全等三角形之截长补短法
人教版数学八年级上册第12章全等三角形专题课截长补短法教学设计
-通过小组间的交流,分享解题思路和经验,提高学生之间的相互学习和借鉴。
4.实践操作,加深理解:
-安排尺规作图实践,让学生动手操作,加深对截长补短法的理解和记忆。
-教师巡回指导,及时纠正学生在作图和证明过程中的错误,确保学习效果。
5.反思评价,促进成长:
-在复杂问题中识别应用截长补短法的时机,并能够结合全等三角形的判定定理进行有效证明。
-对于一些非标准图形,能够创造性地运用截长补短法,培养学生的创新思维和解决问题的能力。
(二)教学设想
1.创设情境,引入新课:
-通过展示一些生活中的实际例子,如建筑设计中的几何图形,引出全等三角形的应用。
-设计问题,让学生在实际情境中发现全等三角形,并感受到截长补短法在解决问题时的便捷性。
2.教学实施:
-分组讨论:将学生分成小组,每组分配一个或多个问题,要求运用截长补短法解决。
-教师巡回指导:观察学生的讨论过程,适时给予提示和指导,引导学生深入思考。
-小组分享:鼓励各小组展示解题过程和结果,其他小组给予评价和反馈。
(四)课堂练习
1.教学设计:设计具有梯度性的练习题,让学生独立完成,巩固所学知识。
-鼓励学生在课后进行反思,总结截长补短法在解决问题时的优势和局限。
-通过自我评价和同伴评价,帮助学生认识自身的进步和需要提升的地方,促进他们的个性化发展。
四、教学内容与过程
(一)导入新课
1.教学设计:通过生活实例和问题情境,自然导入新课——截长补短法在全等三角形中的应用。
-展示图片:呈现一些包含全等三角形的生活场景,如建筑物的立面图、拼图游戏等。
人教版数学八年级上册第12章全等三角形专题课截长补短法教学设计
人教版数学八年级上册第12章全等三角形专题课截长补短法优秀教学案例
3.引导学生运用数学符号和语言,表达和阐述解题过程和思路。例如,要求学生用数学语言描述全等三角形的判定方法,并解释其原理。
4.鼓励学生积极思考和解决问题,培养他们的自主学习能力和问题解决能力。例如,在解决问题的过程中,引导学生独立思考,寻找解决方案,并进行验证。
(三)小组合作
1.组织学生进行小组讨论和实践活动,培养他们的团队协作能力和交流能力。例如,将学生分成小组,让他们共同解决一个实际问题,要求学生在讨论中交流思路、分享解题方法。
在全等三角形专题课中,学生已经学习了全等三角形的定义、性质和判定方法。通过对全等三角形的性质和判定方法的学习,学生已经能够熟练地运用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否全等。然而,在解决实际问题时,学生往往需要灵活运用多种方法,而截长补短法作为一种特殊的方法,可以帮助学生更加简洁地解决问题。
3.小组合作培养团队协作能力:组织学生进行小组讨论和实践活动,培养他们的团队协作能力和交流能力。通过小组合作,学生能够在合作中发现问题、解决问题,并培养批判性思维和自我反思能力。
4.反思与评价提高自我认知:教师引导学生对自己的学习过程进行反思,总结经验和教训。通过互评和自我评价,学生能够培养批判性思维和自我反思能力,提高自我认知。
2.引导学生通过观察、分析和归纳,发现全等三角形的性质和判定方法。例如,通过展示两个全等三角形的图形,让学生观察并分析它们的性质,引导学生归纳出全等三角形的判定方法。
全等三角形之截长补短法
全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。
(精品)全等三角形——截长补短法
D C B A 全等三角形——截长补短法一、知识梳理:截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等. 补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……二、典型例题: 例1、如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.及时练习:如图所示,在Rt △ABC 中,∠C=90°,BC=AC ,AD 平分∠BAC 交BC 于D ,求证:AB=AC+CD .例2、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.NEB M A DMDCBA DOECB A及时练习:如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?例3、如图.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .求证:AE =BC +CE .及时练习:如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k , ∠AMD =75°,∠BMC =45°,则AB 的长为 ( ) A . a B . k C .2k h+ D . h例4、以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NM DCB A ED CBAPQCBA及时练习:如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.三、课堂练习:1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。
全等三角形-截长补短法
“截长补短”的思想在几何证明中的运用【学习目标】(30秒)用“截长补短法”解决线段的和、差问题。
【重、难点】(30秒)用“截长补短法”解决线段的和、差问题。
【操作思考】(2 分钟)1、画一画:线段AB=CD+EF线段CD=AB-EF线段 AB线段 CD线段 EF(通过让学生在纸上画出线段的和和差的图形来说明线段的截长补短)导学设计教学重难点用“截长补短法”解决线段的和、差问题。
教具准备三角尺、翻折全等三角形的纸张模型、多媒体课件.导学流程一、导入新课 , 揭示目标 (1 分钟 )线段 AB=10cm线段 CD=6cm线段 EF=4cm语言;画三条线段思考两条线段和与差能否等于第三条线段。
师生对照课件解读学习目标用“截长补短法”解决线段的和、差问题。
【归纳小结】( 2 分钟)截长补短法”:“截长”就是将题中的某条线段截成题中的几条线段之和;“补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。
典题解析( 3+4+6 分钟)例 1、如图,在ABC 中, AD 是∠ BAC 的平分线,∠C=2 ∠B. 求证: AB=AC+CD思路点拨:延长AC 到 E,使 CE=CD, 连接 DE.二、归纳小结截长补短法:“ 截长” 就是将题中的某条线段截成题中的几条线段之和;“ 补短”就是将题中某条线段延长(或补上某线段),然后,证明它与题中某条线段相等。
三.典题解析例 1、思路点拨:延长AC 到 E,使ACE=CD, 连接 DE. 或者在 AB 上截取 AG ,使 AG =AC ,连接 DG。
追问 ; 这个图形的基本图形是怎样的图形?请把它画出来。
CDB证明:在AB上取一点E,使AE=AC,连接DE,∵AD 平分∠ BAC∴ ∠ EAD=∠ CADAE=AC ,∠EAD= ∠ CAD AD=AD ;∴△ AED ≌△ ACD ( SAS)∴∠ AED= ∠ C=2∠ BED=CD例 2、已知,如图 1-1 ,在四边形ABCD中,BC>AB,AD=DC,BD平分∠ ABC.展示分配:一、三小组展示,其他小组质疑,提问。
全等三角形问题中常见的辅助线——截长补短法
全等三角形问题中常见的辅助线——截长补短法例1、如图,ABC 中,AB=2AC AD平分BAC,且AD=BD求证:CD丄AC例2、如图,AD// BC AE, BE分别平分/DAB,/ CBA CD过点E,求证;AB = AD+BCBAC ,例3、如图,已知在VABC内,BAC 60 , C 400, P, Q分别在BC, CA上,并且AP, BQ分别是ABC的角平分线。
求证:BQ+AQ=AB+BP例4、如图,在四边形ABCD中,BO BA,A» CD, BD平分ABC , 求证:A C 180求证;AB —AC> PB- PC例5、如图在厶ABC中, AB>AC, / 1 = Z 2, P为AD上任意一点,例6、已知ABC中,A 60°, BD、CE分别平分ABC和.ACB , BD、CE交于点O ,试判断BE、CD、BC的数量关系,并加以证明.例7、如图,点M为正三角形ABD的边AB所在直线上的任意一点(点B除外),作DMN 60,射线MN与/ DBA外角的平分线交于点N , DM与MN 有怎样的数量关系?变式练习如图,点M为正方形ABCD的边AB上任意一点,MN DM且与/ ABC外角的平分线交于点N , MD与MN有怎样的数量关系?上一点,且/ 例&如图所示.已知正方形ABCD中, M为CD的中点,E为MCBAE=2/ DAM 求证:AE=BC+CEDME例9、已知:如图,ABCD是正方形,/ FAD=/ FAE.求证:BE+DF=AE.例10、如图所示,ABC是边长为2的正三角形, BDC是顶角为120°的等腰三角形, D为顶点作一个60°的MDN,点M、N分别在AB、AC上,求AMN的周长.变式练习如图所示,ABC是边长为4的正三角形,BDC是顶角为120°的等腰三角形,以D为顶点作一个60°的MDN,点M、N分别在AB、AC上,求AMN的周长.例11、五边形ABCDE K AB=AE BC+DE=CD / ABC+Z AED=180 ,求证:DA平分/ CDE例12、如图,在四边形ABCD中, AD// BC,点E是AB上一个动点,若/ B=60°, AB=BC且/ DEC=60,判断AD+AE 与BC的关系并证明你的结论。
专题 全等三角形模型——截长补短与倍长中线(解析版)
全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
全等三角形-截长补短法
全等三角形-截长补短法全等三角形的截长补短法,这可是初中数学里的一个重要“法宝”。
咱先来说说啥是截长补短法。
简单来讲,就是遇到证明线段之间关系的问题时,如果直接证明有困难,那就通过截取或者延长某条线段,让它们凑成新的相等线段,从而达到证明全等三角形的目的。
给大家举个例子啊。
就说有这么一道题,在三角形 ABC 中,AB >AC ,AD 是角平分线。
让咱们证明 AB AC > BD DC 。
这时候,咱们就可以用截长补短法。
咱们先截长。
在 AB 上截取 AE = AC ,连接 DE 。
因为 AD 是角平分线,所以角 BAD =角 CAD 。
又因为 AD 是公共边,AE = AC ,根据边角边定理,三角形 AED 就全等于三角形 ACD 啦。
这样一来,DC = DE 。
那在三角形 BDE 中,因为 BE = AB AE ,AE = AC ,所以 BE =AB AC 。
又因为 BD DE < BE ,而 DE = DC ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。
再说说补短。
延长 AC 到 F ,使 AF = AB ,连接 DF 。
同样因为AD 是角平分线,所以角 BAD =角 CAD 。
还有公共边 AD ,根据边角边定理,三角形 ABD 就全等于三角形 AFD 。
这样 BD = DF 。
在三角形 CDF 中,CF = AF AC ,AF = AB ,所以 CF = AB AC 。
又因为 DF DC < CF ,DF = BD ,所以 BD DC < AB AC ,也就是 AB AC > BD DC 。
还记得我上学那会,刚开始学这截长补短法,那真是一头雾水。
老师在讲台上讲得眉飞色舞,我在下面听得云里雾里。
后来,老师布置了一道作业题,我愣是想了半天也没做出来。
晚上回到家,我坐在台灯下,把教材翻了又翻,笔记看了又看,还是没啥头绪。
我心里那个急啊,感觉自己像个迷路的小羊羔,怎么也找不到走出这片知识迷雾的路。
全等三角形专题截长补短法
全等三角形专题截长补短法(总1页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除2 全等三角形的截长补短法(1)板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【例3】 (“希望杯”竞赛试题)如图,AD ⊥AB ,CB ⊥AB ,DM =CM =a ,AD =h ,CB =k ,∠AMD =75°,∠BMC =45°,则AB 的长为 ( )A . aB . kC . 2k h + D . h 【例4】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .【例5】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.【例6】 (北京市数学竞赛试题,天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例7】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例8】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDE。
全等三角形-截长补短法
全等三角形-截长补短法全等三角形截长补短法在初中数学的几何世界里,全等三角形是一个极为重要的概念。
而在解决与全等三角形相关的问题时,有一种巧妙的方法,那就是截长补短法。
首先,我们来理解一下什么是截长补短法。
简单来说,截长就是在较长的线段上截取一段等于较短的线段;补短则是将较短的线段延长,使其与较长的线段相等。
这种方法的核心思想是通过对线段的巧妙处理,构造出全等三角形,从而解决问题。
为了更清晰地理解截长补短法,我们来看几个具体的例子。
例 1:已知在△ABC 中,∠B = 2∠C,AD 平分∠BAC 交 BC 于点D。
求证:AB + BD = AC证明:在 AC 上截取 AE = AB,连接 DE因为 AD 平分∠BAC,所以∠BAD =∠EAD又因为 AD = AD,AB = AE所以△ABD ≌△AED(SAS)所以 BD = ED,∠B =∠AED因为∠AED =∠C +∠EDC,∠B = 2∠C所以 2∠C =∠C +∠EDC所以∠C =∠EDC所以 ED = EC所以 AB + BD = AE + EC = AC这就是通过截长的方法,成功构造出全等三角形,解决了问题。
再来看一个补短的例子。
例 2:在△ABC 中,AB > AC,∠1 =∠2,P 为 AD 上任意一点。
求证:AB AC > PB PC证明:延长 AC 至 E,使 AE = AB,连接 PE因为 AB = AE,∠1 =∠2,AP = AP所以△ABP ≌△AEP(SAS)所以 PB = PE在△PEC 中,EC > PE PC因为 EC = AE AC = AB AC所以 AB AC > PB PC通过补短,将线段之间的关系转化为三角形三边的关系,从而得出结论。
截长补短法在解决一些较为复杂的几何问题时,往往能起到意想不到的效果。
比如在一些证明线段和差关系、角的大小关系等问题中,它可以帮助我们找到解题的突破口。
然而,要熟练运用截长补短法,并非一蹴而就。
三角形全等之截长补短 (整理)
三角形全等之截长补短 (整理)三角形全等之截长补短一、知识点概述截长补短是指在几何题目中,当出现线段和的情况时,可以考虑通过截取一段线段并加上一段等于原线段的线段,将原问题转化为线段等量的问题。
二、例题讲解1.已知:如图,在△ABC中,∠1=∠2,∠B=2∠C.求证:AC=AB+BD.证明:可以通过截长法和补短法两种方法证明。
截长法:在AC上截取AF=AB,连接DF。
在△ABD和△AFD中,根据SAS准则可以得到△ABD≌△AFD,进而得到∠B=∠AFD,BD=FD。
又因为∠B=2∠C,所以∠AFD=2∠C。
因为∠AFD是△DFC的一个外角,所以∠AFD=∠C+∠XXX。
因为∠1=∠2,所以∠XXX∠C,进而得到∠AFD=2∠C=∠B。
因此,根据三角形内角和定理,可以得到∠A=180°-∠B-∠C=∠AFD+∠XXX∠C=2∠C+∠C+∠C=4∠C。
在△ABC中,∠B=2∠C,所以∠A=60°。
在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC (AAS),进而得到AE=AC。
因此,AC=AB+BD。
补短法:延长AB到E,使BE=BD,连接DE。
因为BE=BD,所以∠XXX∠BDE。
因为∠ABD是△XXX的一个外角,所以∠ABD=∠E+∠BDE=2∠E。
因为∠ABD=2∠C,所以∠XXX∠C。
在△ADE和△ADC中,因为∠E=∠C,∠1=∠2,AD=AD,所以△ADE≌△ADC(AAS),进而得到AE=AC。
因此,XXX。
2.如图,在四边形ABCD中,∠A=∠B=90°,点E为AB边上一点,且DE平分∠ADC,CE平分∠BCD.求证:XXX.证明:在△ADE和△BCE中,因为∠A=∠B=90°,所以AD=BC。
因为DE平分∠ADC,CE平分∠BCD,所以∠AED=∠DEC,∠XXX∠XXX。
因为∠AED+∠BCE=180°,所以∠DEC+∠CDE=180°。
第08讲全等三角形中“截长补短”模型
第08讲全等三角形中“截长补短”模型(核心考点讲与练)【基础知识】1、补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种做法一般遇到证明三条线段之间关系是常用.如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图2,在EF上截取EG=AB,在证明GF=CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH=EF即可.【考点剖析】1、如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD解析:在AB上取一点E,使AE=AC,连接DE,∵AE=AC,∠1=∠2,AD=AD∴△ACD≌△AED∴CD=DE,∠C=∠3∵∠C=2∠B∴∠3=2∠B=∠4+∠B∴∠4=∠B,∴DE=BE,CD=BE∵AB=AE+BE∴AB=AC+CD2、如图,AC平分∠BAD,CE⊥AB于点E,∠B+∠D=180°,求证:AE=AD+BE.解析:如图,在EA上取点F,使EF=BE,连接CF,∵CE⊥AB∴CF=CB∠CFB=∠B∵∠AFC+∠C FB=180°,∠D+∠B=180°∴∠D=∠AFC∵AC平分∠BAD即∠DAC=∠FAC在△ACD和△ACF中∠D=∠AFC∠DAC=∠FACAC=AC∴ACD≌△ACF(AAS)∴AD=AF∴AE=AF+EF=AD+BE3.如图,在△ABC 中,∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD ,CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并加以证明.证明:在BC 上截取BF =BE ,连接OF .∵BD 平分∠ABC ,∴∠EBO =∠FBO .∴△EBO ≌△FBO .∴∠EOB =∠FOB .∵∠A =60°,BD ,CE 分别平分∠ABC 和∠ACB ,∴∠BOC =180°-∠OBC -∠OCB =180°-12∠ABC -12∠ACB =180°-12(180°-∠A )=120°.∴∠EOB =∠DOC =60°.∴∠BOF =60°,∠FOC =∠DOC =60°.∵CE 平分∠DCB ,∴∠DCO =∠FCO .∴△DCO ≌△FCO .∴CD =CF .∴BC =BF +CF =BE +CD .4.如图,AD //BC ,DC ⊥AD ,AE 平分∠BAD ,E 是DC 的中点.问:AD ,BC ,AB 之间有何关系?并说明理由.解:AB =AD +BC .理由:作EF ⊥AB 于F ,连接BE .∵AE 平分∠BAD ,DC ⊥AD ,EF ⊥AB ,∴EF =DE .∵DE =CE ,∴EC =EF .∴Rt △BFE ≌Rt △BCE (HL).∴BF =BC同理可证:AF =AD .∴AD +BC =AF +BF =AB ,即AB =AD +BC . 5.如图,已知DE =AE ,点E 在BC 上,AE ⊥DE ,AB ⊥BC ,DC ⊥BC ,请问线段AB ,CD 和线段BC 有何大小关系?并说明理由.解:线段AB ,CD 和线段BC 的关系是:BC =AB +CD .理由:在△DCE 中,∠EDC +∠DEC =90°,∵∠AEB +∠DEC =90°,∴∠AEB =∠EDC ,又∵ED =AE ,∠ABE =∠ECD =90°,∴△ABE ≌△ECD (AAS),∴AB =EC ,BE =CD ,∴BC =BE +EC =CD +AB .【过关检测】1.(2021·辽宁大连·八年级期中)如图,ABC V 为等边三角形,若()060DBC DAC a a Ð=Ð=°<<°,则BCD Ð=__________(用含a 的式子表示).【答案】120a°-【分析】在BD 上截取BE =AD ,连结CE ,可证得BEC ADC @△△ ,从而得到CE =CD ,∠DCE =∠ACB =60°,从而得到DCE V 是等边三角形,进而得到∠BDC =60°,则有60B CE a Ð=°-,即可求解.【详解】解:如图,在BD 上截取BE =AD ,连结CE ,∵ABC V 为等边三角形,∴BC =AC ,∠BAC =∠ABC =∠ACB =60°,∵a Ð=Ð=DBC DAC ,BE =AD ,∴BEC ADC @△△ ,∴CE =CD ,∠BCE =∠ACD ,∴∠BCE +∠ACE =∠ACD +∠ACE ,∴∠DCE =∠ACB =60°,∵CE =CD ,∴DCE V 是等边三角形,∴∠BDC =60°,∴18060120BCD a a Ð=°-°-=°-.故答案为:120a°-【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,解题的关键是做出辅助线构造全等三角形是解题的关键.2.(2019·浙江嘉兴市·八年级期中)(1)问题背景:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°.E ,F 分别是BC ,CD 上的点,且∠EAF =60°,请探究图中线段BE ,EF ,FD 之间的数量关系是什么?小明探究此问题的方法是:延长FD 到点G ,使DG =BE ,连结AG .先证明△ABE ≌△ADG ,得AE =AG ;再由条件可得∠EAF =∠GAF ,证明△AEF ≌△AGF ,进而可得线段BE ,EF ,FD 之间的数量关系是 .(2)拓展应用:如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD .问(1)中的线段BE ,EF ,FD 之间的数量关系是否还成立?若成立,请给出证明;若不成立,请说明理由.【答案】(1)EF =BE +DF ;(2)结论EF =BE +DF 仍然成立;证明见解析.【分析】(1)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题;(2)延长FD 到点G .使DG=BE .连结AG ,即可证明△ABE ≌△ADG ,可得AE=AG ,再证明△AEF ≌△AGF ,可得EF=FG ,即可解题.解答:(1)EF =BE +DF ,理由如下:在△ABE 和△ADG 中,90DG BE B ADG AB AD °=ìïÐ=Ð=íï=î,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF 中,AE AG EAF GAF AF AF =ìïÐ=Ðíï=î,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF ;故答案为:EF =BE +DF .(2)结论EF =BE +DF 仍然成立;理由如下:延长FD 到点G .使DG =BE .连结AG ,如图2,∵∠B +∠ADC =180°,∠ADC +∠ADG =180°,∴∠B =∠ADG ,在△ABE 和△ADG 中,DG BE B ADG AB AD =ìïÐ=Ðíï=î,∴△ABE ≌△ADG (SAS ),∴AE =AG ,∠BAE =∠DAG ,∵∠EAF =12∠BAD ,∴∠GAF =∠DAG +∠DAF =∠BAE +∠DAF =∠BAD ﹣∠EAF =∠EAF ,∴∠EAF =∠GAF ,在△AEF 和△GAF中,AE AG EAF GAF AF AF =ìïÐ=Ðíï=î,∴△AEF ≌△AGF (SAS ),∴EF =FG ,∵FG =DG +DF =BE +DF ,∴EF =BE +DF .【点拨】本题是四边形综合题,考查了全等三角形的判定和性质,直角三角形的性质,添加恰当辅助线构造全等三角形是解题的关键.3.(2020·全国八年级单元测试)在△ABC 中,∠ACB=2∠B ,(1)如图①,当∠C=90°,AD 为∠ABC 的角平分线时,在AB 上截取AE=AC ,连接DE ,易证AB=AC+CD .请证明AB=AC+CD ;(2)①如图②,当∠C ≠90°,AD 为∠BAC 的角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?请直接写出你的结论,不要求证明;②如图③,当∠C ≠90°,AD 为△ABC 的外角平分线时,线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想并证明.【答案】(1)证明见解析;(2)①AB=AC+CD ;②AC+AB=CD ,证明见解析.【分析】(1)首先得出△AED ≌△ACD (SAS ),即可得出∠B=∠BDE=45°,求出BE=DE=CD ,进而得出答案;(2)①首先得出△AED ≌△ACD (SAS ),即可得出∠B=∠BDE ,求出BE=DE=CD ,进而得出答案;②首先得出△AED ≌△ACD (SAS ),即可得出∠B=∠EDC ,求出BE=DE=CD ,进而得出答案.(1)证明:∵AD 为∠ABC 的角平分线,∴∠EAD=∠CAD ,在△AED 和△ACD 中,∵AE=AC ,∠EAD=∠CAD ,AD=AD ,∴△AED ≌△ACD (SAS ),∴ED=CD ,∠C=∠AED=90°,∵∠ACB=2∠B,∠C=90°,∴∠B=45°,∴∠BDE=45°,∴BE=ED=CD,∴AB=AE+BE=AC+CD;(3)①AB=AC+CD.理由如下:在AB上截取AE=AC,连接DE,∵AD为∠ABC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠C=∠AED,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠B+∠BDE=∠AED,∴∠B=∠BDE,∴BE=ED=CD,∴AB=AE+BE=AC+CD;②AC+AB=CD.理由如下:在射线BA上截取AE=AC,连接DE,∵AD为∠EAC的角平分线,∴∠EAD=∠CAD,在△AED和△ACD中,∵AE=AC,∠EAD=∠CAD,AD=AD,∴△AED≌△ACD(SAS),∴ED=CD,∠ACD=∠AED,∵∠ACB=2∠B,∴设∠B=x,则∠ACB=2x,∴∠EAC=3x,∴∠EAD=∠CAD=1.5x,∵∠ADC+∠CAD=∠ACB=2x,∴∠ADC=0.5x,∴∠EDC=x,∴∠B=∠EDC,∴BE=ED=CD,∴AB+AE=BE=AC+AB=CD.【点拨】此题主要考查了全等三角形的判定与性质以及三角形外角的性质等知识,利用已知得出△AED≌△ACD是解题关键.4.(2020·山东青岛·八年级单元测试)如图,在△ABC中,AB=BC,∠ABC=60°,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点.(1)若∠DAE=15°,求证:△ABD是等腰直角三角形;(2)连CE,求证:BE=AE+CE.【分析】(1)首先根据题意确定出△ABC是等边三角形,然后根据等边三角形的性质推出∠BAC=60°,再根据线段AC与AD关于直线AP对称,以及∠DAE=15°,推出∠BAD=90°,即可得出结论;(2)利用“截长补短”的方法在BE上取点F,使BF=CE,连接AF,根据题目条件推出△ABF≌△ACE,得出AF=AE,再进一步推出∠AEF=60°,可得到△AFE是等边三角形,则得到AF=FE,从而推出结论即可.【详解】证明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵线段AC与AD关于直线AP对称,∴∠CAE=∠DAE=15°,AD=AC,∴∠BAE=∠BAC+∠CAE=75°,∴∠BAD=90°,∵AB =AC =AD ,∴△ABD 是等腰直角三角形;(2)在BE 上取点F ,使BF =CE ,连接AF ,∵线段AC 与AD 关于直线AP 对称,∴∠ACE =∠ADE ,AD =AC ,∵AD =AC =AB ,∴∠ADB =∠ABD=∠ACE ,在△ABF 与△ACE 中,AC AB ACE ABFCE BF =ìïÐ=Ðíï=î∴△ABF ≌△ACE (SAS ),∴AF =AE ,∵AD =AB ,∴∠D =∠ABD ,又∠CAE =∠DAE ,∴()()111806022AEB D DAE D ABD DAC BAC Ð=Ð+Ð=Ð+Ð+Ð=°-Ð=°,∴在△AFE 中,AF =AE ,∠AEF =60°,∴△AFE 是等边三角形,∴AF =FE ,∴BE =BF +FE =CE +AE .【点睛】本题考查全等三角形的判定与性质,以及等边三角形的判定与性质等,掌握等边三角形的判定与性质,以及全等三角形的常见辅助线的构造方法是解题关键.5.(2021·广东·珠海市九洲中学八年级期中)如图,在△ABC 中,∠C =90°,AD 是∠BAC的角平分线,交BC 于点D ,过D 作DE ⊥BA 于点E ,点F 在AC 上,且BD =DF .(1)求证:AC =AE ;(2)若AB =7.4,AF =1.4,求线段BE 的长.【答案】(1)见解析;(2)3【分析】(1)证明△ACD ≌△AED (AAS ),即可得出结论;(2)在AB 上截取AM =AF ,连接MD ,证△FAD ≌△MAD (SAS ),得FD =MD ,∠ADF =∠ADM ,再证Rt △MDE ≌Rt △BDE (HL ),得ME =BE ,求出MB =AB -AM =6,即可求解.【详解】解:(1)证明:∵AD 平分∠BAC ,∴∠DAC =∠DAE ,∵DE ⊥BA ,∴∠DEA =∠DEB =90°,∵∠C =90°,∴∠C =∠DEA =90°,在△ACD 和△AED 中,C DEA DAC DAE AD AD Ð=ÐìïÐ=Ðíï=î,∴△ACD ≌△AED (AAS ),∴AC =AE ;(2)在AB 上截取AM =AF ,连接MD ,在△FAD 和△MAD 中,AF AM DAF DAM AD AD =ìïÐ=Ðíï=î,∴△FAD ≌△MAD (SAS ),∴FD =MD ,∠ADF =∠ADM,∵BD =DF ,∴BD =MD ,在Rt △MDE 和Rt △BDE 中,MD BD DE DE=ìí=î,∴Rt △MDE ≌Rt △BDE (HL ),∴ME =BE ,∵AF =AM ,且AF =1.4,∴AM =1.4,∵AB =7.4,∴MB =AB -AM =7.4-1.4=6,∴BE =12BM =3,即BE 的长为3.【点睛】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD ≌△MAD 和Rt △MDE ≌Rt △BDE 是解题的关键.6.(2021·贵州·铜仁市第十一中学八年级期中)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .【分析】如图,在AB 上截取,AH AD =证明,ADE AHE V V ≌再证明,HBE CBE V V ≌可得,BC BH = 从而可得结论.【详解】证明:如图,在AB 上截取,AH AD =AE ∵平分,DAB Ð,DAE HAE \Ð=Ð,AE AE =Q,ADE AHE \V V ≌,ADE AHE \Ð=Ð//,AD BC Q180,ADE BCE \Ð+Ð=°180,AHE BHE Ð+Ð=°Q,BCE BHE \Ð=ÐBE Q 平分,ABC Ð,ABE CBE \Ð=Ð,BE BE =Q,HBE CBE \V V ≌,BC BH \=,AB AH HB =+Q.AB AD BC \=+【点睛】本题考查的是全等三角形的判定与性质,掌握“利用截长补短的方法证明两条线段的和等于另一条线段”是解题的关键.7.(2021·湖北·武汉外国语学校(武汉实验外国语学校)八年级期中)在ABC V 中,BE ,CD 为ABC V 的角平分线,BE ,CD 交于点F .(1)求证:1902BFC A Ð=°+Ð;(2)已知60A Ð=°.①如图1,若4BD =, 6.5BC =,求CE 的长;②如图2,若BF AC =,求AEB Ð的大小.【答案】(1)证明见解析;(2)2.5;(3)100°.【分析】(1)由三角形内角和定理和角平分线得出1902FBC FCB A Ð+Ð=°-Ð的度数,再由三角形内角和定理可求出BFC Ð的度数,(2)在BC 上取一点G 使BG=BD ,构造BFG BFD @V △(SAS ),再证明()FEC FGC ASA @V V ,即可得BC BD CE =+,由此求出答案;(3)延长BA 到P ,使AP=FC ,构造BFC CAP @V △(SAS ),得PC=BC ,12P BCF ACB Ð=Ð=Ð,再由三角形内角和可求40ABC Ð=°,80ACB Ð=°,进而可得180()100AEB ABE A Ð=°-Ð+Ð=°.【详解】解:(1)BE Q 、CD 分别是ABC Ð与ACB Ð的角平分线,11(180)9022FBC FCB A A \Ð+Ð=°-Ð=°-Ð,1180()180(90)2BFC FBC FCB A \Ð=°-Ð+Ð=°-°-Ð,1902BFC A \Ð=°+Ð,(2)如解(2)图,在BC 上取一点G 使BG=BD ,由(1)得1902BFC A Ð=°+Ð,60BAC Ð=°Q ,120BFC \Ð=°,∴18060BFD EFC BFC Ð=Ð=°-Ð=°,在BFG V 与BFD △中,BF BF FBG FBD BD BG =ìïÐ=Ðíï=î,∴BFG BFD @V △(SAS )∴BFD BFG Ð=Ð,∴60BFD BFG Ð=Ð=°,∴12060CFG BFG Ð=°-Ð=°,∴60CFG CFE Ð=Ð=°在FEC V 与FGC △中,CFE CFG CF CFECF GCF Ð=Ðìï=íïÐ=Ðî,()FEC FGC ASA \@V V ,CE CG \=,BC BG CG =+Q ,BC BD CE \=+;∵4BD =, 6.5BC =,∴ 2.5CE =(3)如解(3)图,延长BA 到P ,使AP=FC ,60BAC Ð=°Q,∴180120PAC BAC Ð=°-Ð=°,在BFC △与CAP V 中,120BF AC BFC CAP CF PA =ìïÐ=Ð=°íï=î,∴BFC CAP @V △(SAS )∴P BCF Ð=Ð,BC PC =,∴P ABC Ð=Ð,又∵12P BCF ACB Ð=Ð=Ð,∴2ACB ABC Ð=Ð,又∵180ACB ABC A Ð+Ð+Ð=°,∴360180ABC Ð+°=°,∴40ABC Ð=°,80ACB Ð=°,∴1202ABE ABC Ð=Ð=°,180()180(2060)100AEB ABE A Ð=°-Ð+Ð=°-°+°=°【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.8.(2021·福建省福州第十六中学八年级期中)如图,△ABC 为等边三角形,直线l 过点C ,在l 上位于C 点右侧的点D 满足∠BDC =60°(1)如图1,在l 上位于C 点左侧取一点E ,使∠AEC =60°,求证:△AEC ≌△CDB ;(2)如图2,点F 、G 在直线l 上,连AF ,在l 上方作∠AFH =120°,且AF =HF ,∠HGF =120°,求证:HG +BD =CF ;(3)在(2)的条件下,当A 、B 位于直线l 两侧,其余条件不变时(如图3),线段HG 、CF 、BD 的数量关系为 .【答案】(1)见解析;(2)见解析;(3)CF =EF -BD .【分析】(1)先证明∠ACE =∠CBD ,即可利用AAS 证明△AEC ≌△CDB ;(2)在直线l 上位于C 点左侧去一点E ,使得∠AEC =60°,连接AE ,由(1)可知△AEC ≌△CDB ,CE =BD ,然后证明△FAE ≌△HFG 得到GH =EF ,则CF =EF +CE =GH +BD 即HG +BD =CF ;(3)在直线l 上位于C 点右侧取一点E 使得∠AED =60°,连接AE ,在直线l 上位于D 点左侧取一点M 使得BM =BD ,设AB 与直线l 交于N ,先证明△BDM 是等边三角形,得到∠DBM =∠DMB =60°,然后证明∠ACE =∠ABD =∠CBM ,即可利用AAS 证明△AEC ≌△CMB 得到CE =BM =BD ;最后证明△AEF ≌△FGH 得到HG =EF ,则EF =CE +CF =CF +BD 即CF =EF -BD .【详解】解:(1)∵△ABC 是等边三角形,∴AC =BC ,∠ACB =60°,∴∠ACE +∠BCD =180°-∠ACB =120°,∵∠BDC =60°,∴∠BCD +∠CBD =180°-∠BDC =120°,∴∠ACE =∠CBD ,在△AEC 和△CDB 中,===60ACE CBD AEC CDB AC CB ÐÐìïÐÐíï=îo ,∴△AEC ≌△CDB (AAS)(2)如图所示,在直线l 上位于C 点左侧取一点E ,使得∠AEC =60°,连接AE ,由(1)可知△AEC ≌△CDB ,∴CE =BD ,∵∠ACE =60°,∴∠AEF =120°,∴∠AEF =∠AFH =120°,∴∠AFE +∠FAE =180°-∠AEF =60°,∠AFE +∠HFG =180°-∠AFH =60°,∴∠FAE =∠HFG ,在△FAE 和△HFG 中,120FAE HFG AEF FGH AF FH Ð=ÐìïÐ=Ð=íï=îo ,∴△FAE ≌△HFG (AAS ),∴GH =EF ,∴CF =EF +CE =GH +BD 即HG +BD =CF ;(3)如图所示,在直线l 上位于C 点右侧取一点E 使得∠AED =60°,连接AE ,在直线l 上位于D 点左侧取一点M 使得BM =BD ,设AB 与直线l 交于N∵∠BDC =60°,BM =BD ,∴△BDM 是等边三角形,∴∠DBM =∠DMB =60°,∵三角形ABC 是等边三角形,∴∠ABC =∠BAC =60°,AC =BC∴∠ABM +∠CBM =∠ABM +∠ABD,∴∠ABD =∠CBM ,∵∠BAC =∠BDC =60°,∠ANE =∠DNB ,∴∠ACE =∠ABD =∠CBM ,∵∠CMB =180°-∠DMB =120°,∠AEC =180°-∠AED =120°,∴∠CMB =∠AEC ,在△AEC 和△CMB 中,120ACE CBM AEC CMB AC CB Ð=ÐìïÐ=Ð=íï=îo ,∴△AEC ≌△CMB (AAS ),∴CE =BM =BD ;∵∠AFH =120°,∴∠AFC +∠GFH =60°,∵∠GFH +∠FHG =180°-∠HGF =60°,∴∠AFC =∠FHG ,在△AEF 和△FGH 中,120AFE FHG AEF FGH AF FH Ð=ÐìïÐ=Ð=íï=îo ,∴△AEF ≌△FGH (AAS ),∴HG =EF ,∴EF =CE +CF =CF +BD 即CF =EF -BD .故答案为:CF =EF -BD .【点睛】本题主要考查了全等三角形的性质与判定,等边三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.9.(2021·云南昆明·八年级期中)阅读下面材料:【原题呈现】如图1,在V ABC 中,∠A =2∠B ,CD 平分∠ACB ,AD =2.2,AC =3.6,求BC 的长.【思考引导】因为CD 平分∠ACB ,所以可在BC 边上取点E ,使EC =AC ,连接DE .这样很容易得到V DEC ≌V DAC ,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知V ABC 中,AB =AC ,∠A =20°,BD 平分∠ABC ,BD =2.3,BC =2.求AD 的长.【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD ≌△ECD ,得到AD =DE ,∠A =∠DEC ,由于∠A =2∠B ,推出∠DEC =2∠B ,等量代换得到∠B =∠EDB ,得到△BDE 是等腰三角形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =ìïÐ=Ðíï=î,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =ìïÐ=Ðíï=î,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.10.(2022·广东东莞·八年级期末)(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F分∠BAD,线段EF、BE、FD之间的关系是;(不需要证明)别是边BC、CD上的点,且∠EAF=12(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=1∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并证2明.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD延长线上的点,且∠EAF ∠BAD,(1)中的结论是否仍然成立?若成立,请证明.若不成立,请写出它们之间的数量关系,并=12证明.【答案】(1)EF=BE+FD;(2)(1)中的结论仍然成立,见解析;(3)结论不成立,EF=BE﹣FD,见解析【分析】(1)延长CB至G,使BG=DF,连接AG,证明△ABG≌△ADF,根据全等三角形的性质得到AG =AF,∠BAG=∠DAF,再证明△GAE≌△FAE,根据全等三角形的性质得出EF=EG,结合图形计算,证明结论;(2)延长CB至M,使BM=DF,连接AM,仿照(1)的证明方法解答;(3)在EB上截取BH=DF,连接AH,仿照(1)的证明方法解答.【详解】解:(1)EF=BE+FD,理由如下:如图1,延长CB至G,使BG=DF,连接AG,在△ABG 和△ADF 中,90AB AD ABG D BG DF °=ìïÐ=Ð=íï=î,∴△ABG ≌△ADF (SAS ),∴AG =AF ,∠BAG =∠DAF ,∵∠EAF =12∠BAD ,∴∠DAF +∠BAE =∠EAF ,∴∠GAE =∠BAG +∠BAE =∠DAF +∠BAE =∠EAF ,在△GAE 和△FAE 中,AG AF GAE FAE AE AE =ìïÐ=Ðíï=î,∴△GAE ≌△FAE (SAS ),∴EF =EG ,∵EG =BG +BE =BE +DF ,∴EF =BE +FD ,故答案为:EF =BE +FD ;(2)(1)中的结论仍然成立,理由如下:如图2,延长CB 至M ,使BM =DF ,连接AM ,∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D ,在△ABM 和△ADF 中,1AB AD D BM DF =ìïÐ=Ðíï=î,∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,∵∠EAF =12∠BAD ,∴∠2+∠4=∠EAF ,∴∠EAM =∠3+∠4=∠2+∠4=∠EAF ,在△MAE 和△FAE 中,AM AF MAE FAE AE AE =ìïÐ=Ðíï=î,∴△MAE ≌△FAE (SAS ),∴EF =EM ,∵EM =BM +BE =BE +DF ,∴EF =BE +FD ;(3)(1)中的结论不成立,EF =BE ﹣FD ,理由如下:如图3,在EB 上截取BH =DF ,连接AH ,同(2)中证法可得,△ABH ≌△ADF ,∴AH =AF ,∠BAH =∠DAF ,∴∠HAE =∠FAE ,在△HAE 和△FAE 中,AH AF HAE FAE AE AE =ìïÐ=Ðíï=î,∴△HAE ≌△FAE (SAS),EF EH\=∵EH =BE ﹣BH =BE ﹣DF ,∴EF =BE ﹣FD .【点睛】本题考查了三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.11.(2022·四川南充·八年级期末)(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC Ð,180A C Ð+Ð=°.求证:DA DC =.思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC Ð=°时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C Ð+Ð=°,DA DC =,过点D 作DE BC ^,垂足为点E ,请直接写出线段AB 、CE 、BC 之间的数量关系.【答案】(1)证明见解析;(2)AB BC BD +=;理由见解析;(3)2BC AB CE -=.【分析】(1)方法1:在BC 上截取BM BA =,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC =,连接DN ,得到全等三角形,进而解决问题;(2)延长CB 到点P ,使BP BA =,连接AP ,证明ΔΔPAC BAD ≌,可得PC BD =,即PC BP BC AB BC=+=+(3)连接BD ,过点D 作DF AC ^于F ,证明ΔΔDFA DEC ≌,RtΔRtΔBDF BDE ≌,进而根据2BC BE CE BA AF CE BA CE =+=++=+即可得出结论.【详解】解:(1)方法1:在BC 上截BM BA =,连接DM ,如图.BD Q 平分ABC Ð,ABD CBD \Ð=Ð.在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM =ìïÐ=Ðíï=î,ΔΔABD MBD \≌,A BMD \Ð=Ð,AD MD =.180BMD CMD °Ð+Ð=Q ,180C A °Ð+Ð=.C CMD \Ð=Ð.DM DC \=,DA DC \=.方法2:延长BA 到点N ,使得BN BC =,连接DN ,如图.BD Q 平分ABC Ð,NBD CBD \Ð=Ð.在ΔNBD 和ΔCBD 中,BD BD NBD CBD BN BC =ìïÐ=Ðíï=î,ΔΔNBD CBD \≌.BND C \Ð=Ð,ND CD =.180NAD BAD °Ð+Ð=Q ,180C BAD °Ð+Ð=.BND NAD \Ð=Ð,DN DA \=,DA DC \=.(2)AB 、BC 、BD 之间的数量关系为:AB BC BD +=.(或者:BD CB AB -=,BD AB CB -=).延长CB 到点P ,使BP BA =,连接AP ,如图2所示.由(1)可知AD CD =,60DAC °Ð=Q .ΔADC \为等边三角形.AC AD \=,60ADC °Ð=.180BCD BAD °Ð+Ð=Q ,36018060120ABC °°°°\Ð=--=.18060PBA ABC °°\Ð=-Ð=.BP BA =Q ,ΔABP \为等边三角形.60PAB °\Ð=,AB AP =.60DAC °Ð=Q ,PAB BAC DAC BAC \Ð+Ð=Ð+Ð,即PAC BAD Ð=Ð.在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD =ìïÐ=Ðíï=î,ΔΔPAC BAD \≌.PC BD \=,PC BP BC AB BC =+=+Q ,AB BC BD \+=.(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE -=.(或者:2BC CE AB -=,2AB CE BC +=)解:连接BD ,过点D 作DF AC ^于F ,如图3所示.180BAD C °Ð+Ð=Q ,180BAD FAD °Ð+Ð=.FAD C \Ð=Ð.在ΔDFA 和ΔDEC 中,DFA DEC FAD C DA DC Ð=ÐìïÐ=Ðíï=î,ΔΔDFA DEC \≌,DF DE \=,AF CE =.在RtΔBDF 和RtΔBDE 中,BD BD DF DE =ìí=î,RtΔRtΔ\≌.BDF BDE\=,BF BE\=+=++=+,2BC BE CE BA AF CE BA CE\-=.BC BA CE2【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.。
截长补短法证明全等三角形
截长补短法证明全等三角形全等三角形是指两个三角形的各个对应边和对应角相等。
证明两个三角形全等的方法有很多种,其中一种常用的方法是截长补短法。
截长补短法是通过截取或延长某些线段,使得两个三角形的对应边相等,从而证明两个三角形全等。
下面通过一个具体的例子来说明截长补短法的证明过程。
假设有两个三角形ABC和DEF,我们要证明它们全等。
首先,我们观察两个三角形的对应边和对应角,如果它们已经相等,那么可以直接得出两个三角形全等。
但通常情况下,我们需要通过截长补短的方法来使得对应边相等。
我们观察三角形ABC和DEF的对应边AB和DE,如果它们已经相等,那么我们可以通过对应边相等得出两个三角形全等。
但如果它们不相等,我们需要截取或延长某些线段来使它们相等。
假设我们截取了线段EF,使得EF = AB。
现在我们观察三角形ABC 和DEF的对应边AB和EF,它们已经相等了。
接下来,我们观察对应角B和对应角E,如果它们已经相等,那么我们可以通过对应边和对应角相等得出两个三角形全等。
但如果它们不相等,我们需要继续截取或延长某些线段来使它们相等。
假设我们截取了线段BC,使得BC = DE。
现在我们观察三角形ABC和DEF的对应边AB、BC和EF,它们已经相等了。
接下来,我们观察对应角B和对应角E,如果它们已经相等,那么我们可以通过对应边和对应角相等得出两个三角形全等。
但如果它们不相等,我们需要继续截取或延长某些线段来使它们相等。
假设我们截取了线段AC,使得AC = DF。
现在我们观察三角形ABC 和DEF的对应边AB、BC、AC和EF,它们已经全部相等了。
此时,我们只需要观察对应角B和对应角E,如果它们相等,那么我们就可以通过对应边和对应角相等得出两个三角形全等。
通过以上的截长补短的过程,我们可以得出结论:如果三角形ABC 的对应边AB、BC、AC和角B与三角形DEF的对应边DE、EF、DF和角E分别相等,那么三角形ABC和DEF全等。
2013中考_全等三角形之截长补短法
截长补短法例题1如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.考点:全等三角形的判定与性质.专题:证明题.分析:利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED(AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.解答:证法一:如答图所示,延长AC,到E使CE=CD,连接DE.∵∠ACB=90°,AC=BC,CE=CD,∴∠B=∠CAB=45°,∠E=∠CDE=45°,∴∠B=∠E.∵平分∠BAC,∴∠1=∠2在△ABD和△AED中,∠B=∠E,∠2=∠1,AD=AD,∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,AC=AE,∠1=∠2,AD=AD,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.点评:本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.例题2图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).考点:全等三角形的判定与性质;三角形三边关系.专题:计算题.分析:可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之.解答:证明:如图延长AD至E,使AD=DE,连接BE.∵BD=DC,AD=DE,∠ADC=∠EDB∴△ACD≌△EBD∴AC=BE在△ABE中,AE<AB+BE,即2AD<AB+AC∴AD<(AB+AC)点评:本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.考点:旋转的性质;全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余关系可证∠DAC=∠ECB,可证△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;(2)此时,仍有△ACD≌△CBE,AD=CE,CD=BE,利用线段的和差关系得DE=AD-BE.解答:证明:(1)∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,∴∠DAC=∠ECB,又∵AC=BC,∠ADC=∠CEB=90°,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CE+CD=AD+BE;(2)DE=BE-AD.仿照(1)可证△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.点评:本题考查了用旋转法寻找证明三角形全等的条件,关键是利用全等三角形对应线段相等,将有关线段进。
2024年浙教版八年级上册数学期末培优复习第2招全等三角形中的截长补短法
返回
典例剖析
方法二:“补短法”如图③,延长 AB 至点 F ,使 BF =
BD .
“截长补短法”是我们今后证明线段或角的“和差倍
分”问题常用的方法.
返回
典例剖析
截长补短类辅助线,核心思想为数学中的转
化思想,此类题的关键是要找到最长边和最短边,然后确定
截取辅助线的方式.
返回
典例剖析
返回
典例剖析
∴∠ AED =2∠ C .
∵∠ AED =∠ C +∠ EDC ,
∴∠ EDC =∠ C ,
∴ DE = CE ,
∴ AB + BD = AE + CE = AC .
返回
典例剖析
方法二:如图③,延长 AB 至点 F ,使 BF = BD ,
∴∠ F =∠ BDF ,
∴∠ ABD =∠ F +∠ BDF =2∠ F .
返回
典例剖析
又∵∠ ABD =2∠ C ,
∴∠ F =∠ C .
∠=∠,
在△ AFD 和△ ACD 中,ቐ∠=∠,
=,
∴△ AFD ≌△ ACD ( AAS ),
∴ AC = AF ,
∴ AC = AF = AB + BF = AB + BD .
返回
分类训练
旋转型全等三角形中的截长补短
∴2∠ FAE +(∠ GAB +∠ DAG )=360°,即2∠ FAE +
∠ DAB =360°,∴∠ EAF =180°- ∠ DAB .
1
2
3
4
返回
分类训练
2. [新考法 分类讨论法]如图①,把两个全等的直角三角形的
斜边重合,组成一个四边形 ACBD ,以 D 为顶点作∠ MDN ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题1如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.考点:全等三角形的判定与性质.专题:证明题.分析:利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED(AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.解答:证法一:如答图所示,延长AC,到E使CE=CD,连接DE.∵∠ACB=90°,AC=BC,CE=CD,∴∠B=∠CAB=45°,∠E=∠CDE=45°,∴∠B=∠E.∵AD平分∠BAC,∴∠1=∠2在△ABD和△AED中,∠B=∠E,∠2=∠1,AD=AD,∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,AC=AE,∠1=∠2,AD=AD,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.点评:本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.例题2图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).考点:全等三角形的判定与性质;三角形三边关系.专题:计算题.分析:可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之.解答:证明:如图延长AD至E,使AD=DE,连接BE.∵BD=DC,AD=DE,∠ADC=∠EDB∴△ACD≌△EBD∴AC=BE在△ABE中,AE<AB+BE,即2AD<AB+AC∴AD<(AB+AC)点评:本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系.考点:旋转的性质;全等三角形的判定与性质;等腰直角三角形.专题:证明题.分析:(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余关系可证∠DAC=∠ECB,可证△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;(2)此时,仍有△ACD≌△CBE,AD=CE,CD=BE,利用线段的和差关系得DE=AD-BE.解答:证明:(1)∵∠DAC+∠ACD=90°,∠ACD+∠ECB=90°,∴∠DAC=∠ECB,又∵AC=BC,∠ADC=∠CEB=90°,∴△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CE+CD=AD+BE;(2)DE=BE-AD.仿照(1)可证△ACD≌△CBE,∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.点评:本题考查了用旋转法寻找证明三角形全等的条件,关键是利用全等三角形对应线段相等,将有关线段进如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是20cm,则线段MN的长是20cm.考点:轴对称的性质.分析:根据轴对称的性质可知:EP=EM,PF=FN,所以线段MN的长=△PEF的周长.解答:解:根据题意,EP=EM,PF=FN,∴MN=ME+EF+FN=PE+EF+PF=△PEF的周长,∴MN=20cm.点评:主要考查了轴对称的性质:对称轴上的任何一点到两个对应点之间的距离相等.(1)如图所示,已知△ABC中,∠ABC、∠ACB的平分线相交于点O.试说明∠BOC=90°+$\frac{1}{2}$∠A;(2)如图所示,在△ABC中,BD、CD分别是∠ABC、∠ACB的外角平分线.试说明∠D=90°-$\frac{1}{2}$∠A;(3)如图所示,已知BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,且与BD交于点D,试说考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:(1)根据三角形角平分线的性质可得,∠BOC+∠OCB=90°-$\frac{1}{2}$∠A,根据三角形内角和定理可得∠BOC=90°+$\frac{1}{2}$∠A;(2)根据三角形外角平分线的性质可得∠BCD=$\frac{1}{2}$(∠A+∠ABC)、∠DBC=$\frac{1}{2}$(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°-$\frac{1}{2}$∠A;(3)根据BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线,可知,∠A=180°-∠1-∠3,∠D=180°-∠4=∠5=180°-∠3-$\frac{1}{2}$(∠A+2∠1),两式联立可得2∠D=∠A.解答:解:(1)∵在△ABC中,OB、OC分别是∠ABC、∠ACB的平分线,∠A为x°∴∠BOC+∠OCB=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$×(180°-x°)=90°-$\frac{1}{2}$∠A 故∠BOC=180°-(90°-$\frac{1}{2}$∠A)=90°+$\frac{1}{2}$∠A;(2)∵BD、CD为△ABC两外角∠DBC、∠BCE的平分线∠A为x°∴∠BCD=$\frac{1}{2}$(∠A+∠ABC)、∠DBC=$\frac{1}{2}$(∠A+∠ACB)由三角形内角和定理得,∠BDC=180°-∠BCD-∠DBC=180°-$\frac{1}{2}$[∠A+(∠A+∠ABC+∠ACB)]=180°-$\frac{1}{2}$(∠A+180°)=90°-$\frac{1}{2}$∠A;(3)如图:∵BD为△ABC的角平分线,CD为△ABC外角∠ACE的平分线∴∠1=∠2,∠5=$\frac{1}{2}$(∠A+2∠1),∠3=∠4,在△ABE中,∠A=180°-∠1-∠3----①在△CDE中,∠D=180°-∠4-∠5=180°-∠3-$\frac{1}{2}$(∠A+2∠1),即2∠D=360°-2∠3-∠A-2∠把①代入②得2∠D=∠A.点评:此类题目比较简单,考查的是三角形内角与外角的关系,角平分线的性质,三角形内角和定理,属中学阶段的常规题.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有4处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:依题意可作四个圆分别与三条直线相切,其中三个在三角形外部,一个在三角形内部,其圆心就是可供选择的地址.解答:解:可作四个圆分别与三条直线相切,其中三个在三角形外部,一个在三角形内部.故填4.点评:本题涉及圆的相关知识,难度中等.如图甲所示,在△ABC中,AB=AC,在底边BC上有任意一点P,则P点到两腰的距离之和等于定长(腰上的高),即PD+PE=CF,若P点在BC的延长线上,那么请你猜想PD、PE和CF之间存在怎样的等式关系?写出你的猜想并加以证明.考点:等腰三角形的性质;三角形的面积.专题:证明题.分析:猜想:PD、PE、CF之间的关系为PD=PE+CF.根据∵S△PAB= AB•PD,S△PAC= AC•PE,S△CAB= AB•CF,S△PAC= AB•PE,AB•PD= AB•CF+ AB•PE,即可求证.解答:猜想:PD、PE、CF之间的关系为PD=PE+CF.证明:连接AP,则S△PAC+S△CAB=S△PAB,∵S△PAB= AB•PD,S△PAC= AC•PE,S△CAB= AB•CF,又∵AB=AC,∴S△PAC= AB•PE,∴AB•PD= AB•CF+ AB•PE,即AB(PE+CF)= AB•PD,∴PD=PE+PF.点评:本题考查了等腰三角形的性质及三角形的面积,难度适中,关键是先猜想出PD、PE、CF之间的关系为PD=PE+CF再证明.如图,△ABC是等边三角形,BD是AC边上的中线,延长BC到E使CE=CD,试判断△BDE的形状.考点:等腰三角形的判定;等边三角形的性质.分析:因为△ABC是等边三角形,所以∠ABC=∠ACB=60°,BD是AC边上的中线,则∠DBC=30°,再由题中条件求出∠E=30°,即可判断△BDE的形状.解答:证明:∵△ABC是等边三角形∴∠ABC=∠ACB=60°∵AD=CD∴∠DBC= ∠ABC=30°∵CE=CD∴∠CDE=∠E∵∠ACB=∠CDE+∠E∴∠E=30°∴∠DBE=∠E∴BD=DE∴△BDE是等腰三角形.点评:本题考查了等腰三角形的判定与性质及等边三角形的性质;此题把等边三角形的性质和等腰三角形的判定结合求解.考查了学生综合运用数学知识的能力,得到∠E=30°是正确解答本题的关键.(2007•吉林)某家电商场经销A,B,C三种品牌的彩电,五月份共获利48 000元.已知A种品牌彩电每台可获利100元,B种品牌彩电每台可获利144元,C种品牌彩电每台可获利360元.请你根据相关信息,补全彩电销售台数的条形图和所获利润的百分数的扇形图.考点:扇形统计图;条形统计图.专题:图表型.分析:根据获利总数与扇形图,可计算出B型彩电的获利,进而求出B型彩电的数目;接着可求出C型彩电的获利和台数;利用A、C型的获利和获利总数分别求出它们所获利润的百分数,进而补全彩电销售台数的条形图和所获利润的百分数的扇形图即可.解答:解:根据题意可得:五月份共获利48000元,B种品牌彩电获利占30%,即获利48000×30%=14400元,故B种品牌彩电的台数为14400÷144=100台,则C种品牌彩的台数为(48000-120×100-14400)÷360=60台;据此可补全条形图.(4分)五月份共卖出(120+100+60)=280台,其中A种品牌彩电120台,占获利的25%,B种品牌彩100台占获利的30%,C种品牌彩电60台,占获利的45%,据此可补全扇形图.(6分)说明:条形图中每画对1个条形图得(2分).扇形图中每填对1个扇形得(1分).扇形图中若标成表示A,C计算的百分数正确,填图不正确,扣(1).如另画扇形图正确也得分.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,能直接反映部分占总体的百分比大小.如图所示,已知EA⊥AB于点A,CD⊥DF于点D,AB∥CD,请判断EA与DF的位置关系,并说明理由.考点:平行线的判定;垂线;平行线的性质.专题:探究型.分析:首先由AB∥CD,根据两直线平行,内错角相等,得到∠BAD=∠ADC,再根据垂直的定义得到∠EAB=∠CDF=90°,则∠EAB+∠BAD=∠CDF+∠ADC,即∠EAD=∠ADF,满足关于EA∥DF的条件:内错角相等,两直线平行.解答:解:EA∥DF.理由如下:∵EA⊥AB于点A,CD⊥DF于点D(已知),∴∠EAB=90°,∠CDF=90°(垂直定义).∵AB∥CD(已知),∴∠BAD=∠ADC(两直线平行,内错角相等),∴∠EAB+∠BAD=∠CDF+∠ADC,即∠EAD=∠ADF,∴EA∥DF(内错角相等,两直线平行).点评:本题考查了平行线的性质,垂直的定义以及平行线的判定定理.(2002•河南)如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54度.考点:平行线的性质;角平分线的定义.专题:计算题.分析:两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.解答:解:∵AB∥CD,∴∠BEF=180°-∠1=180°-72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG= ∠BEF= ×108°=54°,故∠2=∠BEG=54°.点评:本题应用的知识点为:两直线平行,内错角相等;同旁内角互补.(2006•大连)在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为,求x和y的值.考点:概率公式;二元一次方程组的应用.分析:(1)根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立.化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=25..解答:解:(1)根据题意得:,(3分)整理,得8x=3x+3y,(4分)∴5x=3y,∴;(5分)(2)解法一:根据题意,得,(7分)整理,得2x+20=x+y+10,∴y=x+10,(8分)∴5x=3(x+10),∴x=15,y=25.解法二:(2)根据题意,可得,整理得,解得.(8分)点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)= .如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.考点:全等三角形的判定与性质;等腰三角形的性质.专题:证明题.分析:根据等腰三角形三线合一的性质可得CH平分∠ACB,再证明△ACE和△BCF全等,然后根据全等三角形对应角相等和全等三角形对应边相等即可证明.解答:(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)∵△ACE≌△BCF(SAS),∴AE=BF(全等三角形对应边相等).点评:本题主要考查全等三角形的判定和全等三角形的性质及等腰三角形的性质;熟练掌握定理和性如图,在等腰△ABC中,AB=AC,∠BAC=120°,AD为BC边上的高,过点D作DE∥AB,交AC于点E,图中除△ABC外,还有等腰三角形吗?若有,请指出,并说明理由.考点:等腰三角形的判定;等边三角形的判定.专题:开放型.分析:简单的等腰三角形的判定问题,利用平行以及角之间的关系进行判断.解答:解:△ADE是等边三角形;△DEC为等腰三角形.理由:因为AB=AC,∠BAC=120°,所以∠B=∠C=30°.因为DE∥AB,所以∠EDC=∠B=30°.所以△DEC为等腰三角形.因为AD⊥BC,所以∠DAE= ∠BAC= ×120°=60°.因为∠ADC=90°,所以∠ADE=60°.所以△ADE是等边三角形.如图,△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,BD=BE,则∠AED是105度.考点:等腰三角形的性质;三角形内角和定理.分析:由已知条件易得∠B=30°,△BED中根据等腰三角形的性质可得∠BED的度数,求其补角可得答案.解答:解∵△ABC中,AB=AC,∠BAC=120°∴∠B=∠C= (180°-∠BAC)= (180°-120°)=30°∵BD=BE∴∠BED=∠BDE= (180°-∠B)= (180°-30°)=75°∴∠AED=180°-75°=105°.故填105.点评:本题考查的是三角形内角和定理及等腰三角形的性质;做题时两次运用了等边对等角的性质及三角形内角和定理,要熟练掌握并能灵活应用这些知识.。