第五章大数定律与中心极限定理习题
第五章_大数定律和中心极限定理 例题与解析

V 20 5 100 / 12 20
105 20 5 100 / 12 20
V 100 V 100 P 0 . 39 1 P 0 . 39 12 ) 20 12 ) 20 ( 10 ( 10
1 ( 0 . 39 ) 1 0 . 6517 0 . 3483
lim F n ( x ) F ( x )
W 则称{ F n ( x )} 弱收敛于F(x),记为 Fn ( x) F ( x)。 L { 称 }依分布收敛于,记为 。
n
n
n
定理5.2 (几种收敛之间的关系) P ,则 L 。 1. 若
n
L P 2. 设为常数,则 n 当且仅当 n 。 a.s. P n ,则 n 。 3. 若
设随机变量 1, 2, , n 相互独立且服从同一分布,且 具有相同的数学期望和方差:
E ( i ) ,D ( i ) , i 1,, , n , 2
2
则随机变量
n
i 1
n
i
n
n
n
L N ( 0, , 1)
即 n 的分布函数 F n ( x ) 对任何x满足
lim P (
n
n np
np (1 p )
x
x)
1 2
t
2
e
2
dt .
例2 (2002年数学四考研试题)
设随机变量 X 1, X 2, , X n 相互独立,S n
n
X i.
i 1
则根据列维-林德贝格中心极限定理,当n充分大时,S n 近似
概率论与数理统计第五章

1
2. 设 1, 2, , n , 是独立同分布的随机变量序列 , 且
E ( i) , D( i) 2
均存在 , 令
1n n
i , 则对任意的
,有
i1
lim P{
}
.
n
3. 设每次射击击中目标的概率为 0.001 , 如果射击 5000 次 , 其中击
中的次数为 , 试用切比晓夫不等式确定概率
P{ 0 10 }
验中 , 事件 A 出现的次数 , 试用切比雪夫不等式估计得
P 0.74
0.76
.
10000
10
3. 某批产品的次品率为 0.1, 连续抽取10000 件, 表示其中的次品
数 , 试用中心极限定理计算 P{ 970 }
.Hale Waihona Puke 已知 F0.1(1) 0.8413 , F 0.1 (2) 0.9772 , F0.1(33.333) 1.
,则
1n ni 1
i 服从的分布是 __________ .
2. 设每次射击击中目标的概率为 0.001, 如果射击 5000 次 , 试根据
中心极限定理击中次数不大于 2 的概率等于 . 已知:
F0.1(1.34) 0.9099; F0.1(1.35) 0.9115 .
三、解答题 1. 设随机变量 1 , 2, , 100 相互独立, 且均服从指数分布
P{0 4(m 1)} ( ) .
1
(A)
;
m1
m
(B)
;
m1
(C) 0 ;
1 (D) m .
二、填空题
1. 设随机变量 的数学期望 E ( ) 2 , 方差 D ( ) 1 , 试用切比雪
概率论与数理统计练习册(理工类) - 第5,6章答案

答;收入至少400元的概率几乎为0.
(2)设出售1.2元的蛋糕数量为Y,则Y ~ B(300, 0.2), E(Y ) = 60, D(Y ) = 48.
P{Y
60}
=
Y P{
− 60
0}
=
(0)
=
0.5
48
答:售出价格为1.2元的蛋糕多于60只的概率0.5.
28
一、选择题:
概率论与数理统计练习题
x} = (x)
n→
n
n
Xi −n
(C) lim P{ i=1
x} = (x)
n→
n
n
Xi −
(D) lim P{ i=1
x} = (x)
n→
n
二、填空题:
224
1.对于随机变量 X,仅知其 E( X ) = 3,D( X ) = 1 ,则可知 P{| X − 3 | 3} 225
一、选择题:
概率论与数理统计练习题
系
专业
班 姓名
学号
第五章 大数定律与中心极限定理
1.设 n 是 n 次重复试验中事件 A 出现的次数,p 是事件 A 在每次试验中出现的概率,则对任意
的
0
均有
lim
P
n
−
p
n→ n
[A ]
(A) = 0
(B) = 1
(C) 0
(D) 不存在
系
专业
班 姓名
学号
第六章 数理统计的基本知识
§6.1 总体、样本与统计量、§6.2 抽样分布
1.设 X1, X 2 , X 3 是取自总 X 体的样本,a 是一个未知参数,下述哪个样本函数是统计量[ B ]
习题五

习题五 大数定律与中心极限定理一、填空题1.设随机变量~[0,1]X U ,由切比雪夫不等式可得(12P X -≥≤ 0.25 ; 2.设()1,()4,E X D X ==则由契比雪夫不等式有(57)P X -<<=98; 3.设12,,...,,...n X X X 是相互独立的随机变量序列,且2(),()0i i E X D X μσ==≠(1,2,...)i =,则对10,lim ()ni n i P X n εμε→∞=∀>-≥=∑ 0 ;4.设随机变量,X Y ,已知()2,()2,()1,()4,0.5,E X E Y D X D Y ρ=-====- 则由契比雪夫不等式有(6)P X Y +≥≤ 1/12 ;5.已知正常男性成人血液中,每毫升白细胞数平均是7300,标准差是700。
利用契比雪夫不等式估计每毫升血液中的白细胞数在5200至9400之间的概率p =98; 6.设n ξ是n 重贝努里试验中事件A 出现的次数,p 为A 在每次试验中出现的概率,则对0,lim ()nn P p nξεε→∞>-≥= 0 ;7.假设某一年龄女童的平均身高为130厘米,标准差是8厘米。
现在从该年 龄段的女童中随机地选取五名儿童测其身高,估计它们的平均身高在120至140 厘米的概率为259改; 8.设12,,...,,...n X X X 是相互独立的随机变量序列,且都在[-1,1]服从均匀分布,则1lim (ni n i P X →∞=≤=∑0.5改;二、选择题1.设随机变量X 的方差()D X 存在,0a >,则()(1)X E X P a->≤( C )A .()D X B. 1 C.2()D X aD. 2()a D X . 2. 设(),()E X D X 都存在,则对于任意实数,()a b a b >,可以用契比雪夫不等式估计出概率( D ).A .()P a X b << B. (())P a X E X b <-<C. ()P a X a <<D. ()P X b a ≥-3. 设随机变量2~(,)X N μσ,随σ的增大()P X μσ-<( C )A .单调增大 B. 单调减小 C. 保持不变 D. 增减不变. 4.设随机变量X 的方差存在,并且满足不等式2(()3)9P X E X -≥≤,则一定有( D )A .()2D X = B. 7(()3)9P X E X -<<C. ()2D X ≠D. 7(()3)9P X E X -<≥5.设X 为连续型随机变量,且方差存在,则对任意常数C 和0ε>,必有( C )A .()E X CP X C εε--≥=B. ()E X CP X C εε--≥≥C. ()E X CP X C εε--≥≤D. 2()E X CP X C εε--≥≤6. 已知129,,...,X X X 是独立同分布的随机变量序列,且()1,()1,i i E X D X ==则对0,ε∀>下列式子成立的是( B 改 )A .921(1)1i i P X εε=-<≥-∑ B .9211(1)19i i P X εε-=-<≥-∑C .921(1)1i i P X εε-=-<≥-∑ D .9211(1)19i i P X εε-=-<≥-∑D 改291911)191(-=-≥<-∑εεi i X P7.已知121000,,...,X X X 是独立同分布的随机变量,且~(1,)(1,...,1000)i X B p i =则下列不正确的是( C )A .1000111000i i X p =≈∑ B .10001~(1000,)i i X B p =∑ C.10001()()()i i P a X b b a φφ=<<≈-∑D.10001()i i P a X b φφ=<<≈-∑8.设 12,,...,n X X X 相互独立,12,...,n n S X X X =+++,则根据列维——林德伯格中心极限定理,当 n 充分大时,n S 近似服从正态分布,只要12,,...,n X X X ( B )A .有相同的数学期望 B. 有相同分布C. 服从同一指数分布D. 服从同一离散型分布.三、解答题1.每次射击中,命中目标的炮弹数的均值为2,方差为1.5 ,求在100次 射击中有180到达220发炮弹命中目标的概率. 解:设X 为在100次射击中炮弹命中目标的次数 由林德伯格—列维定理知)1,0(~5.11002100N X ⨯⨯-)5.110021002205.110021005.11002100180()220180(⨯⨯-<⨯⨯-<⨯⨯-=<<X P X P )63.15.1100210063.1(<⨯⨯-<-=X P 1)63.1(2)63.1()63.1(-Φ=-Φ-Φ=0.89682.由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件 能正常工作的概率为90% .为了使整个系统能正常运行,至少必须有85%的部件正常工作,求整个系统能正常运行的概率. 解:设X 为正常工作的部件数 由德莫佛-拉普拉斯中心极限定理知)85(≥X P )1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≥⨯⨯⨯-=X P -=1)1.09.01009.0100851.09.01009.0100(⨯⨯⨯-≤⨯⨯⨯-X P )35(1-Φ-=)35(Φ==0.95153.设有 30 个同类型的某电子器件1230,,...,X X X ,若(1,...,30)i X i =的寿命服从参数为0.1λ=的指数分布,令T 为 30 个器件正常使用的总计时间,求(350)P T >解:由林德伯格—列维定理知(350)P T >=)10030300350100301030(⨯->⨯⨯-T P =)30/53010300(1≤--T P =)30/5(1Φ-=0.18144.在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从正态分布2(,0.2)N μ,若以n X 表示n 次称量结果的平均值,问n 至少取多大,使得(0.1)0.5n P X μ-≥<.解:由林德伯格—列维定理知(0.1)0.5n P X μ-≥< 5.0)/2.01.0/2.0(___<≥-nnX P n μ5.0)/2.01.0/2.0(1___<≤--nnX P n μ[])/2.01.0()/2.01.0(1nn -Φ-Φ-=)/21(22n Φ-5.0< 2≥n5.某单位设置一电话总机,共有 200 门电话分机,每门电话分机有 5%的时间要用外线通话,假设各门分机是否使用外线通话是相互独立的,问总机至少要配置多少条外线,才能以90%的概率保证每门分机要使用外线时,有外线可供使用. 解:用X 表示200个分机中同时需要使用外线的台数。
概率论与数理统计第五章 大数定律及中心极限定理

概率论与数理统计作业班级 姓名 学号 任课教师第五章 大数定律及中心极限定理教学要求:一、了解大数定律的直观意义; 二、掌握Chebyshev 不等式;三、了解Chebyshev 大数定理和贝努里大数定理; 四、会用中心极限定理估算有关事件的概率.重点:中心极限定理.难点:切比雪夫不等式、大数定律、中心极限定理.综合练习题一、选择题1.设12,,,n X X X 是独立同分布的随机变量序列,且1,2,,i n = .令∑==ni i n X Y 1,1,2,,i n = ,()x Φ为标准正态分布函数,则()=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→11lim p np np Y P n n (B ). (A )0 ; (B )()1Φ; (C )()11Φ-; (D )1.6 . 2.设()x Φ为标准正态分布函数,0,1,i A X A ⎧=⎨⎩事件不发生,事件发生,()100,,2,1 =i ,且()8.0=A P ,10021,,,X X X 相互独立.令∑==1001i i X Y ,则由中心极限定理知Y 的分布函数()y F 近似于(B ). (A )()y Φ; (B )⎪⎭⎫⎝⎛-Φ480y ; (C )()8016+Φy ; (D )()804+Φy .3.设随机变量 ,,,,21n X X X 相互独立,且i X () ,,,2,1n i =都服从参数为21的指数分布,则当n 充分大时,随机变量∑==ni i n X n Z 11的概率分布近似服从(B ).(A )()4,2N ; (B )⎪⎭⎫ ⎝⎛n N 4,2; (C )⎪⎭⎫⎝⎛n N 41,21; (D )()n n N 4,2. 二、填空题1.设随机变量 ,,,,21n X X X 相互独立且同分布,它们的期望为μ,方差为2σ,令∑==ni i n X n Z 11,则对任意正数ε,有{}=≤-∞→εμn n Z P lim 1 .2.设 ,,,,21n X X X 是独立同分布的随机变量序列,且具有相同数学期望和方差()μ=i X E ,()02>=σi X D ,() ,2,1=i , 则对任意实数x , =⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→x n n X P n i i n σμ1lim ()x Φ. 3.设()1-=X E ,()4=X D ,则由切比雪夫不等式估计概率{}42P X -<<≥95. 4.设随机变量[]1,0~U X ,由切比雪夫不等式可得≤⎭⎬⎫⎩⎨⎧≥-3121X P 41. 5.设随机变量()2.0,100~B X ,应用中心极限定理可得{}≈≥30X P 0062.0.(其中()()9938.05.2=Φ)三、应用题1. 100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%, 求任一时刻有70至86台车床在工作的概率.解:设⎩⎨⎧=台车床没有工作第台车床正在工作第i i X i .0.1(100,,2,1 =i ),且()8.0,1~B X i ,则100台车床中在任一时刻正在工作的机床台数为10021X X X X +++= ,且()80=X E ,()16=X D ,(其中10021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得()⎪⎪⎭⎫⎝⎛-≤-≤-=≤≤16808616801680708670X P X P()()()()927.015.25.15.25.1=-Φ+Φ=-Φ-Φ≈.2. 某计算机系统有120个终端,每个终端在1小时内平均有3分钟使用打印机,假定各终端使用打印机与否是相互独立的,求至少有10个终端同时使用打印机的概率.解:设,,0,1⎩⎨⎧=个终端没有使用打印机第个终端正在使用打印机第i i X i (120,,2,1 =i ),且()05.0,1~B X i ,则120个终端中同时使用打印机的台数为12021X X X X +++= ,且()6=X E ,()7.5=X D (其中12021,,,X X X 独立同分布),于是由德莫弗-拉普拉斯中心极限定理近似可得:()()⎪⎪⎭⎫⎝⎛-<--=<-=≥7.56107.56110110X P X P X P()0465.09535.0168.11=-=Φ-≈.3.设某产品的废品率为0.005,从这批产品中任取1000件,求其中废品率不大于0.007的概率.解:设1000件设产品的废品数为n μ,易知()005.0,1000~B n μ,则()()(),975.41,5=-===p np D np E n n μμ 相应的废品率为nnμ,()1000=n 由德莫弗-拉普拉斯中心极限定理知:当n 充分大时n μ近似地服从正态分布,于是由中心极限定理近似可得()⎪⎪⎭⎫ ⎝⎛-≤-=≤=⎪⎭⎫⎝⎛≤975.457975.457007.0n n n P P n P μμμ()8159.09.0=Φ≈.4.在掷硬币的试验中,至少掷多少次,才能使正面出现的频率落在(0.4,0.6)区间的概率不小于0.9?解:设A n 表示n 次试验中正面出现的次数,;.0.1⎩⎨⎧=次试验中出现反面第次试验中出现正面第i i X i (n i ,,2,1 =),显然()5.0,~21n B X X X n n A +++= (其中n X X X ,,,21 独立同分布),()(),25.0,5.0n n D n n E A A ==于是正面出现的频率nn A应满足9.06.04.0≥⎪⎭⎫⎝⎛<<n n P A .从而由中心极限定理知:()n n n P n n P A A 6.04.06.04.0<<=⎪⎭⎫⎝⎛<<⎪⎪⎭⎫⎝⎛-<-<-=n n n n n n n n n P A 25.05.06.025.05.025.05.04.0()()()12.022.02.0-Φ=-Φ-Φ≈n n n , 要使9.06.04.0≥⎪⎭⎫⎝⎛<<n n P A ,只要()9.012.02≥-Φn ,即()95.02.0≥Φn .反查表可得65.12.0≥n ,即06.68≥n ,所以至少掷69次,才能使正面出现的频率落在(0.4,0.6)区间的概率不小于0.9.5.设一个系统由100个相互独立起作用的部件组成,每个部件损坏的概率为0.1,必须有85个以上的部件正常工作,才能保证系统正常运行,求整个系统正常工作的概率.解:设X 为100个相互独立的部件中正常工作的部件数,则()9.0,100~B X ,()()(),91.09.01001,909.0100=⨯⨯=-==⨯==p np X D np X E 整个系统正常工作的概率为()85>X P .由中心极限定理知:()()⎪⎪⎭⎫⎝⎛-≤--=≤-=>99085990185185X P X P X P9525.035351=⎪⎭⎫⎝⎛Φ=⎪⎭⎫ ⎝⎛-Φ-≈. 6.有一批建筑房屋用的木柱,其中80%的长度不小于3米,现从这批木材中随机抽取100根,问其中至少有30根短于3米的概率是多少?解:设X 为100根木柱中长度小于3米的根数,易知()2.0,100~B X ,()(),16,20==X D X E 则所求问题为()30≥X P ,由中心极限定理知:()()⎪⎪⎭⎫⎝⎛-<--=<-=≥1620301620130130X P X P X P()0062.09938.015.21=-=Φ-≈.7.某车间有同型号机床200台,它们独立地工作着,每台开动的概率均为0.7,开动时耗电均为1.5千瓦,问电厂至少要供给该车间多少电力,才能以99..5%的概率保证用电需要?解:设⎩⎨⎧=台机床没有工作第台机床正在工作第i i X i .0.1(200,,2,1 =i ),且()7.0,1~B X i ,记X 某时刻正在工作的机床数,则20021X X X X +++= ,()(),42,140==X D X E 于是某时刻该车间的耗电数为X Y 5.1=千瓦.设供给该车间的电力数为α千瓦,则问题要求是()995.0=≤αY P ,由德莫弗-拉普拉斯中心极限定理知:()()⎪⎭⎫ ⎝⎛≤=≤=≤5.15.1αααX P X P Y P995.0421405.1421405.142140=⎪⎪⎪⎪⎭⎫⎝⎛-Φ≈⎪⎪⎪⎪⎭⎫⎝⎛-≤-=ααX P , 查标准正态分布表,得58.2421405.1=-α,即 235=α.所以电厂至少要供给该车间235千瓦的电力,才能以%5.99的概率保证用电需要.。
概率论与数理统计_肖继先_练习册之二

第五章大数定律和中心极限定理习题一切比谢夫不等式一、填空1.切比谢夫不等式形式是.2.切比谢夫不等式适合于以为中心的区间上的概率的估计.3.,则= .二、设电站供电网有10000盏电灯,夜晚每一盏灯开灯的概率都是,而假定开关时间彼此独立,估计夜晚同时开着的灯数在6800与7200之间的概率.三、废品率为,估计1000个产品中废品多于20个且少于40个的概率.四、设随机变量X的期望为,方差为,试估计X在区间内的概率.习题二大数定律一、贝努里大数定律揭示了频率与概率间的什么关系二、贝努里大数定律与切比谢夫大数定律的关系如何三、叙述辛钦大数定律的内容.四、如果要估计某一地区小麦的平均亩产量,你能根据辛钦大数定律提供一种估计方法吗习题三中心极限定理一、一个螺钉的重量是一个随机变量,期望值是1两,标准差是两,盒内装100个相同型号的螺钉,求其重量超过102两的概率.二、对敌人的阵地进行轰炸,每次轰炸命中目标的炸弹数目是一个随机变量,其期望值为2,方差为,求在100次轰炸中有180颗到220颗炸弹命中目标的概率.三、某保险公司多年的统计资料表明,索赔客户中被盗索赔户占20%,以X表示在随机抽查的100个索赔户中因被盗索赔的户数,(1)写出X的概率分布.(2)求被盗索赔户不少于14户且不多于30户的概率.四、某保险公司有一万人参加特定商品质量保险,每人每年付12元保险费,在一年内这类产品出故障概率均为,出故障后可获赔款1000元.求:(1)保险公司一年的利润不小于6万元的概率.(2)保险公司亏本的概率.第六章抽样分布习题一总体与样本从书库中任取10本书,检查每本书中的错页数,得到样本值为(8,7,3,6,3,6,3,7,10,12),试写出频率分布及样本分布函数.习题二统计量一、计算下列样本均值及样本方差10,12,15,23,11,12,14,15,11,10,15,17,14,12,11,10,12,14,17,15.二、设是来自总体的样本,现在增加一个样本,证明,其中.习题三抽样分布一、总体,今抽取容量为5的样本,试问:⑴样本均值大于13的概率为多少⑵样本的极小值小于10的概率为多少⑶样本的极大值大于15的概率为多少二、设是来自正态总体的样本,,,,证明统计量服从自由度为2的分布.三、设是来自总体的容量为的样本,求下列统计量的概率分布:⑴;⑵;⑶四、查表求下列各式中的值.⑴;⑵;⑶;⑷;⑸;⑹.复习题一、填空题1.设,为容量为10的样本的样本均值,则.2.,,且与相互独立,其样本容量分别为和,样本方差分别为和,则统计量服从的条件是 .2.设总体与相互独立,,,,,其中以及分别是来自总体与的样本,则统计量服从分布,的数学期望是 .4.若是来自总体的一个样本,,则服从分布,概率密度函数是 .5.设是来自正态总体的样本,,则当,时,统计量服从分布,其自由度为 . 6.设随机变量和相互独立且都服从正态分布,而和分别是来自总体和的样本,则统计量服从分布,自由度是 .二、选择题1.设是来自正态总体的样本,为样本均值,记则服从自由度为的分布的随机变量是 .(A)(B)(C)(D)2.设是来自正态总体的样本,则下列结论成立的是 .(A)服从;(B)服从;(C)服从;(D)服从.3.设是来自正态总体的样本,则服从的分布是 .(A);(B);(C);(D).4.设是来自正态总体的样本,,则的值为 .(A);(B);(C);(D).5.设是来自正态总体的样本,则(,,…,为不全为零的常数)服从 .(A);(B);(C);(D).6.设随机变量,且与独立,,则 .(A)服从分布;(B)服从分布;(C)服从分布;(D)服从分布.7.设和分别是来自独立正态总体与的样本,与分别为两样本方差,则服从的统计量是 .(A)(B);(C);(D).8.设是来自分布总体的样本,则与的值分别为 .(A);(B);(C);(D).三、设总体,是来自总体的样本,求及.四、某工厂的产品寿命,在进行质量检查时,如果被检测产品的平均寿命超过2200小时,就认为产品质量合格.如果要使检查通过的概率不小于,问至少应检测多少个产品五、设总体,从中抽取容量为10及15 的两个独立样本,试问这两个样本的平均值之差的绝对值大于的概率是多少六、设是来自总体的样本,和分别是样本均值和样本方差,又,且与独立,求统计量的概率分布.七、设是在上服从均匀分布的总体的样本,求样本均值的数学期望和方差.八、分别从方差是25和36的独立正态总体中抽取容量为7和30的两个样本,其样本方差分别为和,求.第七章参数估计习题一点估计的概念和估计量的评选标准一、填空题1.是总体的概率密度为的未知参数的估计量.2.设是来自总体的样本,则常数时,为的无偏估计.3.设总体,其中未知,已知,又设是来自总体的一个样本,作样本函数如下:(1);(2);(3);(4);这些函数中,是统计量的有,而在统计量中,是的无偏估计量的有,其中最有效的是 .二、设是总体的样本,及存在且有限,试证统计量;;.都是的无偏估计,并说明哪一个最有效.三、设是来自正态总体的一个样本,其中为已知,试证是的无偏估计和一致估计.习题二求点估计量的方法一、填空题1.设总体的概率密度为,则的矩估计量为 .2.设总体,其中,都是未知参数,是来自总体的一个样本,则的矩估计量为;的最大似然估计量为.3. 设是来自均匀分布总体的一个样本,则的矩估计量为.二、设总体服从均匀分布,其分布密度为(1)试求的矩估计量;(2)是否为的无偏估计(3) 是否为的一致估计.三、设为总体的一个样本,总体的密度函数为其中>,求未知参数和的最大似然估计量.四、设总体的密度函数为其中>,是未知参数,是来自总体的容量为的样本. 试求:⑴的矩法估计量;⑵的最大似然法估计量.习题三一个正态总体参数的区间估计一、填空题1.设由来自正态总体容量为9的简单随机样本得样本均值,则未知参数的置信度为的置信区间是 .2.某种零件尺寸偏差,这里和均未知,今随机抽取个零件测得尺寸偏差(单位:)为:则的置信度为的置信区间为 .3.设灯泡寿命,为了估计,测得个灯泡,得小时,小时,则的的置信区间是 .二、设正态总体的方差为已知,问需抽取容量为多大的样本,才能使总体均值的置信度为的置信区间长度小于等于.三、设某种清漆的个样品,其干燥时间(单位)分别为.设干燥时间,求的置信度为的置信区间.(1)已知;(2)为未知.四、设某批铝材料的比重,现测得它的比重次,计算得,试在置信度为下,分别求和的置信区间.复习题一、选择题1.设是参数的无偏估计量,且,则是的估计量.(A)无偏估计量; (B) 有效估计量;(C) 有偏估计量; (D) A和B同时成立.2.若为总体的样本观测值,则的极大似然估计值.(A); (B);(C);(D).3.设总体,已知,若样本容量和置信度均不变,则对于不同的样本观测值,总体均值的置信区间的长度 .(A)变长; (B)变短; (C)不变. (D)不确定二、总体的分布密度为又设,是一个来自总体的样本.试求:(1)的矩估计量;(2)的方差.三、设是来自总体的样本,的密度函数为求参数的矩法估计和极大似然估计,并验证无偏性和一致性.四、设总体已知,为来自总体的样本,置信度为,求的置信区间.五、在某地区小学五年级男生的体检记录中,随意抄录了名男生的身高数据,测得平均身高为,标准差为,试求该地区小学五年级男生平均身高和身高标准差的的置信区间(假设身高近似服从正态分布).第八章假设检验第一节假设检验的基本概念一、什么是参数检验和非参数检验二、什么是双侧假设检验和单侧假设检验三、假设检验的基本思想及其基本步骤四、什么是第一类错误和第二类错误及如何降低犯这两类错误第二节一个正态总体参数的假设检验一、某种零件长度的方差为,今对一批这种零件检查6件,测得长度数据如下(单位:mm):问:这批零件的长度均值能否认为是10.50毫米()二、设在木材中抽出100根,测其小头直径,得样本平均值数,已知标准差,问该批木材的平均小头直径能否认为是在12cm以上()三、设某批矿砂的镍含量(%)X服从正态分布. 今随机抽取5个样本,测定镍含量的百分比为:,,,,. 问在的情况下能否认为这批镍含量的均值为%.四、进行5次试验,测得锰的熔点(o C)如下:12691271125612651254已知锰的熔化点服从正态分布,是否可以认为锰的熔化点显著高于1250 o C(取)五、在正常情况下,某工厂生产的电灯泡的寿命X服从正态分布.现测得10个灯泡的寿命(小时)如下:1490144016801610150017501550142018001580能否认为该厂生产的电灯泡寿命的标准差为小时().六、某种导线,要求其电阻的标准差不得超过. 今在生产的一批导线中抽样品9根,测得样本标准差.设总体为正态分布,问:在显著性水平下能否认为这批导线电阻的标准差显著地偏大第三节两个正态总体参数的假设检验一、某厂铸造车间为提高缸体的耐磨性而试制一种镍合金铸件以取代一种铜合金铸件,现从两种铸件中各抽一个样本进行硬度测试(表示耐磨性的一种考核指标),其结果如下:合镍铸件(X)合铜铸件(Y)根据以往经验知硬度,,且,.问:在的显著性水平上比较镍合金铸件硬度与铜合金镍件硬度有无显著性差异二、对两批同类无线电元件的电阻X、Y进行测试,测得结果如下,(单位:欧姆)XY由经验知,两批无线电元件的电阻X、Y都服从正态分布且方差相等.问:能否认为这两批无线电元件的电阻无显著差异()三、对甲乙两种玉米进行评比试验,现分别随机抽取甲乙两种玉米的亩产值各5个(单位:斤)如下:甲95196610881082983乙730864742774990设甲、乙两种玉米亩产量X、Y分别服从,.问:两种玉米亩产量有无显著差异().四、在质量控制中,产品质量的稳定性是一个重要的指标,可以用方差来体现.设甲、乙两厂生产电视机,要比较这两个厂所生产的电视机的寿命的稳定性.假定某质量控制研究单位对两厂所生产的10台电视机产品的使用情况进行了追踪调查,得到这20台电视机的寿命数据如下(单位:年):试问这两个电视机生产厂商所生产的电视机寿命的稳定程度是否一致().甲厂8791087512109乙厂108578711465五、两位化验员A、B对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为与. 若A、B测定值的总体都是正态分布,其方差分别是、.问:与是否有显著性差异(取)六、用老工艺生产的机械零件方差较大,抽查了25个,得.现改用新工艺生产,抽查了25个,得. 设两种生产过程皆服从正态分布,问:新工艺的精度是否比老工艺显著地好(取)第四节总体分布的假设检验一、一颗骰子掷了100次,得结果如下:点数123456频数131420171521试在的水平下检验这颗骰子是否均匀二、某车床生产滚珠,随机抽取了50个产品,测得它们的直径为(单位:mm)可算得样本均值,样本方差. 试问:在显著性水平下能否认为滚珠直径X服从正态分布三、从锌矿的东西两支矿脉中,各抽取容量分别为9和8的样本分析后,计算得其样本含锌(%)平均值与方差分别为:东支,,;西支,,. 若东西两支矿脉含锌量都服从正态分布.问:两支矿脉的含锌量能否认为服从同一正态分布()第五节比率P的比较一、有人称某城镇成年人中大学毕业人数达30%,为检验这一假设,随机抽取了15名成年人,调查结果有3名大学毕业生,试问:该看法是否合适(取)(提示:该题意指在二项分布的条件下,求出对应的临界值,然后作相应的假设检验)二、从随机抽取的467名男性中发现有8人色盲,而433名女性中发现有1人色盲,在水平上能否认为女性色盲比例比男性低(提示:设男性色盲的比例为,女性色盲的比例为,则检验的假设组为:,,由所给出的备择假设,利用大样本的正态近似得在水平上的拒绝域为)复习题一、选择题1.下列问题中,哪一个不是假设检验问题().A、问电厂工人的平均工资是否高于钢厂工人的平均工资;B、比较两种品牌的电视机是否有显著性差异;C、问某地区农民的平均收入是多少;D、比较不同工艺下生产的产品,它的质量是否比原来的高.2.在假设检验中,记H0为待检验假设,则称()为第一类错误.A、H0为真,接受H0;B、H0为假,拒绝H0;C、H0为真,拒绝H0;D、H0为假,接受H0.3.设D0为接受域,D1为拒绝域,则下列哪一项属于第二类错误().A、H0为假,;B、H0为假,;C、H0为真,;D、H0为真,.4.显著性水平为的检验,即是()A、要求犯第一类错误的概率不超过;B、要求犯第二类错误的概率不超过;C、要求犯两类错误的概率之和不超过;D、以上都不对.5.下列陈述哪一个是正确的()A、在假设检验中,当作出接受原假设H0的结论时,意味着H0一定正确;B、在假设检验中,当作出拒绝原假设H0的结论时,意味着H0一定不正确;C、在同一假设检验中,如果原假设和备择假设选取不同,不会得到不同的检验结果;D、在同一假设检验中,如果原假设和备择假设选取不同,可能会得到不同的检验结果. 6.同一假设检验问题,当显著性水平从变到时,否定域随之()A、扩大;B、缩小;C、不变;D、不能确定. 7.设总体分布为,其中已知,为取自总体的简单样本.令,则()A、;B、;C、;D、.8.设正态总体,若未知,关于方差的检验,使用()A、U统计量;B、t统计量;C、统计量;D、F统计量.二、填空题1.假设检验按照总体类型是否已知可以分和 .2.假设检验按照拒绝域的形状可以分和.3.在假设检验中存在着两错误:第一类错误,即和第二类错误,即,二者之间存在着关系.4.总体,当未知时,用样本检验原假设,可以采用服从分布的统计量;当已知时,可以采用服从分布的统计量 .5.总体,当未知时,若检验原假设,则的拒绝域为,若检验原假设,则的拒绝域为 .6.总体,若检验原假设;是一组样本观察值,,则的拒绝域为 .7.设是来自正态总体的简单随机样本,其中参数和未知,记,,则检验使用的t统计量是;检验使用的统计量是三、计算题1.样本来自总体,其中为未知参数,对检验问题,,取如下拒绝域:,其中为样本均值.(1)求c,使检验的显著性水平为;(2)求时犯第二类错误的概率,这里.2.海达手表厂生产的女手表壳,在正常情况下,其直径(单位:mm)服从正态分布N(20,1),在每天的生产过程中抽取5只表,测得直径分别为19,,19,20,. 问生产是否正常()(注意本题应该同时作均值和方差的检验,生产的精度和稳定性均正常).3.有10名失眠患者,服用甲、乙两种安眠药,延长的睡眠时间数据如下;编号 1 2 3 4 5 6 7 8 9 10 甲乙0问:两种安眠药的疗效有无显著性差异(提示:这里是成对数据的检验,取)。
(完整word版)五、大数定律与中心极限定理(答案)

概率论与数理统计练习题系 专业 班 姓名 学号第五章 大数定律与中心极限定理一、选择题:1.设n μ是n 次重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则对任意的0ε>均有lim {}n n P p n με→∞-≥ [ A ](A )0= (B )1= (C)0> (D )不存在2.设随机变量X ,若2() 1.1,()0.1E X D X ==,则一定有 [ B ](A){11}0.9P X -<<≥ (B ){02}0.9P X <<≥(C){|1|1}0.9P X +≥≤ (D){|}1}0.1P X ≥≤3.121000,,,X X X 是同分布相互独立的随机变量,~(1,)i X B p ,则下列不正确的是 [ D ](A )1000111000i i X p =≈∑ (B)10001{}i i P a X b =<<≈Φ-Φ∑ (C)10001~(1000,)i i X B p =∑ (D )10001{}()()i i P a X b b a =<<≈Φ-Φ∑二、填空题:1.对于随机变量X ,仅知其1()3,()25E X D X ==,则可知{|3|3}P X -<≥2.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据契比雪夫不等式{}6P X Y +≥≤三、计算题:1.设各零件的重量是同分布相互独立的随机变量,其数学期望为0.5kg ,均方差为0.1kg,问5000只零件的总重量超过2510kg 的概率是多少?解:设第i 件零件的重量为随机变量i X ,根据题意得0.1.i EX ==5000500011()50000.52500,()50000.0150.i i i i E X DX ===⨯==⨯=∑∑5000500012500(2510)110.92070.0793.i i i X P X P =->=>≈-Φ≈-=∑∑2.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差是独立的且在(0.5,0.5)-上服从均匀分布。
第五章大数定理与中心极限定理

第五章 大数定理与中心极限定理一、选择题1、设随机变量12,n X X X 相互独立均服从泊松分布(2)π,则随机变量1001i i Y X ==∑近似服从( )分布(A)(200)π (B)(200,200)N(C)(200,400)N (D)(100,200)B 2、在供暖的季节,住房的平均温度为20度,标准差为2度,估计住房温度与平均温度的偏差的绝对值小于4度的概率的下界为( )(A) 14 (B) 12 (C) 34 (D) 1二、填空题1、设随机变量1X ,2X ,100X 相互独立,且都服从参数为4的泊松分布,则1001ii X =∑近似服从 (要求写出分布及具体参数)2、设随机变量1X ,2X ,16X 相互独立同分布, ()i E X μ=,()8i D X = ()1,2,,16i =,则由切比雪夫不等式估计概率(44)P X μμ-<<+≥3、设随机变量 X 具有数学期望μ=)(X E ,反差2)(σ=X D ,则对于任意正数ε,切比雪夫不等式为___4、已知随机变量Y X 与的相关系数21=ρ,且EY EX =,DY DX 41=,则根据切比雪夫不等式有估计式≤≥-)(DY Y X P5、设随机变量序列2721,,,X X X 相互独立且都服从[]11,-上的均匀分布,则由中心极限定理得:概率=≤∑=)131(271i i X P (8413.0)1(=Φ,9772.0)2(=Φ) 6.设~(100,0.2)X B ,用中心极限定理求(24)P X <≈ (只要求写出近似分布的查表计算式)。
7、已知随机变量X 的期望和方差分别为μ和0.009,利用切比雪夫不等式估计()0.9p X με-≤≥,则ε最小值是三、综合题1、 根据过去统计资料,某产品的次品率为05.0=p ,试用切比雪夫不等式估计1000件产品中,次品数在60~40之间的概率.2、设随机变量12100,X X X 相互独立,且都服从相同的指数分布,概率密度函数为⎪⎩⎪⎨⎧≤>=-0, 00,21)( 21x x e x f x ,试用中心极限定理求概率⎪⎭⎫ ⎝⎛<∑=2401001i i X P 的近似值 第五章 答案一、选择题二、填空题1.(400,400)N2. 31323. 2()()D X P X μεε-≥≤或2()()1D X P X μεε-<>- 4. 345. 6. (1)Φ 7. 0.3 三、综合题1、解:设 表示1000件产品中的次品数,则 由切比雪夫不等式: 得2、解:12i X λ由密度函数可知服从参数=的指数分布,12100(i i E X =,,,服从同一分布,则)=2,(12100i D X i =)=4,,,,又相互独立.则由林德贝格-列维中心极限定理得1001(200,400)i i X N =∑近似服从1001240200{<240}()(2)0.977220i i P X =-≈Φ=Φ=∑则)05.0 , 1000(~B X ()10000.0550,E X np ==⨯=()(1)500.9547.5,D X np p =-=⨯=22{||}1P X -≤≥-σμεε{4060}P X ≤≤{|50|10}P X =-≤0.525=247.5110≥-X。
(完整word版)第五章大数定律与中心极限定理

第五章 大数定律与中心极限定理§5.1 大数定律 §5.2 中心极限定理一、填空题1.设2(),()E X D X μσ==,则由切比雪夫不等式有{||3}P X μσ-≥≤ 1/9 ; 2.设随机变量12,,,n X X X 相互独立同分布,且()i E X μ=,()8i D X =,(1,2,,)i n =, 则由切比雪夫不等式有{}||P X με-≥≤28n ε 。
并有估计{}||4P X μ-<≥ 112n-; 3.设随机变量n X X X ,,,21 相互独立且都服从参数为 的泊松分布,则 1lim n i i n X n P x n λλ=→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑ ()x Φ ;4.设随机变量X 和Y 的数学期望分别为2-和3,方差分别为1和4,而相关系数为0.5-,则根据切比雪夫不等式,{||6}P X Y +≥≤;解:因为 ()()()220E X Y E X E Y +=+=-+=,cov(.)()()0.5141XY X Y D X D Y ρ==-=-, ()()()2cov(.)142(1)3D X Y D X D Y X Y +=++=++⨯-=,故由切比雪夫不等式,231{||6}{|()0|6}612P X Y P X Y +≥=+-≥≤=. 5.设随机变量12,,,n X X X 相互独立,都服从参数为2的指数分布,则n →∞时,211n n i i Y X n ==∑依概率收敛于 。
解:因为 11(),(),(1,2,,)24i i E X D X i n ===,所以 22111()()()442i i i E X D X E X =+=+=,故由辛钦大数定律,对0ε∀>,有{}2111lim ()lim 12n n n i n n i P Y E Y P X n εε→∞→∞=⎧⎫-<=-<=⎨⎬⎩⎭∑,即 211n n i i Y X n ==∑依概率收敛于21()2i E X =。
概率论与数理统计+第五章+大数定律及中心极限定理+练习题

滨州学院《概率论与数理统计》(公共课)练习题第五章 大数定律及中心极限定理一、填空题1.设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限{}≈≤≤105X P .2.设试验成功的概率p=20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .3.将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α .4.将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 .5.随机变量X 和Y 的数学期望分别为-2和2, 方差分别为1和4, 而相关系数为-0.5, 则根据切比雪夫不等式≤≥+)6|(|Y X P .6.已知随机变量X 的数学期望为10,方差DX 存在且1.0)4020(≤<<-X P ,则≥DX .7.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为2的指数分布,则∞→n 当时,∑==n i i n X n Y 121依概率收敛于 . 8.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为0>λ的泊松分布,若∑==ni i X n X 11,则对任意实数x ,有≈<)(x X P . 二、选择题1.设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21 ( ).(A) 有相同期望和方差; (B) 服从同一离散型分布;(C) 服从同一指数分布; (D) 服从同一连续型分布.2.下列命题正确的是( ).(A) 由辛钦大数定律可以得出切比雪夫大数定律;(B) 由切比雪夫大数定律可以得出辛钦大数定律;(C) 由切比雪夫大数定律可以得出伯努利大数定律;(D) 由伯努利大数定律可以得出切比雪夫大数定律.3.设随机变量X 的方差为2, 则根据切贝雪夫不等式有估计{}≤≥-2||EX X P ( ).(A )21; (B )31; (C )41; (D )81. 4.设随机变量 ,n X X X ,,,21独立同分布,其分布函数为 ∞<<∞-+=x b x a x F ,arctan 1)(π,0≠b 则辛钦大数定律对此序列( ). (A )适用; (B )当常数a 和b 取适当数值十适用;(C )不适用; (D )无法判别.5.设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindeberg)中心极限定理, 当n 充分大时, n S 近似服从正态分布, 只要nX X X ,,,21 ( ).(A)有相同的数学期望; (B)有相同的方差;(C)服从同一指数分布; (D)服从同一离散型分布.6.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为1≠λ的指数分布,则( ).(A ))()(lim 1x x n n X P n i i n Φ=≤-∑=+∞→λ; (B ))()(lim 1x x nn X P n i i n Φ=≤-∑=+∞→;(C ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ; (D ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ. 三、解答题1.设n ν是n 次伯努利试验成功的次数,p(0<p<1)是每次试验成功的概率,n f n n ν=是n次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α=∆≥-p f n P . 试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α和∆估计n .2.假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值;(2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?3.设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率 {}αμ=∆≥-n X P ,其中μ=i EX ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值;(2) α和n ,求∆的近似值;(3) α和∆,估计n .4.某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β;(3) 一年获利润不少于60000元的概率γ.5.假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.6.生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数.7.将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .8.利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.9.设X 是任一非负(离散型或连续型)随机变量,已知X 的数学期望存在,而 0>ε是任意实数,证明不等式{}εεXX P ≤≥.10.设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α.11.设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?12.利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题. 13.设 ,n X X X ,,,21为独立同分布的随机变量序列,且 ,2,1,,2===i DX EX i i σμ,令∑=+=n i i n iX n n Y 1)1(2,试证明:μP n Y →. 14.设}{n X 为一列独立同分布的随机变量序列,其概率密度函数为⎩⎨⎧<≥=--ax a x e x f a x 0)()( 令},,,m in{21n n X X X M =,试证:a M Pn →.15.在一家保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡时,其家属可向保险公司领取1000元的赔偿费.试求:(1)保险公司没有利润的概率为多大?(2)保险公司一年的利润不少于60000元的概率为多大?16.已知生男孩的概率近似地等于0.515,求在10000个婴孩中,男孩不多于女孩的概率.17.某药厂断言,该工厂生产的某种药品对于医治一种疑难的疾病的治愈率为0.8,某医院试用了这种药品进行治疗,该医院任意抽查了100个服用此药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝这一断言.问:(1)若实际上此药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?18.一生产线生产的产品成箱包装, 每箱的重量是随机的, 假设每箱平均重50kg, 标准差为5kg . 若用最大载重量为5吨的汽车承运, 试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(977.0)2(=Φ).19.一家有800间客房的大宾馆的每间客房内装有一台2kW (千瓦)的空调机,若该宾馆的开房率为70%,试问应供应多少千瓦的电力才能以99%的概率保证有充足的电力开动空调机?20.设有30个电子器件,他们的使用寿命(单位:小时)3021,,,T T T 均服从平均寿命为10小时的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用等等. 令T 为30个器件使用的总计时间,求T 超过350小时的概率.。
概率论与数理统计 第四版 第五章

≈1 - Φ
60 - 300 × 0畅 2 300 × 0畅 2 × 0畅 8
= 1 - Φ(0) = 0畅 5 .
8 . 一复杂的系统由 100 个相互独立起作用的部件所组成 ,在整个运行期间
121
(1) 求收入至少 400 元的概率 ; (2) 求售出价格为1畅 2 元的蛋糕多于 60 只的概率 . 解 设第 i 只蛋糕的价格为 X i ,i = 1 ,2 ,… ,300 ,则 Xi 有分布律为
Xi 1 1畅 2 1畅 5 pk 0畅 3 0畅 2 0畅 5
由此得
E( Xi ) = 1 × 0畅 3 + 1畅 2 × 0畅 2 + 1畅 5 × 0畅 5 = 1畅 29 ,
率是多少 ?
解 以 Xi ( i = 1 ,2 ,… ,5 000) 记第 i 个零件的重量 ,以 W 记 5 000 个零件
5 000
钞 的总重量 :W = Xi .按题设 E( Xi ) = 0 .5 ,D( Xi ) = 0畅 12 ,由中心极限定理 ,可 i= 1
知 W - 5 000 × 0畅 5 近似地服从 N(0 ,1) 分布 ,故所求概率为 5 000 × 0畅 1
钞10 000
—
X
=
1 10 000 i = 1
Xi
~
N
280
,18
002 002
,
故
p1
=
—
P( X > 270)
≈ 1-
Φ
270 - 280 8
=
1-
Φ
-
5 4
=
Φ
5 4
= Φ(1畅 25) = 0畅 894 4 .
118
概率论与数理统计习题全解指南
概率论与数理统计第五章

4. 设 X 1, X 2 , 为相互独立的随机变量序列, 且 X i ( i 1, 2, ), 服
从参数为 的泊松分布, 则
n
Xi n
lim P i 1
n
n
x _____ .
三、解答题 1. 一药厂试制成功一种新药, 卫生部门为了检验此药的效果, 在100
名患者中进行了试验 , 决定若有 75 名或更多患者显示有效时, 即
验中 , 事件 A 出现的次数 , 试用切比雪夫不等式估计得
P 0.74
0.76
.
10000
10
3. 某批产品的次品率为 0.1, 连续抽取10000 件, 表示其中的次品
数 , 试用中心极限定理计算 P{ 970 }
.
已知 F0.1(1) 0.8413 , F 0.1 (2) 0.9772 , F0.1(33.333) 1.
5. 某灯泡厂生产的一批灯泡 , 次品率为 1% , 现随机地抽样 500 个 ,
试用泊松逼近和正态逼近二种方法计算次品不超过5个的概率是
多少? 已知标准正态分布函数 F0,1 ( x) 的值
F0,1(2.25) 0.9878, F0,1(0) 0.5, F0,1(1.01) 0.8438.
k
泊松分布
11
3. 为了使问题简化 , 假定计算机进行数的加法运算时, 把每个加数 取为最接近于它的整数 (其后一位四舍五入) 来计算, 设所有的取 整误差是相互独立的, 且它们都在[ 0.5, 0.5]上服从均匀分布, 若 有 1500 个数相加,问误差总和的绝对值超过15 的概率是多少?已
知标准正态分布函数 F 0,1( x)的值 : F0,1(0.12) 0.5478, F0,1(1.342) 0.9099, F0,1(0.134) 0.5517.
第5章-大数定律与中心极限定理答案

解|
由切贝谢夫不等式得
故选(C)
5.若随机变量 ,则 ().
A) B) C) D)
解|因为 ,
由切贝谢夫不等式得
故选(D)
二、填空题(每空2分,共10分)
1.已知离散型随机变量X服从参数为 的泊松分布,则利用切贝谢夫不等式估计概率
.
解因为
所以
由切贝谢夫不等式
2.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切贝谢夫不等式估计概率 .
解因为 ,
由切贝谢夫不等式
3.已知随机变量X的方差为4,则由切贝谢夫不等式估计概率 .
解由切贝谢夫不等式
4.若随机变量 ,则当 充分大时, 近似服从正态分布 (,)
解因为
三、计算或证明题题(每题10分,共80分)
1.如果随机变量X存在数学期望 和方差 ,则对于任意常数 ,都有切贝谢夫不等式: (证明当 为连续型随机变量时的情况)
第五章《中心极限定理》测验题
班级:姓名:学号:成绩:
一、单项选择题(每题2分,共10分)
1.如果离散型随机变量 相互独立且皆服从参数为 的泊松分布,则当n充分大时,离散型随机变量 ()近似服从标准正态分布.
A) B) C) D)
解:因为
又
由李雅普诺夫中心极限定理:
故选(D)
2.如果离散型随机变量 相互独立且皆服从0-1分布 ,则当n充分大时,离散型随机变量 近似服从()分布.
解设 表示10000个婴儿中男婴的个数,则 其中
由拉普拉斯中心极限定理,所求概率为
附表:
解设随机变量 表示一年内投保人中死亡人数,则 ,其中 ,
, 由
得
由拉普拉斯中心极限定理,所求概率为
概率论与数理统计第四版

第五章 大数定律及中心极限定理1.据以往经验,某种电器元件的寿命服从均值为100h的指数分布,现随机地取16只,设它们的寿命是相互独立的.求这16只元件的寿命的总和大于1920h的概率.解以X i(i=1,2,…,16)记第i只元件的寿命,以T记16只元件寿命的总和:T=钞16i=1X i,按题设E(X i)=100,D(X i)=1002,由中心极限定理知T-16×100161002近似地服从N(0,1)分布,故所求概率为P{T>1920}=1-P{T≤1920}=1-P T-16×100161002≤1920-16×100161002≈1-Ф1920-1600400=1-Ф(0.8)=1-0畅7881=0畅2119.2.(1)一保险公司有10000个汽车投保人,每个投保人索赔金额的数学期望为280美元,标准差为800美元,求索赔总金额超过2700000美元的概率.(2)一公司有50张签约保险单,各张保险单的索赔金额为X i,i=1,2,…,50(以千美元计)服从韦布尔(Weibull)分布,均值E(X i)=5,方差D(X i)=6,求50张保险单索赔的合计金额大于300的概率(设各保险单索赔金额是相互独立的).解(1)记第i人的索赔金额为X i,则由已知条件E(X i)=280, D(X i)=8002.要计算p1=P钞10000i=1X i>2700000,因各投保人索赔金额是独立的,n=10000很大.故由中心极限定理,近似地有X —=110000钞10000i=1X i~N280,80021002,故 p1=P(X —>270)≈1-Φ270-2808=1-Φ-54=Φ54=Φ(1畅25)=0畅8944.(2)E(X i)=5,D(X i)=6,n=50.故 p=P钞50i=1X i>300≈1-Φ300-50×550×6=1-Φ50300=1-Φ(2畅89)=0畅0019.这与情况(1)相反.(1)的概率为0畅8944表明可能性很大.而(2)表明可能性太小了,大约500次索赔中出现>300的只有一次.3.计算器在进行加法时,将每个加数舍入最靠近它的整数,设所有舍入误差相互独立且在(-0畅5,0畅5)上服从均匀分布.(1)将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0畅90?解设第k个加数的舍入误差为X k(k=1,2,…,1500),已知X k在(-0畅5,0畅5)上服从均匀分布,故知E(X k)=0,D(X k)=112.(1)记X=钞1500k=1X k,由中心极限定理,当n充分大时有近似公式P 钞1500k=1X k-1500×01500112≤x≈Φ(x).于是P{X>15}=1-P{X≤15}=1-P{-15≤X≤15}=1-P-15-01500112≤X-01500112≤15-01500112≈1-Φ151500112-Φ-151500112=1-2Φ15150012-1=1-[2Φ(1畅342)-1]=2[1-0畅9099]=0畅1802.即误差总和的绝对值超过15的概率近似地为0畅1802.(2)设最多有n个数相加,使误差总和Y=钞n k=1X k符合要求,即要确定n,使P{Y<10}≥0畅90.由中心极限定理,当n充分大时有近似公式P Y-0n112≤x≈Φ(x).811概率论与数理统计习题全解指南于是 P {Y <10}=P {-10<Y <10}=P -10n 112<Yn 112<10n 112≈Φ10n 12-Φ-10n 12=2Φ10n 12-1.因而n 需满足 2Φ10n /12-1≥0.90,亦即n 需满足 Φ10n /12≥0畅95=Φ(1畅645),即n 应满足 10n /12≥1畅645,由此得 n ≤443畅45.因n 为正整数,因而所求的n 为443.故最多只能有443个数加在一起,才能使得误差总和的绝对值小于10的概率不小于0畅90.4.设各零件的重量都是随机变量,它们相互独立,且服从相同的分布,其数学期望为0畅5kg ,均方差为0畅1kg ,问5000个零件的总重量超过2510kg 的概率是多少?解以X i (i =1,2,…,5000)记第i 个零件的重量,以W 记5000个零件的总重量:W =钞5000i =1X i .按题设E (X i )=0.5,D (X i )=0畅12,由中心极限定理,可知W -5000×0畅55000×0畅1近似地服从N (0,1)分布,故所求概率为P {W >2510}=1-P {W ≤2510}=1-P W -5000×0畅55000×0畅1≤2510-5000×0畅55000×0畅1≈1-Ф2510-5000×0畅55000×0畅1=1-Ф(2)=1-0畅9213=0畅0787畅5.有一批建筑房屋用的木柱,其中80%的长度不小于3m ,现从这批木柱中随机地取100根,求其中至少有30根短于3m 的概率.解按题意,可认为100根木柱是从为数甚多的木柱中抽取得到的,因而可当作放回抽样来看待.将检查一根木柱看它是否短于3m 看成是一次试验,检查100根木柱相当于做100重伯努利试验.以X 记被抽取的100根木柱中长度短于3m 的根数,则X ~b (100,0畅2).于是由教材第五章§2定理三得P {X ≥30}=P {30≤X <∞}911第五章 大数定律及中心极限定理=P30-100×0畅2100×0畅2×0畅8≤X -100×0畅2100×0畅2×0畅8<∞-100×0畅2100×0畅2×0畅8≈Φ(∞)-Φ30-2016=1-Φ(2畅5)=1-0畅9938=0畅0062畅本题也可以这样做,引入随机变量:X k =1, 若第k 根木柱短于3m ,0, 若第k 根木柱不短于3m , k =1,2,…,100畅于是E (X k )=0.2,D (X k )=0畅2×0畅8.以X 表示100根木柱中短于3m 的根数,则X =钞100k =1X k .由中心极限定理有P {X ≥30}=P {30≤X <∞}=P 30-100×0畅21000畅2×0畅8≤钞100k =1X k -100×0畅21000畅2×0畅8 <∞-100×0畅21000畅2×0畅8≈Φ(∞)-Ф30-2016=1-Φ(2畅5)=0畅0062畅6.一工人修理一台机器需两个阶段,第一阶段所需时间(小时)服从均值为0.2的指数分布,第二阶段服从均值为0畅3的指数分布,且与第一阶段独立.现有20台机器需要修理,求他在8小时内完成的概率.解设修理第i (i =1,2,…,20)台机器,第一阶段耗时X i ,第二阶段为Y i ,则共耗时Z i =X i +Y i ,今已知E (X i )=0畅2,E (Y i )=0畅3,故E (Z i )=0畅5.D (Z i )=D (X i )+D (Y i )=0畅22+0畅32=0畅13畅20台机器需要修理的时间可认为近似服从正态分布,即有钞20i =1Z i ~N (20×0畅5,20×0畅13)=N (10,2畅6).所求概率 p =P钞20i =1Z i ≤8≈Φ8-20×0畅520×0畅13=Φ-21畅6125=Φ(-1畅24)=0畅1075,即不大可能在8小时内完成全部工作.7.一食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一只蛋糕的价格是一个随机变量,它取1元、1畅2元、1畅5元各个值的概率分别为0畅3、0畅2、0畅5畅若售出300只蛋糕.21概率论与数理统计习题全解指南(1)求收入至少400元的概率;(2)求售出价格为1畅2元的蛋糕多于60只的概率.解设第i 只蛋糕的价格为X i ,i =1,2,…,300,则X i 有分布律为X i 11畅21畅5p k0畅30畅20畅5由此得E (X i )=1×0畅3+1畅2×0畅2+1畅5×0畅5=1畅29,E (X 2i )=12×0畅3+1畅22×0畅2+1畅52×0畅5=1畅713,故D (X i )=E (X 2i )-[E (X i )]2=0畅0489畅(1)以X 表示这天的总收入,则X =钞300i =1X i ,由中心极限定理得P {X ≥400}=P {400≤X <∞}=P 400-300×1畅293000畅0489≤钞300i =1X i -300×1畅293000畅0489 <∞-300×1畅293000畅0489≈1-Φ(3畅39)=1-0畅9997=0畅0003.(2)以Y 记300只蛋糕中售价为1畅2元的蛋糕的只数,于是Y ~b (300,0畅2).E (Y )=300×0畅2,D (Y )=300×0畅2×0畅8,由棣莫弗拉普拉斯定理得P {Y >60}=1-P {Y ≤60}=1-P Y -300×0畅2300×0畅2×0畅8≤60-300×0畅2300×0畅2×0畅8≈1-Φ60-300×0畅2300×0畅2×0畅8=1-Φ(0)=0畅5.8.一复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0畅10.为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.解将观察一个部件是否正常工作看成是一次试验,由于各部件是否正常工作是相互独立的,因而观察100个部件是否正常工作是做100重伯努利试验,以X 表示100个部件中正常工作的部件数,则X ~b (100,0畅9),按题意需求概率P {X ≥85},由棣莫弗拉普拉斯定理知X -100×0畅9100×0畅9×0畅1近似地服从标准正态分布N (0,1),故所求概率为121第五章 大数定律及中心极限定理P {X ≥85}=P {85≤X <∞}=P 85-100×0畅9100×0畅9×0畅1≤X -100×0畅9100×0畅9×0畅1≤∞-100×0畅9100×0畅9×0畅1≈1-Ф-53=0畅9525.9.已知在某十字路口,一周事故发生数的数学期望为2畅2,标准差为1畅4.(1)以X —表示一年(以52周计)此十字路口事故发生数的算术平均,试用中心极限定理求X —的近似分布,并求P {X —<2}.(2)求一年事故发生数小于100的概率.解 (1)E (X —)=E (X )=2畅2,D (X —)=D (X )52=1畅4252,由中心极限定理,可认为X —~N (2畅2,1畅42/52).P {X —<2}=Φ2-2畅21畅4/52=Φ-0畅2×521畅4=Φ(-1畅030)=1-Φ(1畅030)=1-0畅8485=0畅1515.(2)一年52周,设各周事故发生数为X 1,X 2,…,X 52.则需计算p =P钞52i =1X i <100,即P {52X —<100}.用中心极限定理可知所求概率为 p =P {52X —<100}=P {X —<10052}≈Φ10052-2畅2521畅4=Φ(-1畅426)=1-0畅9230=0畅0770.10.某种小汽车氧化氮的排放量的数学期望为0.9g /km ,标准差为1畅9g /km ,某汽车公司有这种小汽车100辆,以X —表示这些车辆氧化氮排放量的算术平均,问当L 为何值时X —>L 的概率不超过0畅01.解 设以X i (i =1,2,…,100)表示第i 辆小汽车氧化氮的排放量,则X —=1100钞100i =1X i .由已知条件E (X i )=0畅9,D (X i )=1畅92得E (X —)=0畅9, D (X —)=1畅92100.各辆汽车氧化氮的排放量相互独立,故可认为近似地有221概率论与数理统计习题全解指南X —~N 0畅9,1畅92100.需要计算的是满足P {X —>L }≤0畅01的最小值L .由中心极限定理P {X —>L }=PX —-0畅90畅19>L -0畅90畅19≤0畅01畅L 应为满足1-ΦL -0畅90畅19≤0畅01的最小值,即ΦL -0畅90畅19≥0畅99=Φ(2畅33),即L -0畅90畅19≥2畅33,故L ≥0畅9+0畅19×2畅33=1畅3427,应取L =1畅3427g /km 畅11.随机地选取两组学生,每组80人,分别在两个实验室里测量某种化合物的p H .各人测量的结果是随机变量,它们相互独立,服从同一分布,数学期望为5,方差为0畅3,以X —,Y —分别表示第一组和第二组所得结果的算术平均.(1)求P {4畅9<X —<5畅1}.(2)求P {-0畅1<X —-Y —<0畅1}.解由题设E (X —)=5,D (X —)=D (Y —)=0畅380.(1)由中心极限定理知X —近似服从N (5,0畅380),故P {4畅9<X —<5畅1}=P 4畅9-50畅380<X —-50畅380<5畅1-50畅380≈Φ5畅1-50畅380-Φ4畅9-50畅380=2Φ(1畅63)-1=2×0畅9484-1=0畅8968.(2)因E (X —-Y —)=E (X —)-E (Y —)=0,D (X —-Y —)=D (X —)+D (Y —)=0畅340,由中心极限定理P {-0畅1<X —-Y —<0畅1} 321第五章 大数定律及中心极限定理=P-0畅1-00畅340<(X —-Y —)-00畅340<0畅1-00畅340≈Φ0畅1-00畅340-Φ-0畅1-00畅340=2Φ(1畅15)-1=2×0畅8749-1=0畅7498.12.一公寓有200户住户,一户住户拥有汽车辆数X 的分布律为X 012p k0畅10畅60畅3问需要多少车位,才能使每辆汽车都具有一个车位的概率至少为0畅95畅解 设需要车位数为n ,且设第i (i =1,2,…,200)户有车辆数为X i ,则由X i 的分布律知E (X i )=0×0畅1+1×0畅6+2×0畅3=1畅2,E (X 2i )=02×0畅1+12×0畅6+22×0畅3=1畅8,故D (X i )=E (X 2i )-[E (X i )]2=1畅8-1畅22=0畅36.因共有200户,各户占有车位数相互独立.从而近似地有钞200i =1X i ~N (200×1畅2, 200×0畅36).今要求车位数n 满足0畅95≤P钞200i =1X i ≤n ,由正态近似知,上式中n 应满足0畅95≤Φn -200×1畅2200×0畅36=Φn -24072,因0畅95=Φ(1畅645),从而由Φ(x )的单调性知n -24072≥1畅645,故n ≥240+1畅645×72=253畅96.由此知至少需254个车位畅13.某种电子器件的寿命(小时)具有数学期望μ(未知),方差σ2=400.为了估计μ,随机地取n 只这种器件,在时刻t =0投入测试(测试是相互独立的)直到失效,测得其寿命为X 1,X 2,…,X n ,以X —=1n钞ni =1X i 作为μ的估计,为使P {X —-μ<1}≥0畅95,问n 至少为多少?解由教材第五章§2定理一可知,当n 充分大时,421概率论与数理统计习题全解指南钞ni =1X i -n μn σ=1n钞ni =1X i -μσ/n近似地N (0,1),即X —-μσn近似地N (0,1).由题设D (X i )=400(i =1,2,…,n ),即有σ=400,于是X —-μ400n =X —-μ20n近似地服从N (0,1)分布,即有P {X —-μ<1}=P {-1<X —-μ<1}=P -120n <X —-μ20n <120n ≈Φ120n-Φ-120n =2Φ120n -1.现在要求P {X —-μ<1}≥0畅95,即要求2Ф120n -1≥0畅95,亦即要求Ф120n≥0畅975=Ф(1畅96),故需要120n≥1畅96,即 n ≥(20×1畅96)2=1536畅64畅因n 为正整数,故n 至少为1537.14.某药厂断言,该厂生产的某种药品对于医治一种疑难血液病的治愈率为0畅8,医院任意抽查100个服用此药品的病人,若其中多于75人治愈,就接受此断言,否则就拒绝此断言.(1)若实际上此药品对这种疾病的治愈率是0畅8畅问接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0畅7,问接受这一断言的概率是多少?解由药厂断言来看100人中治愈人数X ~b (100,0畅8).(1)在治愈率与实际情况相符合条件下,接受药厂断言的概率即为P (X >521第五章 大数定律及中心极限定理75).由中心极限定理知近似地有X~N(100×0畅8, 100×0畅8×0畅2)=N(80,42),于是 p1=P(X>75)≈1-Φ75-804=1-Φ(-54)=Φ(1畅25)=0畅8944.(2)若实际上治疗率为0畅7,即X~b(100,0畅7),则治愈人数X近似地服从正态分布,即有X~N(100×0畅7, 100×0畅7×0畅3).所求概率p2=P(X>75)≈1-Φ75-100×0畅7100×0畅7×0畅3=1-Φ521=1-Φ(1畅09)=1-0畅8621=0畅1379.621概率论与数理统计习题全解指南。
第5章大数定律及中心极限定理习题及答案

第 5 章 大数定律与中心极限定理一、填空题:1.设随机变量μξ=)(E ,方差2σξ=)(D ,则由切比雪夫不等式有≤≥-}|{|σμξ3P 91 . 2.设nξξξ,,,Λ21是n 个相互独立同分布的随机变量,),,,(,)(,)(n i D E i i Λ218===ξμξ对于∑==ni in 1ξξ,写出所满足的切彼雪夫不等式 228εεξεμξn D P =≤≥-)(}|{| ,并估计≥<-}|{|4μξP n211-. 3. 设随机变量129,,,X X X L 相互独立且同分布, 而且有1i EX =,1(1,2,,9)i DX i ==L , 令91i i X X ==∑, 则对任意给定的0ε>, 由切比雪夫不等式直接可得{}≥<-ε9X P 291ε-. 解:切比雪夫不等式指出:如果随机变量X 满足:()E X μ=与2()D X σ=都存在, 则对任意给定的0ε>, 有22{||}P X σμεε-≥≤, 或者22{||}1.P X σμεε-<≥-由于随机变量129,,,X X X L 相互独立且同分布, 而且有 1,1(1,2,9),i i EX DX i ===L 所以999111()()19,i i i i i E X E X E X μ===⎛⎫===== ⎪⎝⎭∑∑∑9992111()()19.i i i i i D X D X D X σ===⎛⎫===== ⎪⎝⎭∑∑∑4. 设随机变量X 满足:2(),()E X D X μσ==, 则由切比雪夫不等式, 有{||4}P X μσ-≥ 116≤. 解:切比雪夫不等式为:设随机变量X 满足2(),()E X D X μσ==, 则对任意的0ε>, 有22{||}.P X σμεε-≥≤由此得 221{||4}.(4)16P X σμσσ-≥≤=5、设随机变量2σξμξξ==)(,)(,D E ,则≥<-}|{|σμξ2P 43.6、设n ξξξ,,,Λ21为相互独立的随机变量序列,且),,(Λ21=i i ξ服从参数为λ的泊松分布,则≤-∑=∞→}{lim x n n P ni in λλξ1∞--xt dt e22 .7、设n η表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b a P n η⎰-----)1()1(2221p np np b p np np a t dt e π.8. 设随机变量n ξ, 服从二项分布(,)B n p , 其中01,1,2,p n <<=L , 那么, 对于任 一实数x , 有lim {|||}n n P np x ξ→+∞-<= 0 .9. 设12,,,n X X X L 为随机变量序列,a 为常数, 则{}n X 依概率收敛于a 是指 {}=<->∀+∞>-εεa X P n n lim ,0 1 ,或{}=≥->∀+∞>-εεa X P n n lim ,0 0 。
大数定律和中心极限定理例题与解析

要点二
详细描述
中心极限定理是指无论随机变量的个体分布是什么,当样 本量足够大时,样本均值的分布近似正态分布。例如,从 一个总体中随机抽取的100个样本的均值应该接近总体的 均值,并且其分布近似正态分布。
主题总结与启示
• 总结词:大数定律和中心极限定理是概率论中的重要概念,它们揭示了随机现 象的规律性,对于理解和预测随机现象具有重要意义。
大数定律和中心极限定理例题与解 析
目 录
• 引言 • 大数定律例题 • 中心极限定理例题 • 解析与总结
01 引言
主题简介
主题概述
大数定律和中心极限定理是概率论中 的重要概念,它们在统计学、金融、 计算机科学等领域有着广泛的应用。
主题背景
大数定律和中心极限定理分别描述了 在大量数据和独立同分布的情况下, 随机变量的分布规律。
假设我们进行大量的抛硬币实验,每次实验的结果只有两种可能:正面朝上或反面 朝上。根据大数定律,当实验次数足够多时,正面朝上的频率趋近于50%,反面朝 上的频率也趋近于50%。
例题二:抽取彩票
总结词
在抽取大量彩票时,中奖概率趋近于预设的中奖率。
详细描述
假设一张彩票的中奖概率为1%,那么在抽取100张彩票时,根据大数定律,大 约有1张彩票中奖。随着抽取的彩票数量增加,中奖的彩票数量趋近于预设的中 奖率。
例题二:保险精算
总结词
保险精算是中心极限定理在保险业中的一个重要应用 ,用于计算保险费和赔偿金。
详细描述
保险精算是保险业中一项重要的工作,它涉及到如何 合理地计算保险费和赔偿金。在保险精算中,中心极 限定理常常被用来估计某个事件发生的概率。例如, 一个保险公司可能会根据中心极限定理来估计某个特 定人群在未来一年内发生特定事件的概率,从而制定 相应的保险费和赔偿金方案。通过中心极限定理,保 险公司可以更准确地预测风险,从而做出更合理的决 策。
概率论与数理统计+第五章+大数定律及中心极限定理+练习题答案

〖填空题〗例5.1(棣莫佛-拉普拉斯定理) 设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限定理{}≈≤≤105X P.分析 不能承受试验而烧毁的元件数X ~),(p n B .根据棣莫佛-拉普拉斯定理,X 近似服从正态分布),(npq np N ,其中n =100,p =0.05,q =0.95.因此{}.4890.0)0()29.2(29.275.45075.451075.450105105=-≈⎭⎬⎫⎩⎨⎧≤-≤=⎭⎬⎫⎩⎨⎧-≤-≤=⎭⎬⎫⎩⎨⎧-≤-≤-=≤≤ΦΦX X npq np npq np X npq np X P P P P例5.2(棣莫佛-拉普拉斯定理)设试验成功的概率p =20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .分析 以n ν表示100次独立重复试验成功的次数,则)20.0 100(~,B nν,且4)1(20=-===p np np n n ννD E ,.因此试验成功的次数介于16和32次之间的概率{}[][],84.08413.019987.0)1(1)3()1()3(42032420420163216=--=--=--≈⎭⎬⎫⎩⎨⎧-≤-≤-=≤≤=ΦΦΦΦννn n Q P P 其中)(u Φ是标准正态分布函数.例5.3(棣莫佛-拉普拉斯定理) 将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α.分析 正面出现的次数ν)5.0 , 10000(~B ,2500,5000==ννD E .根据局部定理,有008.025012D 1}5000{≈=≈==ππνναP .例5.10(辛钦大数定律) 将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 7/2 .分析 设n X X X ,,,21 是各次掷出的点数,它们显然独立同分布,每次掷出点数的数学期望等于7/2.因此,根据辛钦大数定律,n X 依概率收敛于7/2.5.2. (1)121;(2)90;(3)21;(4)))((λλ-Φx n〖选择题〗例5.11(中心极限定理) 设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21(A) 有相同期望和方差. (B) 服从同一离散型分布.(C) 服从同一指数分布. (D) 服从同一连续型分布. [ C ]分析 应选(C ).列维-林德伯格中心极限定理的条件是:随机变量n X ,,X ,X 21相互独立同分布, 并且其数学期望和方差存在.由于有相同的数学期望未必有相同分布,可见(A)不满足定理条件.满足(B)和(D)的随机变量i X 的数学期望或方差未必存在,故(B)和(D)也不满足定理条件.于是,只有(C)成立(指数分布的数学期望和方差都存在).例5.14(大数定律)下列命题正确的是(A) 由辛钦大数定律可以得出切比雪夫大数定律. (B) 由切比雪夫大数定律可以得出辛钦大数定律. (C) 由切比雪夫大数定律可以得出伯努利大数定律.(D) 由伯努利大数定律可以得出切比雪夫大数定律. [ C ]分析 应选(C ).切比雪夫大数定律的条件是:随机变量 ,,,,21n X X X 两两独立,并且存在常数C ,使),,,2,1( n i C X i=≤D ;这样的常数C 对于选项(C )存在.伯努利大数定律可以表述为:假设随机变量 ,,,,21n X X X 独立同服从参数为p 的0-1分布,则p X n ni i n =-∑=∞→11lim P ;对于服从参数为p 的0-1分布随机变量 ,,,,21n X X X ,显然),,,2,1(41)1( n i p p X i =≤-=D .从而满足服从切比雪夫大数定律的条件.此外,(A ),(B )和(D )显然不成立.5.1. (1)A ;(2)C ;(3)C ;(4)A〖计算题〗例5.16(棣莫佛-拉普拉斯定理) 设n ν是n 次伯努利试验成功的次数,p (0<p <1)是每次试验成功的概率,n f n n ν=是n 次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α∆=≥-p f n P . (5.10)试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α∆和估计n . 解 变量n ν服从参数为),(p n 的二项分布.记p q -=1,则由(5.7)知,当n 充分大时nν近似服从正态分布),(npq np N .因此,近似地有{}{},,~)1,0(~α∆ν∆ν∆να=≥≈⎭⎬⎫⎩⎨⎧≥-=⎭⎬⎫⎩⎨⎧≥-=≥--u U pq n npqnp p n p f N npqnpU n n n n n P P P P(5.11)其中U 是服从)1,0(N 的随机变量,而αu 是)1,0(N 水平α双侧分位数(附表2).故(5.12)(1) 已知n 和∆,求α.利用附表1,可以由(5.11)求出α的值(附表1).例如,若(5.12)式左侧等于1.96,则05.0≈α.亦可由下式求α的近似值.有. 12 1 ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=⎭⎬⎫⎩⎨⎧<-≈⎭⎬⎫⎩⎨⎧≥-=pq n pq n U pq n npq np n ∆Φ∆∆ναP P (5.13) 进而由)1,0(N 分布函数)(x Φ的数值表(附表1)最后求出α的值.(2) 已知n 和α,求∆.由(*)和41≤pq ,可见nu n pqu 2αα∆≤≈; (5.14) (3) 已知α和∆,求n .由(5.12)和pq ≤1/4,可见2⎪⎭⎫⎝⎛≈∆αu pq n 或2241⎪⎭⎫ ⎝⎛≥⎪⎭⎫ ⎝⎛≥∆∆ααu pq u n . (5.15)例5.17(棣莫佛-拉普拉斯定理) 假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值. (2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?解 设n ν——n 部分机中同时呼叫外线的分机数,k ——外线条数,则n ν服从参数为(n , p )的二项分布,=np24,npq =21.12.当n 充分大时,根据棣莫佛-拉普拉斯中心极限定理,近似地)1 ,0(~N npqnpU n n -=ν.(1) 设n =200,k =30,p =0.12,每部分机呼叫外线时能及时得到满足的概率{}(). 9049.031.112.21243012.21243030≈=⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=ΦΦνναnpqnp n n P P (2) 设n =200,p =0.12,k ——至少需要设置的外线条数,则{}.,; 31.562412.216449.1 1.644912.212495.012.212412.2124≈+⨯≥≥-≥⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=k k k k npq np k n n ΦνναP P即至少需要设置32外线.(3) 设k =30,p =0.12,且每部分机呼叫外线时能及时得到满足的概率≥α95%.由{}95.01056.012.0301056.012.03030≥⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=n n n n npq np n n ΦνναP P , 6449.11056.012.030≥-n n.09004857.70144.0 6449.11056.012.0302=+-≥-n n nn,,它有两个实根:3310431,7972.18821==n n ;经验证33104312=n 为增根,由此得n ≈188.797,即最多可以容纳188部分机.例5.20(列维-林德伯格定理) 设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率{}α∆μ=≥-n X P , (5.16)其中μ=iX E ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值; (2) α和n ,求∆的近似值;(3)α∆和,估计n .解 式(5.16)中的三个数),,(α∆n 相互联系又相互制约:其中的任意两个可以完全决定第三个.不过,明显地表示出它们之间的关系一般并不容易.假如n 充分大,则利用(5.9)式可以(近似地)表示出α∆,,n 之间的关系.易见μ=nX E ,X n 2σ=D .(1) 已知∆和n ,求α-1的近似值:{}⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛≈⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-=≤-=-σ∆Φσ∆Φσ∆σμ∆μαn n n n X X n n P P 1. (2) 已知α和n ,求∆的近似值.由(5.17)式可得nu σ∆α ≈.(3) 已知α∆和,求n 的近似值.由(5.18)有2⎪⎭⎫⎝⎛≈∆σαu n .例5.21(列维-林德伯格定理) 某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β; (3) 一年获利润不少于60000元的概率γ.解 设X 为需要赔偿的车主人数,则需要赔偿的金额为X Y1.0=(万元);保费总收入C =12万元.易见,随机变量X 服从参数为(n ,p )的二项分布,其中 n =10000,p =0.006;60==np X E ,)1(p np X -=D =59.64.由棣莫佛-拉普拉斯定理知,随机变量X 近似服从正态分布)64.59,60(N ;随机变量Y 近似服从正态分布)5964.0,6(N .(1) 保险公司亏损的概率{}0)77.7(177.75964.065964.06125964.0612≈-=⎭⎬⎫⎩⎨⎧>-=⎭⎬⎫⎩⎨⎧->-=>=ΦαY Y Y P P P .(2) 保险公司一年获利润不少于4万元的概率{}{}.9952.0)59.2(5964.0685964.068412=≈⎭⎬⎫⎩⎨⎧-≤-=≤=≥-=ΦβY Y Y P P P (3) 保险公司一年获利润不少于6万元的概率{}{}.5.0)0(05964.066612=≈⎭⎬⎫⎩⎨⎧≤-=≤=≥-=ΦγY Y Y P P P例5.22(棣莫佛-拉普拉斯定理) 假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.解 设n 是所需试验的次数,每次试验成功的概率p =0.05.以n ν表示n 次伯努利试验成功的次数,则),(~p n B nν,npq np n n ==ννD E ,,其中p q -=1;由棣莫佛-拉普拉斯定理,知对于充分大的n ,随机变量n ν近似服从正态分布),(npq np N .查)1,0(N 分位数表,可见()()8416.018416.080.0--==ΦΦ.因此{}().8416.01)1(51)1(5)1(5.080.0--=⎪⎪⎭⎫⎝⎛---≈⎭⎬⎫⎩⎨⎧--≥--=≥=ΦΦννp np np p np np p np np n n P P.,),(025)8416.010()1(8416.058416.0)1(522222≈++--≈--≈--n n p p np np p np np将05.0=p 代入上列方程,的关于n 的一元二次方程:0255354.00025.02≈+-n n ,其根为79.6837.14521==n n ,.经验证79.682=n 为增根,舍去2n ,取37.1451461=>=n n .于是,至少需要进行146次试验才能以概率80%保障成功的次数不少于5次.例5.26(列维-林德伯格定理) 生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数. 解 以)100,,2,1( =iX i 表示第i 件产品的组装时间.由条件知)100,,2,1( =i X i 独立同服从指数分布.由指数分布的数字特征和条件“每件产品的平均组装时间为10分钟”,可见10=i X E ;由于i X 服从指数分布,可见()2210==i i X X E D .(1) 因为n =100充分大,故由列维-林德伯格定理,知100件产品组装的时间10021X X X T n +++= 近似服从()210100 10100⨯⨯,N ,因此{}.8156.0)8413.01(9973.0)1( )2( 21010010100112009002=--=--≈⎭⎬⎫⎩⎨⎧≤⨯⨯-≤-=≤≤=ΦΦT T Q n n P P(2) 16小时即960分钟.需要求满足{}95.0960=≤n T P 的n .由列维-林德伯格定理,知当n 充分大时,n nX X X T +++= 21近似服从()nn N 210 10,,故由{}, 101096010109601010960950⎪⎭⎫⎝⎛-≈⎭⎬⎫⎩⎨⎧-≤-=≤=n n n n n n T T .n n ΦP P 可见95.0)645.1( ≈Φ.因此645.11010960≈-nn. (*)由此得关于n 的一元二次方程09606025.1947010022≈+-n n ,其解为53.11318.8121≈≈n n ,,其中53.1132≈n 不满足式(*),因此53.1132≈n 为增根,故应舍去.于是,以概率0.95在16个小时内最多可以组装81~82件产品.例5.27(列维-林德伯格定理) 将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .解 设)1500,,2,1( =iX i 是第i 个数据的舍位误差;由条件可以认为)1500,,2,1( =i X i 独立且都在区间]5.0 5.0[,-上服从均匀分布,从而12/10==i i X X D E ,.记n n X X X S +++= 21为n 个数据的舍位误差之和,则12/0n S S n n==D E ,.根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从)12/0(n N ,.记)(x Φ为)1,0(N 分布函数.(1) 由于12n S n近似服从标准正态分布,可见{}.1802.02)]34.1(1[34.112/150012/15001512/150015150015001500=⨯-≈⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>=>ΦS S S P P P(2) 数据个数n 应满足条件:{}.90.012/1012/10=⎭⎬⎫⎩⎨⎧≤=≤n n S S n n P P 由于12n S n近似服从)1,0(N ,可见51.4436449.11210 6449.112/102≈⎪⎪⎭⎫ ⎝⎛≈,n . 于是,当n >443时,才能使误差之和的绝对值小于10的概率不小于90%. 〖证明题〗例5.35(棣莫佛-拉普拉斯定理) 利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.证明 设随机变量n X X X ,,,21 相互独立,同服从0-1分布;,,,,,npq S np S X X X S n i pq X p X n n n n i i ==+++====D E D E 21),,2,1(其中p q-=1. n X X X ,,,21 满足列维-林德伯格定理的条件:n X X X ,,,21 独立同分布且数学期望和方差存在,当n 充分大时近似地n n X X X S +++= 21~),(npq np N .4.55(证明不等式) 设X 是任一非负(离散型或连续型)随机变量,已知X的数学期望存在,而0>ε是任意实数,证明不等式{}εεXX E P ≤≥.证明 (1) 设X 是离散型随机变量,其一切可能值为}{i x ,则{}.}{1}{}{}{11εεεεεεεXx X x x X x x Xx XX iiii x i i x i ix i x i E P P P P P ==≤=≤====≥∑∑∑∑≥≥≥(2) 设X 是连续型随机变量,其概率密度为)(x f ,则{}.d )(1d )(1d )(0εεεεεεXx x f x x x f x x x f X E P ≤≤≤=≥⎰⎰⎰∞∞∞例4.00(切比雪夫不等式) 设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α. 解 设n ν是1000次独立重复试验中事件A 出现的次数,则.,),,2505.010005005.010005.0 1000(~2=⨯==⨯=X X B n D E ν由用切比雪夫不等式,知{}{}.9.050250150|550|5504502=-≥≤-=≤≤=n n νναP P 例5.3. 设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间 内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?解:(1)()()()0.88899131)3()3(222=-=-≥<-=<-σσσσμσX D X P X E X P (2)()()⎪⎪⎭⎫⎝⎛<-=<-DX DX X E X P X E X P σσ3)3( ()0.99743322=≈⎪⎪⎭⎫⎝⎛<-=⎰∞--dt e DX X E X P t例5.4. 利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证 正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题。
数理统计复习题第五章范文

第五章 大数定律与中心极限定理一、 典型题解例1设随机变量X 的数学期望()(){}2,3E X u D X X u σσ==-≥方差,求P 的大小区间。
解 令3εσ=,则有切比雪夫不等式有:()()()22221,339D X P X E X P X E X σεσεσ⎡⎤⎡⎤-≥≤-≥≤=⎣⎦⎣⎦有例2在n 次独立试验中,设事件A 在第i 次试验中发生的概率为()1,2,....i p i n =试证明:A 发生的频率稳定于概率的平均值。
证 设X 表示n 次试验中A 发生的次数,引入新的随机变量0i A X A ⎧=⎨⎩1,发生•,不发生()12,...i n =,,则X 服从()01-分布,故 ()()(),1i i i i i i i E X p D X p p p q ==-=,又因为()()224140i i i i i i i i p q p q p q p q -=+-=-≥,所以()()11,2, (4)i i i D X p q i n =≤= 由切比雪夫大数定理,对,o ε∀>有()11lim 1n i i n i p X E X n ε→∞=⎧⎫-<=⎡⎤⎨⎬⎣⎦⎩⎭∑ 即 11lim 1n i n i X p p n n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑例 3 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长,1名家长、2名家长来参加会议的概率分别为。
若学校共有400名学生,设各学生参加会议的家长数相互独立,且服从同一分布。
(1)求参加会议的家长数X 超过450的概率;(2)求有1名家长来参加会议的学生数不多于340的概率。
解(1)以()400,,2,1 =k X k 记第k 个学生来参加会议的家长数,则k X 的分布律为k X 0 1 2 k P 0.05 0.8 0.15易知()()19.0,1.1==k k X D X E ,1,2,...400.k =而∑==4001k k X X .由独立同分布中心极限定理知,随机变量19.04001.140019.04001.14004001⨯-=⨯-∑=X Xk k近似服从正态分布()0,1N ,于是{}()14004001.145011.147.00.4000.1911.1470.1357P X P P⎫>=>=-≤⎬⎭≈-Φ= (2)以Y 记有一名家长来参加会议的学生数,则(400,0.8)Y B ,由德莫佛—拉普拉斯定理得{}()340 2.52.50.9938.P Y P P ≤=≤⎫=≤⎬⎭≈Φ=例4一加法器同时收到20个噪声电压()20,,2,1 =k V k ,设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 大数定律与中心极限定理
一、填空题:
1. 将一枚硬币连掷100次,则出现正面的次数大于60的概率约为 。
2.在概率论里,把研究在什么条件下,大量独立随机变量和的分布以 为极限这一类定理称为中心极限定理。
3.在天平上重复称量一重为a 的物体,假设各次称重结果相互独立且同服从正态分布)2.0,(2a N ,若以n X 表示n 次称重结果的算术平均值,则为使95.0)1.0(≥<-a X P n ,n 的最小值应不小于自然数 。
二、选择题:
1.设随机变量ξ服从参数为n ,p 的二项分布,则当∞→n 时,≈<<)(b a P ξ( )。
(A))()(a b Φ+Φ (B))()(00a b Φ+Φ (C))()(a b Φ-Φ (D)1)(20-Φb
2.设ξ为服从参数为n ,p 的二项分布的随机变量,则当∞→n 时,npq np
-ξ一定服从
( )。
(A)正态分布。
( B)标准正态分布。
(C)普哇松分布。
( D)二项分布。
三、计算题:
1. 对敌人的防御地段进行100次射击,每次射击中,炮弹命中数的数学期望为2,而命中数的均方差为1.5,求当射击100次时,有180颗到220颗炮弹命中目标的概率。
2.计算机在进行加法时,对每个加数取整(取为最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布。
(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少?(2)多少个数加在一起时的误差总和的绝对值小于10的概率为0.90?
2. 已知某工厂生产一大批无线电元件,合格品占
61,某商店从该厂任意选购6000个这种元件,问在这6000个元件中合格品的比例与6
1之差小于1%的概率是多少?
3. 一生产线生产的产品成箱包装,每箱的重量是随机的,假设每箱平均重50千克,标准
差为5千克,若用最大载重量为5吨的汽车承运,试用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.9770?
4. 某工厂有400台同类机器,各台机器发生故障的概率都是0.02。
假设各台机器工作是相
互独立的,试求机器出故障的台数不少于2的概率。
5. 某保险公司多年的统计资料表明,在索赔户中被盗索赔占20%,以ξ表示在随意抽查的
100个索赔户中因被盗向保险公司索赔的户数。
求被盗索赔户不少于14户切不多于30户的概率的近似值。
6. 一个复杂的系统,由n 个相互独立的部件所组成。
每个部件的可靠性都为0.9,在整个
运行期间,至少需要80%部件工作,才能保证整个系统正常运行。
问n 至少为多大时才能使系统的可靠度(即系统正常工作的概率)为0.95。
7. 设k ξ(k =1,2,…,50)是相互独立的随机变量,且都服从参数为λ=0.03的普哇松
分布,记∑==
501k k ξη,试利用中心极限定理计算)3(≥ηP 。
8.设电路供电网中有10000盏灯,夜晚每一盏灯开着的概率都是0.7,假定各灯开、关事件彼此无关,计算同时开着的灯数在6800与7200之间的概率。
10.若某产品的不合格率为0.005,任取10000件,问不合格品不多于70件的概率等于多少?
11.某商店负责供应某地区10000人商品,某种商品在一段时间内每人需用一间的概率为0.6,假定在这一段时间内各人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件)。