广州中考数学压轴题汇总
2024年广东省广州市中考数学考前押题密卷专用01
2024年广东省广州市中考数学考前押题密卷专用01一、单选题1.2024年李强总理政府工作报告指出,今年发展的主要预期目标是:国内生产总值增长5%左右;城镇新增就业1200万人以上.将数据“1200万”用科学记数法表示为( ) A .31210⨯ B .71.210⨯ C .61210⨯ D .81.210⨯2.如图,不等式组1010x x +⎧⎨-≤⎩f 的解集在数轴上表示正确的是( ) A . B . C . D . 3.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A .B .C .D .4.下列运算正确的是( )A .()523m m -=-B .33mn m n -=C .()2211m m -=- D .23m n m m n ⋅= 5.开学前,根据学校要求,小宁同学连续14天进行了体温测量,结果统计如下表:这14天中,小宁体温的众数和中位数分别为( )A .36.5C ︒,36.4C ︒B .36.5C ︒,36.5C ︒ C .36.8C ︒,36.4C︒ D .36.8C ︒,36.5C ︒ 6.“孔子周游列国”是流传很广的故事.有一次他和学生到离他们住的驿站30里的书院参观,学生步行出发1小时后,孔子坐牛车出发,牛车的速度是步行的1.5倍,孔子和学生们同时到达书院,设学生步行的速度为每小时x 里,则可列方程为( )A .303011.5x x =+B .30301.51x x =+C .303011.5x x =-D .30301.51x x =- 7.直线1l :y kx b =-和直线2l :2b y x b k=+在同一坐标系中的图象大致是( ) A . B .C .D .8.如图,滑雪场有一坡角为18︒的滑雪道,滑雪道AC 长为150米,则滑雪道的坡顶到坡底的竖直高度AB 的长为( )A .150tan18︒米B .150sin18︒米C .150cos18︒米D .150tan18︒米 9.如图,ABC V 内接于O e ,连接AO 并延长交BC 于点D ,交O e 于点E ,若1530DE AD ADC ==∠=︒,,,则BC 的长为( )A.4 B .C .D .510.已知二次函数22(2)2y x m x m =+--+的图象与x 轴最多有一个公共点,若223y m tm =--的最小值为3,则t 的值为( )A .12-B .32或32-C .52-或32-D .52-二、填空题112=.12.如图,正方形ABCD 中,点E 在对角线BD 上,点F 在边CD 上(点F 不与点C 重合),且45EAF ∠=︒,那么CF BE的值为.13.如图,扇形AOB 中,140AOB ∠=︒,点C 为OA 的中点,4OA =,CD AO ⊥交»AB 于点D ,以OC 为半径画»CE交OB 于点E ,则图中阴影部分面积为.14.某校为了调查学生家长对课后服务的满意度,从600名学生家长中随机抽取150名进行问卷调查,获得了他们对课后服务的评分数据(评分记为x ),数据整理如下:根据以上数据,估计这600名学生家长评分不低于80分的有名.15.已知某二次函数的图象开口向上,与x 轴的交点坐标为()2,0-和()6,0,点()14,P m n +和点()232,Q m n -都在函数图象上,若12n n <,则m 的取值范围为.16.如图,在ABC V 中,904A AB AC D ∠=︒==,,为AB 上一点,E 为BC 上一点,若90CDE ∠=︒,则CE 的最小值为.三、解答题17.解不等式组215143x x x +<⎧⎪-⎨≤⎪⎩,并写出它的整数解. 18.如图,点E ,F 在线段BC 上(点E 在点F 左侧),BE CF =,AB DC =,B C ∠=∠,求证:A D ∠=∠.19.从2024年1月1日起,国务院、中央军事委员会颁布的《无人驾驶航空器飞行管理暂行条例》正式实施,非经营性活动的微型无人机适飞空域高度不超过50米.如图,在水平地面上选择观测点A 和B ,无人机悬停在C 处,此时在A 处测得C 的仰角为37°;无人机垂直上升10m 悬停在D 处,此时在B 处测得D 的仰角为63︒.20m AB =,点A ,B,C ,D 在同一平面内,A ,B 两点在CD 的同侧.请你判断此次无人机起飞是否在允许的范围内.(参考数据:tan370.75︒≈,sin370.6︒≈,cos370.8︒≈,tan63 2.0︒≈,sin630.9︒≈,cos630.45︒≈.)20.如图,约定:上方相邻两整式之和等于这两个整式下方箭头共同指向的整式.(1)求整式M 、P ;(2)将整式P 因式分解;(3)P 的最小值为______.21.如图,直线y kx b =+与双曲线(0)m y x x=>相交于点()()2,6,1A n B .(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式(0)m kx b x x+>>的解集; (3)求ABO V 的面积.22.(1)若关于,a b 的多项式()()22223222a ab b a mab b -+--+中不含有ab 项,则m 的值为______.(2)完全平方公式经过适当的变形,可以解决很多数学问题.例如:若3,1a b ab +==,求22a b +的值.解:∵3,1a b ab +==,2()9,22a b ab ∴+==2229.a b ab ∴++=227.a b ∴+=根据上面的解题思路与方法解决下列问题:i )如图,点C 是线段AB 上的一点,分别以,AC BC 为边向直线AB 两侧作正方形BCFG ,正方形AEDC .设8AB =,两正方形的面积和为40,则AFC V 的面积为______; ii )若(9)(6)2x x --=,求22(9)(6)x x -+-的值.23.如图,AB 是O e 的直径,C 为圆上一点,D 是劣弧BC 的中点,DE AB ⊥于E ,过点D 作BC 的平行线DM ,连接AC 并延长与DM 相交于点G ,连接AD 与BC 交于点H .(1)求证:GD 是O e 的切线;(2)若6,8CD AD ==,求AH 的值.24.某校为了了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表(1)频数分布表中n=_______,并补全条形统计图;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.25.繁花歌舞团准备采购甲、乙两种道具,某商场对甲种道具的出售价格根据购买量给予优惠,对乙种道具按40元/件的价格出售,设繁花歌舞团购买甲种道具x件,付款y元,y与x 之间的函数关系如图所示:(1)求出当060x≤≤和60x>时,y与x的函数关系;(2)若繁花歌舞团计划一次性购买甲、乙两种道具共120件,且甲种道具数量不少于乙种道具数量的53,乙种道具不少于35件,如何分配甲、乙两种道具的购进量,才能使繁花歌舞团付款总金额w(元)最少?。
广州各区数学中考一模压轴题汇总
一、选择填空2、如图6,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=5.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB⊥ED;④S△APD+S△APB=1+6;⑤S正方形ABCD=4+6.其中正确结论的序号是* .(二)黄浦区图6(三)铁一中学1、定义[]c b a ,,为函数c bx ax y ++=2的特征函数,下面给出特征数为[]m m m 2-11,,+-的函数的一些结论:①当3=m 时,函数图像的顶点坐标是()8-1-,;②当1>m 时,函数图像截x 轴所得的线段长度定点。
其中正确的结论有( ) A .1个 B .2个C .3个D . 4个2、如图,在平面直角坐标系中,矩形OABC的顶点CA、分别在x轴的负半轴、y轴的正半轴上,点B(四)白云区第16题图(六) 番禺区1、抛物线92-=x y 与x 轴交于A 、B 两点,点P 在函数xy 3=的图像上,若△PAB 为直角三角形,则满足条件的点P 的个数为( )【A 】2个; 【B 】3个; 【C 】4个; 【D 】6个.2、直线y=x-2与x 轴、y 轴分别交于点B 、C ,与反比例函数xk y =(k>0)的图象在第一象限交于点A ,连接OA ,若S △AOB :S △BOC=1:2,则k 的值为( )(七)海珠区10、正方形ABCD 中,对角线AC 、BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ’。
点F 是DE 的中点,连接AF 、BF 、E ’F ’。
若AE=2.下列结论:①AD垂直平分EE ’;②tan ∠ADE=12-;③122-=-∆∆ODE ADE C C ;④223'+=AEFE S 四边形。
其中结论正确的是( )第16题图16、设关于x 的方程04)4(2=--+k x k x 有两个不相等的实数根21,x x ,且2120x x <<<,那么k 的取值范围是(八)花都区10. 如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为60AFG ∠=︒,2GE BG =,则折痕EF 的长为( D ) A .4 B. C .2 D.16.如图,30MON ∠=︒,点1B 在边OM上,1OB =过点1B 作11A B OM ⊥交ON 于点1A ,以11A B 为边在11B OA ∆外侧作等边三角形111C B A ∆,再过点1C 作22A B OM ⊥,分别交OM ,ON 于点2B 、2A ,再以22A B 为边在22B OA ∆的外侧作等边三角形222C B A ∆……按此规律进行下去,则第3个等边三角形333C B A ∆的周长为 ,第n 个等边三角形n n n C B A ∆的周长为 .(用含n 的代数式表示)272 136()2n -(九)华工附中10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,并且关于x 的一元二次方程20ax bx c m ++-=有两个不相等的实数根,下列结论:①240b ac -<;②0abc >;③0a b c -+<;④2m >-.其中,正确的个数有( ). A .1 B .2C .3D .416.已知二次函数222y x mx =++,当2x >时,y 的值随x 值的增大而增大,则实数m 的取值范围是__________.(十)广雅10.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至'''B A O △的位置,此时点'A 的横坐标为3,则点'B 的坐标为( )A.(4,32)B.(3,33)C.(4,33)D.(3,32)16.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC,垂足为点F ,连接DF.分析下列四个结 论:①△AEP ∽△CAB ;②CF=2AF ;③DF=DC ;④43tan =∠CAD .其中正确的结论是_____.(十一)四中10.如图,PA 、PB 切○O 于A 、B 两点,CD 切○O 于点E 交PA ,PB 于C ,D. 若○O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A. B.C.D.16.如图,已知:点A是双曲线在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限,随着点A的运动,点C得位置也不断变化,但点C始终在双曲线>上运动,则k的值是。
广州中考数学压轴题(学生版)
1.如图,以O 为原点的直角坐标系中,A 点的坐标为(0,1),直线1交x 轴于点B 。
P 为线段上一动点,作直线⊥,交直线1于点C 。
过P 点作直线平行于x 轴,交y 轴于点M ,交直线1于点N 。
(1)当点C 在第一象限时,求证:△≌△;(2)当点C 在第一象限时,设长为m ,四边形的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段上移动时,点C 也随之在直线1上移动,△是否可能成为等腰三角形?如果可能,求出所有能使△成为等腰三角形的点P 的坐标;如果不可能,请说明理由。
说明:●考查字母运算能力 ● 分类讨论思想,取值范围内解的有效性 ●2.关于x 的二次函数y =2+(k 2-4)x +22以y 轴为对称轴,且与y 轴的交点在x 轴上方.(1)求此抛物线的解析式(2)设A 是y 轴右侧抛物线上的一个动点,过点A 作垂直x 轴于点B,再过点A 作x 轴的平行线交抛物线于点D ,过D 点作垂直x 轴于点C, 得到矩形.设矩形的周长为C ,点A 的横坐标为x ,试求C 关于x 的函数关系式;(3)当点A 在y 轴右侧的抛物线上运动时,矩形能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.x 第1题图 第2题图说明:●考查字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,易错点为用字母表示边长时,注意边长的非负性3.如图所示, 在平面直角坐标系中, 矩形的边长、分别为12、6, 点A、C 分别在y轴的负半轴和x轴的正半轴上, 抛物线2经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿边以1的速度向终点B移动, 同时点Q由点B开始沿边以2的速度向终点C移动.①移动开始后第t秒时, 设△的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形如第3题图果存在, 求出R点的坐标, 如果不存在, 请说明理由.说明:●图形必须准确,存在性问题如果不会做,可通过画图判断(答存在得分的机会大得多)4.已知二次函数2++c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r 的⊙P ,且圆心P 在抛物线上运动,当⊙P 与两坐标轴都相切时,求半径r 的值.(3)半径为1的⊙P 在抛物线上,当点P 的纵坐标在什么范围内取值时,⊙P 与y 轴相离、相交?说明:●考查画图能力和字母运算能力 ●分类讨论思想,取值范围内解的有效性 ● 方法多样化,易错点为用字母表示边长时,注意边长的非负性5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C .(1)求点C 的坐标并画出抛物线的大致图象(2)过C 点作⊙M 的切线,求直线的解析式.说明:●图形必须准确,画切线后巧妙解法是利用两直线平行,K 相等 ●易错点为漏解(过圆外一点作圆的切线有两条) ● 两直线垂直,K 互为负倒数可以使用6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A '∆与梯形DBCE 重叠部分的面积记为y.(1).用x 表示∆的面积;第5题图(2).求出0﹤x≤5时y与x的函数关系式;(3).求出5﹤x﹤10时y与x的函数关系式;(4).当x取何值时,y的值最大?最大值是多少?说明:●考查画图能力和字母运算能力●分类讨论思想,取值范围内解的有效性●方法多样化,在设未知数或用字母表示未知量时,要充分发挥“勾股、相似、锐角三角函数”的作用,挖掘题目中的特殊角(特殊比值)来巧妙运算7.在△中,∠A=90°,=4,3,M是上的动点(不与A、B重合),过点M作∥交于点N. 以为直径作⊙O,并在⊙O内作内接矩形,令. 当x为何值时,⊙O与直线相切?8.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是的中点,过点C向左方作射线⊥y轴,点D是线段上一动点,不和B重合,⊥于点P,⊥于点E,连接。
广州中考数学压轴题汇总
广州中考压轴题汇总选择题(2014·广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2?S△EFO=b2?S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个(2015·广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10(2016·广州)定义运算:a?b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b?b﹣a?a的值为()A.0 B.1 C.2 D.与m有关(2017·广州)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.(2017·广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.m2 C.m2 D.1009m2填空题(2014·广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.(2015·广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.(2016·广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB 绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.(2017·广州)如图,平面直角坐标系中O是原点,?OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是(填写所有正确结论的序号).(2018·广州)如图,CE是?ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE :S△COD=2:3.其中正确的结论有.(填写所有正确结论的序号)解答题(2014·广州24)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.(2014·广州25)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.(2015·广州24)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.(2015·广州25)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1?x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.(2016·广州24)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.(2016·广州25)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.(2017·广州24)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.(2017·广州)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.(2018·广州24)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.(2018·广州25)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.。
广州市中考数学压轴题练习及答案
广州市中考数学压轴题练习23.(本小题满分12分)如图,在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC交于点E,连接DE并延长,与BC的延长线交于点F,BD=BF.(1)求证:AC是⊙O的切线;(2)若BC=12,AD=8,求»DE的长.24.(本小题满分14分)第23题F已知四边形OABC 的一边OA 在x 轴上,O 为原点,B 点坐标为(4,2).(1)如图①,若四边形OABC 的顶点C (1,4),A (5,0),直线CD 平分该四边形的面积且交x 轴于点D ,试求出△OAC 的面积和D 点坐标;(2)如图②,四边形OABC 是平行四边形,顶点C 在第一象限,直线平分该四边形的面积,若关于x 的函数25.(本小题满分14分)在平面直角坐标系中,A 点坐标为(0,4),C 点坐标为(10,0).1-=kx y k m x k m mx y +++-=2)3(2第24题图①(1)如图25-①,若直线AB ∥OC ,AB 上有一动点P ,当PO =PC 时,请直接写出P 点坐标; (2)如图25-②,若直线AB 与OC 不平行,在过点A 的直线4y x =-+上是否存在点P ,使 ∠OPC =90°,若有这样的点P ,求出它的坐标,若没有,请简要说明理由;(3)若点P 在直线4y kx =+上移动时,只存在一个点P 使∠OPC =90°,试求出此时4y kx =+中的k 值.23. (本小题满分12分)如图所示,直线与反比例函数交于点A 、B ,与轴交于点C 。
b x y +-=2xky =x(1)若A (-3,)、B (1,)。
直接写出不等式的解。
(2)求sin ∠OCB 的值。
(3)若CB — CA =5,求直线AB 的解析式。
m n xkb x >+-224.(本小题满分14分)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C 关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF—tan∠ECP=.22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.23.(本题满分12分)(1)证法1:连接OE - ---------1分 证法2:连接OE ----------1分 ∵BD =BF ∵BD =BF∴∠BDF =∠F ∴∠BDF =∠F ∵OD =OE ∵OD =OE∴∠ODE =∠0ED ∴∠ODE =∠0ED∴∠OED =∠F ----------3分 ∴∠OED =∠F ----------3分 ∴OE ∥BF ∵∠BCA =90° ∴∠OEA =∠BCA =90° ∴∠F +∠FEC =90°∴AC 是⊙O 的切线 ----------5分 ∵∠FEC =∠AED , ∠OED =∠F ∴∠OED +∠AED =90°∴AC 是⊙O 的切线 --------5分此题证明思路很多,学生可能会绕弯,按照踩分点相应给分。
挑战压轴题解答题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(原卷版)
03挑战压轴题(解答题一)(1)尺规作图:将法);(2)在(1)所作的图中,连接V①求证:ABD②若tan BAC∠2.(2022·广东广州·统考中考真题)某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆的AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD = 1.6m,BC =5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE = 1.0m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin54.46°≈0.81,cos54.46°≈0.58,tan54.46°≈1.40.(1)求A 、B 两点的坐标;(2)设PAO V 的面积为S ,求S 关于x 的函数解析式:并写出x 的取值范围;(3)作PAO V 的外接圆C e ,延长PC 交C e 于点Q ,当POQ △的面积最小时,求C e 的半径.(1)沿AC BC 、剪下ABC V ,则ABC V 是_______三角形(填“锐角______.(2)分别取半圆弧上的点E 、F 和直径AB 上的点G 、H .已知剪下的由这四个点顺次连接构成的四边形是一个边长为6cm 的菱形.请用直尺和圆规在图中作出一个符合条件的菱形(保留作图痕迹,不要求写作法);2.(2022上·陕西西安·九年级校考期中)如图,在等边ABC V 中,点D 是AB 边上的一个动点(不与点A ,B 重合),以CD 为边作等边EDC △,AC 与DE 交于点F ,连接AE .(1)求证:ADF BCD △∽△;(2)若:5:2AB BD =,且20AB =,求ADF △的面积.3.(2022·安徽合肥·统考一模)如图,在正方形ABCD 中,9AB =,E 为AC 上一点,以AE 为直角边构造等腰直角AEF △(点F 在AB 左侧),分别延长FB ,DE 交于点H ,DH 交线段BC 于点M ,AB 与EF 交于点G ,连结BE .(1)求证:AFB AED≅V V (2)当62AE =时,求sin MBH ∠的值.(3)若BEH △与DEC V 的面积相等,记△(1)当点D 与圆心O 重合时,如图2所示,求DE 的长.(2)当CEF △与ABC V 相似时,求cos BDE ∠的值.6.(2023下·安徽蚌埠·九年级校考开学考试)如图,矩形ABCD 中,8AB =厘米,12BC =厘米,P 、Q 分别是AB 、BC 上运动的两点,若点P 从点A 出发,以1厘米/秒的速度沿AB 方向运动,同时,点Q 从点B 出发以2厘米/秒的速度沿BC 方向运动,设点P ,Q 运动的时间为x 秒.(1)设PBQ V 的面积为y ,求y 与x 之间的函数关系式及自变量x 的取值范围;(2)当x 为何值时,以P ,B ,Q 为顶点的三角形与BDC V 相似?7.(2021下·湖北随州·七年级统考期末)阅读材料:在平面直角坐标系中,二元一次方程0x y -=的一个解11x y =⎧⎨=⎩可以用一个点(1,1)表示,二元一次方程有无数个解,以方程0x y -=的解为坐标的点的全体叫作方程0x y -=的图象.一般地,在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,我们可以把方程0x y -=的图象称为直线0x y -=.直线x -y =0把坐标平面分成直线上方区域,直线上,直线下方区域三部分,如果点M (x 0,y 0)的坐标满足不等式x -y ≤0,那么点M (x 0,y 0)就在直线x -y =0的上方区域内。
广东中考数学压轴题
广东09压轴题127.(广东省)正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直, (1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时,Rt △ABM ∽Rt △AMN ,并求此时x 的值.128.(广东省广州市)如图,二次函数y =x2+px +q (p <0)的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ACBD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.M B CND A129.(广东省深圳市)如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB的最大面积;若没有,请说明理由.130.(广东省深圳市)如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.(1)连结P A,若P A=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?备用图131.(广东省深圳市)已知:Rt △ABC 的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB 与x 轴重合(其中OA <OB ),直角顶点C 落在y 轴正半轴上(如图1).(1)求线段OA 、OB 的长和经过点A 、B 、C 的抛物线的关系式. (2)如图2,点D 的坐标为(2,0),点P (m ,n )是该抛物线上的一个动点(其中m >0,n >0),连接DP 交BC 于点E .①当△BDE 是等腰三角形时,直接写出....此时点E 的坐标. ②又连接CD 、CP (如图3),△CDP 是否有最大面积?若有,求出△CDP 的最大面积和此时点P 的坐标;若没有,请说明理由.132.(广东省珠海市)已知抛物线y =x2-32mx 与x 轴相交于点A 、B ,抛物线的顶点为C .(1)试用含m 的代数式表示AB 的长度; (2)当△ABC 为等边三角形时,求点C 的坐标; (3)在(2)的条件下,如何平移抛物线,使AC =213AB ?133.(广东省佛山市)如图1,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处. (1)请你画出蚂蚁能够最快到达目的地的可能路径;(2)当AB =4,BC =4,CC 1=5时,求蚂蚁爬过的最短路径的长; (3)求点B 1到最短路径的距离. A Bxy O 图1C A B x y O PD E图2 C A BPxy O D E 图3 C 备用图 图1134.(广东省茂名市)已知:如图,直线l :y =31x +b ,经过点M (0,41),一组抛物线的顶点B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…,B n (n ,y n )(n 为正整数)依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…,A n +1(x n +1,0)(n 为正整数),设x 1=d (0<d <1). (1)求b 的值;(2)求经过点A 1、B 1、A 2的抛物线的解析式(用含d 的代数式表示)(3)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为“美丽抛物线”.探究:当d (0<d <1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d 的值.135.(广东省湛江市)已知矩形纸片OABC 的长为4,宽为3,以长OA 所在的直线为x 轴,O 为坐标原点建立平面直角坐标系;点P 是OA 边上的动点(与点OA 不重合),现将△POC 沿PC 翻折得到△PEC ,再在AB 边上选取适当的点D ,将△P AD 沿PD 翻折,得到△PFD ,使得直线PE 、PF 重合.(1)若点E 落在BC 边上,如图①,求点P 、C 、D 的坐标,并求过此三点的抛物线的函数关系式;(2)若点E 落在矩形纸片OABC 的内部,如图②,设OP =x ,AD =y ,当x 为何值时,y 取得最大值?(3)在(1)的情况下,过点P 、C 、D 三点的抛物线上是否存在点Q ,使△PDQ 是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.136.(广东省肇庆市)如图,⊙O 的直径AB =2,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y . (1)求证:AM ∥BN ;(2)求y 关于x 的关系式;(3)求四边形ABCD 的面积S ,并证明:S≥2.137.(广东省清远市)如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,∠B 和∠C 都为锐角,M 为AB 上一动点(点M 与点A 、B 不重合),过点M 作MN ∥BC ,交AC 于点N ,在△AMN 中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将△AMN 沿MN 折叠,使△AMN 落在四边形BCNM 所在平面,设点A 落在平面的点为A 1,△A 1MN 与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少?138.(广东省梅州市)如图,矩形ABCD 中,AB =5,AD =3.点E 是CD 上的动点,以AE 为直径的⊙O 与AB 交于点F ,过点F 作FG ⊥BE 于点G . (1)当E 是CD 的中点时:①tan ∠EAB 的值为______________; ②证明:FG 是⊙O 的切线;(2)试探究:BE 能否与⊙O 相切?若能,求出此时DE 的长; 若不能,请说明理由.NB C N M A139.(广东省梅州市)如图,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.(1)直接写出直线L的解析式;(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.1。
2024年中考数学压轴题型(广东专用)专题04特殊平行四边形中全等相似与最值问题(学生版)
专题04特殊平行四边形中全等相似与最值问题通用的解题思路:一、四边形与全等相似1.三角形与全等之六大全等模型:(1)一线三等角模型锐角一线三等角(2)手拉手模型(3)半角模型(4)倍长中线模型模型(6)雨伞等模型(5)平行线中等模型2.三角形与相似之四大相似模型:(1)A字模型(3)手拉手模型(2)8字模型(4)一线三等角模型B 二、四边形线段最值问题囹 1 C B D 02B (1)将军饮马模型两定一动模型一定两动模型两线段相减的最大值模型(三点共线)• B(2)费马点模型:将边以A 为顶点逆时针旋转60。
,得到AQE,连接P0则^APQ 为等边三角形,PA=PQ O1. (2023-r 东深圳•中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE,①若= 过C 作CFLBE 交BE 于点、F ,求证:AABE^AFCB ;②若S 矩形倔8 = 2。
时,则BECF=(2)如图,在菱形ABCD 中,cosA = |,过。
作CE1AB 交A8的延长线于点E,过E 作EF _LAD 交AD 于点、F ,若S 菱形*d =24时,求EF BC 的值.(3)如图,在平行四边形ABCD 中,匕4 = 60。
,AB = 6, AD=5,点E 在CD 上,且CE = 2,点F 为BC 上一点,连接时,过E 作EGLEF 交平行四边形ABCD 的边于点G,若EF ・EG = 70时,请直接写出AG 的长.D,E E a C C A B AB备用图2.(2022广东广州•中考真题)如图,在菱形ABCQ中,0BAD=120°,AB=6,连接8Q.⑴求BQ的长;⑵点E为线段BQ上一动点(不与点B,。
重合),点E在边AQ上,且BE二也DF,①当CE±AB时,求四边形的面积;②当四边形的面积取得最小值时,CE+右CT的值是否也最小?如果是,求CE+也CF的最小值;如果不是,请说明理由.题型一特殊平行四边形中全等相似计算1.(2024-P东汕头•一模)(1)如图1,在矩形ABCD中,E为AD边上一点,连接8E,①若BE=BC,过。
2023年广州中考数学压轴题回忆版
2023年广州中考数学压轴题回忆版一、题目回忆1. 下列各组数据中,哪一组数据的方差最大?A. 1,2,3,4,5B. 6,7,9,10,11C. 21,23,25,27,29D. 33,35,37,39,412. 已知直角三角形ABC中,∠B=90°,AB=3,BC=4,则AC=?A. 5B. 6C. 7D. 83. 一张半径为5cm的圆被一块长为12cm、宽为16cm的矩形纸片的一个长边所切割,则切割后圆的面积为多少?A. 10πB. 12πC. 15πD. 16π4. 已知集合A={3,4,5,6},集合B={4,5,6,7},则A∩B=?A. {4,5,6}B. {4,5,6,7}C. {3,4,5,6,7}D. 空集5. 下列函数中,哪一个是奇函数?A. y=x^3+2x^2B. y=3x^2+4xC. y=x^4+x^2D. y=3x^3+5x二、解题思路1. 题目一是考察对方差计算的理解和运用。
方差是指一组数据与其平均数之差的平方和的平均数,用于衡量数据的分散程度。
在选择答案时,需要计算每组数据的方差并做对比,选择分散程度最大的一组。
2. 题目二是利用勾股定理求解直角三角形的边长。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
结合AB和BC的已知条件,可以求得AC的长度。
3. 题目三是利用几何图形的面积计算。
首先确定圆的面积,然后根据题目所给的矩形纸片的长度和宽度,计算出被矩形纸片遮盖的圆形面积,最后利用减法得出切割后的圆的面积。
4. 题目四是利用集合的交集概念进行计算。
需要将两个集合进行交集运算,得到同时属于A和B的元素的集合。
5. 题目五是判断函数的奇偶性。
奇函数是指当自变量x变为-x时,函数值与原来的函数值互为相反数的函数。
需要对每个函数进行奇函数的特性判断,得出最终答案。
三、解题方法1. 方差的计算方法是先求出一组数据的平均数,然后将每个数据与平均数的差的平方相加,再求平均数,即可得到方差。
2024年广东省中考数学填空题压轴题专题:几何变换(翻折、平移、旋转)课件
∵△ABC为等边三角形, ∴∠A=∠B=60°. ∴∠BDP=180°-∠B-∠BPD=90°.
∵∠BPD=30°, ∴BD=12BP,即 2t=12(6-2t). ∴t=1.
∠AQP=180°-∠APQ-∠A=30°.
故答案为:1.
∵∠BDP=∠APQ=90°,DP=PQ,∠BPD=∠AQP=30°,
123=25
.
又HF=AB=6, 在Rt△FHE中, EF= HF2+HE2=2 13. 故答案为:2 13.
9.如图,在△ABC中,AB=4 cm,BC=2 cm,∠ABC=30°,把△ABC绕
点B逆时针旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的
图形(图中阴影部分)的面积是__5_π__cm2. 【解析】∵∠ABC=∠A′BC′=30°,
【解析】过点F作FH⊥AD于点H.
易证Rt△AD′E≌Rt△ABF,
四边形ABFH为矩形.
∵四边形ABCD是矩形,
∴AB=CD=6,BC=AD=9.
答图
设AE=x,由折叠可知ED′=ED=(9-x).
在Rt△AD′E中,由勾股定理,得62+(9-x)2=x2,
解得x=123 .
∴AH=BF=D′E=ED=9- ∴HE=123-25=4.
答图1
14.(2023辽宁)如图,在三角形纸片ABC中,AB=AC,∠B=20°,点D
是 边 BC 上 的 动 点 , 将 三 角 形 纸 片 沿 AD 对 折 , 使 点 B 落 在 点 B′ 处 , 当 B′D⊥BC时,∠BAD的度数为__2_5_°__或__1_1_5_°__.
②如图2,当点B′在直线BC的上方时, ∵B′D⊥BC, ∴∠BDB′=90°. 由折叠得∠ADB′=∠ADB=×90°=45°. ∴∠BAD=180°-∠B-∠ADB= 180°-20°-45°=115°. 故答案为:25°或115°.
广东数学中考压轴题汇编
16. 如图,Rt △ABC 的直角边BC 在x 轴上,直线3232-=x y 经 过直角顶点B ,且平分△ABC 的面积,BC=3,点A 在反比例 函数xky =图像上,则k = . 23.如图,在平面直角坐标系中,直线2+=x y 与坐标轴交于A 、B 两点,点A 在x 轴上, 点B 在y 轴上,C 点的坐标为(1,0),抛物线c bx ax y ++=2经过点A 、B 、C . (1)求该抛物线的解析式;(2)根据图像直接写出不等式2)1(2>+-+c x b ax 的解集;(3)点P 是抛物线上一动点,且在直线AB 上方,过点P 作AB 的 垂线段,垂足为Q 点.当PQ=22时,求P 点坐标.24.如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE=∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB=4,AC=6,求sin ∠ACB 的值; (3)若32=FO DF ,求证:CD=DH .25. 如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE=PC ,过点P 作 PF ⊥OP 且PF=PO (点F 在第一象限),连结FD 、BE 、BF ,设OP=t . (1)直接写出点E 的坐标(用含t 的代数式表示): ; (2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值; (3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.10.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=16.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )23. 如图所示,将矩形ABCD 沿AF 折叠,使点D 落在BC 边的点E 处,过点E 作EG∥CD 交AF 于点G ,连接DG . (1)求证:四边形EFDG 是菱形; (2)求证:EG 2=GF×AF;,则矩形ABCD 的 (第23题图)24. 如图所示,△OAB 中,OA=OB=10,∠AOB=80°,以点O 为圆心,6为半径的优弧MN ⌒分别交OA 、OB 于点M 、N. (1)点P 在右半弧上(∠BOP 是锐角),将OP 绕点O 逆时针旋转80°得OP ′. 求证:AP = BP ′; (2)点T 在左半弧上,若AT 与弧MN ⌒相切于点T ,求点T 到OA 的距离; (3)设点Q 在优弧MN ⌒上,当△AOQ 的面积最大时,直接写出∠BOQ 的度数.25. 如图所示,已知抛物线y =x 2+bx +c 与x 轴交于A 、B 两点 (点A 在点B 左侧),与y 轴交于点C(0,-3),对称轴是直线x =1, 直线BC 与抛物线的对称轴交于点D . (1)求抛物线的函数表达式;(2)求直线BC 的函数表达式; (3)点E 为y 轴上一动点,CE 的垂直平分线交CE 于点F ,交抛物线于P 、Q 两点,且点P在第三象限.①当线段PQ 34AB =时,求tan∠CED 的值;②当以C 、D 、E 为顶点的三角形是直角三角形时,请直接写出点P 的坐标.24.如图,正方形ABCD 的边长为2,点M 是BC 的中点,P 是线段MC 上的一个动点(不与M ,C 重合),以AB 为直径作⊙O ,过点P 作⊙O 的切线,交AD 于点F ,切点为E . (1)求证:OF ∥BE ;(2)设BP =x ,AF =y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)延长DC ,FP 交于点G ,连接OE 并延长交直线DC 于H ,问是否存在点P ,使△EFO ∽△EHG (E ,F ,O 分别与E ,H ,G 为对应点),如果存在,试求(2)中x 和y 的值,如果不存在,请说明理由.25.如图,已知抛物线经过原点O ,顶点为A (1,1),且与直线y=x ﹣2交于B ,C 两点. (1)求抛物线的解析式及点C 的坐标;(2)求证:△ABC 是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作MN⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.23.如图,已知一次函数y=23x ﹣3与反比例函数xky =的图象相交于点A (4,n ),与x 轴相交于点B .(1) 填空:n 的值为 ,k 的值为 ; (2) 以AB 为边作菱形ABCD ,使点C 在x 轴正半轴上,点D 在第一象限,求点D 的坐标; (3) 考察反比函数xky =的图象,当2y ≥-时,请直接写出自变量x 的取值范围.24.如图,△ABC 的边AB 为⊙O 的直径,BC 与圆交于点D ,D 为BC 的中点,过D 作DE⊥AC 于E . (1)求证:AB=AC ;(2)求证:DE 为⊙O 的切线; (3)若AB=13,sinB=,求CE 的长.25.如图,抛物线y=ax 2+bx+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x=﹣1.(1)求抛物线的解析式并写出其顶点坐标;(2)若动点P 在第二象限内的抛物线上,动点N 在对称轴l 上. ①当PA⊥NA,且PA=NA 时,求此时点P 的坐标;②当四边形PABC 的面积最大时,求四边形PABC 面积的最大值及此时点P 的坐标.24. 如图,⊙O 是四边形ABCD 的外接圆,AC 是直径,分别延长AB 、CD 相交于点E ,AC=AE ,过点D 作DF∥BC 于点F. (1)求证:DF 是⊙O 的切线; (2)求证:AC·DF = AD·DE;(3)若M 是弧AB 的中点,连接MD 交弦AB 于点H , 若AB :AF=3:5,证明:AH = AF.25. 已知,把Rt △ABC 和Rt △DEF 按图1摆放(点C 与E 重合),点B ,C ,E ,F 始终在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8,BC=6,EF=10.如图2,△DEF 从图1位置出发,以每秒1个单位的速度沿CB 向△ABC 匀速运动,同时,点P 从点A 出发,沿AB 以每秒1个单位的速度向点B 匀速运动,AC 与△DEF 的直角边相交于点Q ,当E 到达终点B 时,△DEF 与点P 同时停止运动,连接PQ ,设移动的时间为t (s ).解答下列问题: (1)当D 在AC 上时,求t 的值;(2)连接PE ,设四边形APEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;(3)在P 点运动过程中,是否存在点P ,使△APQ 为等腰三角形?若存在,求出t 的值;若不存在,说明理由.22、正方形ABCD 边长为4,M,N 分别是BC ,CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直。
挑战压轴题填空题(真题汇编压轴特训)-2024年中考数学冲刺 挑战压轴题专题汇编(广州卷)(解析版)
02挑战压轴题(填空题)<≤【答案】 1.23S【分析】根据三角形中位线定理可得形DEFG是平行四边形,结合【详解】解:∵点D,E分别是由题意得,DE AM ∥,且DE ∴1122DE AM x ==,又F 、G 分别是MN AN 、的中点,∴FG AM ∥,12FG AM =,【答案】120°/120度75°/75度【分析】如图,以AB为边向右作等边△ABE,连接EP′.利用全等三角形的性质证明∠BEP′=90°,推出点P′在射线EP′上运动,如图1中,设EP′交BC于点O,再证明△BEO是等腰直角三角形,可得结论.【详解】解:如图,以AB为边向右作等边△ABE,连接EP′.∵△BPP′是等边三角形,∴∠ABE=∠PBP′=60°,BP=BP′,BA=BE,∴∠ABP=∠EBP′,在△ABP和△EBP′中BA BEABP EBPBP BP'=⎧⎪∠=∠⎨='⎪⎩,∴△ABP≌△EBP′(SAS),∴∠BAP=∠BEP′=90°,∴点P′在射线EP′上运动,如图1中,设EP′交BC于点O,当点P′落在BC上时,点P′与O重合,此时∠PP′C=180°-60°=120°,当CP′⊥EP′时,CP′的长最小,此时∠EBO=∠OCP′=30°,51【点睛】本题考查了正方形的综合问题,掌握特殊四边形、相似三角形的判定与性质及等腰三角形的性质是解题的关键.【答案】15 4【分析】如图,连接PC交AB于直角三角形求出AC,PA,利用相似三角形的性质求出题.【详解】解:如图,连接PC交AB∵AC⊥BC,∴∠ACB=90°,∵BC=23,∠BAC=30°,∴AB=2BC=43,AC=3BC=6,∵∠EPB=∠EBP=60°,(1)∠AEB 的度数为 (2)若15EBA ∠=︒,【答案】 135° 【分析】(1)如图,连接∵E 是△ADC 的内心,∠∴∠ACE =12∠ACD ,∠EAC ∴∠AEC =180°−12(∠ACD 在△AEC 和△AEB 中,【详解】【答案】171++/117【分析】连接CE,AE',可证AE'=的圆,当E F'经过圆心半径为1【详解】解:如图,连接CE四边形ABCD是正方形,=∴∠=︒,AD CDADC90ADE CDE∴∠+∠=︒,90将DE绕D顺时针旋转∠=DE DE'∴=,EDE'∴22AF AD DF =+224117=+=,FE AF AE ''∴=+171=+;【答案】17【分析】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,由V V,可得BE≅BDE BDF=,由勾股定理可求解.AE CF∠=BD DE,BDE2==∴∠=∠=︒,90BDE BDF()SAS∴≅V V,BDE BDF∠=∠BE BF∴=,BEA BFA【答案】8【分析】本题考查动点最值问题法求线段长等知识,在Rt PBE△中,求出在等腰ABCV中,∴在Rt△ABD中,ABsinAD ABDAB∴∠==在Rt PBE△中,sin313【答案】5【分析】本题考查了正方形的综合题,关键是借助相似三角形对应边成比例解决问题.先画出点E 运动的路线EE ',过E 作EF AQ ⊥,交AQ 于点F ,根据EAF CAB △∽△,可得EF AF =,设cm EF x =,则()3cm BF x =-,()4.5cm QF x =-,再根据EQF DQA V V ∽,可求得EF E F '、,利用勾股定理可得EE '.【详解】解:当点P 在点A 处时,如图,,23cm BP BQ BP == ,,15cm BQ .∴=,当点P 运动到点B 时,如图,,所以点E 运动的路线EE ',如图,,过E 作EF AQ ⊥,交AQ 于点F ,即90AFE EFQ ∠=∠=︒,∵四边形ABCD 为正方形,【答案】32【分析】本题考查了垂线段最短,等边三角形的性质,全等三角形的判定和性质等知识,取连接DK ,EK ,由V AE 绕点A 顺时针旋转∵ABC V 是等边三角形,∴60BAC ∠=︒,3AD =∵线段AE 绕点A 顺时针旋转∴60PAE ∠=︒,AE =∴60PAE BAC ∠=∠=︒【答案】23【分析】本题考查三角形的重心,涉及相似三角形的判定与性质,于G ,延长CG 交AB 于点F ,证明V 据3AC =,得21CD AD ==,,进而根据勾股定理求出【详解】解:过G 作GD AC ⊥于G ,延长∵ 90GD AC BAC ⊥∠=︒,,∴ DE AB ∥,90CDG CAF ==∠∠又∵ DCG ACF ∠=∠,∴ DCG ACF V V ∽,∴ CD DG CG ==,【答案】26【分析】连接,,OA AC OC ,OF CF ,先求出AD =后利用勾股定理求出OE 则52OA OC OF ===,12AOD AOC ∴∠=∠,弦CD AB ⊥于点E ,CD ∴142CE CD ==,∴2225BC CE BE =+=设OC x =,则2=-OE x ,2C BAD ∠=∠ ,设BAD ∠=α,则2C α∠=,90ABD ∠=︒ ,90ADB ADE α∠=︒-=∠ ,180EDC ADB ADE ∴∠=︒-∠-∠=ED EC ∴=,【答案】AP的长为25或2或10【分析】分三种情况:PA'平行于行于x轴时,过点C作CN PA⊥于的坐标,从而求得CM AM,,再由折叠性质得PA '平行于x 轴时,如图,过点设AP a =,点5512P m m ⎛⎫+ ⎪⎝⎭,,则则5512A m a m ⎛⎫++ ⎪⎝'⎭,,50,12M ⎛ ⎝当P 靠近A 且PA '平行于x 轴时,延长设AP a =,点5512P m m ⎛⎫+ ⎪⎝⎭,,则0m <,则5512A m a m ⎛⎫-+ ⎪⎝'⎭,,50,512M m ⎛⎫+ ⎪⎝⎭,∴555321212CM m m ⎛⎫=+-=+ ⎪⎝⎭,PM =综上,AP 的长为25或2或10.【点睛】本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的性质角平分线的性质,勾股定理,等积法,利用等积法是解题的关键与难点.17.(2024上·山东济南·八年级统考期末)平面直角坐标系中,点123B B B ⋯,,,在x 轴上,11122233OA B B A B B A B ⋯V V V ,,是等腰直角三角形.【答案】94,设22A C m =,33A C n =,点()111A ,,1111OC A C ∴==,【答案】8【分析】如图,记AB BC 、1122DP BC AB DQ ===,证明()SAS FDQ EDC V V ≌1124BM PM BP AB ===又∵D 是AC 的中点,∴DP DQ 、是ABC V 的中位线,∴1122DP BC AB DQ ===∴四边形BPDQ 是菱形,∴1122DP BQ BC AB ===∵等边DFE △,【答案】3212+2【分析】(1)连结AB,取AB的中点D,连结CD 以定点D为圆心,1为半径的圆上运动,所以当点即得OC的最小值;(2)连结AB,取AB的中点D,连结DM,ODC为AP的中点,M 为AC 的中点,1122DM BC ∴==,所以点M 在以定点D 为圆心,90AOB ∠=︒Q ,2OA =,OB 2222AB OA OB ∴=+=,1。
2024年中考数学压轴题型(广东专用)专题07一次函数与反比例函数综合问题(教师版)
专题07一次函数与反比例函数综合问题通用的解题思路:1.三角形面积的解题步骤:类型一:三角形有其中一边与坐标轴平行(垂直)的,以这边为底边,以该边所对的顶点的坐标的绝对值为高•底边平行于V轴,则以所对顶点的横坐标的绝对值为高,反之则以纵坐标的绝对值为高.类型二:三角形没有其中一边与坐标轴平行(垂直)的,可以用公式水平宽X铅垂高求解.2.利用图象法解不等式解集的解题步骤:①求交点:联立方程求出方程组的解;②分区间:将一次函数和反比例函数两个交点以及y轴左右两侧分层4个区间;③比大小:图象谁在上方谁就大;④:写出对应区间自变量的取值范围.3.两线段和差的最值问题利用将军饮马模型:做对称,连定点,求交点.1.(2024广东东莞•一模)如图,一次函数y=+3的图象与'轴交于点,与反比例函数日的图象在第一象限内交于点瓦点B的横坐标为1,连接。
8,过点B作BClx轴于点C.⑴求一次函数和反比例函数的解析式;.....................................~4〜.......................⑵设点。
是x轴上一点,使得S^BCD=~S^AOB,求点Q的坐标.【答案】(1)必=2x+3,J=-x⑵点。
的坐标为(-1,0)或(3,0)【分析】本题主要考查了待定系数法确定函数的解析式,一次函数图象的性质,一次函数图象上点的坐标的特征,反比例函数的性质,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长度是解题的关键.(1)把点代入一次函数了=心+3中,解得m=2,进而可得点B的坐标为(1,5),再利用待定系数法解答即可;(2)根据坐标求得S△朝=可知S%co=:S△皿=5,再根据S^cd=?CD・BC,得CD=2,即可求解.【详解】(1)解:把点{―代入一次函数:Y=m+3中,,一3___——m+3=0,解得m=2,园一次函数的解析式为"2x+3.把点B的横坐标工二1代入y=2x+3中,得"5,国点B的坐标为(1,5),国点B为一次函数和反比例函数图象的交点,园把点8(1,5)代入反比例函数y=|中,得S5,园反比例函数的解析式为:y=-;(2)园jo],8(1,5),BClx轴,0OA=-,BC=5,C(l,0),S5aaob=-AO-BC=-x-x5=—,△如2224[?]Q=—V-^x—=5U*BCD3°AA(9B34,0S ABCn=-CD BC=-CD=5,园CD=2,M(l,0),回点。
初中数学中考压轴题及答案详解(广东篇)
专题训练122. 如图,抛物线923212--=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC 。
(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合)。
过点E 作直线l 平行BC ,交AC 于点D 。
设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围; (3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π)。
参考答案: 解:(1)令y=0,即0923212=--x x , 整理得 01832=--x x , 解得:31-=x ,62=x , ∴ A (—3,0),B (6,0) 令x = 0,得y = —9, ∴ 点C (0,—9)∴ 9)3(6=--=AB ,99=-=OC , (2)281992121=⨯⨯=⋅=∆OC AB S ABC, ∵ l ∥BC ,∴ △ADE ∽△ACB , ∴22ABAE S S ABC=∆,即229281m S = ∴ 221m S =,其中90<<m 。
(3)88129212192122+⎪⎭⎫ ⎝⎛--=-⨯⨯=-=∆∆∆m m m S S S ADEACE CDE , ∵ 021<-∴ 当29=m 时,S △CDE 取得最大值,且最大值是881。
这时点E (23,0),yA OB xElCD题22图∴29236=-=-=OE OB BE ,133962222=+=+=OC OB BC , 作EF ⊥BC ,垂足为F ,∵∠EBF=∠CBO ,∠EFB=∠COB , ∴△EFB ∽△COB ,∴CB BEOC EF =,即133299=EF ∴132627=EF , ∴ ⊙E 的面积为:πππ5272913262722=⎪⎭⎫⎝⎛⨯=⋅=EF S 。
2023广州中考数学压轴题
中考数学试卷一、单项选择题(共12分)1.如图,在三角形ABC中D,E分别是AB和AC上的点,且DE平行BC,AE 比EC=5/2,D E=10,则BC的长为()。
A.16B.14C.12D.112.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=33.如图,四边形ABCD是矩形,E是边BC延长线上的一点,AE与CD相交于点F,则图中的相似三角形共有()A.4对 B.3对C.2对D.1对4.如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()A.4圈B.3圈C.5圈D.3.5圈5.一个由相同正方体堆积而成的几何体如图所示,从正面看,这个几何体的形状是()。
A.B.C.D.二、填空题(共24分)6.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。
7.将抛物线y=﹣x2向右平移一个单位,所得函数解析式为。
(x<0)图象上的点,过点A8.如图,在平面直角坐标系中,点A是函数y=kx作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为()。
9.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y 轴上的某一点为位似中心,作位似图形ABCD,且点B、F的坐标分别为(-4,4)、(2,1)则位似中心的坐标为()。
10.两圆的半径分别为3和5,当这两圆相交时,圆心距d的取值范围是。
三、解答题(共20分)11.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD =21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动(到A点不停),动点Q从点C出发,在线段CB上以每秒一个单位长的速度向点B 运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒)。
2024届广东省广州市南沙区重点中学中考数学最后冲刺浓缩精华卷含解析
2024届广东省广州市南沙区重点中学中考数学最后冲刺浓缩精华卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .72.下列各图中,∠1与∠2互为邻补角的是( )A .B .C .D .3.将一副三角尺(在Rt ABC ∆中,090ACB ∠=,060B ∠=,在Rt EDF ∆中,090EDF ∠=,045E ∠=)如图摆放,点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C ,将EDF ∆绕点D 顺时针方向旋转α(00060α<<),DE '交AC 于点M ,DF '交BC 于点N ,则PM CN的值为( )A 3B .32C .33D .124.下列函数中,y随着x的增大而减小的是()A.y=3x B.y=﹣3x C.3yx=D.3yx=-5.把抛物线y=﹣2x2向上平移1个单位,得到的抛物线是()A.y=﹣2x2+1 B.y=﹣2x2﹣1 C.y=﹣2(x+1)2D.y=﹣2(x﹣1)26.下列运算正确的是()A.(﹣2a)3=﹣6a3B.﹣3a2•4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2D.2a3﹣a2=2a7.如图,AB∥ED,CD=BF,若△ABC≌△EDF,则还需要补充的条件可以是()A.AC=EF B.BC=DF C.AB=DE D.∠B=∠E8.下列事件中,必然事件是()A.若ab=0,则a=0B.若|a|=4,则a=±4C.一个多边形的内角和为1000°D.若两直线被第三条直线所截,则同位角相等9.计算4×(–9)的结果等于A.32 B.–32 C.36 D.–3610.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100131003x yx y+=⎧⎪⎨+=⎪⎩B.100131003x yx y+=⎧⎪⎨+=⎪⎩C.1003100x yx y+=⎧⎨+=⎩D.1003100x yx y+=⎧⎨+=⎩二、填空题(共7小题,每小题3分,满分21分)11.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)12.如图,从一块直径是8m 的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是_________m .13.方程21x x =-的解是__________. 14.如图,AB ∥CD ,点E 是CD 上一点,∠AEC =40°,EF 平分∠AED 交AB 于点F ,则∠AFE =___度.15.如图,AC 、BD 为圆O 的两条垂直的直径,动点P 从圆心O 出发,沿线段线段DO 的路线作匀速运动.设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 的函数关系最恰当的是( )A .B .C .D .16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.A 、B 两地之间为直线距离且相距600千米,甲开车从A 地出发前往B 地,乙骑自行车从B 地出发前往A 地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B 地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s (千类)与甲出发的时间t (小时)之间的图象,则当甲第二次与乙相遇时,乙离B 地的距离为_____千米.三、解答题(共7小题,满分69分)18.(10分)均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D三点在同一直线上.(1)求树DE的高度;(2)求食堂MN的高度.19.(5分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).20.(88﹣|﹣2|+(13)﹣1﹣2cos45°21.(10分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.22.(10分)如图,已知AC 和BD 相交于点O ,且AB ∥DC ,OA=OB .求证:OC=OD .23.(12分)已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB 的长.24.(14分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+,则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:18446744 0737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】试题解析:过点C 作CO ⊥AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP .此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =1,BC =4,∴BD =3,连接BC ′,由对称性可知∠C ′BE =∠CBE =41°,∴∠CBC ′=90°,∴BC ′⊥BC ,∠BCC ′=∠BC ′C =41°,∴BC =BC ′=4,根据勾股定理可得DC 22'BC BD +2234+.故选B .2、D【解题分析】根据邻补角的定义可知:只有D 图中的是邻补角,其它都不是.故选D .3、C【解题分析】先根据直角三角形斜边上的中线性质得CD=AD=DB ,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM ∽△CDN ,得到PM CN =PD CD ,然后在Rt △PCD 中利用正切的定义得到tan ∠PCD=tan30°=PD CD ,于是可得PM CN 【题目详解】∵点D 为斜边AB 的中点,∴CD=AD=DB ,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD ,∵△EDF 绕点D 顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM ∽△CDN , ∴PM CN =PD CD , 在Rt △PCD 中,∵tan ∠PCD=tan30°=PD CD ,∴PM CN =tan30° 故选:C .【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.4、B【解题分析】试题分析:A 、y=3x ,y 随着x 的增大而增大,故此选项错误;B 、y=﹣3x ,y 随着x 的增大而减小,正确;C 、3y x,每个象限内,y 随着x 的增大而减小,故此选项错误;D 、3y x=-,每个象限内,y 随着x 的增大而增大,故此选项错误; 故选B . 考点:反比例函数的性质;正比例函数的性质.5、A【解题分析】根据“上加下减”的原则进行解答即可.【题目详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1.故选A .【题目点拨】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.6、B【解题分析】先根据同底数幂的乘法法则进行运算即可。
2024广东中考数学压轴题
2024广东中考数学压轴题一、在直角坐标系中,抛物线y = ax2 + bx + c与x轴交于点A(-3,0)和B(1,0),且与y 轴交于点C(0,3)。
下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 抛物线的对称轴是直线x = -1(答案:D)二、已知三角形ABC的三边长为a,b,c,且满足a2 + b2 + c2 = 10a + 6b + 8c - 50。
则下列判断三角形ABC的形状中,正确的是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形(答案:D)三、函数y = (x - 1)/(x + 2)中,当x的值增大时,y的值会:A. 一直增大B. 一直减小C. 在某个区间内增大,在另一个区间内减小D. 保持不变(答案:C)四、已知四边形ABCD是平行四边形,且AB = 6,BC = 8,对角线AC与BD相交于点O,则下列关于O点到AB和BC的距离d1和d2的说法正确的是:A. d1 + d2 = 14B. d1 × d2 = 24C. d1/d2 = AB/BCD. d12 + d22 = AB2 + BC2(答案:B)五、圆O的半径为5,点P在圆O外,且OP = 8。
过点P作圆O的两条切线,分别与圆O 相切于点A和B。
则弦AB的长度为:A. 6B. 4√3C. 5√2D. 2√15(答案:A)六、在数轴上,点A表示的数为-2,点B表示的数为3。
若点C表示的数为x,且满足AC + BC = 8,则x的值为:A. -3或4B. -4或3C. -3或-1D. 2或-5(答案:B)七、已知二次函数y = ax2 + bx + c的图像经过点(1,0),(2,0)和(3,4)。
下列说法正确的是:A. a > 0B. b < 0C. c = 0D. 函数的顶点在x轴上(答案:A)八、正方形ABCD的边长为4,点E在边AB上,且AE = 1。
增城区中考压轴题数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)1. 已知函数f(x) = ax^2 + bx + c(a≠0),若f(1) = 1,f(-1) = 3,f(2) = 5,则a的值为()A. 1B. 2C. 3D. 42. 在等边三角形ABC中,点D、E分别是边AB、AC上的点,且AD = 2BD,AE = 3CE,则∠DAE的度数为()A. 30°B. 45°C. 60°D. 90°3. 已知二次函数y = ax^2 + bx + c(a≠0)的图象与x轴交于A、B两点,若AB 的中点坐标为(1,0),且该函数的对称轴为x = -1,则a的值为()A. 1B. -1C. 2D. -24. 在直角坐标系中,点A(-1,2),B(3,-1),C(2,3),则△ABC的面积是()A. 2B. 3C. 4D. 55. 若等差数列{an}的首项为2,公差为d,则第n项an + 1 + an - 1 = ()A. 4dB. 2dC. dD. 06. 在等腰三角形ABC中,AB = AC,点D、E分别是边AB、AC上的点,且AD =3DE,AE = 4DE,则∠BDE的度数为()A. 30°B. 45°C. 60°D. 90°7. 若x^2 - 4x + 3 = 0的两根为m和n,则m^2 + n^2的值为()A. 8B. 10C. 12D. 148. 在平面直角坐标系中,点A(2,3),B(4,-1),C(-2,1),则△ABC的周长为()A. 9B. 10C. 11D. 129. 若等比数列{an}的首项为a1,公比为q,则第n项an + 1 + an - 1 = ()A. a1q^2B. a1qC. a1D. a1q^310. 在平面直角坐标系中,点A(1,1),B(3,4),C(5,1),则△ABC的面积是()A. 2B. 3C. 4D. 5二、填空题(本大题共5小题,每小题5分,共25分)11. 若函数f(x) = 2x - 1在区间[0, 2]上单调递增,则x的取值范围是________。
广州数学中考压轴题集总复习及提高
20XX年-20XX年广州市数学中考压轴题集(2008,24,14分)如图10,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是»AB上异于A、B的动点,过点C作CD⊥OA于点D,作CE⊥OB于点E,连结DE,点G、H在线段DE上,且DG=GH=HE(1)求证:四边形OGCH是平行四边形(2)当点C在»AB上运动时,在CD、CG、DG中,是否存在长度不变的线段?若存在,请求出该线段的长度(3)求证:22CD CH+是定值3图10(2008,25,14分)如图11,在梯形ABCD中,AD∥BC,AB=AD=DC=2cm,BC=4cm,在等腰△PQR中,∠QPR=120°,底边QR=6cm,点B、C、Q、R在同一直线l上,且C、Q两点重合,如果等腰△PQR以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t秒时梯形ABCD与等腰△PQR重合部分的面积记为S 平方厘米(1)当t=4时,求S的值≤≤10,求S与t的函数关系式,并求出S的最大值(2)当4t(2009,24,14分)如图12,边长为1的正方形ABCD 被两条与边平行的线段EF 、GH 分割为四个小矩形,EF 与GH 交于点P 。
(1)若AG=AE ,证明:AF=AH ;(2)若∠FAH=45°,证明:AG+AE=FH ;(3)若Rt ΔGBF 的周长为1,求矩形EPHD 的面积。
(2009,25,14分)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。
(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴上午垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广州中考压轴题汇总
选择题
(2014·广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG ≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()
A.4个B.3个C.2个D.1个
(2015·广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10
(2016·广州)定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()
A.0 B.1 C.2 D.与m有关
(2017·广州)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可
能是()
A.B.C.D.
(2017·广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走
路线如图所示,第1次移动到A
1,第2次移动到A
2
,…,第n次移动到A
n
.则△
OA
2A
2018
的面积是()
A.504m2B.m2C.m2D.1009m2填空题
(2014·广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x
1、x
2
,
则x
1(x
2
+x
1
)+x
2
2的最小值为.
(2015·广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.
(2016·广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:
①四边形AEGF是菱形
②△AED≌△GED
③∠DFG=°
④BC+FG=
其中正确的结论是.
(2017·广州)如图,平面直角坐标系中O是原点,▱OABC的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:
①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=
其中正确的结论是(填写所有正确结论的序号).
(2018·广州)如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S
四边形AFOE :S
△COD
=2:3.
其中正确的结论有.(填写所有正确结论的序号)
解答题
(2014·广州24)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.
(1)求抛物线的解析式和顶点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.
(2014·广州25)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,
连接CF.设CE=x,△BCF的面积为S
1,△CEF的面积为S
2
.
(1)当点F落在梯形ABCD的中位线上时,求x的值;
(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.
(2015·广州24)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离.
(2015·广州25)已知O为坐标原点,抛物线y
1
=ax2+bx+c(a≠0)与x轴相交
于点A(x
1,0),B(x
2
,0),与y轴交于点C,且O,C两点间的距离为3,x
1
•x
2
<0,|x
1|+|x
2
|=4,点A,C在直线y
2
=﹣3x+t上.
(1)求点C的坐标;
(2)当y
1
随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y
1
向左平移n(n>0)个单位,记平移后y随着x的增大而增大
的部分为P,直线y
2
向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
(2016·广州24)已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B
(1)求m的取值范围;
(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;
(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有
最值?若有,求出该最值及相对应的m值.
(2016·广州25)如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证:AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.
(2017·广州24)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD 的对称图形为△CED.
(1)求证:四边形OCED是菱形;
(2)连接AE,若AB=6cm,BC=cm.
①求sin∠EAD的值;
②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s的速度沿线段OP匀速运动到点P,再以s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.
(2017·广州)如图,AB是⊙O的直径,=,AB=2,连接AC.
(1)求证:∠CAB=45°;
(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.
①试探究AE与AD之间的数量关系,并证明你的结论;
②是否为定值?若是,请求出这个定值;若不是,请说明理由.
(2018·广州24)已知抛物线y=x2+mx﹣2m﹣4(m>0).
(1)证明:该抛物线与x轴总有两个不同的交点;
(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.
①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;
②若点C关于直线x=﹣的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求的值.
(2018·广州25)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;
(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;
(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.。