机械原理习题答案 安子军
机械原理课后习题答案
机械原理课后习题答案1. 两个质量分别为m1和m2的物体,它们分别靠在光滑水平面上的两个弹簧上,两个弹簧的弹性系数分别为k1和k2。
求当两个物体分别受到的外力分别为F1和F2时,两个物体的加速度分别是多少?答,根据牛顿第二定律,物体受到的合外力等于物体的质量乘以加速度,即F=ma。
根据这个公式,可以得出两个物体的加速度分别为a1=F1/m1,a2=F2/m2。
2. 一个质量为m的物体,靠在光滑水平面上的弹簧上,弹簧的弹性系数为k。
求当物体受到外力F时,物体的加速度是多少?答,同样根据牛顿第二定律,物体受到的合外力等于物体的质量乘以加速度,即F=ma。
根据这个公式,可以得出物体的加速度为a=F/m。
3. 一个质量为m的物体,靠在光滑水平面上的弹簧上,弹簧的弹性系数为k。
求当物体受到外力F时,弹簧的位移是多少?答,根据胡克定律,弹簧的位移与受到的外力成正比,即F=kx,其中x为弹簧的位移。
解出x=F/k,即弹簧的位移与外力成反比。
4. 一个质量为m的物体,靠在光滑水平面上的弹簧上,弹簧的弹性系数为k。
求当物体受到外力F时,弹簧的振动周期是多少?答,根据弹簧的振动周期公式T=2π√(m/k),可以得出弹簧的振动周期与物体的质量和弹簧的弹性系数有关,与受到的外力无关。
5. 一个质量为m的物体,靠在光滑水平面上的弹簧上,弹簧的弹性系数为k。
求当物体受到外力F时,弹簧的振幅是多少?答,根据弹簧振动的公式x=Acos(ωt+φ),可以得出弹簧的振幅与受到的外力无关,只与弹簧的弹性系数和物体的质量有关。
求当物体受到外力F时,弹簧的振动频率是多少?答,根据弹簧振动的公式f=1/2π√(k/m),可以得出弹簧的振动频率与受到的外力无关,只与弹簧的弹性系数和物体的质量有关。
7. 一个半径为r的圆盘,靠在光滑水平面上的弹簧上,弹簧的弹性系数为k。
求当圆盘受到外力F时,圆盘的加速度是多少?答,根据牛顿第二定律,物体受到的合外力等于物体的质量乘以加速度,即F=ma。
机械原理课后习题答案
第四章课后习题4—12图示为一曲柄滑块机构的三个位置,F为作用在活塞上的力转动副A及B上所画的小圆为摩擦圆,试决定在此三个位置时作用在连杆AB上的作用力的真实方向(构件重量及惯性力略去不计)。
解:上图中构件2受压力。
因在转动副A处2、1之间的夹角∠OAB在逐渐减小,故相对角速度ω21沿顺时针方向,又因2受压力,故FR12应切于摩擦圆的下方;在转动副B处,2、3之间的夹角∠OBA在逐渐增大,相对角速度ω23也沿顺时针方向,故FR32应切于摩擦圆的上方。
R32解:上图构件2依然受压力。
因在转动副A处2、1之间的夹角∠OAB逐渐减小,故相对角速度ω21沿顺时针方向,又因2受压力,故F R12应切于摩擦圆的下方;在转动副B处,2、3之间的夹角∠OBA逐渐减小,故相对角速度ω23沿逆时针方向,F R32应切于摩擦圆的下方。
解:上图构件2受拉力。
因在转动副A处2、1之间的夹角∠OAB在逐渐增大,故相对角速度ω21沿顺时针方向,又因2受拉力,故FR12应切于摩擦圆的上方;在转动副B处,2、3之间的夹角∠OBA逐渐减小,故相对角速度ω23沿顺时针方向,FR32应切于摩擦圆的下方。
4-13 图示为一摆动推杆盘形凸轮机构,凸轮1沿逆时针方向回转,F为作用在推杆2上的外载荷,试确定凸轮1及机架3作用给推杆2的总反力FR12及FR32方位(不考虑构件的重量及惯性力,解:经受力分析,FR12的方向如上图所示。
在FR12的作用下,2相对于3顺时针转动,故FR32应切于摩擦圆的左侧。
补充题1 如图所示,楔块机构中,已知γ=β=60°,Q =1000N 格接触面摩擦系数f =0.15,如Q 为有效阻力,试求所需的驱动力F 。
解:对机构进行受力分析,并作出力三角形如图。
对楔块1,R 21R310F F F ++=由正弦定理有21sin(602sin(90R F F ϕϕ+-=))o o ① 对楔块2,同理有R12R320Q F F ++=sin(90sin(602ϕϕ+-=))o o ②sin(602sin(602F Q ϕϕ+=⋅-))o o且有2112R R F F = ,8.53arctgf ϕ==o ③联立以上三式,求解得F =1430.65N2 如图示斜面机构,已知:f (滑块1、2与导槽3相互之间摩擦系数)、λ(滑块1的倾斜角)、Q (工作阻力,沿水平方向),设不计两滑块质量,试确定该机构等速运动时所需的铅重方向的驱动力F 。
机械原理习题册答案
机械原理习题册答案机械原理习题册答案机械原理是工程学中的重要基础课程,它涉及到物体的平衡、运动和力学性质等方面。
在学习过程中,习题是非常重要的辅助工具,通过解答习题可以巩固所学的理论知识,提高解决问题的能力。
本文将为大家提供一些机械原理习题册的答案,希望能对大家的学习有所帮助。
第一章:力的平衡1. 如图所示,一个质量为10kg的物体受到一个斜面上的力F1,斜面与水平面的夹角为30度。
已知物体在斜面上不发生滑动,求力F1的大小。
解答:根据力的平衡条件,物体在斜面上的重力与斜面对物体的支持力之和等于零。
设物体的重力为G,支持力为N,则有:G = mg = 10kg * 9.8m/s^2 = 98NN = G * cosθ = 98N * cos30° ≈ 84.85N由此可得,力F1的大小为84.85N。
2. 如图所示,一个质量为5kg的物体受到一个斜面上的力F2,斜面与水平面的夹角为45度。
已知物体在斜面上发生滑动,滑动摩擦系数为0.2,求力F2的大小。
解答:根据力的平衡条件,物体在斜面上的重力与斜面对物体的支持力之和等于物体受到的力F2。
设物体的重力为G,支持力为N,则有:G = mg = 5kg * 9.8m/s^2 = 49NN = G * cosθ = 49N * cos45° ≈ 34.65N摩擦力f = μN = 0.2 * 34.65N = 6.93N由此可得,力F2的大小为49N + 6.93N = 55.93N。
第二章:力的作用效果1. 如图所示,一个质量为2kg的物体受到一个力F3,使其沿水平方向匀速运动。
已知物体受到的摩擦力为4N,求力F3的大小。
解答:根据力的作用效果,物体受到的合外力等于物体的质量乘以加速度。
设物体的质量为m,加速度为a,则有:F3 - 4N = ma由于物体沿水平方向匀速运动,加速度a为零。
因此,有:F3 - 4N = 0F3 = 4N由此可得,力F3的大小为4N。
机械原理第八版课后答案
机械原理第八版课后答案1. 第一题,请解释什么是机械原理?机械原理是研究机械运动规律和机械结构性能的一门学科,它是物理学、数学和工程学的交叉学科,主要研究物体的运动、受力和结构等问题。
机械原理的研究对象包括刚体运动学、刚体静力学、刚体动力学、弹性体力学等内容。
2. 第二题,什么是刚体?刚体是指在外力作用下,形状和大小不发生改变的物体。
刚体的运动学研究刚体在空间中的运动规律,包括平动和转动;刚体静力学研究刚体在平衡状态下受力的平衡条件;刚体动力学研究刚体在外力作用下的运动规律。
3. 第三题,请解释什么是平动?平动是指刚体上任意两点的相对位置保持不变的运动。
在平动运动中,刚体上各点的速度和加速度相等,且方向相同。
4. 第四题,请解释什么是转动?转动是指刚体绕某一固定轴线旋转的运动。
在转动运动中,刚体上各点的速度和加速度不相等,且方向不同。
5. 第五题,请解释什么是力矩?力矩是力对物体产生转动效果的物理量,它等于力的大小乘以力臂的长度。
力矩的方向由右手螺旋定则确定,即力矩的方向与力和力臂的方向构成右手螺旋。
6. 第六题,请解释什么是动量矩?动量矩是刚体上各点的动量对某一轴线产生的转动效果的物理量,它等于动量的大小乘以力臂的长度。
动量矩的方向由右手螺旋定则确定,即动量矩的方向与动量和力臂的方向构成右手螺旋。
7. 第七题,请解释什么是惯性矩?惯性矩是刚体对旋转运动的惯性大小的物理量,它等于物体质量乘以平行轴定理中的距离平方。
惯性矩的大小与物体的形状和质量分布有关。
8. 第八题,请解释什么是牛顿定律?牛顿定律是经典力学的基本定律,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律指出,物体要么静止,要么匀速直线运动,除非受到外力的作用。
牛顿第二定律指出,物体的加速度与作用在物体上的合外力成正比,与物体的质量成反比,方向与合外力方向相同。
牛顿第三定律指出,任何两个物体之间的相互作用力大小相等,方向相反。
机械原理课后习题答案.pdf
[解]
(1)取μι作机构运动简图;
μl
=
0.002
m mm
C3
lBC =
l
2 AB
+
l
2 AC
−
l AB
⋅ lAB
⋅ cos135
= 302 + 1002 − 30 ×100 × cos135 = 123 (mm)
B
D
2
1 ω1
A
ϕ1
4
E
(2)速度分析 取C为重合点:C( C2, C3)
vB → vC 2 → vD ,vE → ω2
p(c3)
ω2
2
D
c2
2) 求aC2
aC 2 = aB
+ aCn 2B
+
at C 2B
=
aC 3
+
aCk
2C 3
+ aCr 2C 3
方向: B→A C→B ⊥CB
0 ⊥CБайду номын сангаас向下 ∥BC e
大小: √ √
?
0√
?
E
d
b
其中:
an C 2B
= ω2 2
lBC
=
2.02
4
C P34
1
A P12
题3-1 试求图示各机构在图示位置时全部瞬心。
b) P13
P34 B
3
P 23 →∞
2
P12
A
4
C P14→∞
P24
1
题3-1 试求图示各机构在图示位置时全部瞬心。
c)
P13 P14 C
4
→∞ P 34
M
vM
机械原理习题及解答
第二章习题及解答2-1 如题图2-1所示为一小型冲床,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-1解:1)分析该小型冲床由菱形构件1、滑块2、拨叉3和圆盘4、连杆5、冲头6等构件组成,其中菱形构件1为原动件,绕固定点A作定轴转动,通过铰链B与滑块2联接,滑块2与拨叉3构成移动副,拨叉3与圆盘4固定在一起为同一个构件且绕C轴转动,圆盘通过铰链与连杆5联接,连杆带动冲头6做往复运动实现冲裁运动。
2)绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=5,P L=7, P H=0,F=3n-2P L-P H=3×5-2×7=1故该机构具有确定的运动。
2-2 如题图2-2所示为一齿轮齿条式活塞泵,试绘制其机构运动简图,并计算机构自由度。
(a)(b)题图2-2解:1)分析该活塞泵由飞轮曲柄1、连杆2、扇形齿轮3、齿条活塞4等构件组成,其中飞轮曲柄1为原动件,绕固定点A作定轴转动,通过铰链B与连杆2联接,连杆2通过铰链与扇形齿轮3联接,扇形齿轮3通过高副接触驱动齿条活塞4作往复运动,活塞与机架之间构成移动副。
2) 绘制机构运动简图选定比例尺后绘制机构运动简图如图(b)所示。
3)自由度计算其中n=4,P L=5, P H=1F=3n-2P L-P H=3×4-2×5-1=1故该机构具有确定的运动。
2-3 如图2-3所示为一简易冲床的初步设计方案,设计者的意图是电动机通过一级齿轮1和2减速后带动凸轮3旋转,然后通过摆杆4带动冲头实现上下往复冲压运动。
试根据机构自由度分析该方案的合理性,并提出修改后的新方案。
题图2-3解:1)分析2)绘制其机构运动简图(图2-3 b)选定比例尺后绘制机构运动简图如图(b )所示。
3)计算机构自由度并分析其是否能实现设计意图由图b 可知,45200l h n p p p F ''===== 故3(2)34(2520)00l h F n p p p F ''=-+--=⨯-⨯+--=因此,此简易冲床根本不能运动,需增加机构的自由度。
机械原理课后习题答案
机械原理课后习题答案机械原理课后习题答案机械原理是一门重要的工程学科,它研究物体在力的作用下的运动和平衡问题。
在学习机械原理的过程中,课后习题是巩固和应用所学知识的重要环节。
本文将为大家提供一些机械原理课后习题的答案,希望能对大家的学习有所帮助。
1. 一个物体质量为10kg,受到一个30N的力作用,求物体的加速度。
解答:根据牛顿第二定律,F = ma,其中F为物体所受的力,m为物体的质量,a为物体的加速度。
将已知数据代入公式,可得a = F/m = 30N/10kg = 3m/s²。
2. 一个物体受到一个10N的力作用,加速度为2m/s²,求物体的质量。
解答:同样根据牛顿第二定律,F = ma,将已知数据代入公式,可得m = F/a= 10N/2m/s² = 5kg。
3. 一个物体质量为5kg,受到一个20N的力作用,求物体的加速度。
解答:同样应用牛顿第二定律,F = ma,将已知数据代入公式,可得a = F/m= 20N/5kg = 4m/s²。
4. 一个物体受到一个8N的力作用,质量为4kg,求物体的加速度。
解答:应用牛顿第二定律,F = ma,将已知数据代入公式,可得a = F/m =8N/4kg = 2m/s²。
通过以上几道题目的解答,我们可以看到,牛顿第二定律是解决物体运动问题的基本定律,通过它我们可以计算物体的加速度和质量。
5. 一个物体质量为5kg,受到一个力的作用使其加速度为4m/s²,求作用在物体上的力。
解答:同样应用牛顿第二定律,F = ma,将已知数据代入公式,可得F = ma =5kg × 4m/s² = 20N。
6. 一个物体受到一个力的作用使其加速度为6m/s²,质量为3kg,求作用在物体上的力。
解答:应用牛顿第二定律,F = ma,将已知数据代入公式,可得F = ma = 3kg × 6m/s² = 18N。
机械原理课后习题答案(部分)
第二章2-1 何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的?答:参考教材5~7页。
2-2 机构运动简图有何用处?它能表示出原机构哪些方面的特征?答:机构运动简图可以表示机构的组成和运动传递情况,可进行运动分析,也可用来进行动力分析。
2-3 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况?答:参考教材12~13页。
2-5 在计算平面机构的自由度时,应注意哪些事项?答:参考教材15~17页。
2-6 在图2-22所示的机构中,在铰链C、B、D处,被连接的两构件上连接点的轨迹都是重合的,那么能说该机构有三个虚约束吗?为什么?答:不能,因为在铰链C、B、D中任何一处,被连接的两构件上连接点的轨迹重合是由于其他两处的作用,所以只能算一处。
2-7 何谓机构的组成原理?何谓基本杆组?它具有什么特性?如何确定基本杆组的级别及机构的级别?答:参考教材18~19页。
2-8 为何要对平面高副机构进行“高副低代"?“高副低代”应满足的条件是什么?答:参考教材20~21页。
2-11 如图所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头上下运动以达到冲压目的。
试绘出其机构运动简图,分析其是否能实现设计意图?并提出修改方案。
解:1)取比例尺绘制机构运动简图。
2)分析其是否可实现设计意图。
F=3n-( 2P l +P h –p’)-F’=3×3-(2×4+1-0)-0=0此简易冲床不能运动,无法实现设计意图。
3)修改方案。
为了使此机构运动,应增加一个自由度。
办法是:增加一个活动构件,一个低副。
修改方案很多,现提供两种。
※2-13图示为一新型偏心轮滑阎式真空泵。
其偏心轮1绕固定轴心A转动,与外环2固连在一起的滑阀3在可绕固定轴心C转动的圆柱4中滑动。
当偏心轮按图示方向连续回转时可将设备中的空气吸入,并将空气从阀5中排出,从而形成真空。
机械原理 习题 答案
机械原理习题答案机械原理习题答案机械原理是工程学中的重要基础课程,它研究物体在外力作用下的运动和力学性质。
通过学习机械原理,我们可以了解力的作用规律、运动的原理以及机械结构的设计等方面的知识。
为了帮助大家更好地掌握机械原理的相关知识,下面将给出一些典型习题的答案,希望对大家的学习有所帮助。
1. 一个物体以匀速运动通过一个水平圆弧形的轨道,求物体所受的合外力。
答:由于物体以匀速运动通过轨道,所以物体受到的合外力为零。
根据牛顿第一定律,物体在不受合外力作用时,将保持匀速直线运动或静止状态。
2. 一个质量为2kg的物体在水平面上受到一个5N的水平拉力,求物体的加速度。
答:根据牛顿第二定律F=ma,其中F为物体所受合外力,m为物体的质量,a 为物体的加速度。
将已知数据代入公式中,可得5N=2kg*a,解得a=2.5m/s²。
所以物体的加速度为2.5m/s²。
3. 一个质量为10kg的物体静止在斜面上,斜面的倾角为30°,求物体所受的重力分解到斜面上的分力大小。
答:将物体的重力分解为垂直于斜面的分力和平行于斜面的分力。
根据三角函数的定义,可知物体所受的重力分解到斜面上的分力大小为10kg * 9.8m/s² * sin30° ≈ 49N。
4. 一个质量为5kg的物体通过一个光滑的斜面下滑,斜面的倾角为45°,求物体下滑的加速度。
答:物体下滑的加速度等于斜面的倾角的正弦值乘以重力加速度。
根据已知数据,可得物体下滑的加速度为5kg * 9.8m/s² * sin45° ≈ 34.6m/s²。
5. 一个质量为3kg的物体通过一个粗糙的斜面下滑,斜面的倾角为30°,摩擦系数为0.2,求物体下滑的加速度。
答:物体下滑的加速度等于斜面的倾角的正弦值减去摩擦系数乘以斜面的倾角的余弦值,再乘以重力加速度。
根据已知数据,可得物体下滑的加速度为3kg * 9.8m/s² * (sin30° - 0.2*cos30°) ≈ 25.9m/s²。
机械原理第七版习题解答(第4、7、11章)
nmax
(1 2 )nm
(1 0.01) 620 623.1r / min 2
3)求装在曲轴上旳飞轮转动惯量 JF :
Wmax AbABc
(200 116.67) ( 20 200 116.67 130 200 116.67)
2
6 180
200
180
200
67.26N m
小圆为摩擦圆)。 C
1
《机械原理》习题课
解 arctan f
总反力 FR12 及 FR32 旳方位如图
F F
题4-14
机械原理习题解答
(第7章-机械旳运转及其速度波动旳调整)
《机械原理》习题课
7-7图示为一机床工作台旳传动系统。设已知各齿 轮旳齿数,齿轮3旳分度圆半径r3,各齿轮旳转动
惯量 J1, J2 , J2, J3 ,齿轮1直接装在电动机轴上,
故J F
900Wmax
2n2[ ]
900 67.26
2 6202 0.01
1.596kg m2
机械原理习题解答
(第11章-齿轮系及其设计)
《机械原理》习题课
11-11图示为一手摇提升装置,其中各轮齿数均已
知,试求传动比 i15,并指出当提升重物时手柄旳
转向。
《机械原理》习题课
答 此轮系为空间定 轴轮系,且
故J1中包括了电动机转子旳转动惯量;工作台和 被加工零件旳重量之和为G。当取齿轮1为等效构 件时,试求该机械系统旳等效转动惯量Je。
《机械原理》习题课
解 根据等效转动惯量旳等效原则,有
1 2
J
2
e1
1 2
J112
1 2
(J2
J2 )22
机械原理习题集答案
机械原理习题集答案第一章:机械运动学1. 问题:简述平面运动的基本概念。
答案:平面运动是指物体在平面内的运动,其轨迹可以是直线或曲线。
在平面运动中,物体的每一个点都在同一平面内移动。
2. 问题:什么是四杆机构的运动规律?答案:四杆机构是最基本的机械机构之一,其运动规律取决于杆的长度和连接方式。
常见的四杆机构有双曲柄机构、曲柄滑块机构等。
第二章:机械动力学1. 问题:牛顿运动定律在机械设计中的应用是什么?答案:牛顿运动定律是描述物体运动的基本定律,包括惯性定律、力的作用与反作用定律和作用力与加速度的关系。
在机械设计中,这些定律用于预测和计算机械系统的运动状态和受力情况。
2. 问题:简述达朗贝尔原理。
答案:达朗贝尔原理是动力学中的一个基本原理,它指出在没有外力作用的系统中,系统内各部分的动量守恒。
在机械设计中,这一原理常用于分析和计算机械系统的动态平衡。
第三章:机构设计与分析1. 问题:什么是机构的自由度?答案:机构的自由度是指在没有约束的情况下,机构能够独立进行的运动的数量。
自由度的计算公式为:\( F = 3n - 2j - h \),其中\( n \)是机构中杆件的数量,\( j \)是铰链的数量,\( h \)是高副的数量。
2. 问题:如何确定一个机构的运动类型?答案:确定机构的运动类型需要分析机构的几何形状和连接方式。
例如,如果机构中存在曲柄和滑块,它可能是一个曲柄滑块机构,其运动类型为往复直线运动。
第四章:机械结构设计1. 问题:机械结构设计中需要考虑哪些因素?答案:在机械结构设计中,需要考虑的因素包括材料的选择、强度和刚度的计算、尺寸的确定、成本控制、维护的便利性等。
2. 问题:什么是疲劳强度?答案:疲劳强度是指材料在反复加载和卸载过程中抵抗断裂的能力。
在机械结构设计中,需要考虑疲劳强度以确保结构的可靠性和耐久性。
第五章:机械传动1. 问题:什么是齿轮传动?答案:齿轮传动是一种利用齿轮啮合来传递运动和动力的机械传动方式。
机械原理课后题答案定稿版
机械原理课后题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】选择填空:(1)当机构的原动件数目小于或大于其自由度数时,该机构将( B )确定运动。
A.有;B.没有;C.不一定;(2)在机构中,某些不影响机构运动传递的重复部分所带入的约束为( A )。
A.虚约束;B.局部自由度;C.复合铰链;(3)机构具有确定运动的条件是(B )。
A.机构自由度数小于原动件数;机构自由度数大于原动件数;B.机构自由度数等于原动件数;(4)用一个平面低副联二个做平面运动的构件所形成的运动链共有( B )个自由度。
A.3;B.4;C.5;D.6;(5)杆组是自由度等于( A )的运动链。
A.0;B.1;C.原动件数。
(6)平面运动副所提供的约束为( D )。
A.1;B.2;C.3;D.1或2;(7)某机构为Ⅲ级机构,那么该机构应满足的必要充分条件是( D )。
A.含有一个原动件组;B.原动件;C.至少含有一个Ⅱ级杆组;D.至少含有一个Ⅲ级杆组;(8)机构中只有一个(D )。
A.闭式运动链;B.原动件;C.从动件;D.机架。
(9)具有确定运动的差动轮系中其原动件数目( C )。
A.至少应有2个;B.最多有2个;C.只有2个;D. 不受限制。
(10)在加速度多边形中,连接极点至任一点的矢量,代表构件上相应点的____B__加速度;而其它任意两点间矢量,则代表构件上相应两点间的______加速度。
A.法向; 切向B.绝对; 相对C.法向; 相对D.合成; 切向(11)在速度多边形中,极点代表该构件上_____A_为零的点。
A.绝对速度B.加速度C.相对速度D.哥氏加速度(12)机械出现自锁是由于( A )。
A.机械效率小于零;B.驱动力太小;C.阻力太大;D.约束反力太大;(13)当四杆机构处于死点位置时,机构的压力角_B_。
A.为00;B.为090;C.与构件尺寸有关;(14)四杆机构的急回特性是针对主动件_D_而言的。
机械原理习题答案安子军
习題解答第一草绪论1- 1 答:1)机构是实现传递机械运动和动力的构件组合体。
如齿轮机构.连杆机构.凸轮机构、螺旋机构等。
2)机器是在组成它的实物间进行确定的相对运动时.完成能址转换或做功的女件实物的组合体。
如电动机.内燃机、起重机、汽车等。
3)机械是机器和机构的总称。
4) a・同一台机器可由一个或多个机构组成。
b.同一个机构可以派生出多种性能、用途、外型完全不同的机器。
c.机构可以独立存在并加以应用。
1- 2 答:机构和机器.二者都是人为的实物组合体.族实物之间都具有确定的相对运动。
但后者可以实现能量的转换而前者不具备此作用。
「3 答:1 )机构的分析:包括结构分析.运动分析、动力学分析。
2 )机构的综合:包括常用机构设讣、传动系统设计。
1-4 略习题解答第二萃平血机构的机构分析2-1〜2-5 (答案略)2-6(c)自由度F=1(b) 自由度F = 12-图7-2题9X22 -8巳=10F =3X7-2X10 =1 b) B局部自由度n =3& =2 F=3X3 -2X3-2 = 1 c) B、D局部自由度n =3兔=2 F=3X3 -2X3-2 =1d) D(或0处为虚约束n =3 巳=4F = 3X3 - 2X4 = 1e) F=3X5-2X7=1f) B . C、E复合狡链 n =7 爲=10F =3X7-2X10 =1g) A处为复合饺链n =10 爲=11= 3X10 一2X14 = 2h) B局部自由度n = 8 F =3X8-2X11-1 =1i) B、J锻约束C处局部自由度F =3X6 一 2X8一 1 = 1J) 处虚约束A . C、D复合饺链n = 巳=10F =3X7-2X10 = 11) m)2-9 C、D处复合钱链n=5"已=2F =3X5-2X6 -2 =1F = 3X8-2X11 = 2B局部自由度I虚约束4杆和DG虚约束F =3X6一2X8-1&=1F = 3X3- 2X8-=0不能动。
机械原理课后全部习题答案
机械原理课后全部习题答案目录第1章绪论 (1)第2章平面机构的结构分析 (3)第3章平面连杆机构 (8)第4章凸轮机构及其设计 (15)第5章齿轮机构 (19)第6章轮系及其设计 (26)第8章机械运动力学方程 (32)第9章平面机构的平衡 (39)第一章绪论一、补充题1、复习思考题1)、机器应具有什么特征?机器通常由哪三部分组成?各部分的功能是什么?2)、机器与机构有什么异同点?3)、什么叫构件?什么叫零件?什么叫通用零件和专用零件?试各举二个实例。
4)、设计机器时应满足哪些基本要求?试选取一台机器,分析设计时应满足的基本要求。
2、填空题1)、机器或机构,都是由组合而成的。
2)、机器或机构的之间,具有确定的相对运动。
3)、机器可以用来人的劳动,完成有用的。
4)、组成机构、并且相互间能作的物体,叫做构件。
5)、从运动的角度看,机构的主要功用在于运动或运动的形式。
6)、构件是机器的单元。
零件是机器的单元。
7)、机器的工作部分须完成机器的动作,且处于整个传动的。
8)、机器的传动部分是把原动部分的运动和功率传递给工作部分的。
9)、构件之间具有的相对运动,并能完成的机械功或实现能量转换的的组合,叫机器。
3、判断题1)、构件都是可动的。
()2)、机器的传动部分都是机构。
()3)、互相之间能作相对运动的物件是构件。
()4)、只从运动方面讲,机构是具有确定相对运动构件的组合。
()5)、机构的作用,只是传递或转换运动的形式。
()6)、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。
()7)、机构中的主动件和被动件,都是构件。
()2 填空题答案1)、构件2)、构件3)、代替机械功4)、相对运动5)、传递转换6)、运动制造7)、预定终端8)、中间环节9)、确定有用构件3判断题答案1)、√2)、√3)、√4)、√5)、×6)、√7)、√第二章 机构的结构分析2-7 是试指出图2-26中直接接触的构件所构成的运动副的名称。
机械原理课后题答案
机械原理课后题答案1. 列举并解释一下机械原理中的三大支配因素。
- 动力:指施加在机构元件上的力或力矩,用来驱动机构执行运动或产生工作效果。
- 运动:指机构元件相对运动的方式、路径和速度。
- 连结:指机构元件之间的连接方式,包括直接和间接连接两种形式。
2. 解释一下机械原理中的三大运动副类型。
- 滑动副:两个机构元件之间只能沿着一条确定的直线运动,如推拉杆、滑块等。
- 旋转副:两个机构元件之间只能绕一条确定的轴线旋转运动,如轴承、齿轮等。
- 滚动副:两个机构元件之间存在滚动运动,如滚子轴承、滚珠丝杠等。
3. 什么是机械原理中的受力分析方法?受力分析方法是指通过分析机构元件之间的力和力矩关系,找出各个元件的受力情况,以解决机构设计和运动性能分析的方法。
常用的受力分析方法包括力平衡法、力矩平衡法、虚功原理等。
4. 什么是力平衡法?力平衡法是一种受力分析方法,通过分析机构元件之间的力平衡关系,得到各个元件所受力的大小和方向。
它基于牛顿第一定律,即所有物体受力之和为零,可用来解决机构中受力平衡问题,确定力的大小和方向。
5. 解释一下力矩平衡法。
力矩平衡法是一种受力分析方法,通过分析机构元件之间的力矩平衡关系,得到各个元件所受力的大小和方向。
在机械原理中,力矩平衡法常被用于解决转动副运动问题,根据力矩平衡条件,求解未知力矩和力矩的方向。
6. 什么是虚功原理?虚功原理是一种受力分析方法,通过分析机构元件之间的虚功平衡关系,得到各个元件所受力的大小和方向。
虚功原理是基于功率平衡的原理,即虚功平衡原理,在机械原理中常用于分析运动副的受力情况和功率传递效率。
7. 介绍一下机械原理中的摩擦现象。
摩擦是指两个物体相对运动时由接触面之间的相互作用力导致的阻碍运动的力。
在机械运动中,正常情况下不可避免地存在摩擦力,摩擦力会导致机械能的损失、能量的消耗和部件的磨损。
因此在机械原理中需要对摩擦进行充分的考虑和分析。
机械原理课后习题答案
机械原理课后习题答案机械原理是工程学科中的一个重要分支,它涉及到机械设计、运动学、动力学分析等多个方面。
课后习题是帮助学生巩固和深化理解这些概念的有效手段。
以下是一些机械原理课后习题的答案示例:题目1:简述四连杆机构的工作原理。
答案:四连杆机构是一种基本的平面运动机构,由四个连杆组成,其中至少有一个连杆是固定的,称为框架。
四连杆机构的工作原理是通过改变连杆的长度和角度,实现运动的转换。
例如,曲柄滑块机构就是一种典型的四连杆机构,它能够将曲柄的旋转运动转换为滑块的直线运动。
题目2:什么是静平衡和动平衡?答案:静平衡指的是物体在静止状态下,所有力的矢量和为零,即物体处于平衡状态。
动平衡则是指物体在运动状态下,所有力和力矩的矢量和为零,物体在运动过程中保持平衡。
动平衡通常需要考虑旋转物体的离心力和惯性力。
题目3:解释什么是惯性力和惯性力矩。
答案:惯性力是指当物体受到外力作用时,由于物体的惯性,会倾向于保持原来的运动状态。
惯性力的大小等于物体的质量乘以加速度。
惯性力矩则是指物体在旋转过程中,由于惯性作用产生的力矩,其大小等于物体的质量乘以半径乘以加速度。
题目4:简述齿轮传动的基本原理。
答案:齿轮传动是一种通过齿轮之间的啮合来传递运动和动力的机械传动方式。
基本原理是两个或多个齿轮的齿相互嵌合,使得一个齿轮的旋转能够带动另一个齿轮旋转。
齿轮传动可以改变转速和扭矩,实现不同的传动比。
题目5:什么是机械效率?答案:机械效率是指机械系统输出的有用功与输入的总功之比。
它是衡量机械系统性能的一个重要指标,反映了机械系统在能量转换过程中的效率。
机械效率越高,说明系统在能量转换过程中损失的能量越少。
请注意,以上答案仅为示例,具体的习题答案需要根据实际的题目内容来编写。
如果需要针对特定的习题提供答案,请提供具体的题目信息。
机械原理第三版课后答案
机械原理第三版课后答案1. 机械原理概述。
机械原理是机械工程专业的一门重要课程,它是研究机械运动规律和力学性能的基础理论。
通过学习机械原理,可以帮助我们更好地理解和应用各种机械设备,提高工程设计和实践能力。
本课程主要包括静力学、运动学和动力学三个部分,通过学习这些内容,可以深入理解机械结构的工作原理和运动规律。
2. 课后答案。
2.1 静力学部分。
1) 静力学是研究物体静止状态下受力和力的平衡条件的力学分支。
在学习静力学时,我们需要掌握受力分析的基本方法,包括力的合成与分解、力的平衡条件等内容。
2) 课后习题答案:a. 问题,如图所示,一根长为3m的梁,其一端固定在墙上,另一端悬挂一个重量为600N的物体。
求梁受力情况及支持反力大小。
答案,根据力的平衡条件,梁的支持反力大小为600N,方向向上;悬挂物体的重力为600N,方向向下;梁的受力情况为受力分析中所示。
b. 问题,一个质量为20kg的物体放在倾斜角为30°的斜面上,斜面摩擦系数为0.2,求物体受力情况及加速度大小。
答案,根据受力分析和牛顿第二定律,可以求得物体受力情况及加速度大小为20m/s²。
2.2 运动学部分。
1) 运动学是研究物体运动状态和运动规律的力学分支。
在学习运动学时,我们需要了解匀速直线运动、曲线运动、相对运动等内容,并掌握运动学分析的基本方法。
2) 课后习题答案:a. 问题,一个质量为2kg的物体以5m/s的速度沿水平方向运动,突然受到一个力为10N的水平方向的冲击,求物体的加速度大小。
答案,根据牛顿第二定律,可以求得物体的加速度大小为5m/s²。
b. 问题,一个半径为1m的圆盘以2rad/s的角速度匀速旋转,求圆盘上某点的线速度大小。
答案,根据圆周运动的线速度公式,可以求得圆盘上某点的线速度大小为2m/s。
2.3 动力学部分。
1) 动力学是研究物体受力和运动规律之间的关系的力学分支。
在学习动力学时,我们需要了解牛顿运动定律、动量定理、功和能量等内容,并掌握动力学分析的基本方法。
机械原理设计---工件间歇输送机构
机械原理设计---工件间歇输送机构设计题目: 工件间歇输送机构专业:机械设计制造及其自动化班级:设计人:指导老师:课程设计说明书学院专业班级姓名一、课程设计题目:工件间歇输送机构二、课程设计主要参考资料[1] 课程设计指导书 [2] 安子军机械原理[M].7版. 国防工业出版社出版社~2009 [5] 成大先. 机械设计手册[M](化学工业出版社 2010 三、课程设计应解决主要问题(1)通过机构设计满足间歇输送工件的运动要求 (2)优化结构设计~提高可行性以及机构工作的稳定性四、成员分工方案一:方案二:方案三:四、课程设计相关附件(如:图纸、软件等)(1)A2构件图 ,2,课程设计说明书一份 ,3,方案构件图三份 3D仿真图三张1目录1 课程设计任务...................................................................... . (3)1.1设计题目 ..................................................................... .. (3)1.2设计要求 ..................................................................... .. (3)2机械系统运动功能系统图 (4)2.1机器的功能和设计要求 (4)2.2工作原理和工艺动作分解 (4)2.3根据工艺动作顺序和协调要求拟定运动循环图 42.4 机构选型 52.5机械运动方案的选择和判定 53系统方案拟定与比较 .....................................................................43.1方案一 ..................................................................... (5)3.2方案二 ..................................................................... (8)3.3方案三 ..................................................................... . (13)3.4方案比较 ..................................................................... (16)3.5方案选择 17 4心得 1721 课程设计任务1.1设计题目工件间歇输送机构1.2设计要求输送机主要由动力机构、间歇机构、传动机构组成。
机械原理课后题答案
机械原理课后题答案题目1:在机械原理中,力的合成与分解是非常重要的概念。
下面通过一个实例来解答该题。
题目:一辆汽车在直线上行驶,车上的引擎提供了一个向前的力,摩擦力与空气阻力则会对车辆施加一个向后的力。
假设引擎提供的力为50 N,摩擦力为20 N,空气阻力为30 N。
请问车辆的净力是多少?解答:根据题目要求,我们需要计算车辆的净力。
净力可以通过合成力的方式来计算。
合成力的公式为:净力 = 引擎提供的力 - 摩擦力 - 空气阻力将已知数值代入公式中,得到净力 = 50 N - 20 N - 30 N = 0 N所以,车辆的净力为0 N。
题目2:在机械原理中,杠杆原理是一种重要的基本原理。
下面我们通过一个实例来解答该题。
题目:某个平衡杠杆的左臂长为3 m,右臂长为2 m。
在左臂上施加了一个力为100 N,我们需要计算右臂上需要施加的力是多少?解答:根据杠杆原理,平衡杠杆上受力的乘积相等,即左臂上的力乘以左臂的长度等于右臂上的力乘以右臂的长度。
设左臂上的力为 F1,右臂上的力为 F2,左臂的长度为 L1,右臂的长度为 L2。
则有 F1 * L1 = F2 * L2。
已知左臂的长度 L1 = 3 m,右臂的长度 L2 = 2 m,左臂上的力 F1 = 100 N。
代入已知数值,将未知数 F2 单独列出来,得到 F2 = (F1 * L1) / L2 = (100 N * 3 m) / 2 m = 150 N。
所以,右臂上需要施加的力为 150 N。
题目3:在机械原理中,滑轮组是一种常见的简化传动装置。
下面我们来解答一个关于滑轮组的题目。
题目:一个由3个滑轮组成的滑轮组,滑轮A的直径为10 cm,滑轮B的直径为20 cm,滑轮C的直径为30 cm。
如果滑轮A的转速为300 rpm,则滑轮B和滑轮C的转速分别是多少?解答:滑轮组的转速与滑轮的直径呈反比关系,即转速和直径成反比。
设滑轮A的转速为 S1,滑轮B的转速为 S2,滑轮C的转速为 S3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题解答第一章绪论1-1 答:1 )机构是实现传递机械运动和动力的构件组合体。
如齿轮机构、连杆机构、凸轮机构、螺旋机构等。
2 )机器是在组成它的实物间进行确定的相对运动时,完成能量转换或做功的多件实物的组合体。
如电动机、内燃机、起重机、汽车等。
3 )机械是机器和机构的总称。
4 ) a. 同一台机器可由一个或多个机构组成。
b. 同一个机构可以派生出多种性能、用途、外型完全不同的机器。
c. 机构可以独立存在并加以应用。
1-2 答:机构和机器,二者都是人为的实物组合体,各实物之间都具有确定的相对运动。
但后者可以实现能量的转换而前者不具备此作用。
1-3 答: 1 )机构的分析:包括结构分析、运动分析、动力学分析。
2 )机构的综合:包括常用机构设计、传动系统设计。
1-4 略习题解答第二章平面机构的机构分析2-1 ~ 2-5 (答案略)2-6(a) 自由度 F=1 (b) 自由度 F=1(c) 自由度 F=12-7题 2 - 7 图F = 3 × 7 - 2 × 9 - 2 = 12 -8a) n =7 =10 =0 F =3×7-2×10 =1b) B 局部自由度 n =3 = 3 =2 F=3×3 -2×3-2=1c) B 、D 局部自由度 n =3 =3 =2 F=3×3 -2×3-2 =1d) D( 或 C) 处为虚约束 n =3 =4 F=3×3 - 2×4=1e) n =5 =7 F=3×5-2×7=1f) A 、 B 、 C 、E 复合铰链 n =7 =10 F =3×7-2×10 =1g) A 处为复合铰链 n =10 =14 F =3×10 - 2×14=2h) B 局部自由度 n = 8 = 11 = 1 F =3×8-2×11-1 =1i) B 、 J 虚约束 C 处局部自由度n = 6 = 8 = 1 F =3×6 - 2×8-1=1j) BB' 处虚约束 A 、 C 、 D 复合铰链 n =7 =10 F =3×7-2×10=1 k) C 、 D 处复合铰链 n=5 =6 =2F =3×5-2×6-2 =1l) n = 8 = 11 F = 3×8-2×11 = 2m) B 局部自由度 I 虚约束 4 杆和 DG 虚约束n = 6 = 8 = 1 F =3×6-2×8-1 =12-9a) n = 3 = 4 = 1 F = 3 × 3 - 2 × 8 - 1 = 0 不能动。
b) n = 5 = 6 F = 3 × 5 - 2 × 6 = 3 自由度数与原动件不等 , 运动不确定。
—2-10a) n = 7 = 10 F = 3 × 7 - 2 × 10 = 1 二级机构b) n = 5 = 7 F = 3 × 5 - 2 × 7 = 1 三级机构c) n = 5 = 7 F = 3 × 5 - 2 × 7 = 1 二级机构习题解答第三章平面机构的运动和分析3-1~3-5(略)3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-153-16~3-17(略) 3-18 3-19~3-24(略)3-10a) V C = V B + V CB方向:⊥CD ⊥AB ⊥BC 方向: C→D ⊥CD B→A C→B ⊥BC大小:??大小: 0 ??速度图、加速度图如上图中(a)所示。
b) 扩大构件法 , 将 2 构件和 3 构件构成的移动副扩大到 B 点方向:⊥BD ⊥AB ∥CD 方向: B→D ⊥BD B→A ⊥CD ∥CD大小:??大小: 0 ?0 ?速度图、加速度图如上图中( b )所示。
c) 扩大构件法 , 将 1 构件和 2 构件构成的移动副扩大到 C 点方向:⊥CD ⊥AC ∥BC 方向: C→D ⊥CD C→A ⊥BC ∥BC大小:??大小:??速度图、加速度图如上图中( c )所示。
d) 首先分析 C 点,再利用影像原理分析 E 点,最后分析 F 点V C = V B + V CB方向:⊥CD ⊥AB ⊥BC 方向:C→D ⊥CD B→A C→B ⊥BC大小:??大小:?0 ?V F = V E + V FE方向:⊥ FG √⊥EF 方向:F→G ⊥FG √F→E ⊥EF大小:?√?大小: 0 ?√?速度图、加速度图如上图中( d )所示。
3-11 解:速度分析:V C = V B + V CB方向:⊥CD ⊥AB ⊥BC大小:??= = 12.56rad/s选择绘图比例尺,绘速度图如图示,=1.884m/sV CB = 0 2 构件瞬时平动。
加速度分析:方向: C → D ⊥ CD B → A B → C ⊥ BC大小:?0 ?选择加速度比例尺,如图示绘加速度图,由图可知,利用加速度影像原理求出,如图示,=29.34 。
3-1~3-5(略)3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-153-16~3-17(略) 3-18 3-19~3-24(略)习题解答第四章机械中的摩擦和机械效率4-1~4-8(略) 4-9 4-10 4-11 4-12 4-13(略) 4-14 4-15 4-16 4-17 4-184-19 4-20 4—9 题解滑块1所受三力F、Q和R21处于平衡,因此,F+Q+ R21=0,作出力三角形,标出相应的夹角,由正弦定理可得,则理想驱动力,由此可得机械效率4—10题解滑块1在三力作用下平衡,即,滑块2在三力作用下平衡,即由此作出两封闭力多边形,由正弦定理,即得?4—11题解此夹具的自锁条件可用三种方法来确定:(1)根据的条件来确定。
取楔块3为分离体,其受工件1(及1')和夹具2作用的总反力R13和R23以及支持力P'。
各力的方向如图所示。
根据楔块3的力平衡条件,作力封闭三角形如图c所示。
由正弦定理可得当时,,于是得此机构反行程的机械效率为令,可得自锁条件为(2)根据生产阻力小于或等于零的条件来确定。
由正弦定理得生产阻力,若楔块3不自动松脱,应使,即,得自锁条件为。
(3)根据运动副的自锁条件来确定。
如图b所示,楔块3受有夹具2及工件1作用的总反力R23和R13,当总反力R23作用在相对边的摩擦角之内时,楔块3即发生自锁,即?或4—12题解1)当被轧坯料接触轧辊时,如图所示,其正压力为N,摩擦力为F,由图可知:使坯料右移之力为2f Ncosβ,使坯料左移之力为2Nsinβ。
故坯料自动进入轧辊之条件为2f Ncosβ>2Nsinβf = tan>tan β即?> β2)当β=?时,h为最大,由图可得h=d+a-d cos=75.6mm4—14题正行程时,总反力R应切于摩擦圆右侧,方向向上;?反行程自锁的条件为:,(即H)4—15题R切于摩擦圆右侧,方向向上,4—16题解螺杆B为右旋螺纹,因此千斤顶起重时从螺杆顶部俯视螺杆B为逆时针旋转,每转一周,上升10mm,此时载荷Q为轴向阻力。
若不考虑螺杆A,则所需的驱动力矩为因螺杆A不能旋转,故当螺杆B转一周时,螺杆A相对于螺杆B沿轴向下降6mm,重物实际上升s=sB-sA=4mm。
当螺杆A相对于螺杆B 下降时,Q为轴向驱动力,为了为此等速下降,所需阻力矩为因MB为驱动力矩,MA为阻力矩,它们方向相反,故总驱动力为M=MB-MA根据已知条件可得将、和代入驱动力矩M,则得到4—17题解方牙螺纹的平均直径d2为螺纹升角为,摩擦角为起重时,环形摩擦面间的摩擦力矩为螺旋副的摩擦力矩为故起重时所需的驱动力矩为无摩擦时,理想驱动力矩为故千斤顶的机械效率为因为M=F l =4.052Q所以能举起的重量为4—18题解离合器传递的扭矩为所需弹簧压力应满足式中a=8为摩擦面, 所以=568.4N4—19题解串联机构的总效率为各级效率的连乘积,故电动机所需功率为4—20题。
习题解答第五章平面连杆机构5-3题5-8题5-9题5-12题5-13题5-14题5-15题5-16题5-17题5—1题a);b);c)当时,为摆动导杆机构;当时,为转动导杆机构。
5-2题该机构为摆动导杆机构的条件是,A、B必须为整转副,即AB杆为最短杆,则必须满足杆长条件,即,则得;该机构为摆动导杆机构的条件是,A、C必须为整转副,即杆AC为最短杆,则有;即,则得。
一铰接四杆机构(1)∵a+d=3.5 , b+c=4∴a+d < b+c又∵最短杆为连架杆∴此机构为曲柄摇杆机构,可以实现连续转动与往复摆动之间的运动变换。
(2)机构的两极限位置如下图:(3)传动角最大和最小位置如下图:5-3题解:若使其成为曲柄摇杆机构,则最短杆必为连架杆,即a为最短杆。
所以此题有两种情况,即:(1)机架d为最长杆,则应满足 a+d≤c+bd≤c+b-a=2.5+3-1=4.5∴ dmax=4.5(2)连杆b为最长杆,则应满足 a+b≤c+dd≥a+b-c=1+3-2.5=1.5∴dmin=1.55-8题5-9题设计一铰接四杆机构,要求主动的连架杆A0A逆钟向转120°,另一连架杆B0B顺钟向转90°,并要求在起始位置机构有最好的传力性能。
5-12题5—13题解本题是为按两连架杆(摇杆与滑块)的预定对应位置设计四杆机构的问题,故可用反转法求解。
作图如下:将DF1线绕D点顺时针转动一大小为∠C1DC2的角度,得转位点(即将C1D线与F1的相对位置固定成△C1DF1,并绕D点转动使之C1D与C2D重合),同理将DF3线绕D点逆时针转动一大小为∠C2DC3的角度,得转位点,然后分别作连线和连线的中垂线f12、f23,其交点E2即为所求连杆与摇杆CD的铰链点。
所以连杆E2F2的长度为,式中μl为作图时所用的长度比例尺。
(本题是将连架杆CD的第二位置C2D当作机架,所以求出的是E2点。
当然也可选连架杆CD的第一或第三位置当作机架,再用反转法求解)题5-13图5—14题解以位置Ⅰ为起始位置,作相对转动极R12,R13及半角β12/2,β13/2。
两半角的(r12)和(r12)线交于B1,则(m12),(m13)线的交点即铰链A1的中心。
图中OAA1=42mm,所以=0.5×42=21mm,A1B1=91mm,所以,作曲柄存在条件检验如下,满足曲柄存在条件。