2019年高考真题数学(江苏卷含解析)

合集下载

2019年江苏省高考数学试卷及答案(Word解析版)

2019年江苏省高考数学试卷及答案(Word解析版)

2019年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1.函数)42sin(3π+=x y 的最小正周期为 .【答案】π【解析】T =|2πω |=|2π2 |=π.2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 . 【答案】5【解析】z =3-4i ,i 2=-1,| z |==5.3.双曲线191622=-y x 的两条渐近线的方程为 . 【答案】x y 43±= 【解析】令:091622=-y x ,得x x y 431692±=±=. 4.集合}1,0,1{-共有 个子集.【答案】8【解析】23=8.5.右图是一个算法的流程图,则输出的n 的值是 . 【答案】3【解析】n =1,a =2,a =4,n =2;a =10,n =3;a =28,n =4. 6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 【答案】2【解析】易得乙较为稳定,乙的平均值为:9059288919089=++++=x .方差为:25)9092()9088()9091()9090()9089(222222=-+-+-+-+-=S . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .【答案】6320 【解析】m 取到奇数的有1,3,5,7共4种情况;n 取到奇数的有1,3,5,7,9共5种情况,则n m ,都取到奇数的概率为63209754=⨯⨯. 8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .【答案】1:24【解析】三棱锥ADE F -与三棱锥ABC A -1的相似比为1:2,故体积之比为1:8.又因三棱锥ABC A -1与三棱柱ABC C B A -111的体积之比为1:3.所以,三棱锥ADE F -与三棱柱ABC C B A -111的体积之比为1:24.9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 . 【答案】[—2,12 ]【解析】抛物线2x y =在1=x 处的切线易得为y =2x —1,令z =y x 2+,y =—12 x +z 2 . 画出可行域如下,易得过点(0,—1)时,z min =—2,过点(12 ,0)时,z max =12 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若21λλ+=(21λλ,为实数),则21λλ+的值为 . 【答案】12【解析】)(32213221AC BA AB BC AB BE DB DE ++=+=+=xAB C1A DE F1B1C213261λλ+=+-=所以,611-=λ,322=λ,=+21λλ12 . 11.已知)(x f 是定义在R 上的奇函数。

2019年高考数学真题专题06 立体几何(解答题)

2019年高考数学真题专题06  立体几何(解答题)

专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2)41717. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =.从而点C 到平面1C DE 的距离为41717.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =I ,BH DH =. 又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =I , 所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =. 又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33.【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0),1(3,3,23)B ,33(,,23)22F ,C (0,2,0). 因此,33(,,23)22EF =u u u r ,(3,1,0)BC =-u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC AC --u u u r u u u r ,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u rn n ,得3030x y y z ⎧-+=⎪⎨-=⎪⎩, 取n (131)=,,,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u ru u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)455. 【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°. 所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 的距离为455. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DM =22=13AD AM +.因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN =22=13AD AN +.在等腰三角形DMN 中,MN =1,可得1132cos 26MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为1326. (3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =3.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =22AC AD +=4.在Rt △CMD 中,3sin 4CM CDM CD ∠==. 所以,直线CD 与平面ABD 所成角的正弦值为34.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)39 13.【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB===⊥⊥得11122AB A B==,所以2221111A B AB AA+=.故111AB A B⊥.由2BC=,112,1,BB CC==11,BB BC CC BC⊥⊥得115B C=,由2,120AB BC ABC==∠=︒得23AC=,由1CC AC⊥,得113AC=,所以2221111AB B C AC+=,故111AB B C⊥.因此1AB⊥平面111A B C.(2)如图,过点1C作111C D A B⊥,交直线11A B于点D,连结AD.由1AB⊥平面111A B C得平面111A B C⊥平面1ABB,由111C D A B⊥得1C D⊥平面1ABB,所以1C AD∠是1AC与平面1ABB所成的角.由1111115,22,21BC A B AC===得11111161cos,sin77C A B C A B∠=∠=,所以13C D=,故11139sin13C DC ADAC∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是3913. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,3,0),(1,0,0),(0,3,4),(1,0,2),(0,3,1),A B A B C --因此11111(1,3,2),(1,3,2),(0,23,3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n 即30,20,x y z ⎧+=⎪⎨=⎪⎩可取(3,1,0)=-n . 所以111|39sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==,22PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+. 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由AB AP ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)43.【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以142PN x=.因为△PCD的面积为27,所以114227 22x x⨯⨯=,解得x=−2(舍去),x=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P−ABCD的体积()22412343 32V⨯+=⨯⨯=.【名师点睛】解答本题时,(1)先由平面几何知识得BC∥AD,再利用线面平行的判定定理证得结论;(2)取AD的中点M,利用线面垂直的判定定理证明PM⊥底面ABCD,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)见解析;(2)1:1【解析】(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC I 平面BDE DE =, 所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC ==. 由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55. 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos 5AD DAP AP ∠==. 所以,异面直线AP 与BC 所成角的余弦值为55.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=, 在Rt △DPF 中,可得5sin 5PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角的正弦值为55. 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A E EM E =I , 所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.21.【2017年高考江苏卷】如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥, 所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥, 所以BC ⊥平面ABD . 因为AD ⊂平面ABD , 所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC .【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行; (2)证明线面垂直,需转化为证明线线垂直; (3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC AD ∥,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)28. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,在△PBN中,由PN=BN=1,PB=3得QH=14,在Rt△MQH中,QH=14,MQ=2,所以sin∠QMH=28,所以直线CE与平面PBC所成角的正弦值是28.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。

专题14:立体几何江苏卷高考真题赏析(解析版)

专题14:立体几何江苏卷高考真题赏析(解析版)

专题14:立体几何江苏卷高考真题赏析(解析版)1.2017年全国普通高等学校招生统一考试数学(江苏卷)如图,在圆柱O1 O2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O1O2的体积为V1 ,球O的体积为V2,则12VV的值是_____【答案】32【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.2.2019年江苏省高考数学试卷如图,长方体1111ABCD A B C D-的体积是120,E为1CC的中点,则三棱锥E-BCD的体积是_____.【答案】10.【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.二、解答题3.2020年江苏省高考数学试卷在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.【答案】(1)证明详见解析;(2)证明详见解析.【分析】(1)通过证明1//EF AB ,来证得//EF 平面11AB C .(2)通过证明AB ⊥平面1AB C ,来证得平面1AB C ⊥平面1ABB .【详解】(1)由于,E F 分别是1,AC B C 的中点,所以1//EF AB .由于EF ⊂/平面11AB C ,1AB ⊂平面11AB C ,所以//EF 平面11AB C .(2)由于1B C ⊥平面ABC ,AB 平面ABC ,所以1B C AB ⊥.由于1,AB AC AC B C C ⊥⋂=,所以AB ⊥平面1AB C ,由于AB 平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.4.2019年江苏省高考数学试卷如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC .因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC .又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.5.2018年全国普通高等学校招生统一考试数学(江苏卷)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.求证:(1)11//AB A B C 平面;(2)111ABB A A BC ⊥平面平面.【答案】(1)见解析(2)见解析【详解】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.6.2017年全国普通高等学校招生统一考试数学(江苏卷)如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D 不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明EF AB ∥,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得BC ⊥平面ABD ,则BC ⊥AD ,再由AB ⊥AD 及线面垂直判定定理得AD ⊥平面ABC ,即可得AD ⊥AC .试题解析:证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥ AD .又AB ⊥AD ,BC AB B ⋂=,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.7.2016年全国普通高等学校招生统一考试数学(江苏卷)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F.【答案】(1)详见解析(2)详见解析【解析】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理. 试题解析:证明:(1)在直三棱柱111ABC A B C -中,11A C AC , 在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点,所以DE AC ,于是11DE AC ,又因为DE ⊄平面1111,AC F AC ⊂平面11AC F ,所以直线DE//平面11AC F .(2)在直三棱柱111ABC A B C -中,1111AA A B C ⊥平面因为11A C ⊂平面111A B C ,所以111AA AC ⊥,又因为111111*********,,AC A B AA ABB A A B ABB A A B AA A ⊥⊂⊂⋂=,平面平面, 所以11A C ⊥平面11ABB A .因为1B D ⊂平面11ABB A ,所以111AC B D ⊥.又因为1111111111111,,B D A F AC AC F A F AC F AC A F A ⊥⊂⊂⋂=,平面平面, 所以111B D AC F ⊥平面.因为直线11B D B DE ⊂平面,所以1B DE 平面11.A C F ⊥平面【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.8.2015年全国普通高等学校招生统一考试数学(江苏卷)如图,在直三棱柱中,已知,,设的中点为,.求证:(1);(2).【答案】(1)详见解析(2)详见解析【解析】试题分析(1)由三棱锥性质知侧面为平行四边形,因此点为的中点,从而由三角形中位线性质得,再由线面平行判定定理得(2)因为直三棱柱中,所以侧面为正方形,因此,又,(可由直三棱柱推导),因此由线面垂直判定定理得,从而,再由线面垂直判定定理得,进而可得试题解析:(1)由题意知,为的中点,又为的中点,因此.又因为平面,平面,所以平面.(2)因为棱柱是直三棱柱,所以平面.因为平面,所以.又因为,平面,平面,,所以平面.又因为平面,所以.因为,所以矩形是正方形,因此.因为,平面,,所以平面.又因为平面,所以.考点:线面平行判定定理,线面垂直判定定理。

2019年高考文科科数学江苏卷真题及答案详解

2019年高考文科科数学江苏卷真题及答案详解

2019年普通高等学校招生全国统一考试·江苏卷数学(文科)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.如图是一个算法流程图,则输出的S的值是.4.函数y=的定义域是.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD 的体积是.10.在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P 到直线x+y=0的距离的最小值是.11.在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.已知=﹣,则sin(2α+)的值是.14.设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB =BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小..于.圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m≤b k≤c k+1成立,求m的最大值.时,都有ck2019年普通高等学校招生全国统一考试·江苏卷数学(文科)参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.2.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.3.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.4.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].5.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.6.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.7.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.8.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.9.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V=E﹣BCD==×AB×BC×DD1=10.故答案为:10.10.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.11.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).12.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:13.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.14.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.16.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.17.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).18.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x,0),2则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.19.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x+x2=,x1x2=,1可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x)=x1(x1﹣b)(x1﹣1)1=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2] ==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.20.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;}的公比为q,②设{cn存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c成立,k+1即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.。

2019高考理科数学真题12 数列(解析版)

2019高考理科数学真题12 数列(解析版)

专题12 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断.2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键.3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12- B .10- C .10D .12【答案】B【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B .【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d ,的关系,从而求得结果.5.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230l n a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥6.【2017年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C . 【秒杀解】因为166346()3()482a a S a a +==+=,即3416a a +=, 则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C .【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.7.【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k-则该数列的前(1)122k k k ++++=项和为11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭,要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k 的部分和,设1212221t t k -+=+++=-,所以2314t k =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断. 8.【2017年高考全国II 卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏D .9盏【答案】B【解析】设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B . 【名师点睛】用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.9.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.11.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=___________.【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.12.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案.13.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为___________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=,由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-. 【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.14.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.15.【2018年高考全国I 卷理数】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =___________.【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果.16.【2018年高考北京卷理数】设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为___________.【答案】63n a n =-【解析】设等差数列的公差为d ,()133343663616 3.n a d d d a n n =∴+++=∴=∴=+-=-,,, 【名师点睛】先根据条件列出关于公差的方程,求出公差后,代入等差数列通项公式即可.在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.17.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a ⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.18.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS ==∑___________. 【答案】21nn + 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk knS n n n n ==-+-++-=-=+++∑. 【名师点睛】等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.19.【2017年高考全国III 卷理数】设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 =___________.【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.20.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.21.【2017年高考北京卷理数】若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________. 【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==. 【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法. 22.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-.(1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【答案】(1)见解析;(2)1122n n a n =+-,1122n nb n =-+.【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.【名师点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题.23.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式.【答案】(1) 1,3,5,6(答案不唯一);(2)见解析;(3)见解析. 【解析】(1)1,3,5,6.(答案不唯一) (2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -.由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤.所以00m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后. 设121,,,,21m p p p a a a m --是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾.再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中. 又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.【名师点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.24.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,.(Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(1)31n a n =+;32nn b =⨯(2)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(2)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n n n ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .【名师点睛】本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.25.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0.因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.26.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N 证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析.【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N时不等式成立,即12k c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立. 根据(i )和(ii),不等式12n c c c +++<对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.27.【2018年高考全国II 卷理数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.28.【2018年高考全国III 卷理数】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m=,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.29.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n .(1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S . 由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“ ”与“ ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“ ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+下面讨论数列的最大值和数列的最小值().①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.31.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N ,(i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【答案】(1)12n n a -=,n b n =;(2)(i )122n n T n +=--;(ii )见解析.【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=.12{}1n q n ---1{}1n q n --2,3,,1n m =+2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21x f x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑. 【名师点睛】本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.32.【2017年高考天津卷理数】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【答案】(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+. 【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯,故23245484(31)4n n T n =⨯+⨯+⨯++-⨯,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(14)324343434(31)44(314n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----111)4(32)48n n n ++⨯=--⨯-,得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 33.【2017年高考山东卷理数】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积.【答案】(1)12n n x -=;(2) 【解析】(1)设数列的公比为q ,由已知0q >.由题意得,所以,nT (21)21.2n n n T -⨯+={}n x 1121132x x q x q x q +=⎧⎨-=⎩23520q q --=因为0q >,所以,因此数列的通项公式为(2)过…,向轴作垂线,垂足分别为…,, 由(1)得记梯形的面积为. 由题意, 所以…+=…+ ①, 又…+ ②, ①-②得121132(222)(21)2n n n T n ----=⨯++++-+⨯= 所以 【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等. 34.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k nnnk n ka aa a aa --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.12,1q x =={}n x 12.n n x -=123,,,P P P 1n P +x 123,,,Q Q Q 1n Q +111222.n n n n n x x --+-=-=11n n n n P P Q Q ++n b 12(1)2(21)22n n n n n b n --++=⨯=+⨯123n T b b b =+++n b 101325272-⨯+⨯+⨯+32(21)2(21)2n n n n ---⨯++⨯0122325272n T =⨯+⨯+⨯+21(21)2(21)2n n n n ---⨯++⨯1132(12)(21)2.212n n n ---+-+⨯-(21)21.2n n n T -⨯+=【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.35.【2017年高考北京卷理数】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; (2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(1)详见解析;(2)详见解析. 【解析】(1)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减. 所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-.所以对任意1,1n n c n ≥=-,于是11n n c c +-=-, 所以{}n c 是等差数列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++是等差数列.②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c 是等差数列.③当10d <时,当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当n m ≥时,nc M n>. 【名师点睛】近几年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对新的信息的理解和接受能力,本题考查数列的有关知识及归纳法证明,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二问难度较大,适合选拔优秀学生. 36.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,。

2019年江苏省高考数学试卷及答案(Word版)

2019年江苏省高考数学试卷及答案(Word版)

YN 输出n 开始1a 2n ←←,1n n ←+32a a ←+20a <结束 (第5题)2019年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符.4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .解析:2==2T ππ 2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ . 解析:()2234,34=5Z i Z =-=+-3.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 解析:3y=4x ±4.集合{}1,0,1-共有 ▲ 个子集. 解析:328=(个)5.右图是一个算法的流程图,则输出的n 的值是 ▲解析:经过了两次循环,n 值变为36.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下: 运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ . 解析:易知均值都是90,乙方差较小,()()()()()()()22222221118990909091908890929025n i i s x xn ==-=-+-+-+-+-=∑7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ . 解析:m 可以取的值有:1,2,3,4,5,6,7共7个 n 可以取的值有:1,2,3,4,5,6,7,8,9共9个所以总共有7963⨯=种可能 符合题意的m 可以取1,3,5,7共4个 符合题意的n 可以取1,3,5,7,9共5个 所以总共有4520⨯=种可能符合题意 所以符合题意的概率为20638.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V ▲ . 解析:112211111334224ADE ABC V S h S h V ==⨯⨯=所以121:24V V =A BC1ADEF 1B1C9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .解析:易知切线方程为:21y x =-所以与两坐标轴围成的三角形区域三个点为()()()0,00.5,00,1A B C - 易知过C 点时有最小值2-,过B 点时有最大值0.510.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+=(21,λλ为实数),则21λλ+的值为 ▲ .解析:易知()121212232363DE AB BC AB AC AB AB AC =+=+-=-+u u u r u u u r u u u r u u u r u u u r u u ur u u u r所以1212λλ+=11.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为 ▲ . 解析:因为)(x f 是定义在R 上的奇函数,所以易知0x ≤时,2()4f x x x =-- 解不等式得到x x f >)(的解集用区间表示为()()5,05,-+∞U12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d .若126d d =,则椭圆的离心率为 ▲ . 解析:由题意知2212,bc a b d d c a c c==-= 所以有26b bcc a= 两边平方得到2246a b c =,即42246a a c c -= 两边同除以4a 得到2416e e -=,解得213e =,即33e =13.平面直角坐标系xOy 中,设定点),(a a A ,P 是函数)0(1>=x xy 图像上一动点,若点A P ,之间最短距离为22,则满足条件的实数a 的所有值为 ▲ . 解析: 由题意设()0001,,0P x x x ⎛⎫> ⎪⎝⎭则有()222222200000200000111112++2=+-2+22PA x a a x a x a x a x a x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 令()001t 2x t x +=≥ 则()222=(t)=t 2222PA f at a t -+-≥ 对称轴t a = 1.2a ≤时,22min 2(2)2422428PA f a a a a ==-+∴-+=1a =- , 3a =(舍去) 2.2a >时,22min 2()228PA f a a a ==-∴-=10a = , 10a =-(舍去) 综上1a =-或10a =14.在正项等比数列{}n a 中,215=a ,376=+a a .则满足n n a a a a a a a a ......321321>++++的最大正整数n 的值为 ▲ . 解析:2252552667123123115521155223 (1),.222222011521312913236002292212n n n n n n n n n n a a a a a a a a a a q a q q a a n nq n q n q a -------=+=+-+=∴++++>∴->∴->>-∴->-+∴<<=>∴==Q QQ n N +∈112,n n N +∴≤≤∈又12n =时符合题意,所以n 的最大值为12二、解答题:本大题共6小题,共计90分。

2019年高考数学(理)真题汇编:专题03 导数及其应用

2019年高考数学(理)真题汇编:专题03 导数及其应用

专题03 导数及其应用1、【2019高考全国Ⅲ理数】已知曲线e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,则( )A .e,1a b ==-B .e,1a b ==C .1e 1,a b -==D .1,e 1b a -==-2、【2019高考全国Ⅲ理数】设函数()sin()(0)5f x x ωωπ=+>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2)π有且仅有3个极大值点 ②()f x 在(0,2)π有且仅有2个极小值点 ③()f x 在(0,)10π单调递增 ④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④3、【2019高考天津卷理数】已知R a ∈,设函数222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为( ) A.[]0,1B.[]0,2C.[]0,eD.[]1,e4、【2019高考全国Ⅰ理数】曲线23()e xy x x =+在点(0,0)处的切线方程为_______. 5、【2019高考浙江卷】已知R a ∈,函数3()f x ax x =-,若存在R t ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 6、【2019高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是__________7、【2019高考江苏卷】在平面直角坐标系xOy 中,点A 在曲线ln y x =上,且该曲线在点A 处的切线经过点(e,1)--(e 为自然对数的底数),则点A 的坐标是_________8、【2019高考北京卷理数】设函数f (x )=e x+a e −x(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.9、【2019高考全国Ⅰ理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:1.()f x '在区间(1,)2π-存在唯一极大值点; 2.()f x 有且仅有2个零点.10、【2019高考全国Ⅱ理数】已知函数()11ln x f x x x -=-+.1.讨论()f x 的单调性,并证明()f x 有且仅有两个零点;2.设0x 是()f x 的一个零点,证明曲线ln y x =在点00l (,)n A x x 处的切线也是曲线exy =的切线.11、【2019高考全国Ⅲ理数】已知函数32()2f x x ax b =-+. 1.讨论()f x 的单调性;2.是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.12、【2019高考天津卷理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.1.求()f x 的单调区间;2.当,42x ⎡⎤∈⎢⎥⎣π⎦π时,证明()()02f x g x x ⎛⎫π+-≥ ⎪⎝⎭;3.设n x 为函数()()1u x f x =-在区间2,242m m ⎛⎫+π+π ⎝π⎪⎭内的零点,其中N n ∈,证明20022sin cos n n n x x e x -ππ+-π<-.13、【2019高考浙江卷】已知实数0a ≠,设函数()=ln 0.f x a x x +>1.当34a =-时,求函数()f x 的单调区间;2.对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e 2.71828=⋯为自然对数的底数.14、【2019高考江苏卷】设函数()()()(),,,R f x x a x b x c a b c =---∈、()f 'x 为()f x 的导函数.1.若a b c ==,(4)8f =,求a 的值;2.若,a b b c ≠=,且()f x 和'()f x 的零点均在集合{3,1,3}-中,求()f x 的极小值;3.若0,01,1a b c =<≤=,且()f x 的极大值为M ,求证:427M ≤. 15、【2019高考北京卷理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.答案以及解析1答案及解析: 答案:D解析:详解:'ln 1,xy ae x =++1'|12x k y ae ===+= 1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D .2答案及解析: 答案:D解析:()sin (0)5f x wx w π⎛⎫=+> ⎪⎝⎭,在[0,2]π有且仅有5个零点.02x ∴≤≤π,12555wx w ππ≤+≤π+,1229510w ≤<,④正确.如图213,,x x x 为极大值点为3个,①正确;极小值点为2个或3个.∴②不正确.当010x π<<时,5105w wx f πππ<+<+π,当2910w =时,2920491051001001002w +=+=<ππππππ. ∴③正确,故选D .3答案及解析: 答案:C解析:首先(0)0f ≥,即0a ≥, 当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x =,则2ln 1'()(ln )x g x x -=,易知x e =为函数()g x 在(1,)+∞唯一的极小值点、也是最小值点, 故max()()g x g e e ==,所以a e ≤。

2019年江苏省高考数学试卷(含答案解析)

2019年江苏省高考数学试卷(含答案解析)

2019年江苏省高考数学试卷一.填空题1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号产品,产量分别为200,400,300,100件.为检验产品质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是.5.(5分)若tan(α﹣)=.则tanα=.6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x 的值是.11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f (a﹣1)+f(2a2)≤0.则实数a的取值范围是.12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且t anα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是.二.解答题15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.16.(14分)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.17.(14分)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.18.(16分)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.19.(16分)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.20.(16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.[选修4-2:矩阵与变换]22.已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.[选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.[选修4-5:不等式选讲]24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【必做题】25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.26.已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.2017年江苏省高考数学试卷参考答案与试题解析一.填空题1.(5分)(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为1.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用.2.(5分)(2017•江苏)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|==.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.3.(5分)(2017•江苏)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取18件.【分析】由题意先求出抽样比例即为,再由此比例计算出应从丙种型号的产品中抽取的数目.【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为=,则应从丙种型号的产品中抽取300×=18件,故答案为:18【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例,即样本容量和总体容量的比值,在各层中进行抽取.4.(5分)(2017•江苏)如图是一个算法流程图:若输入x的值为,则输出y 的值是﹣2.【分析】直接模拟程序即得结论.【解答】解:初始值x=,不满足x≥1,所以y=2+log2=2﹣=﹣2,故答案为:﹣2.【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于基础题.5.(5分)(2017•江苏)若tan(α﹣)=.则tanα=.【分析】直接根据两角差的正切公式计算即可【解答】解:∵tan(α﹣)===∴6tanα﹣6=tanα+1,解得tanα=,故答案为:.【点评】本题考查了两角差的正切公式,属于基础题6.(5分)(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则==.故答案为:.【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力.7.(5分)(2017•江苏)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P==,故答案为:【点评】本题主要考查几何概型的概率公式的计算,结合函数的定义域求出D,以及利用几何概型的概率公式是解决本题的关键.8.(5分)(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.【解答】解:双曲线﹣y2=1的右准线:x=,双曲线渐近线方程为:y=x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2.故答案为:2.【点评】本题考查双曲线简单性质的应用,考查计算能力.9.(5分)(2017•江苏)等比数列{a n}各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.10.(5分)(2017•江苏)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是30.【分析】由题意可得:一年的总运费与总存储费用之和=+4x,利用基本不等式的性质即可得出.【解答】解:由题意可得:一年的总运费与总存储费用之和=+4x≥4×2×=240(万元).当且仅当x=30时取等号.故答案为:30.【点评】本题考查了基本不等式的性质及其应用,考查了推理能力与计算能力,属于基础题.11.(5分)(2017•江苏)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,] .【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R 上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)=f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.12.(5分)(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n (m,n∈R),则m+n=3.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得c osα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.【点评】本题考查了向量坐标运算性质、和差公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是[﹣5,1] .【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x0、y0的关系式.14.(5分)(2017•江苏)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是8.【分析】由已知中f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=,其中集合D={x|x=,n∈N*},分析f(x)的图象与y=lgx 图象交点的个数,进而可得答案.【解答】解:∵在区间[0,1)上,f(x)=,第一段函数上的点的横纵坐标均为有理数,又f(x)是定义在R上且周期为1的函数,∴在区间[1,2)上,f(x)=,此时f(x)的图象与y=lgx有且只有一个交点;同理:区间[2,3)上,f(x)的图象与y=lgx有且只有一个交点;区间[3,4)上,f(x)的图象与y=lgx有且只有一个交点;区间[4,5)上,f(x)的图象与y=lgx有且只有一个交点;区间[5,6)上,f(x)的图象与y=lgx有且只有一个交点;区间[6,7)上,f(x)的图象与y=lgx有且只有一个交点;区间[7,8)上,f(x)的图象与y=lgx有且只有一个交点;区间[8,9)上,f(x)的图象与y=lgx有且只有一个交点;在区间[9,+∞)上,f(x)的图象与y=lgx无交点;故f(x)的图象与y=lgx有8个交点;即方程f(x)﹣lgx=0的解的个数是8,故答案为:8【点评】本题考查的知识点是根的存在性及根的个数判断,函数的图象和性质,转化思想,难度中档.二.解答题15.(14分)(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【分析】(1)利用AB∥EF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.【解答】证明:(1)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(2)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG∥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题.16.(14分)(2017•江苏)已知向量=(cosx,sinx),=(3,﹣),x∈[0,π].(1)若∥,求x的值;(2)记f(x)=,求f(x)的最大值和最小值以及对应的x的值.【分析】(1)根据向量的平行即可得到tanx=﹣,问题得以解决,(2)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出【解答】解:(1)∵=(cosx,sinx),=(3,﹣),∥,∴﹣cosx=3sinx,∴tanx=﹣,∵x∈[0,π],∴x=,(2)f(x)==3cosx﹣sinx=2(cosx﹣sinx)=2cos(x+),∵x∈[0,π],∴x+∈[,],∴﹣1≤cos(x+)≤,当x=0时,f(x)有最大值,最大值3,当x=时,f(x)有最小值,最大值﹣2.【点评】本题考查了向量的平行和向量的数量积以及三角函数的化简和三角函数的性质,属于基础题17.(14分)(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.【分析】(1)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=±,则2×=8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(2)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;方法二:设P(m,n),当m≠1时,=,=,求得直线l 1及l1的方程,联立求得Q点坐标,根据对称性可得=±n2,联立椭圆方程,即可求得P点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l1的方程y=﹣(x+1),①直线l2的方程y=﹣(x﹣1),②联立解得:x=﹣m,则Q(﹣m,),由Q在椭圆方程,由对称性可得:=±n2,即m2﹣n2=1,或m2+n2=1,由P(m,n),在椭圆方程,,解得:,或,无解,又P在第一象限,所以P的坐标为:P(,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.18.(16分)(2017•江苏)如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm.分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm.现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l 没入水中部分的长度;(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l 没入水中部分的长度.【分析】(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求出sin∠GEM=,由此能求出玻璃棒l没入水中部分的长度.【解答】解:(1)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴=,,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(2)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1=,sin∠EGM=sin∠EE1G1=,cos,根据正弦定理得:=,∴sin,cos,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG=,∴EN===20cm.∴玻璃棒l没入水中部分的长度为20cm.【点评】本题考查玻璃棒l没入水中部分的长度的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.19.(16分)(2017•江苏)对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…+a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【分析】(1)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1)═2×3a n,据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;(2)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.【解答】解:(1)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(2)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②+a n﹣2+a n+a n+1=4a n﹣1,③由①可知:a n﹣3a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.20.(16分)(2017•江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.【分析】(1)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣,从而f(﹣)=0,整理可知b=+(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(2)通过(1)构造函数h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(3)通过(1)可知f′(x)的极小值为f′(﹣)=b﹣,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为﹣+2,进而问题转化为解不等式b﹣+﹣+2=﹣≥﹣,因式分解即得结论.【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣.由于当x>﹣时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣)=0,即﹣+﹣+1=0,所以b=+(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣+>0,解得a>3,所以b=+(a>3).(2)证明:由(1)可知h(a)=b2﹣3a=﹣+=(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(3)解:由(1)可知f′(x)的极小值为f′(﹣)=b﹣,设x1,x2是y=f(x)两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)=++a(+)+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2=﹣+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣,所以b﹣+﹣+2=﹣≥﹣,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【点评】本题考查利用导数研究函数的单调性、极值,考查运算求解能力,考查转化思想,注意解题方法的积累,属于难题.二.非选择题,附加题(21-24选做题)【选修4-1:几何证明选讲】(本小题满分0分)21.(2017•江苏)如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(1)∠PAC=∠CAB;(2)AC2 =AP•AB.【分析】(1)利用弦切角定理可得:∠ACP=∠ABC.利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(2)由(1)可得:△APC∽△ACB,即可证明.【解答】证明:(1)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(2)由(1)可得:△APC∽△ACB,∴=.∴AC2 =AP•AB.【点评】本题考查了弦切角定理、圆的性质、三角形内角和定理、三角形相似判定与性质定理,考查了推理能力与计算能力,属于中档题.[选修4-2:矩阵与变换]22.(2017•江苏)已知矩阵A=,B=.(1)求AB;(2)若曲线C1:=1在矩阵AB对应的变换作用下得到另一曲线C2,求C2的方程.【分析】(1)按矩阵乘法规律计算;(2)求出变换前后的坐标变换规律,代入曲线C1的方程化简即可.【解答】解:(1)AB==,(2)设点P(x,y)为曲线C1的任意一点,点P在矩阵AB的变换下得到点P′(x0,y0),则=,即x0=2y,y0=x,∴x=y0,y=,∴,即x02+y02=8,∴曲线C2的方程为x2+y2=8.【点评】本题考查了矩阵乘法与矩阵变换,属于中档题.[选修4-4:坐标系与参数方程]23.(2017•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s 的函数,从而得出最短距离.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.【点评】本题考查了参数方程的应用,属于基础题.[选修4-5:不等式选讲]24.(2017•江苏)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd ≤8.【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd 化简,利用三角函数的单调性即可证明.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),即可得出.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.【点评】本题考查了对和差公式、三角函数的单调性、不等式的性质,考查了推理能力与计算能力,属于中档题.【必做题】25.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(1)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(2)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A的余弦值,进一步得到正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【点评】本题考查异面直线所成的角与二面角,训练了利用空间向量求空间角,是中档题.26.(2017•江苏)已知一个口袋有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量x表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明E(X)<.【分析】(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A2)=P(A2|A1)P(A 1)+P(A2|)P(),由此能求出编号为2的抽屉内放的是黑球的概率.(2)X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,从而E(X)=()=,由此能证明E (X)<.【解答】解:(1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p(A 2)=P(A2|A1)P(A1)+P(A2|)P()===.证明:(2)∵X的所有可能取值为,…,,P(x=)=,k=n,n+1,n+2,…,n+m,∴E(X)=()==<==•()==,∴E(X)<.【点评】本题考查概率求法,考查离散型随机变量的分布列、数学期望等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.。

高考数学2019真题汇编-立体几何(解析版)

高考数学2019真题汇编-立体几何(解析版)

专题04 立体几何1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .64π C .62πD .6π【答案】D 【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,3CF ∴=, 又90CEF ∠=︒,213,2CE x AE PA x ∴=-==,AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x∠==,2243142x x x x+-+∴=, 221221222x x x ∴+=∴==,,,2PA PB PC ∴===, 又===2AB BC AC ,,,PA PB PC ∴两两垂直,22226R ∴=++=,62R ∴=,344666338V R ∴=π=π⨯=π,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决. 2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.4.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.【2019年高考浙江卷】设三棱锥V–ABC的底面是正三角形,侧棱长均相等,P是棱VA 上的点(不含端点).记直线PB与直线AC所成的角为α,直线PB与平面ABC所成的角为β,二面角P–AC–B的平面角为γ,则A.β<γ,α<γB.β<α,β<γC.β<α,γ<αD.α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法. 6.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm ,∴3112312cm 3O EFGHV -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.7.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.8.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m (如果l ⊥α,l ⊥m ,则m ∥α也对) 【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,是不正确的,有可能m 在平面α内;但是已知了直线在平面外,故正确。

2019高考数学真题(文)分类汇编-平面解析几何含答案解析

2019高考数学真题(文)分类汇编-平面解析几何含答案解析

平面解析几何专题1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=O P O F ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==,c∴a=12a =,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.11.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 12.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(11;(2)4b =,a 的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P . 所以4b =,a的取值范围为)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t ktk k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点). (1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得2222a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭. 由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值1+G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。

2019高考数学江苏卷

2019高考数学江苏卷

2019年普通高等学校招生全国统一考试(江苏卷)一、填空题(本大题共14 小题,每小题5分,共70分.) 已知集合 , | ,则. 规范解答:因为 , | .将集合 分别在数轴上表示出来,如图所示.所以 . 知识复习:1.交集是指由所有属于集合 且属于集合 的元素构成的集合.2.并集是指由所有属于集合 或属于集合 的元素构成的集合.3.补集是指由全集 中不属于 的所有元素构成的集合. 解题总结:此类题目要看清集合的代表元素,先化简集合,再借助于数轴或文氏图进行集合运算,特别是理解集合的含义,把集合化简且具体化是解决此类问题的关键.题型归纳:1.(2019全国卷Ⅰ理科第1题)已知集合 | , | . 则 ⋂ ( C ).A. |B. |C. |D. |解:由 ,得 ,解得 , 即 | ,将集合 分别在数轴上表示出来,如图所示. 因此 | .2.(2019全国卷Ⅰ文科第2题)已知集合 , 则 ⋂ ( C ).A. B. C. D.解:因为 ,所以 . 又 ,所以 .0 -1 1 6 O -1 1 -3 -2 -4 2 3 x3.(2019全国卷Ⅱ理科第1题)已知集合 | , | , 则 ⋂ .A. B. C. D. 解:因为 | { | 或 }, | | ,所以 ⋂ | | , { | 或 } | 将集合在数轴上表示出来,如图所示. 因此 ⋂ |3.(2019北京卷文科第1题)已知集合 | | ,则 ( ) . . . . 解:将集合 在数轴上表示出来,如图所示.由图可得 | .已知复数 的实部为0,其中 为虚数单位,则实数 的值是 .规范解答: , 因为其实部为零,故 知识复习: 1.虚数单位 .2.两个复数相等的充要条件是它们的实部和虚部分别相等.,3.复数加减 , 复数相乘 ,4.复数 ,对应复平面内的点 ,对应向量 ⃗⃗⃗⃗⃗ .5.复数的模| | | | √ ,表示复平面内的点 到原点的距离.解题总结:要正确理解复数的几何意义,准确掌握有关运算法则,灵活运用相关变形技巧.题型归纳:1.(2019全国卷Ⅰ理科第2题)O -1 1 2x O 1 2 3 x设复数 满足| | ,z在复平面内对应的点为 ,则 . A. B. C. D. 解:由已知条件,可得 ,因为| | ,所以| | ,| | ,√ ,两边平方,得 . 2.(2019全国卷Ⅰ文科第1题)设复数,则| | .A. B. √ C. √ D. 解:因为.所以| | √() () √ .注:利用平方差公式去掉分母中的虚数单位 ,( . 3.(2019北京卷理科第1题) 已知复数 ,则 ̅ ( ). .√ .√ . . 解:因为 ,所以共轭复数 ̅ , 所以 ̅ . 如图是一个算法流程图,则输出的 的值是 .规范解答: 第一次循环,; 第二次循环,; 第三次循环,; 第四次循环,, 循环结束.故输出的 的值是 . 知识复习:结束开始x 输出S xY x=x+1x ←1,S ←0 N√ 的定义域是.答案:考点:函数的定义域和一元二次不等式的解法.解题思路:根据被开方数非负求解.解析:要使函数有意义,需,即,,解得.故所求函数的定义域为.,则该组数据的方差是.答案:考点:方差的计算.解题思路:根据方差公式求解.解析:这组数据的平均数为,故方差为.3名男同学和2 名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.答案:考点:古典概型、对立事件.解题思路:思路1:列出所有等可能事件和要求事件包含的基本事件,根据古典概型概率公式求解.思路2:列出所有等可能事件和要求事件的对立事件包含的基本事件,根据古典概型概率公式求解.解析:方法1:设3名男同学分别为,2名女同学分别为,则所有等可能事件分别为,共10个,选出的2名同学中至少有1名女同学包含的基本事件分别为,共7个,故所求概率为.方法2:同方法1,得所有等可能事件共10个,选出的2名同学中没有女同学有基本事件分别为,共3个,故所求概率为.中,若双曲线经过点,则该曲线的渐近线方程是.答案:√考点:双曲线的几何性质.解题思路:先把点的坐标代入双曲线的标准方程,求出的值,再求渐近线方程.解析:因为双曲线经过点,所以,解得√,即双曲线方程为,其渐近线方程为√.是等差数列,是其前项和.若,则的值是.答案:考点:等差数列基本量的运算.解题思路:利用题中给的两个条件结合等差数列的性质及通项公式、前项公式求解.解析:方法1:因为,所以,,,,①.又因为,所以,,②.联立①②{解得{故.方法2:同方法1得.又因为,所以,,,.所以, .故.的体积是 , 为 的中点,则三棱锥 的体积是 .:考点:多面体的体积.解题思路:找出三棱锥的体积与长方体的体积之间的关系求解. 解析:设长方体中 ,则 ,所以.中, 是曲线上的一个动点,则点 到直线 的距离的最小值是 .:考点:点到直线的距离、基本不等式、导数的几何意义.解题思路:思路1:设出点 的坐标,利用点到直线的距离公式列式,用基本不等式求解.思路2:运用数型结合的思想求解.曲线上点 处的切经线与直线 平行时,点 到直线 的距离即为最短距离.解析:方法1:由题意可设 () ,则点 到直线 的距离 ||√||√√√,当且仅当,即 √ 时取等号.故所求最小值为4.方法1:设 () ,则曲线在点 处的切线的斜率为.令,结合 得 √ ,所以 √ √ ,曲线上的点 到直线 最短距离即为此时点 到直线直线 的距离,故 √ √ |√.中,点 在曲线 上,且该曲线在点 处的切线经过点 为自然数对数的底数 ,则点 的坐标是 . 答案:考点:导数的几何意义.解题思路:设出点 的坐标,先求出曲线在点 处的切线方程,再结合点 在曲线上列方程求解.解析:设 ,则曲线 在点 处的切线方程为. 又切线过点 ,所以有. 再由 ,解得 . 故点 的坐标为 .A BCD A 1B 1C 1D 1EA EB DC x y O中, 是 的中点, 在边 上, 与 交于点 .若⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ,则的值是 .答案:√考点:平面向量的数量积和线性运算.解题思路:思路一:过点 作 交 于 ,可证 ,从而可把⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ 转化为 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ 的线性表示,代入题中的等式求解.思路一:建立平面直角坐标系,利用坐标法求解.解析:方法一:如图①,过点 作 交 于 ,由 是 的中点,可知 是 的中点.又 ,则知 ,从而可得 ,则有 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ , ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 所以 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗( ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ) ( ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ) ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ , 整理可得 ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ,所以√ .方法二:以点 的坐标原点, 所在直线为 轴建立平面直角坐标系,如图②所求.设 ,则.}. 因为⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗ , 所以, 即 *+,所以 ,所以 √ .所以√ √ .方法技巧: 1.在高考中经常会遇到几何图形中计算两个向量 的数量积问题,如果无法找到寻找到计算数量积的要素( 的模、夹角),那么可考虑用不共线的两个向量(称为基称底)将 表示出来,进而进行运算.这也是在几何图形中处理向量数量积问题的一个重要方法.2.在处理向量数量积问题时,若几何图形特殊(如正方形、等边三角形等),易于建系和确定点的坐标,则可考虑将向量坐标化,一旦所求向量用坐标表示,其数量积等问题便可迎刃而解.BA EDCOBAECO已知(),则 ()的值是 .答案:√考点:三解恒等变换与求值.解题思路:思路一:先由条件求出 ,再把要求的目标式弦化切.思路一:先把条件切化弦,得 ()与 ()的关系,再把要求的式子变换为* ()+并展开,整体代入求解.解析:方法一:由 (),解得 或.( ) √ √( )√ ( ) √ √√√√, 将 和分别代入得 ( ) √.方法二:因为()()(),所以 ( )( ).①又 () *() + () () √,②由①②解得 () √, ()√. 所以 () * ()+ () ( ) √.规律总结: 1.三解函数的变换遵循“三变”:变“角”、变“函数名称”,变“结构特征”.2.角的变换基本思路:⑴若 前的系数为倍数关系,运用倍角公式,改变三角函数的结构特征进行求解;⑵相加减后为特殊角:将两角进行相加或相减得出特殊角,再运用透导公式及两角和与差的三角函数求解;⑶解利用换元思想:将条件中的角或所要求的角设为 ,将另一个用 表示,这样比较容易找到两个角之间的关系.是定义在 上的两个周期函数, 的周期为 , 的周期为 ,且 是奇函数.当时, √ , {其中 .若在区间 上,关于 的方程 有 个不同的实数根,则 的取值范围是 .考点:函数的解析式、函数的基本性质与图象、方程的要根与函数的零点、圆的方程、直线与圆的位置关系、点到直线的距离公式.解题思路:利用 的解析式,结合 的性质,作出 的图象求解.解析: 当 时, √ ,结合 是周期为 的奇函数,可作出 在 上的图象如图所示.因为当 时, ,又 的周期为 , 所以当 时,.1 2 1xy-1/2由图可知,当时,与的图象有2个交点.所以当时,与的图象有6个交点.又当时,恒过定点,由图可知,当时,与的图象无交点.所以时,与的图象有6个交点.由与的周期性可知,当时,与的图象有2个交点.当与圆弧相切时,√.√当过点与时,.所以√.方法技巧:1.分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻注意自变量的范围是否在发生变化.即“分段函数分段看”.2.函数周期性的作用:“窥一斑而知全豹”,只要了解函数一个周期时的性质,便可得到整个定义域内函数的性质.⑴函数值:可利用周期性将自变量大小进行调整,进而利用已知条件求值.⑵图象:只要作出一个周期内的函数图象,其余部分的图象可根据周期性得到.二、解答题(解答应写出文字说明、证明过程或演算步聚)本小题满分14分)在中,角的对边分别为.⑴若√,求的值.⑵若,求( )的值.考点:正弦定理、余弦定理、同角三角函数关系、诱导公式.解题思路:⑴根据题中给予的条件利用余弦定理求解.⑵根据正弦定理将转化为,然后利用三角恒等变换求解.解答:⑴解:因为√,由余弦定理,得,即 (√ ),解得,所以√.⑵解:因为,由正弦定理,得,所以.从而,即,故.因为,所以,从而√.( )√.解后反思:解三角形时,可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷.在解题时,还要根据所给的条件,利用正弦定理或余弦定理合理地进行边和角的相互转化.本小题满分14分)如图,在直三棱柱中,分别为的中点,.求证:⑴∥平面;⑵.考点:直线与直线、直线与平面的位置关系. 解题思路:⑴证明线面平行、即证线线平行. ⑵证明线线垂直,想办法证明线面垂直.解答:⑴证明:因为 分别为 的中点,所以 ∥ . 在直三棱柱 中, ∥ ,所以 ∥ .又因为 平面 , 平面 ,所以 ∥平面 . ⑵证明:因为 , 为 的中点,所以 . 因为三棱柱 是直棱柱,所以 平面 . 又因为 平面 ,所以 .因为 平面 , 平面 , , 所以 平面 .因为 平面 ,所以 .规律总结:⑴在判断线面、面面平行时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面面平行”,再到“面面平行”.⑵证明线面垂直的核心是证线线垂直,而证明线线垂直,则需供助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本方法.(本小题满分14分)如图,在平面直角坐标系 中,椭圆的焦点为.过 作 轴的垂线 ,在 轴的上方, 与圆 交于点 ,与椭圆 交于点.连接 并延长交圆 于点 ,连接 交椭圆 于点 ,连接 .已知. ⑴求椭圆 的标准方程; ⑵求点 的坐标.考点:直线方程、圆的方程、椭圆的几何性质、直线用、及圆及椭圆的位置关系. 解题思路:⑴直接根据条件运用椭圆的定义求解.⑵思路一:结合⑴中结论求出点 的坐标,写出直线 的方程,并与圆的方程联立得点 的坐标,从而写出 的方程,将其与椭圆方程联立求得点 的坐标.思路二:连接 ,注意到 ,所以 ∥ ,可得 轴,从而可得点 的横坐标为 ,将 与椭圆方程联立可得点 的坐标.解答:⑴解:设椭圆 的焦距为 .因为 ,所以 . 又因为轴,所以 √ √( ).BCB 1A A 1C 1DEF 1F 1 O A DBEl xy因此 ,从而 . 由 ,得 . 因此椭圆 的标准方程为.⑵解:方法一:由⑴知,椭圆.因为 轴,所以点 的横坐标为为 .将 代入圆 的方程 ,解得 . 因此点 在 轴上方,所以 .又 ,所以直线 . 由{,得 , 解得 或.将代入 ,解得.因此 ().又 ,所以直线. 由{,得 ,解得 或.又因为 是线段 与椭圆的焦点,所以 .将 代入 ,得. 因此 (). 方法一:由⑴知,椭圆.如图,连接 .因为 ,所以 , 从而 .因为 ,所以 . 所以 , 从而 ∥ .因为 轴,所以 轴.因为 ,由{,得.又因为 是线段 与椭圆的焦点,所以 .将 代入 ,得. 因此 ().本小题满分14分)如图,一个湖的边界是圆心为 的圆,湖的一侧有一条直线型公路 ,湖上有桥 ( 是圆的直径).规划在公路 上选两个点 ,并修建两段直线型道路 ,规划要求:F 1F 1 O A DBEl xy线段 上的所有点到点 的距离均小于圆 的半径.已知点 到直线 的距离分别为 和 ( , 为垂足),测得 (单位:百米). ⑴若道路 与桥 垂直,求道路 的长.⑵在规划要求下, 和 中能否有一个点选在 处?并说明理由.⑶在规划要求下,若道路 和 的长度均为 (单位:百米),求当 最小时, 两点间的距离.考点:三角函数的应用、直线与圆.解题思路:思路一:⑴作 于点 ,可求 的长度,根据 与 互余,在 中求出 .⑵若 选在 处,可证明线段 上的点(除 )外到点 的距离都小于圆 的半径,说明点 不能选在 处.若 选在 处,可根据余弦定理计算 的余弦值,说明 为锐角,从而说明点 也不能选在 处.⑶先讨论点 的位置,结合⑴中结论求出 的最小值及取得最小值时点 到点 的距离然后讨论点 的位置,根据上述最小值得出符合条件的点 位于点 的右侧,并求出 的值,进而得解. 思路二:⑴过 作 ,以 为原点直线 为 轴建立平面直角坐标系,可得直线 、圆 的方程,进而得直线 的方程,解得点 的坐标,从而求求出 的长度. ⑵长度利用坐标法分析求解.解答:方法一:如图,过 作 ,垂足为 .由已知条件得,四边形 为矩形, . 因为 ,所以. 所以.因此道路 的长为15(百米). ⑵解:均不能.理由如下:①若 在 处,由⑴可得 在圆上,则线段 上的点(除 )到点 的距离均小于圆 的半径,所以 选在 处不满足规划要求.②若 在 处,连接 ,由⑴知 √ , 从而,所以 为锐角.所以线段 上存在点到点 的距离小于圆 的半径. 因此选 在 处也不满足规划要求. 综上, 和 均不能选择在 处. ⑶解:先讨论点 的位置.当 时,线段 上存在点到点 的距离小于圆 的半径,点 不符合规划要求;当 时,对线段 上任意一点 , ,即线段 上所有点到点 的距离均不小于圆 的半径,点 符合规划要求;A BOC l A BOD C lP Q当 时,设 为 上一点,且 ,由⑴知, .此时;当 时,在 中, . 由上可知, . 再讨论点 的位置.由⑵知,要使得 ,点 只有位于点 的右侧,才能符合规划要求. 当 时, √ √ √ . 此时,线段 上所有点到点 的距离均不小于圆 的半径.综上,当 ,点 位于点 的右侧,且 √ 时, 最小,此时 两点间的距离 √ .因此, 最小时, 两点间的距离为 √ (百米). 方法二:⑴解:如图,过 作 ,垂中为 .以 为坐标原点,直线 为 轴,建立平面直角坐标系.因为 ,所以 ,直线 的方程为 ,点 的纵坐标分别为 . 因为 为圆 的直径, ,所以圆 的方程为 .从而 ,直线 的斜率为. 因为 ,所以直线 的斜率为, 直线 的方程为.所以 , √ . 因此道路 的长为 (百米). ⑵解:均不能.理由如下:①若 在 处,取线段 上一点 ,则 , 所以选 在 处不符合规划要求.②若 在 处,连接 ,由⑴知 ,又 ,所以线段 :. 在线段 上取点 (),因为 √ () √ ,所以线段 上存在点到点 的距离小于圆 的半径. 因此 选在 处也不满足规划要求. 综上, 和 均不能选在 处. ⑶解:选讨论点 的位置.当 时,线段 上存在点到点 的距离小于圆 的半径,点 不符合规划要求.当 时,对线段 上任意一点 ,即线段 上所有点到点 的距离均不小于圆 的半径,点 符合规划要求.当 时,设 为 上一点,且 ,由⑴知, ,此地 ; 当 时,在 中, . 由上可知, . 再讨论点 的位置.由⑵知,要使得 ,点 只有位于点 的右侧,才能符合规划要求.A BODClPQxyH当时,设,由√,得√,所以√.此时,线段上所有点到点的距离均小于圆的半径.综上,当√时,最小,此时两点间的距离√√.因此,最小时,两点间的距离为√(百米).解后反思:本题以直线与圆为背景,考查应用意识、数学建模能力和解决实际问题的能力.解题时应注意以下几点:⑴根据题意抽象出函数的解析式,确定定义域;⑵解题时要善于运用图形的性质;⑶由应用题建模得出的数学式子一般比较复杂,运算化简时要注意合理性;⑷要回到实际问题中去,写出实际问题的答案.本小题满分16分)设函数,,为的导函数.⑴若,,求的值.⑵若,且和的零点均在集合中,求的极小值.⑶若,且的极大值为,求证:.考点:利用导数研究函数的性质.解题思路:⑴由代入求解.⑵通过的零点在集合中,确定的值,通过讨论函数单调性求极值.⑶先求出的极大值,再根据的取值范围证明,或用放缩法构造函数证明.解答:⑴因为,所以,从而( ).令,得或.因为都在集合中,且,所以.此时.⑶证明:因为,所以,.因为,所以,则有2个不同的零点,设为.由,得 √ √ .方法一:()(√ )(√ ).因此.方法二:因为,所以.当时,.令,则( ).令,得.列表如下:所以当时,取得极大值,且是最大值,故().所以当时,.因此.解后反思:本题主要考查层数在研究函数性质中的运用,考查函数思想、归化与转化思想.考查抽象概括能力、综合分析问题与解决问题的能力.对于导数试题,高考往往考查综合应用,研究函数最值、零点、不等式的证明等问题,对能力要求比较高.解答本题第⑶问最关键之处是发现的极大值为本小题满分16分)定义首项为且公比为正数的等比数列为“”数列.⑴已知等比数列满足,求证:数列为“”数列.⑵已知数列满足,其中为数列的前项和.①求数列的通项公式.②设为正整数.若存在“”数列,对任意正整数,当时,都有成立,求的最大值.考点:等差数列与等比数列的定义、通项公式、性质.解题思路:⑴根据题目条件求出,即可得证.⑵①通过题中所给的递推关系变形可知数列是首项和公差均为1的等差数列;②对所给不等式变形构造函数,通过导数研究函数的极值求解.解答:⑴证明:设等比数列的公比为,所以.由,得{解得{.因此数列是“数列”.⑵解:①因为,所以.由,得,则.由,得.当时,由,得,整理得.所以数列是首项与公差均为1的等差数列.因此数列的通项公式为.②由①知,.因为数列为“数列”,设公比为,所以.因为,所以,其中.当时,有;当时,有.设,则.因为,所以.取√,当时,,即,经检验知也成立.因此所求的最大值不小于5.若,分别取,得,且,从而,且,所以不存在.因此所求的最大值小于解后反思:数列的综合问题,常将等差、等比数列结合在一起,应重点分析等差数列、等比数列的通项公式及前项和公式,分析等差、等比数列之间的联系,往往用到转化和化归的思想方法,在涉及数列的单调性及最值问题时,可以转化为函数的单调性及最值来处理.数学Ⅱ(附加题)选做题](本题包含三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤)A.(本小题满分分)选修4-2:矩阵与变换已知矩阵*+.⑴求.⑵求矩阵的特征值.考点:矩阵的运算、特征值.解题思路:⑴求即用矩阵乘法法则求.⑵写出矩阵的特征多项式,由求解.解答:⑴因为*+.所以*+*+*+*+.⑵矩阵的特征多项式为||.令,解得的特征值.B.(本小题满分分)选修4-4:坐标系与参数方程在极坐标系中,已知两点( )(√ ),直线的方程为( ).⑴求两点间的距离.⑵求点到直线的距离.考点:曲线的极坐标方程.解题思路:⑴设极点为,在中利用余弦定理求解.⑵利用直线过定点( √ ),倾斜角为,根据的极坐标构造三角形求解.解答:⑴设极点为,在中,( )(√ ),由余弦定理,得√(√ )√()√.⑵因为直线的方程为( ),所以直线过点( √ ),斜倾角为.又(√ ),所以点到直线的距离为( √√ )().C.(本小题满分分)选修4-5:不等式选讲设,解不等式||||.考点:解不等式.解题思路:分三种情况去掉绝对值符号,分类讨论求解.解答:当时,原不等式可化为,解得;当时,原不等式可化为,即,无解;当时,原不等式可化为,解得.综上,原不等式的解集为, | 或 -.[必做题](第题、题,每题分,共计20分.解答时应写出文字说明、证明过程或演算步骤)本小题满分分)设.已知.⑴求的值.⑵设√√,其中,求的值.考点:二项式定理、组合数.解题思路:⑴注意到代入,可得,即可求解.⑵思路一:展开√,对照√√可得,进而求出.思路二:注意到√√①,结合所给条件√√②,①②即可.解答:因为.所以,,.因为,所以*+.解得.⑵由⑴知,.( √ )( √ )√ (√ )(√ )(√ )(√ )√.方法一:因为,所以,,从而.方法二:( √ )( √ )√( √ )( √ )( √ )√(√ )(√ )(√ )(√ ).因为,所以( √ )√.因此( √ )( √ )( √ )( √ ).本小题满分分)在平面直角坐标系中,设点集,,,.令.从集合中任取两个不同的点,用随机变量表示它们之间的距离.⑴当时,求的概率分布.⑵对给定的正整数,求概率(用表示).考点:计数原理、古典概型、随机变量及其概率分布.解题思路:⑴当时,集合中有6个元素,任取两个不同点,基本事件总数,随机变量的取值可逐一试算,得出4个值,对每一个的值用列举法得出相应基本事件数,再利用古典概型的概率计算公式,求出的概率分布.⑵当时,的情形较多,考虑到集合中元素的纵坐标,只有,可以比较容易地求出对立事件的不同取法,再利用对立事件的概率公式求出概率的值.解答:⑴当时,的所有可能取值是√√.的概率分布为, ( √ ),,( √ ).⑵设和是从中取出的两个点.因为,所出仅需考虑的情况.①若,则,不存在的取法;②若,则√√ ,所以时,当且仅当√ ,此时或,有2种取法;③若,则√√ .因为当时,√ ,所以当且仅当√ ,此时或,有2种取法;④若,则√√ ,所以当且仅当√ ,此时或,有2种取法.综上,当时,的所有可能取值是√ 和√ ,且 ( √ ),( √ ).因此, ( √ ) ( √ ).2019年全国及各省市高考数学全解全析2019年普通高等学校招生全国统一考试1.全国卷1(理科) 1 2.全国卷1(文科)14 3.全国卷2(理科)14 4.全国卷2(文科)14 5.全国卷3(理科)146.全国卷3(文科)14 7.北京卷(理科)14 8.北京卷(文科)14 9.天津卷(理科)14 10.天津卷(文科)14 11.浙江卷14 12.江苏卷14。

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)

2019年江苏省高考数学模拟试卷(1)(含附加,详细答案)文章中没有明显的格式错误和有问题的段落,因此直接改写每段话。

2019年高考模拟试卷(1)第Ⅰ卷(必做题,共160分)一、填空题:本大题共14小题,每小题5分,共70分。

1.已知集合A为{x-1<x<1},集合B为{-1≤x≤2},则AB 的并集为[ -1.2 )。

2.复数z=2i/(1-i)的实部是2/5.3.甲、乙两人下棋,结果是一人获胜或下成和棋。

已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为0.06.4.某地区连续5天的最低气温(单位:°C)依次为8,-4,-1,0,2,则该组数据的方差为23.2.5.根据XXX所示的伪代码,当输出y的值为2时,则输入的x的值为e。

6.在平面直角坐标系xOy中,圆x^2+y^2-4x+4y+4=0被直线x-y-5=0所截得的弦长为4.7.如图,三个相同的正方形相接,则XXX∠XXX的值为1.8.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E为PD上一点,且PE=2ED。

设三棱锥P-ACE的体积为V1,三棱锥P-ABC的体积为V2,则.9.已知F是抛物线C:y=8x的焦点,M是C上一点,FM的延长线交y轴于点N。

若M是FN的中点,则FN的长度为16.10.若函数f(x)为定义在R上的奇函数,当x>0时,f(x)=xlnx,则不等式f(x)<-e的解集为(1/e。

e)。

11.钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图)。

现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为3.12.如图,在△ABC中,点M为边BC的中点,且AM=2,点N为线段AM的中点,若AB×AC=28,则NB×NC的值为21.13.已知正数x,y满足x+y+1/x+1/y=10,则x+y的最小值是4.14.设等比数列{an}满足:a1=2,an=cos(πn/2)+3sin(πn/2),其中n∈N,且nπ/2∈(0.π/2)。

专题01 立体几何部分(解析版)-2020年江苏高考数学试卷名师分析与预测

专题01 立体几何部分(解析版)-2020年江苏高考数学试卷名师分析与预测

专题一 立体几何部分一、近几年江苏高考1、(1)(2019江苏卷)如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.【答案】10.【解析】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. (2)(2019江苏卷).如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1;(2)BE ⊥C 1E . 【解析】(1)因为D ,E 分别为BC ,AC 的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE⊂平面ABC,所以CC1⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.2、(1)(2018江苏卷)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为(2)(2018江苏卷)在平行六面体中,.求证:(1);(2).【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB 1A 1,所以平面ABB 1A 1⊥平面A 1BC .3、(1)(2017江苏卷)如图,圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.【答案】 32【解析】设球的半径为R ,则圆柱的底面半径为R ,高为h =2R .因为V 1=πR 2h =2πR 3,V 2=4πR 33,所以V 1V 2=32. (2)(2017江苏卷)如图,在三棱锥ABCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1) EF ∥平面ABC ; (2) AD ⊥AC .证明:(1) 在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2) 因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD. 因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.4、(1)(2016江苏卷)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A1B1C1D1,下部的形状是正四棱柱ABCDA1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1) 若AB=6 m,PO1=2 m,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当PO1为多少时,仓库的容积最大?【答案】 (1) 由PO 1=2知O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P A 1B 1C 1D 1的体积 V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCDA 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2) 设A 1B 1=a (m),PO 1=h (m),则0<h <6,O 1O =4h .连结O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h <6,从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值.因此,当PO1=2 3 m时,仓库的容积最大.(2)(2016江苏卷)如图,在直三棱柱ABCA1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1) 直线DE∥平面A1C1F;(2) 平面B1DE⊥平面A1C1F.解析:(1) 在直三棱柱ABCA1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1.又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F.(2) 在直三棱柱ABCA1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F.5、(1)(2015江苏卷)现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为________.【答案】7【解析】设新的底面半径为r ,则13π×52×4+π×22×8=13πr 2×4+πr 2×8,解得r =7.(2)(2015江苏卷)如图,在直三棱柱ABCA 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1) DE ∥平面AA 1C 1C ; (2) BC 1⊥AB 1.(1) 由题意知,E 为B 1C 的中点, 又D 为AB 1的中点,因此DE ∥AC .又因为DE ⊄平面AA 1C 1C ,AC ⊂平面AA 1C 1C , 所以DE ∥平面AA 1C 1C .(2) 因为棱柱ABCA 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC .因为AC ⊂平面ABC ,所以AC ⊥CC 1.又因为AC ⊥BC ,CC 1⊂平面BCC 1B 1,BC ⊂平面BCC 1B 1,BC ∩CC 1=C ,所以AC ⊥平面BCC 1B 1. 又因为BC 1⊂平面BCC 1B 1,所以BC 1⊥AC .因为BC =CC 1,所以矩形BCC 1B 1是正方形,因此BC 1⊥B 1C . 因为AC ,B 1C ⊂平面B 1AC ,AC ∩B 1C =C ,所以BC 1⊥平面B 1AC . 又因为AB 1⊂平面B 1AC ,所以BC 1⊥AB 1.二、近几年高考试卷分析从近五年江苏高考数学来看体现了以下几个方面:1、从题型来看主要以一个填空,一个解答;(2016年填空题中没有考查体积,体积的考查体现在应用题中);2、从知识点考查的内容来看主要以填空题是关于体积的计算,解答题设置了2问,第一问考查了平行,主要时候以线面平行,使用的方法还是以中位线为主。

历年高考数学真题汇编专题13 等差、等比数列的应用(解析版)

历年高考数学真题汇编专题13 等差、等比数列的应用(解析版)

历年高考数学真题汇编专题13 等差、等比数列的应用1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a =( ) A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则( ) A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得12a ±=,10≤时,即90b -…时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3、【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=.解得12q =-,所以441411()(1)521181()2a q S q ---===---. 准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算. 4、【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 5、【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 6、【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.n 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.7、【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=L .本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.8、【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.n 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.一、等差数列1、定义:数列{}n a 若从第二项开始,每一项与前一项的差是同一个常数,则称{}n a 是等差数列,这个常数称为{}n a 的公差,通常用d 表示2、等差数列的通项公式:()11n a a n d =+-,此通项公式存在以下几种变形: (1)()n m a a n m d =+-,其中m n ≠:已知数列中的某项m a 和公差即可求出通项公式(2)n ma a d n m -=-:已知等差数列的两项即可求出公差,即项的差除以对应序数的差(3)11n a a n d-=+:已知首项,末项,公差即可计算出项数3、等差中项:如果,,a b c 成等差数列,则b 称为,a c 的等差中项(1)等差中项的性质:若b 为,a c 的等差中项,则有c b b a -=-即2b a c =+ (2)如果{}n a 为等差数列,则2,n n N *∀≥∈,n a 均为11,n n a a -+的等差中项(3)如果{}n a 为等差数列,则m n p q a a a a m n p q +=+⇔+=+ 4、等差数列通项公式与函数的关系:()111n a a n d d n a d =+-=⋅+-,所以该通项公式可看作n a 关于n 的一次函数,从而可通过函数的角度分析等差数列的性质。

2019年高考数学真题专题06 立体几何(解答题)

2019年高考数学真题专题06  立体几何(解答题)

专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2)41717. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =.从而点C 到平面1C DE 的距离为41717.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =. 又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33.【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0),1(3,3,23)B ,33(,,23)22F ,C (0,2,0). 因此,33(,,23)22EF =,(3,1,0)BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得3030x y y z ⎧-+=⎪⎨-=⎪⎩, 取n (131)=,,,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P A B C -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)455. 【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°. 所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 的距离为455. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DM =22=13AD AM +.因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN =22=13AD AN +.在等腰三角形DMN 中,MN =1,可得1132cos 26MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为1326. (3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =3.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =22AC AD +=4.在Rt △CMD 中,3sin 4CM CDM CD ∠==. 所以,直线CD 与平面ABD 所成角的正弦值为34.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)3913. 【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得11122AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得115B C =, 由2,120AB BC ABC ==∠=︒得23AC =,由1CC AC ⊥,得113AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由1111115,22,21BC A B AC ===得11111161cos ,sin 77C A B C A B ∠=∠=, 所以13C D =, 故11139sin 13C D C AD AC ∠==.因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,3,0),(1,0,0),(0,3,4),(1,0,2),(0,3,1),A B A B C --因此11111(1,3,2),(1,3,2),(0,23,3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n 即30,20,x y z ⎧+=⎪⎨=⎪⎩可取(3,1,0)=-n . 所以111|39sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==,22PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+. 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由A B A P ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)43.【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以142PN x=.因为△PCD的面积为27,所以114227 22x x⨯⨯=,解得x=−2(舍去),x=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P−ABCD的体积()22412343 32V⨯+=⨯⨯=.【名师点睛】解答本题时,(1)先由平面几何知识得BC∥AD,再利用线面平行的判定定理证得结论;(2)取AD的中点M,利用线面垂直的判定定理证明PM⊥底面ABCD,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)见解析;(2)1:1【解析】(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC ==. 由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55. 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos 5AD DAP AP ∠==. 所以,异面直线AP 与BC 所成角的余弦值为55.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=, 在Rt △DPF 中,可得5sin 5PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角的正弦值为55. 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥ 又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.-中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,21.【2017年高考江苏卷】如图,在三棱锥A BCDF(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC AD∥,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)28. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,在△PBN中,由PN=BN=1,PB=3得QH=14,在Rt△MQH中,QH=14,MQ=2,所以sin∠QMH=28,所以直线CE与平面PBC所成角的正弦值是28.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。

2019年全国高考数学试题及解析-江苏卷

2019年全国高考数学试题及解析-江苏卷

2019年全国高考数学试题及解析-江苏卷数学Ⅰ试题参考公式圆柱旳体积公式:V 圆柱=Sh ,其中S 是圆柱旳底面积,h 为高. 圆锥旳体积公式:V 圆锥13Sh ,其中S 是圆锥旳底面积,h 为高. 一、填空题:本大题共14个小题,每题5分,共70分.请把【答案】写在答题卡相应位置上。

1.集合{1,2,3,6},{|23},A B x x =-=-<<那么=A B ﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.2.复数(12i)(3i),z =+-其中i 为虚数单位,那么z 旳实部是﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.3.在平面直角坐标系xOy 中,双曲线22173x y -=旳焦距是﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.4.一组数据4.7,4.8,5.1,5.4,5.5,那么该组数据旳方差是﹏﹏﹏﹏﹏﹏﹏﹏▲﹏﹏﹏﹏﹏﹏﹏﹏.5.函数y 旳定义域是▲.6.如图是一个算法旳流程图,那么输出旳a 旳值是▲.7.将一颗质地均匀旳骰子〔一种各个面上分别标有1,2,3,4,5,6个点旳正方体玩具〕先后抛掷2次,那么出现向上旳点数之和小于10旳概率是▲.8.{a n }是等差数列,S n 是其前n 项和.假设a 1+a 22=-3,S 5=10,那么a 9旳值是▲. 9.定义在区间[0,3π]上旳函数y =sin2x 旳图象与y =cos x 旳图象旳交点个数是▲.10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0旳右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠=,那么该椭圆旳离心率是▲.(第10题)11.设f 〔x 〕是定义在R 上且周期为2旳函数,在区间[−1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 假设59()()22f f -=,那么f 〔5a 〕旳值是▲.12.实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,那么x 2+y 2旳取值范围是▲.13.如图,在△ABC 中,D 是BC 旳中点,E ,F 是AD 上旳两个三等分点,4BC CA ⋅=,1BF CF ⋅=-,那么BE CE ⋅旳值是▲.14.在锐角三角形ABC 中,假设sin A =2sin B sin C ,那么tan A tan B tan C 旳最小值是▲.【二】解答题〔本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.〕 15.〔本小题总分值14分〕 在ABC △中,AC =6,4πcos .54B C ==, 〔1〕求AB 旳长; 〔2〕求πcos(6A -)旳值. 16.(本小题总分值14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 旳中点,点F在侧棱B 1B 上,且11B D A F ⊥,1111A C A B ⊥. 求证:〔1〕直线DE ∥平面A 1C 1F ;〔2〕平面B 1DE ⊥平面A 1C 1F . 17.〔本小题总分值14分〕现需要设计一个仓库,它由上下两部分组成,上部分旳形状是正四棱锥1111P A B C D -,下部分旳形状是正四棱柱1111ABCD A B C D -(如下图),并要求正四棱柱旳高1O O 是正四棱锥旳高1PO 旳四倍.(1) 假设16m,2m,AB PO ==那么仓库旳容积是多少?(2) 假设正四棱锥旳侧棱长为6m,那么当1PO 为多少时,仓库旳容积最大?18.〔本小题总分值16分〕如图,在平面直角坐标系xOy 中,以M 为圆心旳圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 旳标准方程; (2) 设平行于OA 旳直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 旳方程; (3) 设点T 〔t ,0〕满足:存在圆M 上旳两点P 和Q ,使得,TA TP TQ +=,求实数t 旳取值范围。

2019年江苏省高考数学试卷(解析版)

2019年江苏省高考数学试卷(解析版)

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据12,,,n x x x ⋯的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑. 柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1.已知集合{1,0,1,6}A =-,{|0,}B x x x =>∈R ,则A B =I _____.【答案】{1,6}.【解析】【分析】由题意利用交集的定义求解交集即可.【详解】由题知,{1,6}A B =I .【点睛】本题主要考查交集的运算,属于基础题.2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____.【答案】2.【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【详解】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++Q ,令20a -=得2a =.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.下图是一个算法流程图,则输出的S 的值是_____.【答案】5.【解析】【分析】结合所给的流程图运行程序确定输出的值即可. 【详解】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=;执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342x S S x =+==≥不成立,继续循环,14x x =+=; 执行第四次,5,442x S S x =+==≥成立,输出 5.S = 【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4.函数y =_____.【答案】[1,7]-.【解析】【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域.【详解】由已知得2760x x +-≥,即2670x x --≤解得17x -≤≤,故函数的定义域为[1,7]-.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53. 【解析】【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=, 所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=.【点睛】本题主要考查方差的计算公式,属于基础题.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】7 10.【解析】【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C=种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.7.在平面直角坐标系xOy中,若双曲线2221(0)yx bb-=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y=.【解析】【分析】根据条件求b,再代入双曲线的渐近线方程得出答案.【详解】由已知得222431b-=,解得b=b=因为0b>,所以b=因为1a=,所以双曲线的渐近线方程为2y x=±.【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16.【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1,a d 的方程组.9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.【答案】10.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.【答案】4.【解析】【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线0x y +=平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小. 由2411y x'=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4. 【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____.【答案】(e, 1).【解析】【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.【详解】设点()00,A x y ,则00ln y x =.又1y x '=,当0x x =时,01y x '=, 点A 在曲线ln y x =上的切线为0001()y y x x x -=-, 即00ln 1x y x x -=-, 代入点(),1e --,得001ln 1e x x ---=-, 即00ln x x e =,考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =,故点A 的坐标为(),1A e .【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.12.如图,在ABC V 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅u u u r u u u r u u u r u u u r ,则AB AC的值是_____.【答案】3.【解析】【分析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点D作DF//CE,交AB于点F,由BE=2EA,D为BC中点,知BF=FE=EA,AO=OD.()()()3632AO EC AD AC AE AB AC AC AE=-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g()223131123233AB AC AC AB AB AC AB AC AB AC⎛⎫⎛⎫=+-=-+-⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g22223211323322AB AC AB AC AB AC AB AC AB AC⎛⎫=-+=-+=⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u rg g g,得2213,22AB AC=u u u r u u u r即3,AB=u u u r u u r故3ABAC=【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.已知tan2π3tan4αα=-⎛⎫+⎪⎝⎭,则πsin24α⎛⎫+⎪⎝⎭的值是_____.2.【解析】【分析】由题意首先求得tanα的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-. sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式22221221⎫⨯+-⎪+⎝⎭ 当1tan 3α=-时,上式22112133113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+= ⎪⎝⎭ 【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】1,34⎡⎫⎪⎢⎪⎣⎭. 【解析】【分析】分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可.【详解】当(]0,2x ∈时,()2()11,f x x =--即()2211,0.x y y -+=≥ 又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点()2,0-的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心()1,0到直线20kx y k -+=的距离为12211k k k +=+,得2k =数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点1,1()时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为123⎡⎢⎣⎭,. 【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b 2,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值.【答案】(1)c =(2. 【解析】 【分析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以3c =. (2)因为sin cos 2A Ba b =, 由正弦定理sin sin a b A B=,得cos sin 2B Bb b =,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos 5B =.因此πsin cos 2B B ⎛⎫+== ⎪⎝⎭【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论;(2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可.【详解】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED. 又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1. (2)因为AB=BC,E为AC的中点,所以BE⊥AC. 因为三棱柱ABC-A1B1C1是直棱柱,所以CC1⊥平面ABC. 又因为BE⊂平面ABC,所以CC1⊥BE.因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】 【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标. 【详解】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF1=52,AF2⊥x轴,所以DF2=222211253()222DF F F-=-=,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为22143x y+=.(2)解法一:由(1)知,椭圆C:22143x y+=,a=2,因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x-1) 2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由()2222116y xx y=+⎧⎪⎨-+=⎪⎩,得256110x x+-=,解得1x=或115x=-.将115x=-代入22y x=+,得125y=-,因此1112(,)55B--.又F2(1,0),所以直线BF2:3(1)4y x=-.由223(1)4143y xx y⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x--=,解得1x=-或137x=.又因为E是线段BF2与椭圆的交点,所以1x=-.将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18.如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 【答案】(1)15(百米); (2)见解析;(3)17+321. 【解析】 【分析】 解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 【详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠== 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+=,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-=此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =321d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+321因此,d 最小时,P ,Q 两点间的距离为17+321.解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25. 从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--. 所以P (−13,9),22(134)(93)15PB =-+++=. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :36(44)4y x x =-+-剟. 在线段AD 上取点M (3,154),因为22221533454OM⎛⎫=+<+= ⎪⎝⎭,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求. 当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a=4+Q(4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径. 综上,当P (−13,9),Q(4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q两点间的距离为17+.【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.设函数()()()(),,,R f x x a x b x c a b c =---∈,()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =; (2)()f x 的极小值为32- (3)见解析. 【解析】 【分析】(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式: 解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式;解法二:由题意构造函数,求得函数在定义域内的最大值, 因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【详解】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因2,,3a ba b +,都在集合{3,1,3}-中,且a b ¹, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:x(,3)-∞-3-(3,1)-1 (1,)+∞+0 –0 +()f xZ 极大值] 极小值Z所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==. 列表如下:x1(,)x -∞1x()12,x x2x2(,)x +∞+–+()f xZ极大值]极小值Z所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()(23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】 【分析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值. 【详解】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e .列表如下:x (1,e)e (e ,+∞) ()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)【选做题】本题包括21、22、23三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.已知矩阵3122⎡⎤=⎢⎥⎣⎦A(1)求A 2;(2)求矩阵A 的特征值.【答案】(1)115106⎡⎤⎢⎥⎣⎦;(2)121,4λλ==.【解析】 【分析】(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可. 【详解】(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.【点睛】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离; (2)求点B 到直线l 的距离.【答案】(1 (2)2. 【解析】 【分析】(1)由题意,在OAB V 中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB =(2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力. 23.设x ∈R ,解不等式||+|2 1|>2x x -. 【答案】1{|1}3x x x <->或. 【解析】 【分析】由题意结合不等式的性质零点分段即可求得不等式的解集. 【详解】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N L ….已知23242a a a =. (1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值. 【答案】(1)5n =; (2)-32. 【解析】 【分析】(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值;(2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51-的展开式,最后结合平方差公式即可确定223ab -的值.【详解】(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥L ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n =+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-. 解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-.因为*,a b ∈N ,所以5(1a =-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力. 25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈L 令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示). 【答案】(1)见解析; (2)22461C n +-【解析】 【分析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列; (2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【详解】(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则AB ≤3n ≥n ≤,所以X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤所以X n >当且仅当AB =此时0 a c n ==,或 0a n c ==,,有2种取法. 综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.。

回归本源,立足教材--2019年数学高考江苏卷第13题解法评析及教学思考

回归本源,立足教材--2019年数学高考江苏卷第13题解法评析及教学思考

38福建中学数学2020年第12期1试题呈现23回归本源,立足教材2019年数学高考江苏卷第13题解法评析及教学思考朱阳帆江苏省扬中高级中学(212200)(2019年高考江苏卷•13、已知求sin(2a+彳)_tan atan(a+n)评析本解法是常规思路,分别用到了和角公式,倍角公式,同角的三角函数关系,计算量较大,而且考后和部分学生交流得知学生对用不同的正切算出了相同的答案有所怀疑,进行二次计算,浪费了时间.该题是对两角和与差的三角函数的考查,解决此类问题,需要用到一系列三角公式与变换:和角公式,倍角公式,同角的三角函数关系进行恒等变换,测试目标是应用公式,但需要整合,且经多个目标完成[1].笔者今年任教高三,考后与学生交流,发现有部分学生写了土寻这个答案,觉得有些可解法2tan atan atan(a+n)22-亍tan(a+—)232tan a+131-tan a /.3tan2a-5tan a-2_0,惜.本文给出第13题填空题的5种解法,并浅析出现土寻这个答案的原因,并就此题谈谈笔者在/.tan a_-1或tan a_2,3-41:.sin(2a+—)_-^-(sin2a+cos2a)高三复习教学时的拙见.2五种解法及评析—•(2sin a cos a+cos2a-sin2a)解法1tan atan(a+n)2322一2血一2一一一一2sin a cos a+cos2a-sin2a2•2cos a+sin atan a_一亍tan(a+—)_2tan a+131-tan a2tan a+1-tan2a1+tan2a1[21°当tan a_一一时,sin(2a+—)_——,3410tan a_2或-一3P2 2°当tan a_2时'sin(2a+4)_I?,sin a_巫5或-sin a2丘5sin(2a+n)cos a_5a/10 sin a_---,10顶cos a_-----10或-cos a10 5a/10sin a_-----103顶cos a_----10sin2a_—,cos2a_35评析解法2和解法1比较少了分类讨论的过程,其实教材必修四第一章练习题后有好几道三角函数化简求值的练习,最好的处理方式都是添加分母sin2a+cos2a然后把整个分式化成正切处理,这样避免讨论,所以无论是平时教学还是高三复习课都要以课本为主,教材是高三复习最好的资料.从代数角度看sin2a_-—5 sin(2a+—c4cos2a_—,5:~~~(sin2a+cos2a)_2102tan a+1-tan2a1+tan2a_-3和tan atan(a+n)2-2同解,所以也解释了为什么tan a算出来是不同值得到的确是同样的结果.2020年第12期福建中学数学39解法 3 •/ tan a =-—tan(a + n )sin a cos(a +—)23,2—,cos a sin(a + —迈.忑.22 sin a cos a 2 sin a即―.+近2 =——cos a sin a +---cos a 2 2dsin2a -1-cos2a 2二 4 2 =—2.宀 1 + cos2a 34 21 sin(2a + n ) -1 ,=2 ' r 2=—21sin(2a + n )+1 3亠 sin(2a + n ) 忑评析本解法是把正切都化成了正弦余弦后用二倍角公式化简后进行合一变形处理,合一变形在教材必修4课后链接上有详细介绍•对学生三角函数各种公式应用熟练程度以及代数变形能力要求较高,相较于解法1和解法2,解法3少掉了解一 元二次方程和分类讨论的过程,最后直接得出要求的代数式值.102t \ + 3t 2 = 0,_a /2t 1— t 2 =T ‘令 sin(a + n )cos a = t 1 , cos(a + )sin a = t 2 ,3迈t 1 =---,1 102近2 10/. t 1 +12 =返,即 sin(2a + —) = ^2 .1 2 10, r \ 4 10n <由①②③得{评析通过解法4发现可以通过代数变形直接得出所求代数式的值,那么可以想到能否对代数式进行拆角处理构造对称式,①和③对一些学生而言 想到并不困难,①展开有a 和a +占,所以对③进4行拆角处理,关键②的构造很难想到•解法5利用万能公式,当tan a = 2时,.tan a 4sin2a =------2—=—,1 + tan a 5- 1 - tan2 a 3cos 2a =---------- =——,1 + tan2 a 5sin(2a + —) = ^2 (sin 2a + cos 2a ) = ^^ ,4 2 10当 tan a = -1 时,sin2a = —tan a 2—=3 1 + tan 2 a 宀 1 - tan 2 a 4cos 2a =----------=—,1 + tan2 a 5sin(2a + —) = ^2 (sin 2a + cos 2a ) = ^24 2 1035• cos(a +—) ,解法 4 叫=-2,cos a sin(a + n )3-3sin a cos(a + —) = cos a sin(a + —),442cos a sin(a + 彳)+ 3sin a cos(a + n ) = 0 ①,匸,•兀 • < it 、 a 乂 sin — = sin(a +---a )= 一 ,4 4 2评析笔者认为三角函数万能公式是解决这道题目的最好解法,教材上也有万能公式的内容,但是局限于很多同行在讲授新课的时候都略过了万能公式或者稍稍一笔带过,或者在平时解题的时候很少讲授利用万能公式解题,所以学生应用万能公sin(a + n ) cos a -sin a cos(a + n ) = ~^~ ②,sin(2a + —) = sin(a +a + —).4 4式解决这道问题的少之又少.3可能出现±春的原因当学生算出tan a = 2或-—后,采取的策略是sin(2a +孑)=sin(a + —) cos a + sin a cos(a + —)③,44算出tan2a-—或 tan2a =3—,tan(2a +彳)=1 或tan(2a +—)=—,4 7sin(2a + n )cos(2a + n )1 sin(2a +=-或-------cos(2a + —)40福建中学数学2020年第12期-1,与同角的三角函数关系联立,并经历复杂的缩角过程,发现两个都可以保留,得到了土春这个答案,凭空多出来-菁•其实用tan a算出tan2a4的过程是不等价转换,因为tan2a_-3,tan2a_-3,用正切的二倍角公式tan2a_半二,可41-tan2a以得出tan a_2或-2或3或-3,产生了增根,所以sin(2a+中)_-春是由增根tan a_-2或-1产生的多余的解.4教学反思4.1教师研究教材,深度挖掘教材习题中的思想方法与三角恒等变化有关的计算问题是历年来江苏高考数学考查的重点,今年的第13题,属于中档题,但是研究本题的5种解法可以发现,好的解法(解法2,解法4)来源于教材习题的解法与章节补充内容,容易想到的解法(解法1)考查学生对公式运用的熟练程度与代数变形能力.所以对于整个高三的数学复习教学,还是要以教材为主,对于一些重要例习题,使用一题多解、一题多变的方式进行串讲,培养求异思维,促进能力形成,强化重点题型、重要方法的理解与领悟,起到触类旁通的作用.最后,对一些解法相同或相近题型,采用多题一解的收敛方式串讲,侧重对通性通法进行归纳总结,真正达到举一反三、事半功倍的教学效果.4.2要让学生重视教材,力求做到真正的师生一起“回归教材”根据笔者近几年的高三教学经验发现,目前高三数学复习往往有个误区,教师很重视教材,学生倒不是很重视,而是沉溺于各种题海无法自拔,注重解题技巧而忽略了对教材上本源题型的研究,对数学学习急功近利,实则高考的试题就是来源于教材习题的改编,教材的编写也汇集了无数数学人的智慧,上面的例题,习题,蕴含着朴实无华的数学思想方法和最本源的数学解题技巧.所以在平时的教学中,要在学生面前强调教材对高三数学复习的重要性,重做教材上的经典题目,领悟其中的数学思想方法与解题技巧,使教材习题与课外习题产生“共鸣,,.参考文献[1]渠东剑.素养视角下的2019年高考数学江苏卷分析[J].中学数学教学参考,2019(9):56-60(本文系镇江市“十三五”教育规划课题《镇江市高中数学老师数学素养的现状与调查》(课题编号:2017jy-128)阶段性研究成果之一)导数中隐零点问题的处理策略朱广智广东省东莞市第六高级中学(523420)在高考数学导数压轴题中,导函数的零点在解题过程中处于“咽喉”位置至关重要.研读近几年高考题,我们发现经常会碰到导函数具有零点但求解相对繁琐甚至无法求解的问题•此类问题我们称之为“隐零点问题”.面对这种问题,我们不必正面强求,可以将这个零点设而不求,然后谋求一种整体的转化和过渡,再结合其他条件,从而获得问题的解决方法.本文结合2018年高考导数压轴题,探究了这类问题的一般处理策略,并且把这种策略应用于往年高考题进行了有效验证.在本文最后对此类问题指出了相应的备考策略.1问题探究案例1(2018年高考全国皿卷•文21)已知函数f(x)_处节1•证明:当a>1时,f(x)+e>e x0.师生互动要证f(x)+e>0,即证ax2+x-1+ e x+1>0.设g(x)_ax2+x-1+e x+1(a>1),只要证[g(x)]mm>0即可.令g'(x)_2ax+1+e x+1_0,g'(x) _ 2ax+1+e x+1_0是一个超越方程,导函数g'(x)_ 2ax+e x+1的零点不可求,是一个隐零点.怎么处理导函数的零点不可求问题?处理此类隐零点问。

2019年江苏省高考数学试卷以及答案解析

2019年江苏省高考数学试卷以及答案解析

绝密★启用前2019年普通高等学校招生全国统一考试(江苏卷)数学一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是.4.(5分)函数y=的定义域是.5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是.8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是.9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD 的体积是.10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是.11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是.12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若•=6•,则的值是.13.(5分)已知=﹣,则sin(2α+)的值是.14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)=其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若a=3c,b=,cos B=,求c的值;(2)若=,求sin(B+)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.17.(14分)如图,在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的焦点为F1(﹣1,0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,1与圆F2:(x﹣1)2+y2=4a2交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(16分)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于...圆O的半径.已知点A,B到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P、Q两点间的距离.19.(16分)设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M≤.20.(16分)定义首项为1且公比为正数的等比数列为“M﹣数列”.(1)已知等比数列{a n}(n∈N*)满足:a2a4=a5,a3﹣4a2+4a1=0,求证:数列{a n}为“M ﹣数列”;(2)已知数列{b n}(n∈N*)满足:b1=1,=﹣,其中S n为数列{b n}的前n 项和.①求数列{b n}的通项公式;②设m为正整数,若存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,求m的最大值.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵A=.(1)求A2;(2)求矩阵A的特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.(10分)在极坐标系中,已知两点A(3,),B(,),直线1的方程为ρsin (θ+)=3.(1)求A,B两点间的距离;(2)求点B到直线l的距离.C.[选修4-5:不等式选讲](本小题满分0分)23.设x∈R,解不等式|x|+|2x﹣1|>2.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.(10分)设(1+x)n=a0+a1x+a2x2+…+a n x n,n≥4,n∈N*.已知a32=2a2a4.(1)求n的值;(2)设(1+)n=a+b,其中a,b∈N*,求a2﹣3b2的值.25.(10分)在平面直角坐标系xOy中,设点集A n={(0,0),(1,0),(2,0),…,(n,0)},B n={(0,1),(n,1)},∁n={(0,2),(1,2),(2,2),……,(n,2)},n∈N*.令M n=A n∪B n ∪∁n.从集合M n中任取两个不同的点,用随机变量X表示它们之间的距离.(1)当n=1时,求X的概率分布;(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).2019年江苏省高考数学答案解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.【分析】直接利用交集运算得答案.【解答】解:∵A={﹣1,0,1,6},B={x|x>0,x∈R},∴A∩B={﹣1,0,1,6}∩{x|x>0,x∈R}={1,6}.故答案为:{1,6}.【点评】本题考查交集及其运算,是基础题.2.【分析】利用复数代数形式的乘除运算化简,再由实部为0求的a值.【解答】解:∵(a+2i)(1+i)=(a﹣2)+(a+2)i的实部为0,∴a﹣2=0,即a=2.故答案为:2.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟程序的运行,可得x=1,S=0S=0.5不满足条件x≥4,执行循环体,x=2,S=1.5不满足条件x≥4,执行循环体,x=3,S=3不满足条件x≥4,执行循环体,x=4,S=5此时,满足条件x≥4,退出循环,输出S的值为5.故答案为:5.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.4.【分析】由根式内部的代数式大于等于0求解一元二次不等式得答案.【解答】解:由7+6x﹣x2≥0,得x2﹣6x﹣7≤0,解得:﹣1≤x≤7.∴函数y=的定义域是[﹣1,7].故答案为:[﹣1,7].【点评】本题考查函数的定义域及其求法,考查一元二次不等式的解法,是基础题.5.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.6.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.7.【分析】把已知点的坐标代入双曲线方程,求得b,则双曲线的渐近线方程可求.【解答】解:∵双曲线x2﹣=1(b>0)经过点(3,4),∴,解得b2=2,即b=.又a=1,∴该双曲线的渐近线方程是y=.故答案为:y=.【点评】本题考查双曲线的标准方程,考查双曲线的简单性质,是基础题.8.【分析】设等差数列{a n}的首项为a1,公差为d,由已知列关于首项与公差的方程组,求解首项与公差,再由等差数列的前n项和求得S8的值.【解答】解:设等差数列{a n}的首项为a1,公差为d,则,解得.∴=6×(﹣5)+15×2=16.故答案为:16.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,是基础题.9.【分析】推导出=AB×BC×DD1=120,三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1,由此能求出结果.【解答】解:∵长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,∴=AB×BC×DD1=120,∴三棱锥E﹣BCD的体积:V E﹣BCD===×AB×BC×DD1=10.故答案为:10.【点评】本题考查三棱锥的体积的求法,考查长方体的结构特征、三棱锥的性质等基础知识,考查运算求解能力,考查数形结合思想,是中档题.10.【分析】利用导数求平行于x+y=0的直线与曲线y=x+(x>0)的切点,再由点到直线的距离公式求点P到直线x+y=0的距离的最小值.【解答】解:由y=x+(x>0),得y′=1﹣,设斜率为﹣1的直线与曲线y=x+(x>0)切于(x0,),由,解得(x0>0).∴曲线y=x+(x>0)上,点P()到直线x+y=0的距离最小,最小值为.故答案为:4.【点评】本题考查利用导数研究过曲线上某点处的切线方程,考查点到直线距离公式的应用,是中档题.11.【分析】设A(x0,lnx0),利用导数求得曲线在A处的切线方程,代入已知点的坐标求解x0即可.【解答】解:设A(x0,lnx0),由y=lnx,得y′=,∴,则该曲线在点A处的切线方程为y﹣lnx0=,∵切线经过点(﹣e,﹣1),∴,即,则x0=e.∴A点坐标为(e,1).故答案为:(e,1).【点评】本题考查利用导数研究过曲线上某点处的切线方程,区分过点处与在点处的不同,是中档题.12.【分析】首先算出=,然后用、表示出、,结合•=6•得=,进一步可得结果.【解答】解:设=λ=(),=+=+μ=+μ()=(1﹣μ)+μ=+μ∴,∴,∴==(),==﹣+,6•=6×()×(﹣+)=(++)=++,∵•=++,∴=,∴=3,∴=.故答案为:【点评】本题考查向量的数量积的应用,考查向量的表示以及计算,考查计算能力.13.【分析】由已知求得tanα,分类利用万能公式求得sin2α,cos2α的值,展开两角和的正弦求sin(2α+)的值.【解答】解:由=﹣,得,∴,解得tanα=2或tan.当tanα=2时,sin2α=,cos2α=,∴sin(2α+)==;当tanα=时,sin2α==,cos2α=,∴sin(2α+)==.综上,sin(2α+)的值是.故答案为:.【点评】本题考查三角函数的恒等变换与化简求值,考查两角和的三角函数及万能公式的应用,是基础题.14.【分析】由已知函数解析式结合周期性作出图象,数形结合得答案.【解答】解:作出函数f(x)与g(x)的图象如图,由图可知,函数f(x)与g(x)=﹣(1<x≤2,3<x≤4,5<x≤6,7<x≤8)仅有2个实数根;要使关于x的方程f(x)=g(x)有8个不同的实数根,则f(x)=,x∈(0,2]与g(x)=k(x+2),x∈(0,1]的图象有2个不同交点,由(1,0)到直线kx﹣y+2k=0的距离为1,得,解得k=(k>0),∵两点(﹣2,0),(1,1)连线的斜率k=,∴≤k<.即k的取值范围为[,).故答案为:[,).【点评】本题考查函数零点的判定,考查分段函数的应用,体现了数形结合的解题思想方法,是中档题.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.【分析】(1)由余弦定理得:cos B===,由此能求出c的值.(2)由=,利用正弦定理得2sin B=cos B,再由sin2B+cos2B=1,能求出sin B =,cos B=,由此利用诱导公式能求出sin(B+)的值.【解答】解:(1)∵在△ABC中,角A,B,C的对边分别为a,b,c.a=3c,b=,cos B=,∴由余弦定理得:cos B===,解得c=.(2)∵=,∴由正弦定理得:,∴2sin B=cos B,∵sin2B+cos2B=1,∴sin B=,cos B=,∴sin(B+)=cos B=.【点评】本题考查三角形边长、三角函数值的求法,考查正弦定理、余弦定理、诱导公式、同角三角函数关系式等基础知识,考查推理能力与计算能力,属于中档题.16.【分析】(1)推导出DE∥AB,AB∥A1B1,从而DE∥A1B1,由此能证明A1B1∥平面DEC1.(2)推导出BE⊥AA1,BE⊥AC,从而BE⊥平面ACC1A1,由此能证明BE⊥C1E.【解答】证明:(1)∵在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,∴DE∥AB,AB∥A1B1,∴DE∥A1B1,∵DE⊂平面DEC1,A1B1⊄平面DEC1,∴A1B1∥平面DEC1.解:(2)∵在直三棱柱ABC﹣A1B1C1中,E是AC的中点,AB=BC.∴BE⊥AA1,BE⊥AC,又AA1∩AC=A,∴BE⊥平面ACC1A1,∵C1E⊂平面ACC1A1,∴BE⊥C1E.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.【分析】(1)由题意得到F1D∥BF2,然后求AD,再由AD=DF1=求得a,则椭圆方程可求;(2)求出D的坐标,得到=,写出BF2的方程,与椭圆方程联立即可求得点E的坐标.【解答】解:(1)如图,∵F2A=F2B,∴∠F2AB=∠F2BA,∵F2A=2a=F2D+DA=F2D+F1D,∴AD=F1D,则∠DAF1=∠DF1A,∴∠DF1A=∠F2BA,则F1D∥BF2,∵c=1,∴b2=a2﹣1,则椭圆方程为,取x=1,得,则AD=2a﹣=.又DF1=,∴,解得a=2(a>0).∴椭圆C的标准方程为;(2)由(1)知,D(1,),F1(﹣1,0),∴=,则BF2:y=,联立,得21x2﹣18x﹣39=0.解得x1=﹣1或(舍).∴.即点E的坐标为(﹣1,﹣).【点评】本题考查直线与圆,圆与椭圆位置关系的应用,考查计算能力,证明DF1∥BF2是解答该题的关键,是中档题.18.【分析】(1)设BD与圆O交于M,连接AM,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)设点P(x1,0),PB⊥AB,运用两直线垂直的条件:斜率之积为﹣1,求得P的坐标,可得所求值;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),运用两直线垂直的条件:斜率之积为﹣1,求得Q的坐标,即可得到结论;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,结合条件,可得b的最小值,由两点的距离公式,计算可得PQ.【解答】解:设BD与圆O交于M,连接AM,AB为圆O的直径,可得AM⊥BM,即有DM=AC=6,BM=6,AM=8,以C为坐标原点,l为x轴,建立直角坐标系,则A(0,﹣6),B(﹣8,﹣12),D(﹣8,0)(1)设点P(x1,0),PB⊥AB,则k BP•k AB=﹣1,即•=﹣1,解得x1=﹣17,所以P(﹣17,0),PB==15;(2)当QA⊥AB时,QA上的所有点到原点O的距离不小于圆的半径,设此时Q(x2,0),则k QA•k AB=﹣1,即•=﹣1,解得x2=﹣,Q(﹣,0),由﹣17<﹣8<﹣,在此范围内,不能满足PB,QA上所有点到O的距离不小于圆的半径,所以P,Q中不能有点选在D点;(3)设P(a,0),Q(b,0),则a≤﹣17,b≥﹣,PB2=(a+8)2+144≥225,QA2=b2+36≥225,则b≥3,当d最小时,PQ=17+3.【点评】本题考查直线和圆的位置关系,考查直线的斜率和两直线垂直的条件:斜率之积为﹣1,以及两点的距离公式,分析问题和解决问题的能力,考查运算能力,属于中档题.19.【分析】(1)由a=b=c,可得f(x)=(x﹣a)3,根据f(4)=8,可得(4﹣a)3=8,解得a.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.根据f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,通过分类讨论可得:只有a=3,b=﹣3,可得==1∈A,可得:f(x)=(x﹣3)(x+3)2.利用导数研究其单调性可得x=1时,函数f(x)取得极小值.(3)a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=3x2﹣(2b+2)x+b.△>0.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,可得x=x1时,f(x)取得极大值为M,通过计算化简即可证明结论.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x=.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则==﹣∉A,舍去.a=1,b=﹣3,则==﹣∉A,舍去.a=﹣3,b=3,则==﹣1∉A,舍去..a=3,b=1,则==∉A,舍去.a=1,b=3,则=∉A,舍去.a=3,b=﹣3,则==1∈A,.因此a=3,b=﹣3,=1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=4+3≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1=∈,x2=.x1<x2,x1+x2=,x1x2=,可得x=x1时,f(x)取得极大值为M,∵f′(x1)=﹣(2b+2)x1+b=0,可得:=[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(﹣x1)=(x1﹣b)(﹣x1)=[(2b﹣1)﹣2b2x1+b2] ==,∵﹣2b2+2b﹣2=﹣2﹣<0,∴M在x1∈(0,]上单调递减,∴M≤=≤.∴M≤.【点评】本题考查了利用导数研究函数的单调性、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.20.【分析】(1)设等比数列{a n}的公比为q,然后根据a2a4=a5,a3﹣4a2+4a1=0列方程求解,在根据新定义判断即可;(2)求出b2,b3,b4猜想b n,然后用数学归纳法证明;(3)设{c n}的公比为q,将问题转化为,然后构造函数f(x)=,g(x)=,分别求解其最大值和最小值,最后解不等式,即可.【解答】解:(1)设等比数列{a n}的公比为q,则由a2a4=a5,a3﹣4a2+4a1=0,得∴,∴数列{a n}首项为1且公比为正数即数列{a n}为“M﹣数列”;(2)①∵b1=1,=﹣,∴当n=1时,,∴b2=2,当n=2时,,∴b3=3,当n=3时,,∴b4=4,猜想b n=n,下面用数学归纳法证明;(i)当n=1时,b1=1,满足b n=n,(ii)假设n=k时,结论成立,即b k=k,则n=k+1时,由,得==k+1,故n=k+1时结论成立,根据(i)(ii)可知,b n=n对任意的n∈N*都成立.故数列{b n}的通项公式为b n=n;②设{c n}的公比为q,存在“M﹣数列”{c n}(n∈N*),对任意正整数k,当k≤m时,都有c k≤b k≤c k+1成立,即q k﹣1≤k≤k对k≤m恒成立,当k=1时,q≥1,当k=2时,,当k≥3,两边取对数可得,对k≤m有解,即,令f(x)=,则,当x≥3时,f'(x)<0,此时f(x)递增,∴当k≥3时,,令g(x)=,则,令,则,当x≥3时,ϕ'(x)<0,即g'(x)<0,∴g(x)在[3,+∞)上单调递减,即k≥3时,,则,下面求解不等式,化简,得3lnm﹣(m﹣1)ln3≤0,令h(m)=3lnm﹣(m﹣1)ln3,则h'(m)=﹣ln3,由k≥3得m≥3,h'(m)<0,∴h(m)在[3,+∞)上单调递减,又由于h(5)=3ln5﹣4ln3=ln125﹣ln81>0,h(6)=3ln6﹣5ln3=ln216﹣ln243<0,∴存在m0∈(5,6)使得h(m0)=0,∴m的最大值为5,此时q∈,.【点评】本题考查了由递推公式求等比数列的通项公式和不等式恒成立,考查了数学归纳法和构造法,是数列、函数和不等式的综合性问题,属难题.【选做题】本题包括A、B、C三小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-2:矩阵与变换](本小题满分10分)21.【分析】(1)根据矩阵A直接求解A2即可;(2)矩阵A的特征多项式为f(λ)==λ2﹣5λ+4,解方程f(λ)=0即可.【解答】解:(1)∵A=∴A2==(2)矩阵A的特征多项式为:f(λ)==λ2﹣5λ+4,令f(λ)=0,则由方程λ2﹣5λ+4=0,得λ=1或λ=4,∴矩阵A的特征值为1或4.【点评】本题考查了矩阵的运算和特征值等基础知识,考查运算与求解能力,属基础题.B.[选修4-4:坐标系与参数方程](本小题满分10分)22.【分析】(1)设极点为O,则由余弦定理可得,解出AB;(2)根据直线l的方程和点B的坐标可直接计算B到直线l的距离.【解答】解:(1)设极点为O,则在△OAB中,由余弦定理,得AB2=OA2+OB2﹣2OA,∴AB==;(2)由直线1的方程ρsin(θ+)=3,知直线l过(3,),倾斜角为,又B(,),∴点B到直线l的距离为.【点评】本题考查了在极坐标系下计算两点间的距离和点到直线的距离,属基础题.C.[选修4-5:不等式选讲](本小题满分0分)23.【分析】对|x|+|2x﹣1|去绝对值,然后分别解不等式即可.【解答】解:|x|+|2x﹣1|=,∵|x|+|2x﹣1|>2,∴或或,∴x>1或x∈∅或x<﹣,∴不等式的解集为{x|x<﹣或x>1}.【点评】本题考查了绝对值不等式的解法,属基础题.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.【分析】(1)运用二项式定理,分别求得a2,a3,a4,结合组合数公式,解方程可得n 的值;(2)方法一、运用二项式定理,结合组合数公式求得a,b,计算可得所求值;方法二、由于a,b∈N*,求得(1﹣)5=a﹣b,再由平方差公式,计算可得所求值.【解答】解:(1)由(1+x)n=C+C x+C x2+…+C x n,n≥4,可得a2=C=,a3=C=,a4=C=,a32=2a2a4,可得()2=2••,解得n=5;(2)方法一、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,由于a,b∈N*,可得a=C+3C+9C=1+30+45=76,b=C+3C+9C=44,可得a2﹣3b2=762﹣3×442=﹣32;方法二、(1+)5=C+C+C()2+C()3+C()4+C()5=a+b,(1﹣)5=C+C(﹣)+C(﹣)2+C(﹣)3+C(﹣)4+C(﹣)5=C﹣C+C()2﹣C()3+C()4﹣C()5,由于a,b∈N*,可得(1﹣)5=a﹣b,可得a2﹣3b2=(1+)5•(1﹣)5=(1﹣3)5=﹣32.【点评】本题主要考查二项式定理、组合数公式的运用,考查运算能力和分析问题能力,属于中档题.25.【分析】(1)当n=1时,X的所有可能取值为1,,2,,由古典概率的公式,结合组合数可得所求值;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,分别讨论b,d的取值,结合古典概率的计算公式和对立事件的概率,即可得到所求值.【解答】解:(1)当n=1时,X的所有可能取值为1,,2,,X的概率分布为P(X=1)==;P(X=)==;P(X=2)==;P(X=)==;(2)设A(a,b)和B(c,d)是从M n中取出的两个点,因为P(X≤n)=1﹣P(X>n),所以只需考虑X>n的情况,①若b=d,则AB≤n,不存在X>n的取法;②若b=0,d=1,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;③若b=0,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;④若b=1,d=2,则AB=≤,所以X>n当且仅当AB=,此时a=0.c=n或a=n,c=0,有两种情况;综上可得当X>n,X的所有值是或,且P(X=)=,P(X=)=,可得P(X≤n)=1﹣P(X=)﹣P(X=)=1﹣.【点评】本题考查随机变量的概率的分布,以及古典概率公式的运用,考查分类讨论思想方法,以及化简运算能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一片交回。

2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

参考公式:样本数据12,,,n x x x …的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑. 柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,6}A =-,{}0,B x x x R =∈,则A B ⋂=_____.【答案】{1,6}.【解析】【分析】由题意利用交集的定义求解交集即可.【详解】由题知,{1,6}A B =.【点睛】本题主要考查交集的运算,属于基础题.2.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____.【答案】2.【解析】【分析】本题根据复数的乘法运算法则先求得z ,然后根据复数的概念,令实部为0即得a 的值.【详解】2(a 2)(1i)222(2)i a ai i i a a i ++=+++=-++,令20a -=得2a =.【点睛】本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.3.下图是一个算法流程图,则输出的S 的值是_____.【答案】5.【解析】【分析】结合所给的流程图运行程序确定输出的值即可. 【详解】执行第一次,1,1422x S S x =+==≥不成立,继续循环,12x x =+=; 执行第二次,3,2422x S S x =+==≥不成立,继续循环,13x x =+=; 执行第三次,3,342x S S x =+==≥不成立,继续循环,14x x =+=; 执行第四次,5,442x S S x =+==≥成立,输出 5.S = 【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4.函数y =_____.【答案】[1,7]-.【解析】【分析】由题意得到关于x 的不等式,解不等式可得函数的定义域.【详解】由已知得2760x x +-≥,即2670x x --≤解得17x -≤≤,故函数的定义域为[1,7]-.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.5.已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53. 【解析】【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=, 所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.6.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710. 【解析】【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况,若选出的2名学生都是女生,有221C =种情况, 所以所求的概率为6171010+=. 【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.7.在平面直角坐标系xOy 中,若双曲线2221(0)y x b b -=>经过点(3,4),则该双曲线的渐近线方程是_____.【答案】y =.【解析】【分析】根据条件求b ,再代入双曲线的渐近线方程得出答案. 【详解】由已知得222431b -=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.8.已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是_____.【答案】16.【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.【详解】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组.9.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.【答案】10.【解析】【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.【详解】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.10.在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.【答案】4.【解析】【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离 【详解】当直线22gR r 平移到与曲线4y x x =+相切位置时,切点Q 即为点P 到直线22gR r的距离最小. 由2411y x'=-=-,得)x =,y =即切点Q ,则切点Q 到直线22gR r4=,故答案为:4. 【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.11.在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是____.【答案】(e, 1).【解析】【分析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值可得切点坐标.【详解】设点()00,A x y ,则00ln y x =.又1y x '=, 当0x x =时,01y x '=, 点A 在曲线ln y x =上切线为0001()y y x x x -=-, 即00ln 1x y x x -=-,代入点(),1e --,得001ln 1e x x ---=-, 即00ln x x e =, 考查函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()'ln 1H x x =+,当1x >时,()()'0,H x H x >单调递增,注意到()H e e =,故00ln x x e =存在唯一的实数根0x e =,此时01y =,故点A 的坐标为(),1A e .【点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.12.如图,在V ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则AB AC的值是_____..【解析】【分析】由题意将原问题转化为基底的数量积,然后利用几何性质可得比值.【详解】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭ 22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【点睛】本题考查在三角形中平面向量的数量积运算,渗透了直观想象、逻辑推理和数学运算素养.采取几何法,利用数形结合和方程思想解题.13.已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____. 【答案】22221:4AA A A C C CCv a r v v a v r ===. 【解析】【分析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=,解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2sin cos αααααααα⎫+-=+⎪+⎝⎭222tan 1tan =2tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式222212==22110⎛⎫⨯+- ⎪+⎝⎭ 当1tan 3α=-时,上式22112133113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+= ⎪⎝⎭ 【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题.14.设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当(0,2]x ∈时,()f x =,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】13⎡⎢⎣⎭. 【解析】【分析】分别考查函数()f x 和函数()g x 图像的性质,考查临界条件确定k 的取值范围即可.【详解】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥ 又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(0,9]上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()g x 的图象有2个交点; 当g()(2)x k x =+时,()g x 的图象为恒过点(-2,0)的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心(1,0)到直线20kx y k -+=的距离为1,1=,得k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点(1,1)时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(0,9]上有8个实根的k 的取值范围为134⎡⎢⎣⎭,. 【点睛】本题考点为参数的取值范围,侧重函数方程的多个实根,难度较大.不能正确画出函数图象的交点而致误,根据函数的周期性平移图象,找出两个函数图象相切或相交的临界交点个数,从而确定参数的取值范围.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b,cos B =23,求c 的值; (2)若sin cos 2A B a b =,求sin()2B π+的值. 【答案】(1)3c =;(2)5. 【解析】【分析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得2222(3)323c c c c+-=⨯⨯,即213c =.所以c =(2)因为sin cos 2A Ba b=, 由正弦定理sin sin a b A B =,得cos sin 2B Bb b=,所以cos 2sin B B =. 从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 25B B ⎛⎫+== ⎪⎝⎭. 【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.16.如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)由题意结合几何体的空间结构特征和线面平行的判定定理即可证得题中的结论; (2)由题意首先证得线面垂直,然后结合线面垂直证明线线垂直即可. 【详解】(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB .在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【点睛】本题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52.(1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】 【分析】(1)由题意分别求得a ,b 的值即可确定椭圆方程;(2)解法一:由题意首先确定直线1AF 的方程,联立直线方程与圆的方程,确定点B 的坐标,联立直线BF 2与椭圆的方程即可确定点E 的坐标;解法二:由题意利用几何关系确定点E 的纵坐标,然后代入椭圆方程可得点E 的坐标. 【详解】(1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4.因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由()2222116y x x y =+⎧⎪⎨-+=⎪⎩,得256110x x +-=, 解得1x =或115x =-.将115x =-代入22y x =+,得125y =-,因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由223(1)4143y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221143x x y =-⎧⎪⎨+=⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18.如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离. 【答案】(1)15(百米); (2)见解析;(3)17+. 【解析】 【分析】 解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离.解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 【详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设x y a M N +=⋅为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,CQ =此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+因此,d 最小时,P ,Q 两点间的距离为17+. 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3.因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为43-, 直线PB 的方程为42533y x =--.所以P (−13,9),15PB ==. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知D (−4,9),又A (4,3),所以线段AD :36(44)4y x x =-+-剟.在线段AD 上取点M (3,154),因为5OM ==,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求;当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设x y a M N +=⋅为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+.【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.19.设函数()()()(),,,R f x x a x b x c a b c =---∈,()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值; (3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427.【答案】(1)2a =; (2)见解析; (3)见解析. 【解析】 【分析】(1)由题意得到关于a 的方程,解方程即可确定a 的值;(2)由题意首先确定a ,b ,c 的值从而确定函数的解析式,然后求解其导函数,由导函数即可确定函数的极小值.(3)由题意首先确定函数的极大值M 的表达式,然后可用如下方法证明题中的不等式: 解法一:由函数的解析式结合不等式的性质进行放缩即可证得题中的不等式; 解法二:由题意构造函数,求得函数在定义域内的最大值, 因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭.令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【详解】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=. 因为2,,3a ba b +,都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-.令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>,则有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =.解法一:()321111(1)M f x x b x bx ==-++()()221111211(1)32(1)3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭ ()2321(1)(1)227927b b b b b --+++=++ 23(1)2(1)(1)2272727b b b b +-+=-+ (1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-.令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.20.定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M -数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5. 【解析】【分析】(1)由题意分别求得数列的首项和公比即可证得题中的结论;(2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定k b 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得m 的最大值.【详解】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩. 因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n n n n n n n b b b b b b b b b +-+-=---, 整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列.因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0.因c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k k q k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()x f 'x x -=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln k q k …,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216,所以q 不存在.因此所求m 的最大值小于6.综上,所求m 的最大值为5.【点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.数学Ⅱ(附加题)【选做题】本题包括21、22、23三小题,请选定其中两小题,并在相应的答题区域内作答......................若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.21.已知矩阵3122⎡⎤=⎢⎥⎣⎦A (1)求A 2;(2)求矩阵A 的特征值.【答案】(1)115106⎡⎤⎢⎥⎣⎦; (2)121,4λλ==.【解析】【分析】(1)利用矩阵的乘法运算法则计算2A 的值即可;(2)首先求得矩阵的特征多项式,然后利用特征多项式求解特征值即可.【详解】(1)因为3122⎡⎤=⎢⎥⎣⎦A , 所以231312222⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦A =3312311223222122⨯+⨯⨯+⨯⎡⎤⎢⎥⨯+⨯⨯+⨯⎣⎦=115106⎡⎤⎢⎥⎣⎦. (2)矩阵A 的特征多项式为231()5422f λλλλλ--==-+--.令()0f λ=,解得A 的特征值121,4λλ==.【点睛】本题主要考查矩阵的运算、特征值等基础知识,考查运算求解能力.22.在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭. (1)求A ,B 两点间的距离;(2)求点B 到直线l 距离.【答案】(1(2)2.【解析】【分析】(1)由题意,在OAB △中,利用余弦定理求解AB 的长度即可;(2)首先确定直线的倾斜角和直线所过的点的极坐标,然后结合点B 的坐标结合几何性质可得点B 到直线l 的距离.【详解】(1)设极点为O .在△OAB 中,A (3,4π),B2π), 由余弦定理,得AB=(2)因为直线l的方程为sin()34ρθπ+=, 则直线l 过点)2π,倾斜角为34π. 又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 【点睛】本题主要考查曲线的极坐标方程等基础知识,考查运算求解能力.23.设x ∈R ,解不等式||+|2 1|>2x x -.【答案】1{|1}3x x x <->或.【解析】【分析】 由题意结合不等式的性质零点分段即可求得不等式的解集.【详解】当x <0时,原不等式可化为122x x -+->,解得x <–13: 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或.【点睛】本题主要考查解不等式等基础知识,考查运算求解和推理论证能力.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N ….已知23242a a a =.(1)求n 的值;(2)设(1n a +=+*,a b ∈N ,求223a b -的值.【答案】(1)5n =;(2)-32.【解析】【分析】(1)首先由二项式展开式的通项公式确定234,,a a a 的值,然后求解关于n 的方程可得n 的值;(2)解法一:利用(1)中求得的n 的值确定有理项和无理项从而可得a ,b 的值,然后计算223a b -的值即可;解法二:利用(1)中求得的n 的值,由题意得到(51-的展开式,最后结合平方差公式即可确定223a b -的值.【详解】(1)因为0122(1)C C C C 4n n n n n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n n n n n n n a a ---====, 44(1)(2)(3)C 24n n n n n a ---==. 因为23242a a a =, 所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯, 解得5n =.(2)由(1)知,5n =.5(1(1n =+02233445555555C C C C C C =++++a =+解法一:因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.解法二:50122334455555555(1C C (C (C (C (C (=+++++02233445555555C C C C C C =--+-. 因为*,a b ∈N,所以5(1a -=-.因此225553((1(1(2)32a b a a -=+-=+⨯=-=-.【点睛】本题主要考查二项式定理、组合数等基础知识,考查分析问题能力与运算求解能力.25.在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈令n n n n M A B C =.从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离.(1)当n =1时,求X 的概率分布;(2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).【答案】(1)见解析;(2)见解析.【解析】【分析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【详解】(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况.①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则AB =≤,因为当3n ≥n ≤,所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤所以X n >当且仅当AB =,此时0 a c n ==,或 0a n c ==,,有2种取法. 综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.。

相关文档
最新文档