(精品)全等三角形——截长补短法

合集下载

全等三角形-截长补短法

全等三角形-截长补短法

全等三角形-截长补短法全等三角形截长补短法在初中数学的几何学习中,全等三角形是一个重要的知识点,而解决全等三角形相关问题时,截长补短法是一种非常实用且巧妙的方法。

首先,咱们来聊聊什么是截长补短法。

简单来说,截长补短就是通过在图形中截取或者延长某条线段,使得图形中的线段关系发生变化,从而构造出全等三角形,帮助我们解决问题。

比如说,有一个三角形 ABC,其中∠B = 2∠C,要证明 AB = AC + CD。

这时候,我们就可以考虑使用截长补短法。

如果使用截长的思路,就在 AB 上截取 AE = AC,然后连接 DE。

这样一来,因为 AE =AC,再加上公共边 AD,以及已知的∠CAD =∠EAD,就可以证明△ACD 和△AED 全等。

然后通过一系列的角度推导,就能得出结论。

要是用补短的方法呢,就是延长 AC 至 E,使 CE = CD,连接 DE。

通过角度关系证明∠E =∠CDE,进而得出∠B =∠BDE,再证明△ABD 和△AED 全等。

接下来,咱们通过几个具体的例子来更深入地理解截长补短法。

例 1:在△ABC 中,AB > AC,AD 平分∠BAC,P 为 AD 上一点。

求证:AB AC > PB PC。

我们来用截长的方法解决。

在 AB 上截取 AE = AC,连接 PE。

因为 AD 平分∠BAC,所以∠BAD =∠CAD。

又因为 AE = AC,AP 是公共边,所以△APE ≌△APC。

那么 PC = PE。

在△PBE 中,根据三角形两边之差小于第三边,有 PB PE < BE。

而 BE = AB AE = AB AC,所以 AB AC > PB PC。

例 2:已知在正方形 ABCD 中,∠MAN = 45°,∠MAN 绕点 A 顺时针旋转,它的两边分别交 CB、DC 于点 M、N。

求证:BM + DN =MN。

这道题我们用补短的方法。

延长 CB 至 E,使 BE = DN,连接 AE。

全等三角形辅助线之截长补短法

全等三角形辅助线之截长补短法
A 12
B
D
C
三角形全等之截长补短法
已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.
方法一:截长法
A
在AC上取一点E,使AE=AB
12
E
由1=2,AD=AD,AE=AB 可证ADB ADE(ASA), 得DB=DC,AED=B,而B=2C,
故AED=2C而AED=C+EDC,
解:(1)过A作AF BC,可求得AB= 10
(2)由ABD : AEB可得ADgAE=AB2 =10
(3)在点D的运动过程中,过A点作AH⊥BD,求证:BH=CD+DH.
补短法1:延长CD至G,过A作AG CD 1.证ADG ADH(ADG=ABC (圆内接四边形的外角等于内对角)) 2.证AGC AHB,可证得结论
E
三角形全等之截长补短法
已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.
A
延长DB至E使BA=BE,
12
E=BAE,ABD=E+BAE=2E
ABD 2C,故E=C
可证BAC=ADE
可证EAD CBA,故AC=AB+BD
E
B
D
C
已知:如图,在正方形ABCD中,AD=AB,∠B=∠D=∠BAD=90°,E,F 分别为CD,BC边上的点,且∠EAF=45°,连接EF. 求证:EF=BF+DE.
今天我们学习截长补短法,见线段和差倍分关系,考虑截长补短法.
其实截长补短法包含两种方法,一种是截长法,即在较长的线段长截 取与较短线段相等的线段;另一种是补短法,将较短线段延长.截长 补短的目的在于将问题合理的转化,进而达到简化结论,并证明结论 或者求解.

第二讲 全等三角形专题之“截长补短”(Word版无答案)

第二讲  全等三角形专题之“截长补短”(Word版无答案)

第二讲全等三角形专题之“截长补短”一、知识精讲1.全等三角形的判定: SSS 、SAS 、ASA、AAS 、HL 共五种.2.角平分线:从一个角的顶点引出一条射线,把这个角分成两个完全形同的角;角平分线上的点到角的两边的距离相等;在角的内部到角的两边距离相等的点在角的平分线上.3.截长补短法:截长:1.过某一点作长边的垂线2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等.补短:1.延长短边2.通过旋转翻折等方式使两短边拼合到一起.适用范围:证明线段的和、差、倍、分时,考虑截长补短.二、典例解析引例: 已知:如图,在∆ABC 中, ∠C =2∠B,∠1 =∠2 .求证: AB =AC +CD .A1 2B DC 分析:从结论分析,“截长”或“补短”都可实现问题的转化,将不在同一条直线上的线段转化到一条直线上,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC .A方法一(截长法):1 2FB D CA方法二(补短法): 1 2B D CE【例1】如图, AD ∥BC ,点E 在线段上, ∠ADE =∠CDE , ∠DCE =∠ECB .求证:CD =AD +BC .分析:结论是CD =AD +BC ,通常采用“截长补短法”进行证明.方法一是在“和线段”CD 上截取CF =CB ,只要再证DF =DA即可;方法二是延长CE 与AD 交与F ,证CD =CF ,再证BF =AD 即可.DAECB【练1】如图,已知∆ABC 中, AB =AC , ∠A =10 , BD 平分∠ABC ,求证: BC =BD +AD .【练2】正方形ABCD 中,点E 在CD 上,点F 在BC 上, ∠EAF = 45 .求证: EF=DE+BF.【例2】已知,如图,在四边形ABCD 中, BC >AB , AD =DC , BD 平分∠ABC .求证: ∠BAD +∠BCD =180 .分析:因为平角等于180 ,因而应考虑把两个不在一起的角通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.ADB C【练3】已知四边形ABCD 中, AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB+AD)求证: ∠B +∠D = 180 .【例3】在∆ABC 中, AB =AC , ∠ABC = 40 , BD 是∠ABC 的平分线,延长BD 至点E ,使DE =AD .求∠ECA 的度数.分析:要求∠ECA的度数,则要考虑到与已知角的关系来求解.由条件DE =AD 可采用“截长法”来解决,通过构造全等三角形,得到角度相等,进而得出∠ECA 的度数.【练4】在三角形ABC 中, BD、CE 分别是∠ABC 和∠ACB 的平分线. BE +CD =BC .求∠A 度数.三、课后练习1.如图, AC 平分∠DAB , ∠ADC +∠B =180 .求证:CD =CB .2.如图, ∠BDC +∠AEB = 180 , ∠ABC =12∠DBE, BD =BE.求证: AC =AE +CD .3.如图,已知AD // BC , AB =AD +BC , E 是CD 的中点,求∠AEB 的度数.4.已知梯形ABCD 中, AD // BC , AB =BC =DC ,点E 、F 分别在AD 、AB 上,且∠FCE =12∠BCD(1)求证: BF =EF -ED(2)连接AC ,若∠B = 80 , ∠DEC = 70 ,求∠ACF 的度数.5.(江汉区2017-2018 年期中)如图,在∆ABC 中, ∠ABC = 60 , AD、CE 分别是∠BAC、∠ACB 的平分线, AD、CE 相交于点P .(1)求∠CPD 的度数;(2)若AE =3,CD =7,求线段AC 的长.初二几何辅助线专题练习每日一题——截长补短法1.如图,AD∥BC,点E 在线段AB 上,∠ADE=∠CDE,∠DC E=∠ECB.求证:CD=AD+BC.2.已知:如图,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.3.如图所示,△ABC中,∠C=90°,∠B=45°,AD 平分∠BAC 交BC 于D.求证:AB=AC+CD.4. 已知∆ABC 中,∠A=60,BD 、 CE分别平分 ∠ABX 和.∠AXB B D C E交于点O求证:BE + CD = BC .5.如图,ΔABC 是正三角形,∠ADC=120°,求证:BD=AD+CD.6.如图,四边形 ABCD 中,AB=AD,∠B=∠D=90°,点 E,F 分别在边 AB,AD 上,连接 CE,CF,且∠BCD=2∠ECF。

全等三角形之截长补短法

全等三角形之截长补短法

全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。

全等三角形-截长补短法

全等三角形-截长补短法

“截长补短”的思想在几何证明中的运用【学习目标】(30秒)用“截长补短法”解决线段的和、差问题。

【重、难点】(30秒)用“截长补短法”解决线段的和、差问题。

【操作思考】(2 分钟)1、画一画:线段AB=CD+EF线段CD=AB-EF线段 AB线段 CD线段 EF(通过让学生在纸上画出线段的和和差的图形来说明线段的截长补短)导学设计教学重难点用“截长补短法”解决线段的和、差问题。

教具准备三角尺、翻折全等三角形的纸张模型、多媒体课件.导学流程一、导入新课 , 揭示目标 (1 分钟 )线段 AB=10cm线段 CD=6cm线段 EF=4cm语言;画三条线段思考两条线段和与差能否等于第三条线段。

师生对照课件解读学习目标用“截长补短法”解决线段的和、差问题。

【归纳小结】( 2 分钟)截长补短法”:“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。

典题解析( 3+4+6 分钟)例 1、如图,在ABC 中, AD 是∠ BAC 的平分线,∠C=2 ∠B. 求证: AB=AC+CD思路点拨:延长AC 到 E,使 CE=CD, 连接 DE.二、归纳小结截长补短法:“ 截长” 就是将题中的某条线段截成题中的几条线段之和;“ 补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。

三.典题解析例 1、思路点拨:延长AC 到 E,使ACE=CD, 连接 DE. 或者在 AB 上截取 AG ,使 AG =AC ,连接 DG。

追问 ; 这个图形的基本图形是怎样的图形?请把它画出来。

CDB证明:在AB上取一点E,使AE=AC,连接DE,∵AD 平分∠ BAC∴ ∠ EAD=∠ CADAE=AC ,∠EAD= ∠ CAD AD=AD ;∴△ AED ≌△ ACD ( SAS)∴∠ AED= ∠ C=2∠ BED=CD例 2、已知,如图 1-1 ,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ ABC.展示分配:一、三小组展示,其他小组质疑,提问。

三角形全等之截长补短(整理)

三角形全等之截长补短(整理)

三角形全等之截长补短(整理)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(三角形全等之截长补短(整理))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为三角形全等之截长补短(整理)的全部内容。

12三角形全等之截长补短(讲义)一、知识点睛截长补短:题目中出现__________________________时,考虑截长补短;截长补短的作用是____________________________________ ___________________________________________________.二、精讲精练1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 如图,在四边形ABCD 中,∠A =∠B =90°,点E 为AB 边上一点,且DE 平分21D CB A 21D CB A 21D B A3∠ADC ,CE 平分∠BCD . 求证:CD =AD +BC .3. 已知:如图,在正方形ABCD 中,AD =AB ,∠B =∠D =∠BAD =90°,E ,F 分别为CD ,BC 边上的点,且∠EAF =45°,连接EF .E DCA F EDCB A4求证:EF =BF +DE .4. 已知:如图,在△ABC 中,∠ABC =60°,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .OED CBA F EDCB A55. 已知:如图,在△ABC 中,∠A =90°,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .求证:CE =BD .21OED BEDCB A。

截长补短法全等三角形

截长补短法全等三角形

截长补短法全等三角形全等三角形是指两个三角形的对应边长和对应角度都相等的情况下,它们是完全相等的。

而截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。

在几何学中,截长补短法是一种常用的构造方法,可以用来证明两个三角形全等。

它的基本思想是通过截取和补充边长,使得两个三角形的对应边长和对应角度完全相等,从而达到全等的目的。

为了更好地理解截长补短法,我们可以通过一个具体的例子来说明。

假设我们需要证明两个三角形ABC和DEF全等,其中已知∠A=∠D,AB=DE,BC=EF。

根据截长补短法,我们可以进行如下的构造:1. 在BC的延长线上截取一段长度等于EF的线段,记为BC'。

2. 在AC'上截取一段长度等于DE的线段,记为AC。

通过以上的构造,我们可以得到以下的结论:1. 由于BC'=EF,且BC=EF,所以BC=BC',即三角形ABC和DEF的两条边相等。

2. 由于AC=DE,且∠A=∠D,所以三角形ABC和DEF的两个角相等。

3. 由于AB=DE,所以三角形ABC和DEF的第三条边相等。

根据截长补短法,我们可以得到三角形ABC和DEF全等的结论。

除了上述的例子,截长补短法还可以应用于更复杂的情况。

例如,当我们需要证明两个三角形全等时,已知两个角度相等并且其中一条边长相等,我们可以通过截长补短法来构造第二条边,从而得到全等的结果。

截长补短法在几何学中有着广泛的应用。

它不仅可以用来证明三角形的全等,还可以用来解决各种与全等三角形相关的问题。

通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。

截长补短法是一种通过截取和补充边长的方法来构造全等三角形的技巧。

通过灵活运用截长补短法,我们可以简化证明过程,提高证明的效率。

在解决几何问题时,我们可以尝试使用截长补短法,从而更好地理解和应用全等三角形的性质。

全等三角形辅助线的做法-截长补短

全等三角形辅助线的做法-截长补短

全等三角形辅助线的做法一:截长补短月日姓名【知识要点】1.遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法.(1)截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;(2)补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.2.角平分线问题的作法角平分线具有两条性质:(1)对称性,作法是在一侧的长边上截取短边;(2)角平分线上的点到角两边的距离相等,作法是从角平分线上的点向角两边作垂线段.【典型例题】例1. 如图,AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE.例2. 已知:如图,等腰三角形ABC中,AB=AC,∠A=108°,BD平分∠ABC.求证:BC=AB+DC.例3. 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD. DCBADAE CB12ACD例4.△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,求证:BD 平分∠ABC.例5.已知:△ABC 为等边三角形,AE=BD.求证:EC=DE.【考点突破】1. 如图,AB ∥CD ,AE 、DE 分别平分∠BAD 和∠ADE ,求证:AD=AB+CD.EEEDC2. 已知:CE、AD是△ABC的角平分线,∠B=60°,求证:AC=AE+CD.3. 已知,如图,∠C=2∠A,AC=2BC.求证:△ABC是直角三角形. 4.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC⊥AC. AEB D CCABAB D C1 2CBA5.已知:如图在△ABC 中,∠A=90°,AB=AC ,BD 是∠ABC 的平分线,求证:BC=AB+AD.6.已知:四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°.求证:AC=BC +CD.课后作业月 日 姓 名 成 绩1. 如图,已知在ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

全等三角形-截长补短法

全等三角形-截长补短法

全等三角形-截长补短法全等三角形的截长补短法,这可是初中数学里的一个重要“法宝”。

咱先来说说啥是截长补短法。

简单来讲,就是遇到证明线段之间关系的问题时,如果直接证明有困难,那就通过截取或者延长某条线段,让它们凑成新的相等线段,从而达到证明全等三角形的目的。

给大家举个例子啊。

就说有这么一道题,在三角形 ABC 中,AB >AC ,AD 是角平分线。

让咱们证明 AB AC > BD DC 。

这时候,咱们就可以用截长补短法。

咱们先截长。

在 AB 上截取 AE = AC ,连接 DE 。

因为 AD 是角平分线,所以角 BAD =角 CAD 。

又因为 AD 是公共边,AE = AC ,根据边角边定理,三角形 AED 就全等于三角形 ACD 啦。

这样一来,DC = DE 。

那在三角形 BDE 中,因为 BE = AB AE ,AE = AC ,所以 BE =AB AC 。

又因为 BD DE < BE ,而 DE = DC ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。

再说说补短。

延长 AC 到 F ,使 AF = AB ,连接 DF 。

同样因为AD 是角平分线,所以角 BAD =角 CAD 。

还有公共边 AD ,根据边角边定理,三角形 ABD 就全等于三角形 AFD 。

这样 BD = DF 。

在三角形 CDF 中,CF = AF AC ,AF = AB ,所以 CF = AB AC 。

又因为 DF DC < CF ,DF = BD ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。

还记得我上学那会,刚开始学这截长补短法,那真是一头雾水。

老师在讲台上讲得眉飞色舞,我在下面听得云里雾里。

后来,老师布置了一道作业题,我愣是想了半天也没做出来。

晚上回到家,我坐在台灯下,把教材翻了又翻,笔记看了又看,还是没啥头绪。

我心里那个急啊,感觉自己像个迷路的小羊羔,怎么也找不到走出这片知识迷雾的路。

全等三角形之截长补短模型

全等三角形之截长补短模型

精选例题
【精1】 如图,在 ABC 中, B 2C , BAC 的平分线 AD 交 BC 与 D .求证: AB BD AC
A
B
D
C
1/6
初一(下)数学暑假班全等模型课第 3 讲
【精2】 如图, BP 平分 ABC , PD BC , AB BC 2BD ,求证: BAP BCP 180
初一(下)数学暑假班全等模型课第 3 讲
全等三角形经典模型系列精讲—截长补短
截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。截长 就是在一条线上截取成两段,补短就是在一条边上延长,使其等于一条所求边。 截长:在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。 补短:延长短边,通过旋转等方式使两短边拼合到一起。
A D E P Q B F M G
C
6/6
AD BC CD ,谁成立,并说明理由
A D M E N B C
4/6
初一(下)数学暑假班全等模型课第 3 讲
【精7】 已知,如图,四边形 ABCD 是正方形, 1 2 ,求证: BE DF AE
A 2 F 1 D
B
E
C
【精8】 如图所示,已知正方形 ABCD 中, M 为 CD 中点, E 为 MC 上一点,且 BAE 2DAM 求证: AE BC CE
A
D
M E B C
5/6
初一(下)数学暑假班全等模型课第 3 讲
【精9】 已知, 如图,ABC 中,AB AC , D 是 ABC 外一点, 且 ABD ACD 60 , 求证:BD CD AB
A
D B

全等三角形辅助线系列之三---截长补短类辅助线作法大全

全等三角形辅助线系列之三---截长补短类辅助线作法大全

全等三角形辅助线系列之三 与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目.典型例题精讲【例1】 如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【解析】法一:如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=︒,则AEC ∆为等边三角形. 注意到EAD CAD ∠=∠,AD AD =,AE AC =, 故AED ACD ∆∆≌.从而有DE DC =,DEC DCE ∠=∠, 故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=︒,602080ABC BEC BCE ∠=∠+∠=︒+︒=︒. 法二:在AC 上取点E ,使得AE AB =,则由题意可知CE BD =. 在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =, 则ABD AED ∆∆≌,从而BD DE =, 进而有DE CE =,ECD EDC ∠=∠,AED ECD EDC ∠=∠+∠=2ECD ∠.注意到ABD AED ∠=∠,则:1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=︒-∠=︒,故80ABC ∠=︒.【答案】见解析.【例2】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】BE CD BC +=,理由是:在BC 上截取BF BE =,连结OF ,利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=︒+∠=︒,∴120DOE ∠=︒,∴180A DOE ∠+∠=︒,∴180AEO ADO ∠+∠=︒, ∴13180∠+∠=︒,∵24180∠+∠=︒,∴12∠=∠,∴34∠=∠, 利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =, ∴BC BF CF BE CD =+=+.【答案】见解析.【例3】 如图,已知在△ABC 内,60BAC ∠=︒,40C ∠=︒,P 、Q 分别在BC 、CA 上,并且AP 、BQ分别是∠BAC 、∠ABC 的角平分线,求证:BQ AQ AB BP +=+.DOECB A4321FDOE CB A【解析】延长AB 至D ,使BD BP =,连DP .在等腰△BPD 中,可得40BDP ∠=︒, 从而40BDP ACP ∠=︒=∠, △ADP ≌△ACP (ASA ),故AD AC =又40QBC QCB ∠=︒=∠,故 BQ QC =,BD BP =. 从而BQ AQ AB BP +=+.【答案】见解析.【例4】 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分∠ABC ,求证:180A C ∠+∠=︒.【解析】延长BA 至F ,使BF BC =,连FD△BDF ≌△BDC (SAS ), 故DFB DCB ∠=∠,FD DC =又AD CD =,故在等腰△BFD 中,DFB DAF ∠=∠ 故有180BAD BCD ∠+∠=︒【答案】见解析.QPCBACDBA【例5】 点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BDC ∠=︒,60MDN ∠=︒,求证:MN MB NC =+.【解析】延长NC 至E ,使得CE MB =∵ BDC ∆是等腰三角形,且120BDC ∠=︒,∴30DBC DCB ∠=∠=︒ ∵ ABC ∆是等边三角形. ∴60ABC ACB BAC ∠=∠=∠=︒∴90MBD ABC DBC ACB DCB DCN DCE ∠=∠+∠=∠+∠=∠=∠=︒ 在DBM ∆和DCE ∆中,BD DC =,MB CE =, ∴ DBM DCE ∆∆≌. ∴D E D M =, 12∠=∠.又∵ 160NDC ∠+∠=︒,∴ 2+60NDC END ∠∠=∠=︒. 在MDN ∆与EDN ∆中,ND ND =,60MDN EDN ∠=∠=︒,D E D M =∴ MND END ∆∆≌ ∴ MN EN NC MB ==+【答案】见解析.【例6】 如图在△ABC 中,AB AC >,12∠=∠,P 为AD 上任意一点,求证:AB AC PB PC ->-.1BMNM CBA21EABCMN【解析】延长AC至F,使AF AB=,连PD△ABP≌△AFP(SAS)故BP PF=由三角形性质知<PB PC PF PC CF AF AC AB AC-=-=-=-【答案】见解析.【例7】如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上.求证:BC AB DC=+.【解析】在BC上截取BF AB=,连接EF∵BE平分∠ABC,∴ABE FBE∠=∠又∵BE BE=,∴△ABE≌△FBE(SAS),∴A BFE∠=∠.∵AB//CD,∴180A D∠+∠=︒∵180BFE CFE∠+∠=︒,∴D CFE∠=∠又∵DCE FCE∠=∠,CE平分∠BCD,CE CE=∴△DCE≌△FCE(AAS),∴CD CF=∴BC BF CF AB CD=+=+【答案】见解析.DE CBA【例8】 如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【解析】猜测DM MN =.在AD 上截取AG AM =,∴DG MB =,∴45AGM =︒∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【答案】见解析.【例9】 已知:如图,ABCD 是正方形,FAD FAE ∠=∠,求证:BE DF AE +=.【解析】延长CB 至M ,使得BM D F =,连接AM .∵AB AD =,AD CD ⊥,AB BM ⊥,BM D F = ∴ABM ADF ∆∆≌∴AFD AM B ∠=∠,DAF BAM ∠=∠ ∵AB CD ∥∴AFD BAF EAF BAE BAE BAM EAM ∠=∠=∠+∠=∠+∠=∠ ∴AM B EAM ∠=∠,AE EM BE BM BE DF ==+=+【答案】见解析.【例10】 如图所示,已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且2BAE DAM ∠=∠.求证:AE BC CE =+.N CDE B M A NCDEB M A FE DCBAM F EDCB AM EDCBA【解析】分析证明一条线段等于两条线段和的基本方法有两种:(1)通过添辅助线“构造”一条线段使其为求证中的两条线段之和,再证所构造的线段与求证中那一条线段相等.(2)通过添辅助线先在求证中长线段上截取与线段中的某一段相等的线段,再证明截剩的部分与线段中的另一段相等.我们用(1)法来证明.【答案】延长AB 到F ,使BF CE =,则由正方形性质知AF AB BF BC CE =+=+下面我们利用全等三角形来证明AE AF =.为此,连接EF 交边BC 于G .由于对顶角BGF CGE ∠=∠,所以()Rt ΔBGF CGE AAS ∆≌,从而12BG GC BC FG EG ===,,BG DM =于是()Rt ΔRt ΔABG ADM SAS ≌,所以12BAG DAM BAE EAG ∠=∠=∠=∠,AG 是EAF ∠的平分线【例11】 五边形ABCDE 中,AB AE =,BC DE CD +=,180ABC AED ∠+∠=︒,求证:AD 平分∠CDE .【解析】延长DE 至F ,使得EF BC =,连接AC .∵180ABC AED ∠+∠=︒,180AEF AED ∠+∠=︒,∴ABC AEF ∠=∠ ∵AB AE =,BC EF =,∴△ABC ≌△AEF . ∴EF BC =,AC AF =∵BC DE CD +=,∴CD DE EF DF =+= ∴△ADC ≌△ADF ,∴ADC ADF ∠=∠ 即AD 平分∠CDE .【答案】见解析.FCEDB A【例12】 若P 为ABC ∆所在平面上一点,且120APB BPC CPA ∠=∠=∠=︒,则点P 叫做ABC ∆的费马点.(1)若点P 为锐角ABC ∆的费马点,且60ABC ∠=︒,34PA PC ==,,则PB 的值为_____;(2)如图,在锐角ABC ∆外侧作等边ACB ∆′,连结BB ′.求证:BB ′过ABC ∆的费马点P ,且BB PA PB PC =++′.【解析】(1)(2)证明:在BB ′上取点P ,使120BPC ∠=︒,连结AP ,再在PB ′上截取PE PC =,连结CE . ∵120BPC ∠=︒,∴60EPC ∠=︒,∴PCE ∆为正三角形,∴PC CE =,60PCE ∠=︒,120CEB ∠=︒′, ∵ACB ∆′为正三角形,∴AC B C =′,60ACB ∠=︒′, ∴60PCA ACE ACE ECB ∠+∠=∠+∠=︒′,∴PCA ECB ∠=∠′, ∴ACP B CE ∆∆≌′,∴120APC B CE ∠=∠=︒′,PA EB =′,∴120APB APC BPC ∠=∠=∠=︒, ∴P 为ABC ∆的费马点, ∴BB ′过ABC ∆的费马点,且BB EB PB PE PA PB PC =++=++′′. 【答案】见解析.ABDEFC B'BAP EPABB'课后复习【作业1】已知,AD 平分∠BAC ,AC AB BD =+,求证:2B C ∠=∠.【解析】延长AB 至点E ,使AE AC =,连接DE∵AD 平分∠BAC ,∴EAD CAD ∠=∠ ∵AE AC =,AD AD =,∴△AED ≌△ACD (SAS ),∴E C ∠=∠ ∵AC AB BD =+,∴AE AB BD =+∵AE AB BE =+,∴BD BE =,∴BDE E ∠=∠ ∵ABC E BDE ∠=∠+∠,∴2ABC E ∠=∠,∴2ABC C ∠=∠.【答案】见解析.【作业2】如图,△ABC 中,2AB AC =,AD 平分∠BAC ,且AD BD =,求证:CD ⊥AC .DCBAE CBADCDBA【解析】在AB 上取中点F ,连接FD .则△ADB 是等腰三角形,F 是底AB 的中点,由三线合一知 DF ⊥AB ,故90AFD ∠=︒ △ADF ≌△ADC (SAS )90ACD AFD ∠=∠=︒,即:CD ⊥AC【答案】见解析.【作业3】如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【解析】如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=︒,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=︒,60MDN ∠=,所以60BDM NDC ∠+∠=︒. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=︒.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=︒,D M D E =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【答案】见解析.【作业4】已知:AC平分∠BAD,CE⊥AB,180B D∠+∠=︒,求证:AE AD BE=+.【解析】在AE上取F,使EF EB=,连接CF∵CE⊥AB∴90CEB CEF∠=∠=︒∵EB EF=,CE CE=,∴△CEB≌△CEF∴B CFE∠=∠∵180B D∠∠=︒+,180CFE CFA∠+∠=︒∴D CFA∠=∠∵AC平分∠BAD∴DAC FAC∠=∠∵AC AC=∴△ADC≌△AFC(SAS)∴AD AF=∴AE AF FE AD BE=+=+【答案】见解析.EDCB A。

三角形全等之截长补短 (整理)

三角形全等之截长补短 (整理)

三角形全等之截长补短 (整理)三角形全等之截长补短一、知识点概述截长补短是指在几何题目中,当出现线段和的情况时,可以考虑通过截取一段线段并加上一段等于原线段的线段,将原问题转化为线段等量的问题。

二、例题讲解1.已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.证明:可以通过截长法和补短法两种方法证明。

截长法:在AC上截取AF=AB,连接DF。

在△ABD和△AFD中,根据SAS准则可以得到△ABD≌△AFD,进而得到∠B=∠AFD,BD=FD。

又因为∠B=2∠C,所以∠AFD=2∠C。

因为∠AFD是△DFC的一个外角,所以∠AFD=∠C+∠XXX。

因为∠1=∠2,所以∠XXX∠C,进而得到∠AFD=2∠C=∠B。

因此,根据三角形内角和定理,可以得到∠A=180°-∠B-∠C=∠AFD+∠XXX∠C=2∠C+∠C+∠C=4∠C。

在△ABC中,∠B=2∠C,所以∠A=60°。

在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC (AAS),进而得到AE=AC。

因此,AC=AB+BD。

补短法:延长AB到E,使BE=BD,连接DE。

因为BE=BD,所以∠XXX∠BDE。

因为∠ABD是△XXX的一个外角,所以∠ABD=∠E+∠BDE=2∠E。

因为∠ABD=2∠C,所以∠XXX∠C。

在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC(AAS),进而得到AE=AC。

因此,XXX。

2.如图,在四边形ABCD中,∠A=∠B=90°,点E为AB边上一点,且DE平分∠ADC,CE平分∠BCD.求证:XXX.证明:在△ADE和△BCE中,因为∠A=∠B=90°,所以AD=BC。

因为DE平分∠ADC,CE平分∠BCD,所以∠AED=∠DEC,∠XXX∠XXX。

因为∠AED+∠BCE=180°,所以∠DEC+∠CDE=180°。

全等三角形截长补短法的经典例题

全等三角形截长补短法的经典例题

全等三角形截长补短法的经典例题(最新版)目录1.截长补短法的概念2.截长补短法的两种方法:截长法和补短法3.截长补短法在全等三角形中的应用4.经典例题解析4.1 例题一4.2 例题二4.3 例题三5.截长补短法的优点和意义正文一、截长补短法的概念截长补短法是一种在几何问题中添加辅助线的方法,主要用于解决全等三角形的问题。

截长指的是在较长的线段上截取一段较短的线段,补短则是在较短线段上补一段线段,使其和较长的线段相等。

截长补短法的目的是将问题合理地转化为更容易解决的形式,从而简化结论。

二、截长补短法的两种方法截长补短法包括两种方法:截长法和补短法。

1.截长法:在较长的线段上截取与较短线段相等的线段。

2.补短法:在较短线段上补一段线段,使其和较长的线段相等。

三、截长补短法在全等三角形中的应用在全等三角形的证明中,截长补短法是非常常用的一种方法。

通过添加适当的辅助线,可以将问题转化为更容易证明的形式,从而得出结论。

下面通过几个经典例题来具体讲解截长补短法在全等三角形中的应用。

四、经典例题解析1.例题一已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。

解:通过截长补短法,我们可以在 BC 上截取 BE=CF,连接 AD 和 CE。

由于 AB=DE,BC=EF,且∠ABC=∠DEF,根据三角形全等的 SAS 条件,可得三角形 ABC≌三角形 DEF。

2.例题二已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。

解:这次我们可以在 AB 上截取 AD=DF,连接 CE 和 BD。

同样地,由于 AB=DE,BC=EF,且∠ABC=∠DEF,根据三角形全等的 SAS 条件,可得三角形 ABC≌三角形 DEF。

3.例题三已知三角形 ABC 和三角形 DEF 满足条件:AB=DE,BC=EF,∠ABC=∠DEF,求证三角形 ABC 与三角形 DEF 全等。

截长补短模型证三角形全等

截长补短模型证三角形全等

截长补短模型证三角形全等一、截长补短法:包含截长法和补短法,即a=b+c 和a=b-c截长补短法适用于求证线段的和差倍分关系。

截长,指在长线段中截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。

当出现等腰三角形、角平分线等关键词句时,常采用截长补短法构造全等三角形来完成证明过程。

如图①,若证明线段AB 、CD 、EF 之间存在EF =AB +CD ,可以考虑截长补短法。

截长法:如图②,在EF 上截取EG =AB ,再证明GF =CD 即可。

补短法:如图③,延长AB 至H 点,使BH =CD ,再证明AH =EF 即可。

二、模型实例例1:在△ABC 中,∠C=2∠B ,∠1=∠2,试说明AB=AC+CD .例2:如图1,△ABC 是正三角形,△BDC 是等腰三角形,BD=CD ,∠BDC=120°,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN . (1)探究BM 、MN 、NC 之间的关系,并说明理由; (2)若△ABC 的边长为2,求△AMN 的周长;(3)若点M 、N 分别是线段AB 、CA 延长线上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.例3:已知:如图,ABCD 是正方形,∠FAD=∠FAE .求证:BE+DF=AE .32HA B FE1G E F D C B A截长补短模型演练题1、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD的延长线于点E.求证: CE=BD.2、已知,如图AB//CD,BE、CE分别是∠ABC、∠BCD的平分线,点E在AD上,求证:BC=AB+CD。

3、如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠BAE=∠BCD=120°,∠ABC+∠AED=180°,连接AD.求证:AD平分∠CDE.。

截长补短法证明全等三角形

截长补短法证明全等三角形

截长补短法证明全等三角形全等三角形是指两个三角形的各个对应边和对应角相等。

证明两个三角形全等的方法有很多种,其中一种常用的方法是截长补短法。

截长补短法是通过截取或延长某些线段,使得两个三角形的对应边相等,从而证明两个三角形全等。

下面通过一个具体的例子来说明截长补短法的证明过程。

假设有两个三角形ABC和DEF,我们要证明它们全等。

首先,我们观察两个三角形的对应边和对应角,如果它们已经相等,那么可以直接得出两个三角形全等。

但通常情况下,我们需要通过截长补短的方法来使得对应边相等。

我们观察三角形ABC和DEF的对应边AB和DE,如果它们已经相等,那么我们可以通过对应边相等得出两个三角形全等。

但如果它们不相等,我们需要截取或延长某些线段来使它们相等。

假设我们截取了线段EF,使得EF = AB。

现在我们观察三角形ABC 和DEF的对应边AB和EF,它们已经相等了。

接下来,我们观察对应角B和对应角E,如果它们已经相等,那么我们可以通过对应边和对应角相等得出两个三角形全等。

但如果它们不相等,我们需要继续截取或延长某些线段来使它们相等。

假设我们截取了线段BC,使得BC = DE。

现在我们观察三角形ABC和DEF的对应边AB、BC和EF,它们已经相等了。

接下来,我们观察对应角B和对应角E,如果它们已经相等,那么我们可以通过对应边和对应角相等得出两个三角形全等。

但如果它们不相等,我们需要继续截取或延长某些线段来使它们相等。

假设我们截取了线段AC,使得AC = DF。

现在我们观察三角形ABC 和DEF的对应边AB、BC、AC和EF,它们已经全部相等了。

此时,我们只需要观察对应角B和对应角E,如果它们相等,那么我们就可以通过对应边和对应角相等得出两个三角形全等。

通过以上的截长补短的过程,我们可以得出结论:如果三角形ABC 的对应边AB、BC、AC和角B与三角形DEF的对应边DE、EF、DF和角E分别相等,那么三角形ABC和DEF全等。

全等三角形辅助线系列之三---截长补短类辅助线作法大全学习资料

全等三角形辅助线系列之三---截长补短类辅助线作法大全学习资料

全等三角形辅助线系列之三 与截长补短有关的辅助线作法大全一、截长补短法构造全等三角形截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段等于已知的两条较短线段中的 一条,然后证明其中的另一段与已知的另一条线段相等;所谓“补短” ,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等,然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.截长补短法作辅助线,适合于证明线段的和、差、倍、分等类的题目典型例题精讲【例1】 如图,在 ABC 中, BAC 60 , AD 是 BAC 的平分线,且 AC AB BD ,求 ABC 的度 数.【解析】法一:如图所示,延长 AB 至E 使BE BD ,连接ED 、EC .由 AC AB BD 知 AE AC ,而 BAC 60,则AEC 为等边三角形.注意到 EADCAD , ADAD :,AE AC ,故AED 也 ACD .从而有DE DC , DEC DCE故 BED BDEDCEDEC 2 DEC .所以 DECDCE 20 ,ABCBECBCE 6020 80 法二:在AC 上取点 E ,使得 AE AB ,则由题意可知CE BD .在ABD 和AED 中,AB AE , BADEAD , AD AD ,则ABD 也AED ,从而BD DE ,进而有 DE CE , ECD EDC ,AED ECD EDC 2 ECD .注意到 ABD AED ,则:ABCACB1 ABC -23ABC — ABC2180BAC 120 ,故 ABC 80【例2】已知ABC中, A 60 , BD、CE分别平分ABC和.ACB, BD、CE交于点O,试判断BE、CD、BC的数量关系,并加以证明. 【解析】BE CD BC ,理由是: :在BC上截取BF BE,连结OF ,利用SAS证得BEO也BFO , / -1 2,•/ A60 ,•BOC190 -2A 120 ,• DOE 120 ,••• A DOE180 , • AEO ADO 180 ,••• 1 3 180••• 2 4 180 1 2, • 3 4,利用AAS证得CDO 也CFO , • CD CF ,•BC BF CF BE CD .【答案】见解析.分别是/ BAC、/ ABC的角平分线,求证:BQ AQ AB BP .【例3】如图,已知在厶ABC内, BAC 60 ,40 , P、Q分别在BC、CA 上,并且AP、BQ【解析】延长AB至D,使BD BP,连DP.在等腰ABPD中,可得BDP 40 ,从而BDP 40 ACP ,△ADP ^△ACP (ASA ),故AD AC又QBC 40 QCB,故BQ QC , BD BP. 从而BQ AQAB BP.【答案】见解析.【解析】延长BA至F,使BF BC,连FD△BDF ^△BDC ( SAS),故DFB DCB , FD DC又AD CD,故在等腰ABFD中,DFB DAF故有BAD BCD 180Q【例4】如图,在四边形ABCD 中,BC BA , AD CD , BD 平分/ ABC,求证: C 180 .AC证:MN MB NC .【解析】延长NC 至E ,使得CE MBDBM 也 DCE .•••DE DM , 1 2.又•1 NDC 60 , • 2+ NDCEND 60在 MDN 与EDN 中,ND ND, MDNEDN60 , DEDMMND 也 END• MN EN NC MB【答案】见解析.••• BDC 是等腰三角形,且BDC 120 , •DBC ••• ABC 是等边三角形.• ABC ACB BAC 60• MBDABCDBCACB DCBDCN在DBM 和DCE 中,BDDC ,MB CEDCB 30DCE 90【例6】如图在△ ABC 中,AB AC , P 为AD 上任意一点, D求证: AB AC PB PC .C【解析】延长AC至F,使AF AB,连PD△ABP^△AFP (SAS)故BP PF由三角形性质知PB PC PF PC < CF AF AC AB AC【答案】见解析.【例7】如图,四边形ABCD中,AB// DC, BE、CE分别平分/ ABC、/ BCD,且点E在AD上.求证:BC AB DC .A【解析】在BC上截取BF AB,连接EF••BE 平分/ABC ,A ABE FBE又••• BE BE ‘•••△ABE 也/E BE (SAS), /• A BFE .TAB//CD, • A D 180•BFE CFE 180 , • D CFE又• DCE FCE , CE 平分/ BCD, CE CE z.ZDCE 也E CE (AAS ) , • CD CF• BC BF CF AB CD【例8】如图,点M为正方形ABCD的边AB上任意一点,MN DM且与/ ABC外角的平分线交于点N,MD与MN有怎样的数量关系?【解析】猜测DM MN •在AD上截取AG AM ,•••DG MB ,•••/ AGM 45•••/DGM / MBN 135,•/ ADM / NMB ,• DGM 也MBN , • DM MN .【答案】见解析.见解析.证:AE BC CE .AB AD , AD丄CD , AB丄BM , BM DFABM也ADFAFD AMB , DAF BAMAB// CDAFD BAF EAF BAE BAE BAMAMB EAM , AE EM BE BM BE DF,使得BM DF,连接AM •EAM【例9】已知:如图, ABCD是正方形,FAD FAE ,求证: BE DF AE .【解析】延长CB至M【例10】如图所示, 已知正方形ABCD中,M为CD的中点,E为MC上一点,且BAE 2 DAM .求B C【解析】分析证明一条线段等于两条线段和的基本方法有两种:(1) 通过添辅助线“构造”一条线段使其为求证中的两条线段之和,再证所构造的线段与求证中那一条线段相等.(2) 通过添辅助线先在求证中长线段上截取与线段中的某一段相等的线段,再证明截剩的部分与线段中的另一段相等•我们用(1)法来证明.【答案】延长AB到F,使BF CE,则由正方形性质知AF AB BF BC CEF面我们利用全等三角形来证明AE AF •为此,连接EF交边BC于G •由于对顶角BGF CGE,所以Rt A BGF 也CGE AAS ,1从而BG GC - BC, FG EG , BG DM2于是Rt A ABG 也Rt A ADM SAS ,1所以BAG DAM BAE EAG , AG 是2【解析】延长DE至F,使得EF BC ,连接AC.-ABC AED180 , AEF AED 180 , / • ABC AEFAB AE,BC EF ,•••△\BC也zAEF •• EF BC,AC AFBC DE CD , • CD DE EF DF•••公DC 也zADF ,••• ADC ADF即AD平分/CDE.EAF的平分线【例11】五边形ABCDE中,AB AE , BC DE CD , ABC AED 180,求证:AD 平分/ CDE •HDMEC【例12】若P 为 ABC 所在平面上一点,且 APB BPC CPA 120,则点P 叫做 ABC 的费马点.(1) 若点P 为锐角 ABC 的费马点,且 ABC 60 , PA 3 , PC 4,则PB 的值为 _________________ (2) 如图,在锐角 ABC 外侧作等边 ACB',连结BB'. 求证:BB'过 ABC 的费马点 P ,且BB ' PA PB PC .【解析】(2)证明:在 BB '上取点P ,使 BPC 120 , 连结AP ,再在PB'上截取PE PC ,连结CE .•/ BPC 120 , ••• EPC 60 , ••• PCE 为正三角形, ••• PC CE , PCE 60 , CEB ' 120 ,•/ ACB '为正三角形, • AC B C , ACB ' 60 , • PCAACE ACE ECB ' 60 , • PCA ECB ',• ACP 也 B'CE , • APC B'CE 120 , PA EB', • APB APC BPC 120 , • P 为ABC 的费马点, • BB'过 ABC 的费马点P , 且 BB ' EB ' PB PE PA PB PC .【答案】见解析.2.3课后复习【作业1】已知,AD平分/ BAC, AC AB BD【解析】延长AB至点E,使AE AC,连接DEAD 平分/ BAC, ••• EAD CADAE AC , AD AD ,•公ED也△CD(SAS), E CAC AB BD , • AE AB BDAE AB BE , • BD BE, …BDE-ABC E BDE ,• ABC 2 E , • ABC2 C .【答案】见解析.【作业2】如图,△ ABC中,AB2AC , AD 平分/ BAC,且AD BD,求证:CD丄AC .C【解析】在AB上取中点F,连接FD .则△ADB是等腰三角形,F是底AB的中点,由三线合一知DF 丄AB,故AFD 90△ADF ^△ADC ( SAS)ACD AFD 90 ,即:CD丄AC【答案】见解析.【作业3】如图所示,ABC是边长为1的正三角形,BDC是顶角为120的等腰三角形,以D为顶点作一个60的MDN,点M、N分别在AB、AC上,求AMN的周长.【解析】如图所示,延长AC到E使CE BM .在BDM与CDE中,因为BD CD , MBD ECD90 , BM CE ,所以BDM羞? CDE , 故MD ED.因为BDC -120 , MDN60°,所以BDM NDC60 .又因为BDM CDE,所以MDN EDN60在MND与END中,DN DN , MDN EDN60,DM DE , 所以MND也END , 则NE MN,所以AMN的周长为2.【答案】见解析.【作业4】已知:AC平分/ BAD, CE丄AB, B D 180,求证:AE AD BE.【解析】在AE上取F,使EF EB,连接CF••CE 丄AB二CEB CEF 90•EB EF , CE CE ,/•JCEB ^/CEF••• B CFE•B+ D 180 , CFE CFA 180• D CFA••AC 平分/BAD•DAC FAC•/ AC AC•△DC 也/FC (SAS)•AD AF•AE AF FE AD BE【答案】见解析.。

全等三角形截长补短法的经典例题

全等三角形截长补短法的经典例题

全等三角形截长补短法的经典例题全等三角形截长补短法的经典例题引言:三角形是几何学中最基本的图形之一,而全等三角形则是一种特殊的三角形,意味着两个三角形的所有对应边和角度都完全相等。

在求解几何问题时,有时我们需要利用这一特性,来简化问题的分析和解决过程。

本文将以全等三角形截长补短法为主题,介绍该方法的基本原理,并通过一个经典例题来说明其应用。

全等三角形截长补短法的基本原理:全等三角形截长补短法是利用全等三角形的性质,将一个三角形切分成多个全等三角形,并在原三角形或其他平行线上补充等长的线段,以便求解或证明相关的几何问题。

这一方法在解决几何问题时十分常用,其核心原理在于通过构造全等三角形,将原问题转化为易于解决的几何关系。

经典例题:证明三平分线交于一点让我们来看一个经典例题:证明三平分线交于一点。

三平分线是指从三角形的一个顶点分别连接到对边中点的线段,我们需要证明它们的交点存在且唯一。

解题步骤如下:1. 我们考虑三角形的一个顶点A和它的对边BC,其中BC为底边。

将BC的中点记为M,连接AM。

2. 根据全等三角形的定义,我们可以发现三角形AMB与三角形AMC 全等。

这是因为AM为公共边,且AB=AC(三边对应相等),∠ABM=∠ACM(平分线与底边的夹角相等)。

3. 由全等三角形的性质可知,∠MAB=∠MAC,即MA是∠BAC的平分线。

4. 同理,我们可以构造三角形的另外两个顶点的平分线,构成全等三角形,从而证明三平分线交于一点。

简要总结:通过全等三角形截长补短法,我们成功证明了三平分线交于一点。

这是因为利用了全等三角形的性质和平分线的定义,将原问题转化为易于解决的几何关系。

这一方法的应用不仅限于证明,而且在求解其它几何问题时也非常实用。

只需找到合适的截长补短点,构造全等三角形,就能简化问题的求解过程。

个人观点与理解:全等三角形截长补短法是一种十分精巧的几何分析方法。

它通过找到适当的截长补短点,将复杂的几何问题转化为易于处理的全等三角形关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C B A 全等三角形——截长补短法
一、知识梳理:
截长补短法
截长补短法是几何证明题中十分重要的方法。

通常来证明几条线段的数量关系。

截长法:
(1)过某一点作长边的垂线
(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法
(1)延长短边。

(2)通过旋转等方式使两短边拼合到一起。

……
二、典型例题: 例1、如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.
及时练习:
如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD .
例2、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.
N
E
B M A D
M
D
C
B
A D
O
E
C
B A
及时练习:
如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?
例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .
求证:AE =BC +CE .
及时练习:
如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C .
2
k h
+ D . h
例4、以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .
求证:OA 平分DOE ∠.
N
M D
C
B A E
D C
B
A
P
Q
C
B
A
及时练习:
如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为
顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.
三、课堂练习:
1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC
2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。

3、如图,已知在ABC 内,0
60BAC ∠=,0
40C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。

求证:BQ+AQ=AB+BP
C
D B
A。

相关文档
最新文档