证明PC 与PA 和PB 的关系,再用同样的方法证明PE 与PA 和PB 的关系,构造△CDM 全等于△CBP ,得到PD 与PC 的关系,进一步得到PD 与PA 和PB 的关系,最终求出PD+PE+PC 的和即可得到与PA 和PB 的关系.【详解】尝试解决:PA+PB=PC ;证明:因为∠ACP+∠PCB=60°,∠MCB+∠PCB=60°,∴∠ACP=∠MCB ,又∵CP=CM ,AC=MC ,∴△ACP ≌△BCM ,所以PA=BM ,∠CBM=∠CAP ,∵四边形APBC 内接于圆O ,∴∠CAP+∠CBP=180°,∴∠CBM+∠CBP=180° ,∴P 、B 、M 三点共线,∴△PCM 是等边三角形,∴PM=PC ,∴PC=PM=PB+BM=PB+PA ;自主探索:①PC 与PA 、PB 的数量关系为2PC PA PB =+;理由:截取CQ=PA ,,如图,∵四边形ABCD 是正方形,∴BC=AB ,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵PA=CQ ,∠BCQ=BAP ,BC=AB∴△BCQ ≌△BAP ,∴∠CBQ=∠ABP ,BQ=BP , ∵∠CBQ+∠ABQ=90°,∴90ABP ABQ ∠+∠=︒,∴△PBQ 是等腰直角三角形,∴2PB ,∴2PC CQ PQ PA PB =+=+;②21)()PC PD PA PB +=+证明:在PD 上截取DH=PB ,∵DH=PB ,∠ADH=∠ABP ,AD=AB∴△ADH ≌△ABP∴∠DAH=∠BAP ,AH=AP ,∵∠DAH+∠HAP=90°, ∴∠BAP+∠HAP=90°,∴△HAP 是等腰直角三角形,∴2,∴2PA ,∴21)()PC PD PA PB +=+.灵活应用:52)()PC PD PE PA PB ++=+.证明:在PC 上截取FC=PA ,∵五边形ABCDE 是正五边形,∴BC=AB=CD=DE=AE ,∠ABC=∠EAB=108°,∵PA=CF ,AB=BC ,∠FCB=∠BAP ,∴△BAP ≌△BCF ,∴BF=PB ,∠CBF=∠ABP ,∵∠CBF+∠FBA=108°,∴∠ABP+∠FBA=108°,∴△FBP 是顶角为108°的等腰三角形,∴15+PB , ∴15+PB+PA , 同理可证15+PA+PB , 延长PD 至点M 使DM=PB ,∵∠MDC+∠CDP=180°,∠CDP+∠PBC=180°,∴∠CDM=∠CBP又∵CD=BC ,∴△CDM ≌△CBP∴CM=CP ,∠MCD=∠BCP ,又∵∠PCB+∠PCD=108°,∴∠MCD+∠PCD=108°,∴△MCP 是顶角108°的等腰三角形,∴PM=152+PC , ∴15+PC-PB , ∴PC+PD+PE 15+15+35+15+PB+PA )+152+PA=()()2525PA PB +++=()()25PA PB ++ 【点睛】 本题考查旋转性质、圆的有关性质、圆内接四边形、正五边形有关性质、三角形全等的相关性质和判定,综合性强,难度较大是一道好题,属中考压轴题型.6.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键. 7.见解析延长DE 至N ,使得EN PF =,连接CN ,先证明()ADF DCE SAS △≌△,可得AFD DEC ∠=∠,即CFP CEN ∠=∠,再通过证明()CEN CFP SAS △≌△,可得CN CP =,ECN PCF ∠=∠,即可证明NCP 是等腰直角三角形,即2PN PE NE PC =+=,从而得证2PE PF PC +=.【详解】证明:如图,延长DE 至N ,使得EN PF =,连接CN ,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,CE DF ∴=,在ADF 和DCE 中,,90,,AD CD ADF DCE DF CE =⎧⎪∠=∠=︒⎨⎪=⎩()ADF DCE SAS ∴△≌△,AFD DEC ∴∠=∠,CFP CEN ∴∠=∠,在CEN 和CFP 中,,,,CE CF CEN CFP EN PF =⎧⎪∠=∠⎨⎪=⎩()CEN CFP SAS ∴△≌△,CN CP ∴=,ECN PCF ∠=∠,90PCF BCP ∠+∠=︒,90ECN BCP NCP ∴∠+∠=∠=︒,NCP ∴△是等腰直角三角形,2PN PE NE PC ∴=+=.即2PE PF PC +=.本题考查了正方形的性质和全等三角形的综合问题,掌握全等三角形的性质以及判定定理是解题的关键.8.(1)60°;(2)证明见解析;(3)证明见解析【分析】(1)证明△ABD ≌△BCE (SAS ),得出∠BAD =∠CBE ,则∠BFD =∠AFE =∠ABC =60°; (2)证明△ADB ∽△BDF ,得出=AB BD BF DF ,由AB =AC 可得出结论; (3)延长BE 至H ,使FH =AF ,连接AH ,CH ,证明△BAF ≌△CAH (SAS ),得出∠ABF =∠ACH ,CH =BF ,可证明AF ∥CH ,得出1=2BF BD FH CD =,进而即可得出答案. 【详解】解:(1)∵△ABC 是等边三角形,∴AB =AC =BC ,∠ABD =∠BCE =60°,在△ABD 和△BCE 中, ABD BC AB BC BD CE E =⎧=∠∠⎪⎨⎪⎩=,∴△ABD ≌△BCE (SAS ),∴∠BAD =∠CBE ,∵∠ADC =∠CBE+∠BFD =∠BAD+∠ABC ,∴∠BFD =∠AFE =∠ABC =60°;(2)证明:由(1)知∠BAD =∠DBF ,又∵∠ADB =∠BDF ,∴△ADB ∽△BDF ,∴=AB BD BF DF, 又AB =AC , ∴=AC BD BF DF, ∴AC•DF =BD•BF ;(3)证明:延长BE 至H ,使FH =AF ,连接AH ,CH ,由(1)知∠AFE =60°,∠BAD =∠CBE ,∴△AFH 是等边三角形,∴∠FAH =60°,AF =AH ,∴∠BAC =∠FAH =60°,∴∠BAC ﹣∠CAD =∠FAH ﹣∠CAD ,即∠BAF =∠CAH ,在△BAF 和△CAH 中,BAF CA AB AC AF AH H =⎧=∠∠⎪⎨⎪⎩=,∴△BAF ≌△CAH (SAS ),∴∠ABF =∠ACH ,CH =BF ,又∵∠ABC =∠BAC ,∠BAD =∠CBE ,∴∠ABC ﹣∠CBE =∠BAC ﹣∠BAD ,即∠ABF =∠CAF ,∴∠ACH =∠CAF ,∴AF ∥CH ,∵∠AFC =90°,∠AFE =60°,∴CF ⊥CH ,∠CFH =30°,∴FH =2CH ,∴FH =2BF ,∵FD ∥CH , ∴1=2BF BD FH CD =, ∴BD =12DC . 【点睛】本题考查等边三角形的性质、全等三角形的判定及其性质、相似三角形的判定及其性质,解题的关键熟练掌握全等三角形的判定方法和相似三角形的判定方法.9.(1);(2)证明见解析;(3)∠AOB=3∠ABM ,理由见解析.【分析】(1)由正方形的性质得出AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,由勾股定理求出AC ,得出AP ,即可求出S △ACP ;(2)在CF 上截取NG=FN ,连接BG ,则CF ﹣CG=2FN ,证出∠BCF=∠DCP ,由ASA 证明△BCF ≌△DCP ,得出CF=CP ,证出CG=BM ,由SAS 证明△ABM ≌△BCG ,得出∠AMB=∠BGC ,因此∠BMC=∠BGF ,由线段垂直平分线的性质得出BF=BG ,得出∠BFG=∠BGF ,因此∠BMC=∠CBM ,即可得出结论;(3)连接AE ,先证出∠BCA=2∠PAE ,再证明A 、D 、E 、C 四点共圆,由圆周角定理得出∠DCP=∠PAE ,得出∠BCF=∠PAE ,证出∠BCA=2∠ABM ,然后由三角形的外角性质即可得出结论.【详解】解:(1)∵四边形ABC是正方形,∴AD∥BC,AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,∴,∴AP=78AC=78,∴S△ACP=12AP×CD=12×2;(2)在CF上截取NG=FN,连接BG,如图1所示:则CF﹣CG=2FN,∵CF⊥CP,∴∠PCF=90°,∴∠BCF=∠DCP,在△BCF和△DCP中,ABC CDP BC DCBCF DCP∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCF≌△DCP(ASA),∴CF=CP,∵CP﹣BM=2FN,∴CG=BM,∵∠ABC=90°,BM⊥CF,∴∠ABM=∠BCG,∠BFG=∠CBM,在△ABM和△BCG中,AB BCABI CBG BM CG=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△BCG(SAS),∴∠AMB=∠BGC,∴∠BMC=∠BGF,∵GN=FN,BM⊥CF,∴BF=BG,∴∠BFG=∠BGF,∴∠BMC=∠CBM,∴BC=MC;(3)∠AOB=3∠ABM;理由如下:连接AE,如图2所示:∵AC=AP,E是CP的中点,∴AE⊥CP,∠PAE=∠CAE,∵AD∥BC,∴∠BCA=∠PAC=2∠PAE,∵CF⊥CP,∴∠PCF=90°,∴∠BCF=∠DCP,∵∠ADC=∠AEC=90°,∴A、D、E、C四点共圆,∴∠DCP=∠PAE,∴∠BCF=∠PAE,又∵∠ABM=∠BCF,∴∠ABM=∠BCF=∠PAE,∴∠BCA=2∠ABM,∵∠AOB=∠BCF+∠BCA,∴∠AOB=3∠ABM.【点睛】本题是四边形综合题目,考查了正方形的性质、勾股定理、全等三角形的判定与性质、线段垂直平分线的性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要通过作辅助线两次证明三角形全等才能得出结论.10.见解析【分析】在线段BC上截取BE=BA,连接DE.则只需证明CD=CE即可.结合角度证明∠CDE=∠CED.【详解】证明:在线段BC上截取BE=BA,连接DE.∵BD平分∠ABC,∴∠ABD=∠EBD1∠ABC.2在△ABD和△EBD中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBD .(SAS ) ∴∠BED =∠A =108°,∠ADB =∠EDB . 又∵AB =AC ,∠A =108°,∠ACB =∠ABC 12=⨯(180°﹣108°)=36°, ∴∠ABD =∠EBD =18°. ∴∠ADB =∠EDB =180°﹣18°﹣108°=54°. ∴∠CDE =180°﹣∠ADB ﹣∠EDB =180°﹣54°﹣54°=72°.∴∠DEC =180°﹣∠DEB =180°﹣108°=72°.∴∠CDE =∠DEC .∴CD =CE .∴BC =BE +EC =AB +CD .【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定,添加恰当辅助线是本题的关键.。

三角形全等之截长补短 (整理)

三角形全等之截长补短 (整理)

三角形全等之截长补短 (整理)三角形全等之截长补短一、知识点概述截长补短是指在几何题目中,当出现线段和的情况时,可以考虑通过截取一段线段并加上一段等于原线段的线段,将原问题转化为线段等量的问题。

二、例题讲解1.已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.证明:可以通过截长法和补短法两种方法证明。

截长法:在AC上截取AF=AB,连接DF。

在△ABD和△AFD中,根据SAS准则可以得到△ABD≌△AFD,进而得到∠B=∠AFD,BD=FD。

又因为∠B=2∠C,所以∠AFD=2∠C。

因为∠AFD是△DFC的一个外角,所以∠AFD=∠C+∠XXX。

因为∠1=∠2,所以∠XXX∠C,进而得到∠AFD=2∠C=∠B。

因此,根据三角形内角和定理,可以得到∠A=180°-∠B-∠C=∠AFD+∠XXX∠C=2∠C+∠C+∠C=4∠C。

在△ABC中,∠B=2∠C,所以∠A=60°。

在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC (AAS),进而得到AE=AC。

因此,AC=AB+BD。

补短法:延长AB到E,使BE=BD,连接DE。

因为BE=BD,所以∠XXX∠BDE。

因为∠ABD是△XXX的一个外角,所以∠ABD=∠E+∠BDE=2∠E。

因为∠ABD=2∠C,所以∠XXX∠C。

在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC(AAS),进而得到AE=AC。

因此,XXX。

2.如图,在四边形ABCD中,∠A=∠B=90°,点E为AB边上一点,且DE平分∠ADC,CE平分∠BCD.求证:XXX.证明:在△ADE和△BCE中,因为∠A=∠B=90°,所以AD=BC。

因为DE平分∠ADC,CE平分∠BCD,所以∠AED=∠DEC,∠XXX∠XXX。

因为∠AED+∠BCE=180°,所以∠DEC+∠CDE=180°。

全等三角形截长补短法的经典例题

全等三角形截长补短法的经典例题

全等三角形截长补短法的经典例题(最新版)目录1.截长补短法的概念2.截长补短法的两种方法:截长法和补短法3.截长补短法在全等三角形中的应用4.经典例题解析4.1 例题一4.2 例题二4.3 例题三5.截长补短法的优点和意义正文一、截长补短法的概念截长补短法是一种在几何问题中添加辅助线的方法,主要用于解决全等三角形的问题。

截长指的是在较长的线段上截取一段较短的线段,补短则是在较短线段上补一段线段,使其和较长的线段相等。

截长补短法的目的是将问题合理地转化为更容易解决的形式,从而简化结论。

二、截长补短法的两种方法截长补短法包括两种方法:截长法和补短法。

1.截长法:在较长的线段上截取与较短线段相等的线段。

2.补短法:在较短线段上补一段线段,使其和较长的线段相等。

三、截长补短法在全等三角形中的应用在全等三角形的证明中,截长补短法是非常常用的一种方法。

通过添加适当的辅助线,可以将问题转化为更容易证明的形式,从而得出结论。

下面通过几个经典例题来具体讲解截长补短法在全等三角形中的应用。

四、经典例题解析1.例题一已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。

解:通过截长补短法,我们可以在 BC 上截取 BE=CF,连接 AD 和 CE。

由于 AB=DE,BC=EF,且∠ABC=∠DEF,根据三角形全等的 SAS 条件,可得三角形 ABC≌三角形 DEF。

2.例题二已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。

解:这次我们可以在 AB 上截取 AD=DF,连接 CE 和 BD。

同样地,由于 AB=DE,BC=EF,且∠ABC=∠DEF,根据三角形全等的 SAS 条件,可得三角形 ABC≌三角形 DEF。

3.例题三已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。

第08讲全等三角形中“截长补短”模型

第08讲全等三角形中“截长补短”模型

第08讲全等三角形中“截长补短”模型(核心考点讲与练)【基础知识】1、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。

3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种做法一般遇到证明三条线段之间关系是常用.如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图2,在EF上截取EG=AB,在证明GF=CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH=EF即可.【考点剖析】1、如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD解析:在AB上取一点E,使AE=AC,连接DE,∵AE=AC,∠1=∠2,AD=AD∴△ACD≌△AED∴CD=DE,∠C=∠3∵∠C=2∠B∴∠3=2∠B=∠4+∠B∴∠4=∠B,∴DE=BE,CD=BE∵AB=AE+BE∴AB=AC+CD2、如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°,求证:AE=AD+BE.解析:如图,在EA上取点F,使EF=BE,连接CF,∵CE⊥AB∴CF=CB∠CFB=∠B∵∠AFC+∠C FB=180°,∠D+∠B=180°∴∠D=∠AFC∵AC平分∠BAD即∠DAC=∠FAC在△ACD和△ACF中∠D=∠AFC∠DAC=∠FACAC=AC∴ACD≌△ACF(AAS)∴AD=AF∴AE=AF+EF=AD+BE3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.证明:在BC 上截取BF =BE ,连接OF .∵BD 平分∠ABC ,∴∠EBO =∠FBO .∴△EBO ≌△FBO .∴∠EOB =∠FOB .∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A )=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°.∵CE 平分∠DCB ,∴∠DCO =∠FCO .∴△DCO ≌△FCO .∴CD =CF .∴BC =BF +CF =BE +CD .4.如图,AD //BC ,DC ⊥AD ,AE 平分∠BAD ,E 是DC 的中点.问:AD ,BC ,AB 之间有何关系?并说明理由.解:AB =AD +BC .理由:作EF ⊥AB 于F ,连接BE .∵AE 平分∠BAD ,DC ⊥AD ,EF ⊥AB ,∴EF =DE .∵DE =CE ,∴EC =EF .∴Rt △BFE ≌Rt △BCE (HL).∴BF =BC同理可证:AF =AD .∴AD +BC =AF +BF =AB ,即AB =AD +BC . 5.如图,已知DE =AE ,点E 在BC 上,AE ⊥DE ,AB ⊥BC ,DC ⊥BC ,请问线段AB ,CD 和线段BC 有何大小关系?并说明理由.解:线段AB ,CD 和线段BC 的关系是:BC =AB +CD .理由:在△DCE 中,∠EDC +∠DEC =90°,∵∠AEB +∠DEC =90°,∴∠AEB =∠EDC ,又∵ED =AE ,∠ABE =∠ECD =90°,∴△ABE ≌△ECD (AAS),∴AB =EC ,BE =CD ,∴BC =BE +EC =CD +AB .【过关检测】1.(2021·辽宁大连·八年级期中)如图,ABC V 为等边三角形,若()060DBC DAC a a Ð=Ð=°<<°,则BCD Ð=__________(用含a 的式子表示).【答案】120a°-【分析】在BD 上截取BE =AD ,连结CE ,可证得BEC ADC @△△ ,从而得到CE =CD ,∠DCE =∠ACB =60°,从而得到DCE V 是等边三角形,进而得到∠BDC =60°,则有60B CE a Ð=°-,即可求解.【详解】解:如图,在BD 上截取BE =AD ,连结CE ,∵ABC V 为等边三角形,∴BC =AC ,∠BAC =∠ABC =∠ACB =60°,∵a Ð=Ð=DBC DAC ,BE =AD ,∴BEC ADC @△△ ,∴CE =CD ,∠BCE =∠ACD ,∴∠BCE +∠ACE =∠ACD +∠ACE ,∴∠DCE =∠ACB =60°,∵CE =CD ,∴DCE V 是等边三角形,∴∠BDC =60°,∴18060120BCD a a Ð=°-°-=°-.故答案为:120a°-【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,解题的关键是做出辅助线构造全等三角形是解题的关键.2.(2019·浙江嘉兴市·八年级期中)(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,得AE =AG ;再由条件可得∠EAF =∠GAF ,证明△AEF ≌△AGF ,进而可得线段BE ,EF ,FD 之间的数量关系是 .(2)拓展应用:如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.【答案】(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.解答:(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD °=ìïÐ=Ð=íï=î,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =ìïÐ=Ðíï=î,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由如下:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =ìïÐ=Ðíï=î,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF中,AE AG EAF GAF AF AF =ìïÐ=Ðíï=î,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF .【点拨】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.3.(2020·全国八年级单元测试)在△ABC 中,∠ACB=2∠B ,(1)如图①,当∠C=90°,AD 为∠ABC 的角平分线时,在AB 上截取AE=AC ,连接DE ,易证AB=AC+CD .请证明AB=AC+CD ;(2)①如图②,当∠C ≠90°,AD 为∠BAC 的角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C ≠90°,AD 为△ABC 的外角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想并证明.【答案】(1)证明见解析;(2)①AB=AC+CD ;②AC+AB=CD ,证明见解析.【分析】(1)首先得出△AED ≌△ACD (SAS ),即可得出∠B=∠BDE=45°,求出BE=DE=CD ,进而得出答案;(2)①首先得出△AED ≌△ACD (SAS ),即可得出∠B=∠BDE ,求出BE=DE=CD ,进而得出答案;②首先得出△AED ≌△ACD (SAS ),即可得出∠B=∠EDC ,求出BE=DE=CD ,进而得出答案.(1)证明:∵AD 为∠ABC 的角平分线,∴∠EAD=∠CAD ,在△AED 和△ACD 中,∵AE=AC ,∠EAD=∠CAD ,AD=AD ,∴△AED ≌△ACD (SAS ),∴ED=CD ,∠C=∠AED=90°,∵∠ACB=2∠B,∠C=90°,∴∠B=45°,∴∠BDE=45°,∴BE=ED=CD,∴AB=AE+BE=AC+CD;(3)①AB=AC+CD.理由如下:在AB上截取AE=AC,连接DE,∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠B+∠BDE=∠AED,∴∠B=∠BDE,∴BE=ED=CD,∴AB=AE+BE=AC+CD;②AC+AB=CD.理由如下:在射线BA上截取AE=AC,连接DE,∵AD为∠EAC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠ACD=∠AED,∵∠ACB=2∠B,∴设∠B=x,则∠ACB=2x,∴∠EAC=3x,∴∠EAD=∠CAD=1.5x,∵∠ADC+∠CAD=∠ACB=2x,∴∠ADC=0.5x,∴∠EDC=x,∴∠B=∠EDC,∴BE=ED=CD,∴AB+AE=BE=AC+AB=CD.【点拨】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出△AED≌△ACD是解题关键.4.(2020·山东青岛·八年级单元测试)如图,在△ABC中,AB=BC,∠ABC=60°,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点.(1)若∠DAE=15°,求证:△ABD是等腰直角三角形;(2)连CE,求证:BE=AE+CE.【分析】(1)首先根据题意确定出△ABC是等边三角形,然后根据等边三角形的性质推出∠BAC=60°,再根据线段AC与AD关于直线AP对称,以及∠DAE=15°,推出∠BAD=90°,即可得出结论;(2)利用“截长补短”的方法在BE上取点F,使BF=CE,连接AF,根据题目条件推出△ABF≌△ACE,得出AF=AE,再进一步推出∠AEF=60°,可得到△AFE是等边三角形,则得到AF=FE,从而推出结论即可.【详解】证明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵线段AC与AD关于直线AP对称,∴∠CAE=∠DAE=15°,AD=AC,∴∠BAE=∠BAC+∠CAE=75°,∴∠BAD=90°,∵AB =AC =AD ,∴△ABD 是等腰直角三角形;(2)在BE 上取点F ,使BF =CE ,连接AF ,∵线段AC 与AD 关于直线AP 对称,∴∠ACE =∠ADE ,AD =AC ,∵AD =AC =AB ,∴∠ADB =∠ABD=∠ACE ,在△ABF 与△ACE 中,AC AB ACE ABFCE BF =ìïÐ=Ðíï=î∴△ABF ≌△ACE (SAS ),∴AF =AE ,∵AD =AB ,∴∠D =∠ABD ,又∠CAE =∠DAE ,∴()()111806022AEB D DAE D ABD DAC BAC Ð=Ð+Ð=Ð+Ð+Ð=°-Ð=°,∴在△AFE 中,AF =AE ,∠AEF =60°,∴△AFE 是等边三角形,∴AF =FE ,∴BE =BF +FE =CE +AE .【点睛】本题考查全等三角形的判定与性质,以及等边三角形的判定与性质等,掌握等边三角形的判定与性质,以及全等三角形的常见辅助线的构造方法是解题关键.5.(2021·广东·珠海市九洲中学八年级期中)如图,在△ABC 中,∠C =90°,AD 是∠BAC的角平分线,交BC 于点D ,过D 作DE ⊥BA 于点E ,点F 在AC 上,且BD =DF .(1)求证:AC =AE ;(2)若AB =7.4,AF =1.4,求线段BE 的长.【答案】(1)见解析;(2)3【分析】(1)证明△ACD ≌△AED (AAS ),即可得出结论;(2)在AB 上截取AM =AF ,连接MD ,证△FAD ≌△MAD (SAS ),得FD =MD ,∠ADF =∠ADM ,再证Rt △MDE ≌Rt △BDE (HL ),得ME =BE ,求出MB =AB -AM =6,即可求解.【详解】解:(1)证明:∵AD 平分∠BAC ,∴∠DAC =∠DAE ,∵DE ⊥BA ,∴∠DEA =∠DEB =90°,∵∠C =90°,∴∠C =∠DEA =90°,在△ACD 和△AED 中,C DEA DAC DAE AD AD Ð=ÐìïÐ=Ðíï=î,∴△ACD ≌△AED (AAS ),∴AC =AE ;(2)在AB 上截取AM =AF ,连接MD ,在△FAD 和△MAD 中,AF AM DAF DAM AD AD =ìïÐ=Ðíï=î,∴△FAD ≌△MAD (SAS ),∴FD =MD ,∠ADF =∠ADM,∵BD =DF ,∴BD =MD ,在Rt △MDE 和Rt △BDE 中,MD BD DE DE=ìí=î,∴Rt △MDE ≌Rt △BDE (HL ),∴ME =BE ,∵AF =AM ,且AF =1.4,∴AM =1.4,∵AB =7.4,∴MB =AB -AM =7.4-1.4=6,∴BE =12BM =3,即BE 的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD ≌△MAD 和Rt △MDE ≌Rt △BDE 是解题的关键.6.(2021·贵州·铜仁市第十一中学八年级期中)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .【分析】如图,在AB 上截取,AH AD =证明,ADE AHE V V ≌再证明,HBE CBE V V ≌可得,BC BH = 从而可得结论.【详解】证明:如图,在AB 上截取,AH AD =AE ∵平分,DAB Ð,DAE HAE \Ð=Ð,AE AE =Q,ADE AHE \V V ≌,ADE AHE \Ð=Ð//,AD BC Q180,ADE BCE \Ð+Ð=°180,AHE BHE Ð+Ð=°Q,BCE BHE \Ð=ÐBE Q 平分,ABC Ð,ABE CBE \Ð=Ð,BE BE =Q,HBE CBE \V V ≌,BC BH \=,AB AH HB =+Q.AB AD BC \=+【点睛】本题考查的是全等三角形的判定与性质,掌握“利用截长补短的方法证明两条线段的和等于另一条线段”是解题的关键.7.(2021·湖北·武汉外国语学校(武汉实验外国语学校)八年级期中)在ABC V 中,BE ,CD 为ABC V 的角平分线,BE ,CD 交于点F .(1)求证:1902BFC A Ð=°+Ð;(2)已知60A Ð=°.①如图1,若4BD =, 6.5BC =,求CE 的长;②如图2,若BF AC =,求AEB Ð的大小.【答案】(1)证明见解析;(2)2.5;(3)100°.【分析】(1)由三角形内角和定理和角平分线得出1902FBC FCB A Ð+Ð=°-Ð的度数,再由三角形内角和定理可求出BFC Ð的度数,(2)在BC 上取一点G 使BG=BD ,构造BFG BFD @V △(SAS ),再证明()FEC FGC ASA @V V ,即可得BC BD CE =+,由此求出答案;(3)延长BA 到P ,使AP=FC ,构造BFC CAP @V △(SAS ),得PC=BC ,12P BCF ACB Ð=Ð=Ð,再由三角形内角和可求40ABC Ð=°,80ACB Ð=°,进而可得180()100AEB ABE A Ð=°-Ð+Ð=°.【详解】解:(1)BE Q 、CD 分别是ABC Ð与ACB Ð的角平分线,11(180)9022FBC FCB A A \Ð+Ð=°-Ð=°-Ð,1180()180(90)2BFC FBC FCB A \Ð=°-Ð+Ð=°-°-Ð,1902BFC A \Ð=°+Ð,(2)如解(2)图,在BC 上取一点G 使BG=BD ,由(1)得1902BFC A Ð=°+Ð,60BAC Ð=°Q ,120BFC \Ð=°,∴18060BFD EFC BFC Ð=Ð=°-Ð=°,在BFG V 与BFD △中,BF BF FBG FBD BD BG =ìïÐ=Ðíï=î,∴BFG BFD @V △(SAS )∴BFD BFG Ð=Ð,∴60BFD BFG Ð=Ð=°,∴12060CFG BFG Ð=°-Ð=°,∴60CFG CFE Ð=Ð=°在FEC V 与FGC △中,CFE CFG CF CFECF GCF Ð=Ðìï=íïÐ=Ðî,()FEC FGC ASA \@V V ,CE CG \=,BC BG CG =+Q ,BC BD CE \=+;∵4BD =, 6.5BC =,∴ 2.5CE =(3)如解(3)图,延长BA 到P ,使AP=FC ,60BAC Ð=°Q,∴180120PAC BAC Ð=°-Ð=°,在BFC △与CAP V 中,120BF AC BFC CAP CF PA =ìïÐ=Ð=°íï=î,∴BFC CAP @V △(SAS )∴P BCF Ð=Ð,BC PC =,∴P ABC Ð=Ð,又∵12P BCF ACB Ð=Ð=Ð,∴2ACB ABC Ð=Ð,又∵180ACB ABC A Ð+Ð+Ð=°,∴360180ABC Ð+°=°,∴40ABC Ð=°,80ACB Ð=°,∴1202ABE ABC Ð=Ð=°,180()180(2060)100AEB ABE A Ð=°-Ð+Ð=°-°+°=°【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.8.(2021·福建省福州第十六中学八年级期中)如图,△ABC 为等边三角形,直线l 过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC =60°,求证:△AEC ≌△CDB ;(2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .【答案】(1)见解析;(2)见解析;(3)CF =EF -BD .【分析】(1)先证明∠ACE =∠CBD ,即可利用AAS 证明△AEC ≌△CDB ;(2)在直线l 上位于C 点左侧去一点E ,使得∠AEC =60°,连接AE ,由(1)可知△AEC ≌△CDB ,CE =BD ,然后证明△FAE ≌△HFG 得到GH =EF ,则CF =EF +CE =GH +BD 即HG +BD =CF ;(3)在直线l 上位于C 点右侧取一点E 使得∠AED =60°,连接AE ,在直线l 上位于D 点左侧取一点M 使得BM =BD ,设AB 与直线l 交于N ,先证明△BDM 是等边三角形,得到∠DBM =∠DMB =60°,然后证明∠ACE =∠ABD =∠CBM ,即可利用AAS 证明△AEC ≌△CMB 得到CE =BM =BD ;最后证明△AEF ≌△FGH 得到HG =EF ,则EF =CE +CF =CF +BD 即CF =EF -BD .【详解】解:(1)∵△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∴∠ACE +∠BCD =180°-∠ACB =120°,∵∠BDC =60°,∴∠BCD +∠CBD =180°-∠BDC =120°,∴∠ACE =∠CBD ,在△AEC 和△CDB 中,===60ACE CBD AEC CDB AC CB ÐÐìïÐÐíï=îo ,∴△AEC ≌△CDB (AAS)(2)如图所示,在直线l 上位于C 点左侧取一点E ,使得∠AEC =60°,连接AE ,由(1)可知△AEC ≌△CDB ,∴CE =BD ,∵∠ACE =60°,∴∠AEF =120°,∴∠AEF =∠AFH =120°,∴∠AFE +∠FAE =180°-∠AEF =60°,∠AFE +∠HFG =180°-∠AFH =60°,∴∠FAE =∠HFG ,在△FAE 和△HFG 中,120FAE HFG AEF FGH AF FH Ð=ÐìïÐ=Ð=íï=îo ,∴△FAE ≌△HFG (AAS ),∴GH =EF ,∴CF =EF +CE =GH +BD 即HG +BD =CF ;(3)如图所示,在直线l 上位于C 点右侧取一点E 使得∠AED =60°,连接AE ,在直线l 上位于D 点左侧取一点M 使得BM =BD ,设AB 与直线l 交于N∵∠BDC =60°,BM =BD ,∴△BDM 是等边三角形,∴∠DBM =∠DMB =60°,∵三角形ABC 是等边三角形,∴∠ABC =∠BAC =60°,AC =BC∴∠ABM +∠CBM =∠ABM +∠ABD,∴∠ABD =∠CBM ,∵∠BAC =∠BDC =60°,∠ANE =∠DNB ,∴∠ACE =∠ABD =∠CBM ,∵∠CMB =180°-∠DMB =120°,∠AEC =180°-∠AED =120°,∴∠CMB =∠AEC ,在△AEC 和△CMB 中,120ACE CBM AEC CMB AC CB Ð=ÐìïÐ=Ð=íï=îo ,∴△AEC ≌△CMB (AAS ),∴CE =BM =BD ;∵∠AFH =120°,∴∠AFC +∠GFH =60°,∵∠GFH +∠FHG =180°-∠HGF =60°,∴∠AFC =∠FHG ,在△AEF 和△FGH 中,120AFE FHG AEF FGH AF FH Ð=ÐìïÐ=Ð=íï=îo ,∴△AEF ≌△FGH (AAS ),∴HG =EF ,∴EF =CE +CF =CF +BD 即CF =EF -BD .故答案为:CF =EF -BD .【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.9.(2021·云南昆明·八年级期中)阅读下面材料:【原题呈现】如图1,在V ABC 中,∠A =2∠B ,CD 平分∠ACB ,AD =2.2,AC =3.6,求BC 的长.【思考引导】因为CD 平分∠ACB ,所以可在BC 边上取点E ,使EC =AC ,连接DE .这样很容易得到V DEC ≌V DAC ,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC 中,AB =AC ,∠A =20°,BD 平分∠ABC ,BD =2.3,BC =2.求AD 的长.【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD ≌△ECD ,得到AD =DE ,∠A =∠DEC ,由于∠A =2∠B ,推出∠DEC =2∠B ,等量代换得到∠B =∠EDB ,得到△BDE 是等腰三角形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.10.(2022·广东东莞·八年级期末)(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F分∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)别是边BC、CD上的点,且∠EAF=12(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证2明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF ∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并=12证明.【答案】(1)EF=BE+FD;(2)(1)中的结论仍然成立,见解析;(3)结论不成立,EF=BE﹣FD,见解析【分析】(1)延长CB至G,使BG=DF,连接AG,证明△ABG≌△ADF,根据全等三角形的性质得到AG =AF,∠BAG=∠DAF,再证明△GAE≌△FAE,根据全等三角形的性质得出EF=EG,结合图形计算,证明结论;(2)延长CB至M,使BM=DF,连接AM,仿照(1)的证明方法解答;(3)在EB上截取BH=DF,连接AH,仿照(1)的证明方法解答.【详解】解:(1)EF=BE+FD,理由如下:如图1,延长CB至G,使BG=DF,连接AG,在△ABG 和△ADF 中,90AB AD ABG D BG DF °=ìïÐ=Ð=íï=î,∴△ABG ≌△ADF (SAS ),∴AG =AF ,∠BAG =∠DAF ,∵∠EAF =12∠BAD ,∴∠DAF +∠BAE =∠EAF ,∴∠GAE =∠BAG +∠BAE =∠DAF +∠BAE =∠EAF ,在△GAE 和△FAE 中,AG AF GAE FAE AE AE =ìïÐ=Ðíï=î,∴△GAE ≌△FAE (SAS ),∴EF =EG ,∵EG =BG +BE =BE +DF ,∴EF =BE +FD ,故答案为:EF =BE +FD ;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D ,在△ABM 和△ADF 中,1AB AD D BM DF =ìïÐ=Ðíï=î,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∴∠2+∠4=∠EAF ,∴∠EAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△FAE 中,AM AF MAE FAE AE AE =ìïÐ=Ðíï=î,∴△MAE ≌△FAE (SAS ),∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;(3)(1)中的结论不成立,EF =BE ﹣FD ,理由如下:如图3,在EB 上截取BH =DF ,连接AH ,同(2)中证法可得,△ABH ≌△ADF ,∴AH =AF ,∠BAH =∠DAF ,∴∠HAE =∠FAE ,在△HAE 和△FAE 中,AH AF HAE FAE AE AE =ìïÐ=Ðíï=î,∴△HAE ≌△FAE (SAS),EF EH\=∵EH =BE ﹣BH =BE ﹣DF ,∴EF =BE ﹣FD .【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.11.(2022·四川南充·八年级期末)(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC Ð,180A C Ð+Ð=°.求证:DA DC =.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC Ð=°时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C Ð+Ð=°,DA DC =,过点D 作DE BC ^,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.【答案】(1)证明见解析;(2)AB BC BD +=;理由见解析;(3)2BC AB CE -=.【分析】(1)方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题;(2)延长CB 到点P ,使BP BA =,连接AP ,证明ΔΔPAC BAD ≌,可得PC BD =,即PC BP BC AB BC=+=+(3)连接BD ,过点D 作DF AC ^于F ,证明ΔΔDFA DEC ≌,RtΔRtΔBDF BDE ≌,进而根据2BC BE CE BA AF CE BA CE =+=++=+即可得出结论.【详解】解:(1)方法1:在BC 上截BM BA =,连接DM ,如图.BD Q 平分ABC Ð,ABD CBD \Ð=Ð.在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM =ìïÐ=Ðíï=î,ΔΔABD MBD \≌,A BMD \Ð=Ð,AD MD =.180BMD CMD °Ð+Ð=Q ,180C A °Ð+Ð=.C CMD \Ð=Ð.DM DC \=,DA DC \=.方法2:延长BA 到点N ,使得BN BC =,连接DN ,如图.BD Q 平分ABC Ð,NBD CBD \Ð=Ð.在ΔNBD 和ΔCBD 中,BD BD NBD CBD BN BC =ìïÐ=Ðíï=î,ΔΔNBD CBD \≌.BND C \Ð=Ð,ND CD =.180NAD BAD °Ð+Ð=Q ,180C BAD °Ð+Ð=.BND NAD \Ð=Ð,DN DA \=,DA DC \=.(2)AB 、BC 、BD 之间的数量关系为:AB BC BD +=.(或者:BD CB AB -=,BD AB CB -=).延长CB 到点P ,使BP BA =,连接AP ,如图2所示.由(1)可知AD CD =,60DAC °Ð=Q .ΔADC \为等边三角形.AC AD \=,60ADC °Ð=.180BCD BAD °Ð+Ð=Q ,36018060120ABC °°°°\Ð=--=.18060PBA ABC °°\Ð=-Ð=.BP BA =Q ,ΔABP \为等边三角形.60PAB °\Ð=,AB AP =.60DAC °Ð=Q ,PAB BAC DAC BAC \Ð+Ð=Ð+Ð,即PAC BAD Ð=Ð.在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD =ìïÐ=Ðíï=î,ΔΔPAC BAD \≌.PC BD \=,PC BP BC AB BC =+=+Q ,AB BC BD \+=.(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE -=.(或者:2BC CE AB -=,2AB CE BC +=)解:连接BD ,过点D 作DF AC ^于F ,如图3所示.180BAD C °Ð+Ð=Q ,180BAD FAD °Ð+Ð=.FAD C \Ð=Ð.在ΔDFA 和ΔDEC 中,DFA DEC FAD C DA DC Ð=ÐìïÐ=Ðíï=î,ΔΔDFA DEC \≌,DF DE \=,AF CE =.在RtΔBDF 和RtΔBDE 中,BD BD DF DE =ìí=î,RtΔRtΔ\≌.BDF BDE\=,BF BE\=+=++=+,2BC BE CE BA AF CE BA CE\-=.BC BA CE2【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.。

截长补短法-课件

截长补短法-课件
延长AC至F,使CF=BD或使AF=AB

全等三角形之巧添辅助线——截长补短法
例题 如图,AC∥BD,EA、EB分别平分∠CAB 和∠DBA,点E在CD上,求证:AB=AC+BD。


D 补短法 (1)延长AC至F,使CF=BD,连接EF
C A
要证△CEF≌△DEB, 再证△AEF≌△AEB
√(2)延长AC至F,使AF=AB,连接EF
无论是截长法还是补短法都是要将几条线段的和差问题转化为 两条线段相等的问题,一般都要通过构造两个全等三角形来解 决问题。
例题 如图,AC∥BD,EA、EB分别平分∠CAB 和∠DBA,点E在CD上,求证:AB=AC+BD。
E D 截长法
截长法:就是将三者中最长的那条线段一分为二,使

其中的一条线段等于已知的两条较短线段中的一条,

可得到△AEF≌△AEB,再证△CEF≌△DEB
全等三角形之巧添辅助线——截长补短法
例题 如图,AC∥BD,EA、EB分别平分∠CAB
和∠DBA,点E在CD上,求证:AB=AC+BD。



12

证明:延长AC至F,使AF=AB,连接EF
∵AE平分∠CAB,

EB平分∠DBA
∵AC∥BD ∴∠FCE=∠D
全等三角形之巧添辅助线——截长补短法
练习:如图,△ABC中,∠CAB=∠CBA=45°,CA=CB,点E为BC的
中点,CN⊥AE交AB于N。 (1)求证:∠1=∠2 (2)求证:AE=CN+EN (请用多种方法证明)
B
截长法:在AE上截取AF,使AF=CN,
N
E
1
F

中考数学一轮复习全全等三角形截长补短(讲义及答案)及解析

中考数学一轮复习全全等三角形截长补短(讲义及答案)及解析

中考数学一轮复习全全等三角形截长补短(讲义及答案)及解析一、全等三角形截长补短1.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.2.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.3.(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ADG ,再证明AEF ≌AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12=∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.4.如图所示,//AB DC AB AD BE ⊥,,平分ABC CE ∠,平分BCD ∠; (1)求AB CD 、与BC 的数里关系,并说明你的理由.(2)若把AB AD ⊥条件去掉,则(1)中AB CD 、与BC 的数里关系还成立吗?并说明你的理由.5.如图,在正方形ABCD 中,点E 迕射线BC 上,连接AE ,作EF AE ⊥,且EF 交正方形外角的平分线CF 于点F .(1)若点E 在边BC 的中点处时,AE ________EF (填“>”“<”或“=”)(2)若点E 为边BC 上的任意一点(不含点B ,C ),探究此时AE 与EF 的数量关系,并说明理由.(3)若点E 是边BC 延长线上的一点,探究此时AE 与EF 的数量关系,并说明理由. 6.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积. 解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积. 7.如图1.在平面直角坐标系中,四边形OBCD 是正方形,(0,3)D ,点E 是OB 延长线上一点,M 是线段OB 上一动点(不包括O 、B ),作MN DM ⊥,交CBE ∠的平分线于点N .(1)直接写出点C 的坐标;(2)求证:MD MN =;(3)如图2,若(2, 0)M ,在OD 上找一点P ,使四边形MNCP 是平行四边形,求直线PN 的解析式.8.(1)方法选择如图①,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD ,AB BC AC ==,求证:BD AD CD =+.小颖认为可用截长法证明:在DB 上截取DM AD =,连接AM ……小军认为可用补短法证明:延长CD 至点N ,使得DN AD =……请你选择一种方法证明.(2)类比探究探究1如图②,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD ,若BC 是⊙O 的直径,AB AC =,试用等式表示线段AD ,BD ,CD 之间的数量关系,并证明你的结论.探究2如图③,四边形ABCD 是⊙O 的内接四边形,连接AC ,BD .若BC 是⊙O 的直径,::::BC AC AB a b c =,则线段AD ,BD ,CD 之间的等量关系式是______.9.在平行四边形ABCD 中,DE 平分ADC ∠交BC 于点E ,连接AE .点O 是DE 的中点,连接CO 并延长交AD 于点F ,在CF 上取点G ,连接AG .(1)若4tan 3B =,5AB =,6BC =,求ABE △的周长. (2)若60B EAG ∠=∠=︒,求证:AF CG =.10.已知平行四边形ABCD 中,N 是边BC 上一点,延长DN 、AB 交于点Q ,过A 作AM ⊥DN 于点M ,连接AN ,则AD ⊥AN .(1)如图①,若tan ∠ADM =34,MN =3,求BC 的长; (2)如图②,过点B 作BH ∥DQ 交AN 于点H ,若AM =CN ,求证:DM =BH +NH .【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【分析】(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF,∴∠BFA=∠AFC=60°,∴△BFG为等边三角形,∴BG=BF,又BC⊥FG,∴FG=BF=2DF,∴AF=AG+GF=BF+EF=2DF+EF.【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.2.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D作DM⊥AB于M,由 CA=CB,90ACB=︒,得ABC是等腰直角三角形,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;(2)如图2,设∠ACB=α,则∠CAB=∠CBA=90°−12α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA =40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB上截取AK =AC ,连接DK ,根据全等三角形的性质得到∠ACB =∠AKD =100°,CD =DK ,根据等腰三角形的性质得到DH =BH ,于是得到结论.【详解】(1)如图1,过D 作DM ⊥AB 于M ,∴在ABC 中,AC BC =,∴∠ABC =45°,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∴∠BDM =∠ABC =45°,∴BM =DM ,∴BM =CD ,在RT △ADC 和RT △ADM 中,CD MD AD AD ⎧⎨⎩==, ∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩===∴△CAD≌△KAD(SAS),∴∠ACD=∠AKD=α,∴∠BKD=180°−α,∵BK=BD,∴∠BDK=180°−α,∴在△BDK中,180°−α+180°−α+90°−1α=180°,2∴α=108°,∴∠ACB=108°;(3)如图3,在AB上截取AH=AD,连接DH,∵∠ACB=100°,AC=BC,∴∠CAB=∠CBA=40°,∵AD是角平分线,∴∠HAD=∠CAD=20°,∴∠ADH=∠AHD=80°,在AB上截取AK=AC,连接DK,由(1)得,△CAD≌△KAD,∴∠ACB=∠AKD=100°,CD=DK,∴∠DKH=80°=∠DHK,∴DK=DH=CD,∵∠CBA=40°,∴∠BDH=∠DHK -∠CBA =40°,∴DH=BH,∴BH=CD,∵AB=AH+BH,∴AB=AD+CD.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.3.(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;(3)此时两舰艇之间的距离是210海里【分析】(1)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (2)延长FD 到点G ,使DG=BE .连结AG ,即可证明ABE≌ADG ,可得AE=AG ,再证明AEF ≌AGF ,可得EF=FG ,即可解题; (3)连接EF ,延长AE 、BF 相交于点C ,然后与(2)同理可证.【详解】解:(1)EF =BE +DF ,证明如下: 在ABE 和ADG 中, DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为 EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由:延长FD 到点G .使DG =BE .连结AG ,如图2,在ABE 和ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE ≌ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF 12=∠BAD , ∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF , ∴∠EAF =∠GAF ,在AEF 和GAF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴AEF ≌AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;(3)如图3,连接EF ,延长AE 、BF 相交于点C ,∵∠AOB =30°+90°+(90°﹣70°)=140°,∠EOF =70°,∴∠EOF 12=∠AOB , 又∵OA =OB ,∠OAC +∠OBC =(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,即EF =2×(45+60)=210(海里).答:此时两舰艇之间的距离是210海里.【点睛】本题考查了全等三角形的判定以及全等三角形对应边相等的性质,本题中求证△AEF ≌△AGF 是解题的关键.4.(1)AB CD BC +=,见解析;(2)成立,见解析【分析】(1)先写出数量关系,过E 作EF BC ⊥于F ,然后证明CDE CFE ∆≅∆和ABE FBE ≅∆∆,便可得结论了.(2)成立, 在BC 上截取CF CD =证明CDE CFE ∆≅∆和ABE FBE ≅∆∆,便可得到结论.【详解】()1AB CD BC +=理由是:过E 作EF BC ⊥于FCE 为角平分线DCE FCE ∴∠=∠//AB DC AB AD ⊥,90D ∴∠=EF BC ⊥D CFE ∴∠=∠CE CE =()CDE CFE AAS ∆≅∆CD CF ∴=同理可证()ABE FBE AAS ∆≅∆AB BF ∴=CF BF AB +=AB CD BC ∴+=()2成立理由:在BC 上截取CF CD =CE 为角平分线DCE FCE ∴∠=∠CE CE =()CDE CFE SAS ∆≅∆CD CF ∴= D CFE ∠=∠//AB DC180D A ∴∠+∠=又180CFE EFB ∠+=A EFB ∴∠=∠ 又BE 是角平分线 ABE FBE ∴∠=∠BE BE =()BAE BFE AAS ∆≅∆AB FB ∴=∴ CF BF AB +=AB CD BC ∴+=5.(1)=;(2)AE EF =,见解析;(3)AE EF =,见解析【分析】(1)作辅助线,AH=EC ,∠1=∠2,∠AHE=∠ECF=180°-45°=135°,则△AHE ≌△ECF ; (2)作辅助线,仍然证明△AME ≌△ECF 得出结论;(3)做辅助线,仍然证明ANE ECF △≌△得出结论.【详解】解:(1)证明:取AB 的中点H ,连接EH ;∵ABCD 是正方形,AE ⊥EF ;∴∠1+∠AEB=90°,∠2+∠AEB=90°∴∠1=∠2,∵BH=BE ,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE ,∴△AHE ≌△ECF ,∴AE=EF ;(2)在AB 上取一点M ,使得AM EC =,连接ME∴BM BE =∴45BME ∠=︒∴135AME ∠=︒∵CF 是正方形外角平分线∴45DCF ∠=︒∴135ECF ∠=︒∴AME ECF ∠=∠∵90AEB BAE ∠+∠=︒,90AEB CEF ∠+∠=︒∴BAE CEF ∠=∠∴AME ECF △≌△∴AE EF =(3)在BA 的延长线上取一点N ,使AN CE =,连接NE∴BN NE =∴45N NEC ∠=∠=︒∵CF 是正方形外角平分线∴45FEC ∠=︒∴N FEC ∠=∠∵四边形ABCD 是正方形 ∴AD BE∴DAE BEA ∠=∠ 即9090DAE BEA ∴NAE CEF ∠=∠∴ANE ECF △≌△∴AE EF =【点睛】本题是四边形的综合题,综合考查了正方形、全等三角形的性质和判定,解决此类题的思路为:构造两个三角形全等;熟练掌握正方形的性质是本题的关键.6.(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解. 【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌, ∴FH=FK ,又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm ,∴12=242FGH HFM MFN FMK FGHMN S SS S S MK FN =++=⨯⋅=五边形. 【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用. 7.(1)(3,3)C ;(2)证明见解析;(3)115y x =+ 【分析】(1)由正方形的性质求得点C 的坐标;(2)在OD 上取OH=OM ,连接HM ,只要证明△DHM ≌△MBN 即可.(3)作NE ⊥OB 于E ,只要证明△DMO ≌△MNE 即可求得点N 的坐标.由平行四边形的对边相互平行且相等的性质求得点P 的坐标,然后由待定系数法确定函数解析式.【详解】(1)∵四边形OBCD 是正方形,(0,3)D∴(3,3)C故答案为:(3,3)C(2)如图,在OD 上截取OH OM =,连接HM .∵OD=OB ,OH=OM ,∴HD=MB ,∠OHM=∠OMH ,∴∠DHM=180°−45°=135°,∵NB 平分∠CBE ,∴∠NBE=45°∴∠NBM=180°−45°=135°∴∠DHM=∠NBM ,∵∠DMN=90°∴∠DMO+∠NMB=90°∵∠HDM+∠DMO=90°∴∠HDM=∠NMB ,在△DHM 和△MBN 中,HDM NME DH MB DHM NBM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DHM MBN ∆∆≌∴MD MN =.(3)如图,作NE OB ⊥于E ,由M(2,0)知OM=2,∵∠DMN=90°∴∠DMO+∠NME=90°,∠NME+∠MNE=90°∴∠DMO=∠MNE ,在△DMO 和△MNE 中,90DOM NEM DMO MNEDM MN ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DMO≌△MNE∴ME=DO=3,NE=OM=2,∴OE=OM+ME=3+2=5,∴点N坐标(5,2),∵四边形MNCP是平行四边形,C(3,3),∴P(0,1)设直线PN的解析式为:y=kx+b(k≠0)则b1 52 k b=⎧⎨+=⎩解得b115 k=⎧⎪⎨=⎪⎩故直线PN的解析式为:y=15x+1;故答案为:115y x=+【点睛】本题考查了全等三角形的判定和性质,平行四边形和正方形的性质,及用待定系数法求一次函数解析式,本题是一次函数和几何问题的综合.8.(1)见解析;(2)①2BD CD=+,见解析,②c a BD CD ADb b=+【分析】(1)根据题中所给的截长法或补短法思路解题,利用全等三角形的性质解题即可.(2)探究1 要求AD、BD、CD之间的数量关系,结合(1)中所给方法,在BD上截取BM CD=,再利用全等三角形及等腰直角三角形的性质进行求解.探究2 要求AD、BD、CD之间的数量关系,以AD为边构造直角三角形,再利用相似的性质求解.【详解】(1)截长法证明:如图①-1,在DB上截取DM AD=,连接AM,AB BC AC==,ABC∴是等边三角形,60ABC ACB BAC ∴∠=∠=∠=︒.60ADB ACB ∴∠=∠=︒,DM AD =,AMD ∴△是等边三角形,60MAD ∴∠=︒,AM AD =.BAM CAD ∴∠=∠,()BAM CAD SAS ∴△≌△,BM CD ∴=,BD DM BM AD CD ∴=+=+;补短法 证明:如图①-2,延长CD 至点N ,使得DN AD =,DAN DNA ∴∠=∠.AB AC BC ==,ABC ∴为等边三角形,60ABC ACB BAC ∠=∠=∠=︒.60ADB ACB ∴∠=∠=︒,60BDC BAC ∠=∠=︒,18060ADN BDC ADB ∴∠=︒-∠-∠=︒,ADN ∴为等边三角形,AD AN =,60DAN ∠=︒.BAD CAN ∴∠=∠.在BAD 和CAN △中,AB AC BAD CAN AD AN =⎧⎪∠=∠⎨⎪=⎩,()BAD CAN SAS ∴△≌△,BD CN ∴=,又CN CD DN CD AD =+=+,BD CD AD ∴=+.(2)探究1 解:2BD AD CD =+;证明:如图②,在BD 上截取BM CD =,连接AM , BC 是O 的直径,AB AC =,90BAC ∴∠=︒,45ABC ACB ∠=∠=︒.45ADM ACB ∴∠=∠=︒,在BAM 和CAD 中,,AB AC ABM ACD BM CD =⎧⎪∠=∠⎨⎪=⎩()BAM CAD SAS ∴△≌△,AM AD ∴=,BAM CAD ∠=∠.45AMD ADM ∴∠=∠=︒,90MAD ∠=︒.AMD ∴△是等腰直角三角形,2MD AD ∴=. BD MD BM =+,2BD AD CD ∴=+;探究2 解:c a BD CD AD b b=+. 如图③,过点A 作AM AD ⊥交BD 于点M ,BC 是O 的直径,90BAC ∴∠=︒,BAC MAD ∴∠=∠,BAM CAD ∴∠=∠,ABM DCA ∠=∠,BAM CAD ∴△∽△,BM AB c CD AC b ∴==,c BM CD b ∴=, 又ADM ACB ∠=∠,MAD BAC ∠=∠,ADM ACB ∴△∽△,DM BC a AD AC b ∴==,a DM AD b∴=, BD BM MD =+,c a BD CD AD b b∴=+.【点睛】本题是圆的综合题,考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,正确作出辅助线,熟练运用图形的性质是解题的关键.9.(1)256+;(2)见解析【分析】(1)构建直角三角形,得出AH 、BH ,然后利用角平分线的性质以及平行四边形的性质,进行等量互换,即可得解;(2)首先在AB 上截取BQ BE =,然后判定DOF EOC ≌△△和AEQ GAF ≌△△,进行等量转换,即可得证.【详解】(1)过点A 作AH BC ⊥于点H ,如图所示:4tan 3B ∠=,5AB =, 4AH ∴=,3BH =DE 平分ADC ∠,12∠∠∴=,AD BC ∵∥,13∠∠∴=23∴∠=∠,5DC EC ∴==,1BE ∴=,2EH ∴=,25AE ∴=256ABE C ∴=+△;(2)在AB 上截取BQ BE =,连接EQ ,如图所示:CD CE =,CO DE ⊥,OD DE ∴=①AD BC ∵∥,DFO ECO ∴∠=∠,ADE CED ∠=∠②③由①②③得:DOF EOC ≌△△,DF CE ∴=,又AD BC =,AD DF BC CE ∴-=-,即AF BE =60EAG ∠=︒,60BAE FAG ∴∠+∠=︒,60DFC ∠=︒,60FGA FAG ∴∠+∠=︒,CD=CFBAE FGA ∴∠=∠④又120FAG AQE ∠=∠=︒,EQ AF =⑤⑥由④⑤⑥得:AEQ GAF ≌△△,AQ FG ∴=,又AB CF =,AB AQ CF FG ∴-=-,即BQ CG =,AF CG ∴=.【点睛】此题主要考查利用三角函数值构建直角三角形以及全等三角形的判定与性质,熟练掌握,即可解题.10.(1)BC =203;(2)见解析. 【分析】(1)如图①中,设AM =3k ,DM =4k ,则AD =5k ,由△ADM ∽△NDA ,可得AD 2=DM •AN ,由此构建方程即可解决问题.(2)如图②中,连接CH ,在DM 上取一点K ,使得DK =BH .证明△ADK ≌△CBH (SAS ),推出AK =CH ,再证明Rt △AMK ≌Rt △CNH (HL ),推出MK =HN 即可解决问题.【详解】(1)解:如图①中,∵AM⊥DN,∴∠AMD=90°,∵tan∠ADM=AIIDN=34,∴可以假设AM=3k,DM=4k,则AD=5k,∵AD⊥AN,∴∠DAN=90°=∠AMD,∵∠ADM=∠ADN,∴△ADM∽△NDA,∴AD2=DM•AN,∴(5k)2=4k(4k+3),解得k=43,∴AD=203,∵四边形ABCD是平行四边形,∴BC=AD=203.(2)证明:如图②中,连接CH,在DM上取一点K,使得DK=BH.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADK=∠BNQ,∵BH∥DQ,∴∠CBH=∠BNQ,∴∠ADK=∠CBH,∵DK=BH,DA=BC,∴△ADK≌△CBH(SAS),∴AK=CH,∵AM⊥DQ,AN⊥AD,AD∥BC,∴AN⊥BC,∴∠AMK=∠CNH=90°,∵AM=CN,∴Rt△AMK≌Rt△CNH(HL),∴MK=NH,∴DM=DK+MK=BH+HN.【点睛】本题考查了三角形的综合问题,掌握解直角三角形、相似三角形的性质以及判定定理、全等三角形的性质以及判定定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形——截长补短法
一、知识梳理:
截长补短法
截长补短法是几何证明题中十分重要的方法。

通常来证明几条线段的数量关系。

截长法:
(1)过某一点作长边的垂线
(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法
(1)延长短边。

(2)通过旋转等方式使两短边拼合到一起。

……
二、典型例题: 例1、如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.
及时练习:
如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD .
例2、已知ABC ∆中,60A ∠
=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.
D
O
E
C
B A
M
D
C
B A P
C B
A
及时练习:
如图,已知在ABC 内,0
60BAC ∠=,0
40C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,
BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP
例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .
求证:AE =BC +CE .
及时练习:
如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C .
2
k h
+ D . h
例4、以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O

求证:OA 平分DOE ∠.
E
D C B
D
C
A
及时练习:
如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.
三、课堂练习:
1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC
2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。

3、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0
180=∠+∠C A
C
D B
A
B
A D
B
A 4、如图在△ABC 中,A
B >A
C ,∠1=∠2,P 为A
D 上任意一点,求证;AB -AC >PB -PC
四、课后作业:
1. 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .
2. 如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM 且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?
3. 如图.四边形ABCD 中,AB =AD ,∠BAD =60°,∠BCD =120°,求证:AC =BC +
DC .
F
E
D
C
B
A
N
C
D
E
B M A
4. 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.
5. 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE .
6. 若P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆ 的
费马点.
如图,在锐角ABC ∆外侧作等边ACB ∆′,连结BB ′.
求证:BB ′过ABC ∆的费马点P ,且BB PA PB PC =++′.
C
E
D
B A
B'
B
A。

相关文档
最新文档