第五课时 三角函数图像与性质.pdf
三角函数的图象与性质 (共44张PPT)
(
)
3 3 A.-2,2 3 3 3 3 C. - , 2 2
解析: 当 故
π π 1 π π 5π x∈0,2 时, 2x- ∈- 6, 6 , sin2x-6 ∈-2,1, 6
上是减函数 - π , 0 C.在[0,π]上是增函数,在
)
π π π π D.在2,π和-π,-2上是增函数,在-2,2 上是减函数
3.(2015· 皖南八校模拟)函数 f(x)=cos 2x+2sin x 的最大值与最小值 的和是 A.-2 3 C.- 2
4.求函数 y=cos x+sin
2
π x|x|≤4 的最大值与最小值.
π 2 2 解:令 t=sin x,∵|x|≤ ,∴t∈- , . 4 2 2
∴y=-t
2
1 2 5 +t+1=-t-2 + , 4
1- 2 1 5 2 ∴当 t= 时,ymax= ,当 t=- 时,ymin= . 2 4 2 2 ∴函数 y=cos x+sin
sin 2x>0, 解析:由 2 9-x ≥0,
π kπ<x<kπ+ ,k∈Z, 2 得 -3≤x≤3.
π π ∴-3≤x<- 或 0<x< . 2 2 ∴函数 y=lg(sin 2x)+ 9-x
2
π π 的定义域为-3,2 ∪0,2 .
2
π 1- 5 x通法]
1.三角函数定义域的求法 求三角函数定义域实际上是构造简单的三角不等式(组),常借 助三角函数线或三角函数图象来求解.
2.三角函数值域的不同求法 (1)利用 sin x 和 cos x 的值域直接求;
高考数学必修4总复习《三角函数:三角函数的图像与性质》
∴y=sin2x+52π为偶函数.
答案:B
4. (教材改编题)函数 f(x)=tanx+π4的单调递增区间为(
)
A. kπ-2π,kπ+π2(k∈Z)
B. (kπ,(k+1)π)(k∈Z)
C. kπ-34π,kπ+4π(k∈Z)
D. kπ-π4,kπ+34π(k∈Z)
(2)求满足 f(x)=0 的 x 的取值;
(3)求函数 f(x)的单调递减区间.
解 (1) 2sin2x-3π>0⇒
sin2x-π3>0⇒2kπ<2x-π3<2kπ+π,
k
∈
Z
⇒
kπ
+
π 6
<x<kπ
+
2 3
π
,
k
∈
Z.
故
函
数
的
定
义
域
为
kπ+π6,kπ+23π,k∈Z.
(2)∵f(x)=0,∴sin 2x-3π =
第五节 三角函数的图像与性质
1. 理解正弦函数、余弦函数、正切函数的图像和性质,会用 “五点法”画正弦函数、余弦函数的简图. 2. 了解周期函数与最小正周期的意义.
1. 周期函数
(1)周期函数的定义
对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值
时,都有 f(x+T)=f(x,) 那么函数f(x)就叫做周期函数. 非零常数T 叫做这个函数
2 2
⇒2x-
π 3
=2kπ+
π 4
或2kπ+
3 4
π,k∈Z⇒x=kπ+
7 24
π或x=kπ+
13 24
π,k∈Z,故x的取值是
x|x=kπ+274π或x=kπ+1234π,k∈Z. (3)令2kπ+π2≤2x-π3<2kπ+π,k∈Z⇒2kπ+56π≤2x<2kπ+43π,
三角函数的图像与性质课件
1
0 -1
y
y=-cosx x [0,2 ]
1
●
o
●
3●
2
x
2
2
-1 ●
●
思考:
1、函数y=1+sinx的图象与函数y=sinx的图象有什么关系? 2、函数y=-cosx的图象与函数y=cosx的图象有什么关系?
y 2
1
o
2
-1
y
1
o
2
-1
y=1+sinx x[0, 2 ]
3
2
x
2
y=sinx x[0, 2 ]
解:(1)函数的定义域为 R,
且
f(x)
=
cos(
π 2
+
2x)
=
-
sin
2x.∵f( -x) =-
sin(-2x)=sin 2x=-f(x),∴函数 f(x)=cos(2x
+52π)是奇函数.(2)函数的定义域为 R,
且 f(-x)=sin[cos(-x)]=sin(cos x)=f(x),
∴函数 f(x)=sin(cos x)是偶函数.
【名师点评】 判断函数奇偶性时,必须先检查定义 域是否是关于原点的对称区间.如果是,再验证f(-x) 是否等于-f(x)或f(x),进而判断函数的奇偶性;如果 不是,则该函数必为非奇非偶函数.
跟踪训练
3.判断下列函数的奇偶性.
(1)f(x)=cos(2x+52π);
(2)f(x)=sin(cos x).
(2)y= - cosx, x [0, 2 ]
解:(1)按五个关键点列表
x
0
2
3
2
2
sinx 0 1 0 -1 0
第5讲三角函数的图像与性质
第5讲 三角函数的图像与性质★知 识 梳理正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R (2)值域:都是[-1,1] 对于sin y x =,当()22x k k Z ππ=+∈时,y 取最大值1;当()322x k k Z ππ=+∈时,y 取最小值-1;对于cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。
(3)周期性:①sin y x =、cos y x =的最小正周期都是2π②()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω= (4)奇偶性与对称性:正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2x k k Z ππ=+∈;余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ⎛⎫+∈ ⎪⎝⎭,对称轴是直线()x k k Z π=∈(5)单调性:sin y x=在区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增,在()32,222k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦单调递减; cos y x =在[]()2,22k k k Z ππππ++∈上单调递增,在区间[]()2,2k k k Z πππ+∈上单调递减,。
(6)正切函数tan y x =的图象和性质: (1)定义域:{|,}2x x k k Z ππ≠+∈。
(2)值域是R ,在上面定义域上无最大值也无最小值; (3)周期性:周期是π.(4)奇偶性与对称性:奇函数,对称中心是,02k π⎛⎫⎪⎝⎭()k Z ∈, (5)单调性:正切函数在开区间(),22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭内都是增函数。
★重 难 点 突 破1.重点:熟练掌握利用三角恒等变换化简三角函数解析式式,熟悉正弦函数和余弦函数的图象与性质。
三角函数的图像和性质教学课件
图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。
三角函数的图像与性质课件
A
3 3
2 的值是( f( ) 3
)
,知f(x)的周期是
,
∴f(x)=tan , 2x, 2
2
2
2 4 f ( ) tan tan 3. 3 3 3
4.函数y=sin(x+ )的递减区间是_______.
3 【解析】由 3 2k x 2k ,k Z, 2 3 2 得 7 2k x 2k ,k Z. 故函数的递减区间是 6 6 7 [ 2k ,2k ] k Z . 答案: 6 6 7 [2k ,2k ] k Z . 6 6
(6)y=tan 2x的最小正周期为π .( )
)
【解析】(1)正确.由周期函数的定义,对任意非零实数 b,都有
f(x+b)=a,故任意非零实数都是f(x)的周期,故没有最小正周 期. (2)正确.由y=sin x在x∈[ [0, ]上是增加的.
(3)错误.y=cos x在(2kπ,2kπ+π)(k∈Z)上是减少的,但 2
第三节
三角函数的图像与性质
1.周期函数和最小正周期 (1)周期函数:一般地,对于函数f(x),如果存在__________, 非零实数T 对定义域内的任意一个x值,都有___________,则称f(x)为周 f(x+T)=f(x) 期函数,T称为这个函数的周期. (2)最小正周期:周期函数_______中最小的一个,称为最小正 周期. 正周期
的定义域是______. f x tan( x) 4 【解析】由题意知 即 tan( x) 0, tan(x ) 0, 4 4 即 k x k,k Z, 2 4 k x k ,k Z. 答案: 4 4 {x | k x k ,k Z} 4 4
(完整版)三角函数图像和性质教案
阳光教育课题学情解析授课目的与考点解析授课重点三角函数的图像和性质三角函数的图象与性质是三角函数的重要内容,学生方才刚学到,对好多看法还不很清楚,理解也不够透彻,需要及时加强坚固。
1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.三角函数图象与性质的应用是本节课的重点。
授课方法导入法、解说法、归纳总结法学习内容与过程基础梳理1.“五点法〞描图(1)y= sin x 的图象在 [0,2 π]上的五个重点点的坐标为(0,0),(,1) ,(π,0),(3, 1),(2 π, 0).22(2)y= cos x 的图象在 [0,2 π]上的五个重点点的坐标为(0,1),(,0) ,(π,-1), ( 3,0) ,(2π,1).222.三角函数的图象和性质函数y= sin x y= cos x y=tan x 性质定义域R R{x|x ≠πk2k Z}图象值域[-1,1][-1,1]R阳光教育π对称轴: x =k π+2(k ∈Z)对称性对称中心:(k π,0)(k ∈Z)周期2π对称轴: x =k π(k ∈ Z)无对称轴 对称中心:对称中心:(k,0)k Z( k,0)k Z222ππ单调增区间[ 2k ,2k ]k Z ;2 2单调性单调增区间[2k π- π,2k π ](k ∈Z);单调增区间单调减区间[ 2k,2k3]k Z22单调减区间 (k, k)k Z22[2k π,2k π+π ](k ∈Z)奇偶性奇偶奇两条性质 (1)周期性2ππ函数 y =Asin(ωx+ φ)和 y =Acos(ωx+φ)的最小正周期为 |ω|,y =tan(ωx+φ)的最小正周期为 |ω|.(2)奇偶性三角函数中奇函数一般可化为y = Asin ωx 或 y = Atan ωx,而偶函数一般可化为 y =Acos ωx+b 的形式.三种方法求三角函数值域 (最值 )的方法:(1)利用 sin x 、cos x 的有界性;(2)形式复杂的函数应化为 y =Asin(ωx + φ)+k 的形式渐渐解析 ωx +φ的范围,依照正弦函数单调性写出函数的值域;(3)换元法:把 sin x 或 cos x 看作一个整体,可化为求函数在区间上的值域 (最值 )问题.双基自测1.函数 ycos(x) ,x ∈R( ).3A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数.函数 y tan( x) 的定义域为 ().24A . { x | x k4 , k Z}B . { x | x 2k,k Z}4C . { x | x k, k Z} D . { x | x 2k,k Z}443. y sin(x ) 的图象的一个对称中心是 ( ).4A .(-π,0)B . (3,0)4C . (3,0)D . ( ,0)224.函数 f(x)=cos ( 2x) 的最小正周期为 ________. 6考向一 三角函数的周期【例 1】?求以下函数的周期:(1) y sin(3 2x);(2) y tan(3x)6考向二 三角函数的定义域与值域(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域 (最值 )常有到以下几各种类的题目:①形如 y =asin 2x +bsin x +c 的三角函数,可先设 sin x =t ,化为关于 t 的二次函数求值域 (最值 );②形如 y =asin xcos x + b(sin x ±cos x)+c 的三角函数,可先设 t =sin x ±cos x ,化为关于 t 的二次函数求值域 (最值 ).【例 2】?(1)求函数 y =lg sin 2x +9-x 2的定义域.(2)求函数 y =cos 2x +sin x (| x |) 的最大值与最小值.4tan( x)sin xy41)【训练 2】 (1)求函数 y= sin x- cos x的定义域; (2)lg( 2 cos x(3) f (x) 的定义域为 [0,1] ,求 f (cos x) 的定义域.考向三三角函数的单调性求形如 y=Asin(ωx+φ)+k 的单调区间时,只需把ωx+φ看作一个整体代入y=sin x 的相应单调区间内即可,假设ω为负那么要先把ω化为正数.【例 3】?求以下函数的单调递加区间.(1) y cos( 2 x) ,(2) y 1sin(42x) ,(3) y tan(3x) .3233【训练 3】函数 f(x)=sin ( 2x) 的单调减区间为______.3考向四 三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象可是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.【例 4】?(1)函数 y =cos (2x) 图象的对称轴方程可能是 ().3π ππ πA .x =- 6B .x =- 12C .x = 6D .x =12(2)假设 0<α< π ) 是偶函数,那么 α的值为________. , g( x) sin( 2x2 4π【训练 4】 (1)函数 y =2sin(3x + φ) (| | 2) 的一条对称轴为 x =12,那么 φ= ________.(2)函数 y = cos(3x +φ)的图象关于原点成中心对称图形.那么 φ=________.难点打破 —— 利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思想问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时平时将方程的思想与待定系数法相结合.【比方】 ? 函数 f(x)=sin ( x) (ω>0)的单调递加区间为 [ k 5,k] (k ∈Z),单调递31212减区间为 [k, k 7] (k ∈Z),那么 ω的值为 ________.1212课内练习与训练1、函数 f (x)sin(3x)3〔1〕判断函数的奇偶性;〔 2〕判断函数的对称性.2、设函数f ( x)sin( 2x)(0) 的图象的一条对称轴是直线x,那么______.8学生对本次课的小结及议论1、本次课你学到了什么知识2、你对老师下次上课的建议⊙ 特别满意⊙ 满意⊙ 一般⊙ 差学生签字:课后练习:〔详尽见附件〕课后小结教师签字:批阅签字 :时间:教务主任签字 :时间:龙文教育教务处。
数学精华课件:三角函数的图象和性质
正切函数的图象
正切函数是奇函数,其图像关于原点对 称。
正切函数的图像是一个连续的曲线,它 在每一个开区间$(-frac{pi}{2}+kpi, frac{pi}{2}+kpi)$内是单调递增的。
正切函数的定义域为除去所有形如 $kpi+frac{pi}{2}$的点,其中$k$为整 数。正切函数没有最大值和最小值,因
06
总结与回顾
重点回顾
三角函数的基本概念
三角函数是描述三角形边长和角度之间关系的数学函数,包括正 弦、余弦、正切等。
三角函数的图象
三角函数的图象是周期性的,呈现波浪形状,具有对称性。
三角函数的性质
三角函数具有一些基本性质,如奇偶性、单调性、周期性等。
学习反馈
01
02
03
学生掌握情况
通过课堂练习和课后作业, 了解学生对三角函数图象 和性质的掌握情况。
学习目标
掌握三角函数的图象 绘制方法。
能够运用三角函数解 决实际问题,如物理、 工程等领域的问题。
理解三角函数的性质, 如周期性、奇偶性、 振幅和相位等。
02
三角函数的基本概念
正弦函数
定义
正弦函数是三角函数的 一种,定义为y=sinx,
x∈R。
周期性
正弦函数具有周期性, 其周期为2π。
奇偶性
正弦函数是奇函数,因 为f(-x)=sin(-x)=sinx=-f(x)。
布。
在工程学中的应用
01
三角函数在工程学中广 泛应用于信号处理、控 制系统等领域。
02
在信号处理中,三角函 数可以用于实现滤波、 调制和解调等操作。
03
在控制系统中,三角函 数可以用于实现PID控制、 模糊控制等算法。
5 第5讲 三角函数的图象与性质
第5讲三角函数的图象与性质1.正弦、余弦、正切函数的图象与性质函数y=sin x y=cos x y=tan x图象定义域R R{x|x≠kπ+π2,k∈Z}值域[-1,1][-1,1]R函数的最值最大值1,当且仅当x=2kπ+π2,k∈Z最小值-1,当且仅当x=2kπ-π2,k∈Z最大值1,当且仅当x=2kπ,k∈Z最小值-1,当且仅当x=2kπ-π,k∈Z无最大值和最小值单调性增区间[k·2π-π2,k·2π+π2(k∈Z)]减区间[k·2π+π2,k·2π+3π2](k∈Z)增区间[k·2π-π,k·2π](k∈Z)减区间[k·2π,k·2π+π](k∈Z)增区间(k·π-π2,k·π+π2)(k∈Z)奇偶性奇函数偶函数奇函数周期性周期为2kπ,k≠0,k∈Z,最小正周期为2π周期为2kπ,k≠0,k∈Z,最小正周期为2π周期为kπ,k≠0,k∈Z,最小正周期为π对称性对称中心(kπ,0),k∈Z⎝⎛⎭⎫kπ+π2,0,k∈Z⎝⎛⎭⎫kπ2,0,k∈Z对称轴x=kπ+π2,k∈Zx=kπ,k∈Z无对称轴零点kπ,k∈Z kπ+π2,k∈Zkπ,k∈Z2.周期函数的定义对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期;函数y=A sin(ωx +φ)和y=A cos(ωx+φ)的周期均为T=2π|ω|;函数y=A tan(ωx+φ)的周期为T=π|ω|.3.对称与周期正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻的两个对称中心之间的距离是半个周期.判断正误(正确的打“√”,错误的打“×”)(1)y=cos x在第一、二象限内是减函数.()(2)若y=k sin x+1,x∈R,则y的最大值是k+1.()(3)若非零实数T是函数f(x)的周期,则kT(k是非零整数)也是函数f(x)的周期.()(4)函数y=sin x图象的对称轴方程为x=2kπ+π2(k∈Z).()(5)函数y=tan x在整个定义域上是增函数.()答案:(1)×(2)×(3)√(4)×(5)×函数y=tan 3x的定义域为()A.⎩⎨⎧⎭⎬⎫x⎪⎪x≠3π2+3kπ,k∈ZB.⎩⎨⎧⎭⎬⎫x⎪⎪x≠π6+kπ,k∈ZC.⎩⎨⎧⎭⎬⎫x⎪⎪x≠-π6+kπ,k∈ZD.⎩⎨⎧⎭⎬⎫x⎪⎪x≠π6+kπ3,k∈Z解析:选D.由3x ≠π2+k π(k ∈Z ),得x ≠π6+k π3,k ∈Z .故选D.(2017·高考全国卷Ⅲ)设函数f (x )=cos(x +π3),则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在(π2,π)单调递减解析:选D.根据函数解析式可知函数f (x )的最小正周期为2π,所以函数的一个周期为-2π,A 正确;当x =8π3时,x +π3=3π,所以cos ⎝⎛⎭⎫x +π3=-1,所以B 正确;f (x +π)=cos ⎝⎛⎭⎫x +π+π3=cos ⎝⎛⎭⎫x +4π3,当x =π6时,x +4π3=3π2,所以f (x +π)=0,所以C 正确;函数f (x )=cos ⎝⎛⎭⎫x +π3在⎝⎛⎭⎫π2,23π上单调递减,在⎝⎛⎭⎫23π,π上单调递增,故D 不正确.所以选D.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为__________,此时x =________.解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z ),即x =3π4+2k π(k ∈Z ). 答案:53π4+2k π(k ∈Z ) 函数f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π]的减区间为________.解析:当2k π+π2≤x +π4≤2k π+3π2,k ∈Z ,即2k π+π4≤x ≤2k π+5π4,k ∈Z 时,函数f (x )是减函数.又x ∈[0,π],所以f (x )的单调递减区间为⎣⎡⎦⎤π4,π. 答案:⎣⎡⎦⎤π4,π三角函数的定义域和值域[典例引领](1)(2017·高考全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________.(2)函数y =lg(2sin x -1)+1-2cos x 的定义域是________. 【解析】(1)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(2)要使函数y =lg(2sin x -1)+1-2cos x 有意义,则⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎨⎧sin x >12,cos x ≤12.解得2k π+π3≤x <2k π+5π6,k ∈Z .即函数的定义域为⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z .【答案】 (1)1 (2)⎣⎡⎭⎫2k π+π3,2k π+5π6,k ∈Z(1)三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法 ①利用sin x 和cos x 的值域直接求.②把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域. ③(换元法)把sin x 或cos x 看作一个整体,转换成二次函数求值域. ④(换元法)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域.[通关练习]1.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( )A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3解析:选B.当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 2.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), 所以2k π<x ≤π3+2k π,k ∈Z .所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z3.函数y =(4-3sin x )(4-3cos x )的最小值为________. 解析:y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2,2],且sin x cos x =t 2-12,所以y =16-12t +9×t 2-12=12(9t 2-24t +23).故当t =43时,y min =72.答案:72三角函数的单调性(高频考点)三角函数的单调性是每年高考命题的热点,题型既有选择题也有填空题,或解答题某一问出现,难度为中档题.高考对三角函数单调性的考查有以下四个命题角度:(1)求已知三角函数的单调区间; (2)已知三角函数的单调区间求参数; (3)利用三角函数的单调性比较大小;(4)利用三角函数的单调性求值域(或最值).(见本节例1(1)及通关练习T1)[典例引领]角度一 求已知三角函数的单调区间(2018·沈阳市教学质量检测(一))已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调递减区间分别为( ) A .2π,⎣⎡⎦⎤3π8,7π8B .π,⎣⎡⎦⎤3π8,7π8C .2π,⎣⎡⎦⎤-π8,3π8D .π,⎣⎡⎦⎤-π8,3π8【解析】 f (x )=2sin 2x +2sin x cos x =1-cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x -π4+1,所以T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π(k ∈Z )得3π8+k π≤x ≤7π8+k π(k ∈Z ),令k =0得f (x )在⎣⎡⎦⎤3π8,7π8上单调递减.【答案】 B角度二 已知三角函数的单调区间求参数函数f (x )=sin ωx (其中ω>0)在区间⎣⎡⎦⎤-π2,2π3上单调递增,则ω的取值范围是________.【解析】 因为ω>0,由2k π-π2≤ωx ≤2k π+π2,k ∈Z ,得f (x )的增区间是⎣⎢⎡⎦⎥⎤2k πω-π2ω,2k πω+π2ω,k ∈Z .因为f (x )在⎣⎡⎦⎤-π2,2π3上单调递增,所以⎣⎡⎦⎤-π2,2π3⊆⎣⎢⎡⎦⎥⎤2k πω-π2ω,2k π2+π2ω. 所以-π2≥2k πω-π2ω且2π3≤π2ω+2k πω,所以ω∈⎝⎛⎦⎤0,34. 【答案】 ⎝⎛⎦⎤0,34 角度三 利用三角函数的单调性比较大小已知函数f (x )=2sin ⎝⎛⎭⎫x +π3,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是( )A .a <c <bB .c <a <bC .b <a <cD .b <c <a【解析】 a =f ⎝⎛⎭⎫π7=2sin 1021π,b =f ⎝⎛⎭⎫π6=2sin π2=2,c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3,因为y =sin x 在⎣⎡⎦⎤0,π2上递增,所以c <a <b .【答案】 B(1)求三角函数单调区间的两种方法①代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解,如例2-1.②图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.[提醒] 要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域. (2)利用单调性确定ω的范围的方法对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. (3)利用单调性比较大小的方法首先利用诱导公式把已知角转化为同一区间内的角且函数名称相同,再利用其单调性比较大小.[通关练习]1.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( )A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z )C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z )D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z )解析:选B.由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan(2x -π3)的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).2.(2018·浙江宁波质检)已知函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上的最小值为-2,则ω的取值范围是( ) A.⎝⎛⎭⎫-∞,-92∪[6,+∞) B.⎝⎛⎦⎤-∞,-92∪⎣⎡⎭⎫32,+∞ C .(-∞,-2]∪[6,+∞) D .(-∞,-2]∪⎣⎡⎭⎫32,+∞解析:选D.当ω>0时,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,由题意知π4ω≤-π2,所以ω≤-2.综上可知,ω的取值范围是(]-∞,-2∪⎣⎡⎭⎫32,+∞. 3.已知函数g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2,则g (x )的单调递增区间为________.解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3,欲求函数g (x )的单调递增区间, 只需求y =cos ⎝⎛⎭⎫2x -π3的单调递减区间. 由2k π≤2x -π3≤2k π+π,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z .故所给函数的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). 因为x ∈⎣⎡⎦⎤-π2,π2,所以函数g (x )的单调递增区间是⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2.答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2三角函数的奇偶性、周期性及对称性(高频考点)三角函数的奇偶性、周期性及对称性是每年高考命题的热点,题型既有选择题也有填空题,或在解答题某一问出现,难度为中档题.高考对三角函数单调性的考查有以下三个命题角度: (1)三角函数的周期性与奇偶性; (2)三角函数的对称轴或对称中心; (3)三角函数的奇偶性与单调性.[典例引领]角度一 三角函数的周期性与奇偶性(2018·贵阳市监测考试)下列函数中,以π2为最小正周期的奇函数是( )A .y =sin 2x +cos 2xB .y =sin ⎝⎛⎭⎫4x +π2C .y =sin 2x cos 2xD .y =sin 22x -cos 22x【解析】 A 中,y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,为非奇非偶函数,故A 错;B 中,y=sin ⎝⎛⎭⎫4x +π2=cos 4x ,为偶函数,故B 错;C 中,y =sin 2x cos 2x =12sin 4x ,最小正周期为π2且为奇函数,故C 正确;D 中,y =sin 22x -cos 22x =-cos 4x ,为偶函数,故D 错. 【答案】 C角度二 三角函数的对称轴或对称中心函数y =sin ⎝⎛⎭⎫2x -π6的图象与函数y =cos ⎝⎛⎭⎫x -π3的图象( )A .有相同的对称轴但无相同的对称中心B .有相同的对称中心但无相同的对称轴C .既有相同的对称轴也有相同的对称中心D .既无相同的对称中心也无相同的对称轴【解析】 由2x -π6=k π+π2,k ∈Z ,可解得函数y =sin ⎝⎛⎭⎫2x -π6的对称轴为x =k π2+π3,k ∈Z .由x -π3=k π,k ∈Z ,可解得函数y =cos ⎝⎛⎭⎫x -π3的对称轴为x =k π+π3,k ∈Z .当k =0时,函数有相同的对称轴.由2x -π6=k π,k ∈Z ,可解得函数y =sin ⎝⎛⎭⎫2x -π6的对称中心为⎝⎛⎭⎫k π2+π12,0,k ∈Z .由x -π3=k π+π2,k ∈Z ,可解得函数y =cos ⎝⎛⎭⎫x -π3的对称中心为⎝⎛⎭⎫k π+5π6,0,k ∈Z .故两个函数没有相同的对称中心,故选A. 【答案】 A角度三 三角函数的奇偶性与单调性(2018·广州市综合测试(一))已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎫0,π4上单调递减B .f (x )在⎝⎛⎭⎫π8,3π8上单调递减C .f (x )在⎝⎛⎭⎫0,π4上单调递增D .f (x )在⎝⎛⎭⎫π8,3π8上单调递增【解析】 f (x )=sin(ωx +φ)+cos(ωx +φ)=2sin ⎝⎛⎭⎫ωx +φ+π4,因为0<φ<π且f (x )为奇函数,所以φ=3π4,即f (x )=-2sin ωx ,又直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,所以函数f (x )的最小正周期为π2,由2πω=π2,可得ω=4,故f (x )=-2sin 4x ,由2k π+π2≤4x ≤2k π+3π2,k ∈Z ,即k π2+π8≤x ≤k π2+3π8,k ∈Z ,令k=0,得π8≤x ≤3π8,此时f (x )在⎝⎛⎭⎫π8,3π8上单调递增.【答案】 D三角函数的奇偶性、对称性和周期问题的解题思路(1)奇偶性的判断方法:三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.(2)周期的计算方法:利用函数y =A sin(ωx +φ)(ω>0),y =A cos(ωx +φ)(ω>0)的周期为2πω,函数y =A tan(ωx +φ)(ω>0)的周期为πω求解.(3)解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.[提醒] 对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.[通关练习]1.已知f (x )=sin x +3cos x (x ∈R ),函数y =f (x +φ)⎝⎛⎭⎫|φ|≤π2的图象关于直线x =0对称,则φ的值为( ) A.π2 B.π3 C.π4D.π6解析:选D.f (x )=2sin ⎝⎛⎭⎫x +π3,y =f (x +φ)=2sin ⎝⎛⎭⎫x +π3+φ的图象关于x =0对称,即f (x +φ)为偶函数. 所以π3+φ=π2+k π,k ∈Z ,即φ=k π+π6,k ∈Z ,又因为|φ|≤π2,所以φ=π6,故选D.2.已知函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图象( )A .关于点⎝⎛⎭⎫π3,0对称B .关于点⎝⎛⎭⎫5π3,0对称C .关于直线x =π3对称D .关于直线x =5π3对称解析:选B.函数f (x )=2sin ⎝⎛⎭⎫ωx +π6(ω>0)的最小正周期是4π,而T =2πω=4π,所以ω=12, 即f (x )=2sin ⎝⎛⎭⎫12x +π6.函数f (x )的对称轴为x 2+π6=π2+k π,解得x =23π+2k π(k ∈Z );函数f (x )的对称中心的横坐标为x 2+π6=k π,解得x =2k π-13π(k ∈Z ).所以f (x )的对称中心为⎝⎛⎭⎫5π3,0.3.(2018·揭阳模拟)已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解析:因为当x ∈[0,1)时,f (x )=lg(x +1), f ⎝⎛⎭⎫45=lg 95, 又因为函数f (x )是周期为2的奇函数, 所以f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45=-lg 95, 所以f ⎝⎛⎭⎫2 0165+lg 18=lg 18-lg 95=lg 10=1. 答案:1奇偶性对于y =A sin(ωx +φ)(A ≠0),若为奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=π2+k π(k ∈Z ).对于y =A cos(ωx +φ)(A ≠0),若为奇函数,则φ=π2+k π(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).对于y =A tan(ωx +φ)(A ≠0),若为奇函数,则φ=k2π(k ∈Z ).函数图象的对称中心、对称轴(1)求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)的函数图象的对称轴或对称中心时,都是先把“ωx +φ”看作一个整体,然后根据y =sin x 和y =cos x 图象的对称轴或对称中心进行求解. (2)在判断对称轴或对称中心时,用以下结论可快速解题:设y =f (x )=A sin(ωx +φ),g (x )=A cos(ωx +φ),x =x 0是对称轴方程⇔f (x 0)=±A ,g (x 0)=±A ;(x 0,0)是对称中心⇔f (x 0)=0,g (x 0)=0. 易错防范(1)闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时的情况,避免出现增减区间的混淆.1.f (x )=tan x +sin x +1,若f (b )=2,则f (-b )=( ) A .0 B .3 C .-1D .-2解析:选A.因为f (b )=tan b +sin b +1=2, 即tan b +sin b =1.所以f (-b )=tan(-b )+sin(-b )+1 =-(tan b +sin b )+1=0.2.(2018·南昌市第一次模拟)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π2)的周期为π,若f (α)=1,则f ⎝⎛⎭⎫α+3π2=( )A .-2B .-1C .1D .2解析:选B.因为函数f (x )=A sin(ωx +φ)(A >0,ω>0, 0<φ<π2)的周期为π,所以T =2πω=π,得ω=2,从而由f (α)=1,得A sin(2α+φ)=1,f ⎝⎛⎭⎫α+3π2=A sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+3π2+φ=A sin []3π+(2α+φ)=-A sin(2α+φ)=-1.3.最小正周期为π且图象关于直线x =π3对称的函数是( )A .y =2sin ⎝⎛⎭⎫2x +π3B .y =2sin ⎝⎛⎭⎫2x -π6C .y =2sin ⎝⎛⎭⎫x 2+π3D .y =2sin ⎝⎛⎭⎫2x -π3解析:选B.由函数的最小正周期为π,可排除C.由函数图象关于直线x =π3对称知,该直线过函数图象的最高点或最低点,对于A ,因为sin ⎝⎛⎭⎫2×π3+π3=sin π=0,所以选项A 不正确.对于D ,sin ⎝⎛⎭⎫2×π3-π3=sin π3=32,所以D 不正确,对于B ,sin ⎝⎛⎭⎫2×π3-π6=sinπ2=1,所以选项B 正确,故选B.4.(2017·高考全国卷Ⅲ)函数f (x )=15sin(x +π3)+cos(x -π6)的最大值为( )A.65 B .1 C.35D.15解析:选A.因为cos(x -π6)=cos[(x +π3)-π2]=sin(x +π3),所以f (x )=65sin(x +π3),于是f (x )的最大值为65,故选A.5.(2018·石家庄教学质量检测(二))已知函数f (x )=sin ⎝⎛⎭⎫2x +π12,f ′(x )是f (x )的导函数,则函数y =2f (x )+f ′(x )的一个单调递减区间是( ) A.⎣⎡⎦⎤π12,7π12 B.⎣⎡⎦⎤-5π12,π12 C.⎣⎡⎦⎤-π3,2π3D.⎣⎡⎦⎤-π6,5π6解析:选A.由题意,得f ′(x )=2cos ⎝⎛⎭⎫2x +π12,所以y =2f (x )+f ′(x )=2sin ⎝⎛⎭⎫2x +π12+2cos ⎝⎛⎭⎫2x +π12=22sin ⎝⎛⎭⎫2x +π12+π4=22sin ⎝⎛⎭⎫2x +π3.由2k π+π2≤2x +π3≤2k π+3π2(k ∈Z ),得k π+π12≤x ≤k π+7π12(k ∈Z ),所以y =2f (x )+f ′(x )的一个单调递减区间为⎣⎡⎦⎤π12,7π12,故选A. 6.比较大小:sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10.解析:因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数且-π18>-π10,故sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10.答案:>7.若函数f (x )=2cos ⎝⎛⎭⎫ωx +π6的最小正周期为T ,T ∈(1,3),则正整数ω的最大值为________.解析:因为T =2πω,T ∈(1,3),所以1<2πω<3,即2π3<ω<2π.所以正整数ω的最大值为6. 答案:68.已知f (x )=sin 2x -3cos 2x ,若对任意实数x ∈⎝⎛⎦⎤0,π4,都有|f (x )|<m ,则实数m 的取值范围是________.解析:因为f (x )=sin 2x -3cos 2x =2sin ⎝⎛⎭⎫2x -π3,x ∈⎝⎛⎦⎤0,π4,所以⎝⎛⎭⎫2x -π3∈⎝⎛⎦⎤-π3,π6,所以2sin ⎝⎛⎭⎫2x -π3∈(-3,1],所以|f (x )|=|2sin ⎝⎛⎪⎪2x -π3)<3,所以m ≥ 3.答案:[3,+∞)9.(2017·高考北京卷)已知函数f (x )=3cos ⎝⎛⎭⎫2x -π3-2sin x cos x . (1)求f (x )的最小正周期;(2)求证:当x ∈⎣⎡⎦⎤-π4,π4时,f (x )≥-12. 解:(1)f (x )=32cos 2x +32sin 2x -sin 2x =12sin 2x +32cos 2x =sin(2x +π3).所以f (x )的最小正周期T =2π2=π.(2)证明:因为-π4≤x ≤π4,所以-π6≤2x +π3≤5π6.所以sin(2x +π3)≥sin(-π6)=-12.所以当x ∈[-π4,π4]时,f (x )≥-12.10.(2018·合肥市第二次教学质量检测)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程; (2)讨论函数f (x )在⎣⎡⎦⎤0,π2上的单调性.解:(1)因为f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4,且T =π,所以ω=2.于是,f (x )=2sin ⎝⎛⎭⎫2x -π4.令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ),即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π8,k π+3π8(k ∈Z ).注意到x ∈⎣⎡⎦⎤0,π2,所以令k =0,得函数f (x )在⎣⎡⎦⎤0,π2上的单调递增区间为⎣⎡⎦⎤0,3π8;同理,其单调递减区间为⎣⎡⎦⎤3π8,π2.1.已知函数f (x )=⎪⎪⎪⎪tan ⎝⎛⎭⎫12x -π6,则下列说法正确的是( )A .f (x )的周期是π2B .f (x )的值域是{y |y ∈R ,且y ≠0}C .直线x =5π3是函数f (x )图象的一条对称轴D .f (x )的单调递减区间是⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z解析:选 D.函数f (x )=⎪⎪⎪⎪tan ⎝⎛⎭⎫12x -π6的周期为T =π12=2π,故A 错误;函数f (x )=⎪⎪⎪⎪tan ⎝⎛⎭⎫12x -π6的值域为[0,+∞),故B 错误;当x =5π3时,12x -π6=2π3≠k π2,k ∈Z ,即x =5π3不是f (x )的对称轴,故C 错误;令k π-π2<12x -π6≤k π,k ∈Z ,解得x ∈⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z ,所以函数f (x )的单调减区间为⎝⎛⎦⎤2k π-2π3,2k π+π3,k ∈Z ,故D 正确.2.(2018·武汉市武昌区调研考试)若f (x )=cos 2x +a cos ⎝⎛⎭⎫π2+x 在区间⎝⎛⎭⎫π6,π2上是增函数,则实数a 的取值范围为( ) A .[-2,+∞) B .(-2,+∞) C .(-∞,-4)D .(-∞,-4]解析:选D.f (x )=1-2sin 2x -a sin x ,令sin x =t ,t ∈⎝⎛⎭⎫12,1,则g (t )=-2t 2-at +1,t ∈⎝⎛⎭⎫12,1,因为f (x )在⎝⎛⎭⎫π6,π2上单调递增,所以-a4≥1,即a ≤-4,故选D.3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为( ) A.12 B .2 C.π2D.π2解析:选D.因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z ,又ω-(-ω)≤12·2πω,ω>0,即ω2≤π2,即ω2=π4,所以ω=π2.4.(2018·湖南省湘中名校联考)已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z )B.⎣⎡⎦⎤k π,k π+π2(k ∈Z )C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z )D.⎣⎡⎦⎤k π-π2,k π(k ∈Z )解析:选C.因为f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,即⎪⎪⎪⎪f ⎝⎛⎭⎫π6=⎪⎪⎪⎪sin ⎝⎛⎭⎫π3+φ=1,所以φ=k π+π6(k ∈Z ).因为f ⎝⎛⎭⎫π2>f (π),所以sin(π+φ)>sin(2π+φ), 即sin φ<0,所以φ=-56π+2k π(k ∈Z ),所以f (x )=sin(2x -56π),所以由三角函数的单调性知2x -5π6∈[2k π-π2,2k π+π2](k ∈Z ),得x ∈[k π+π6,k π+2π3](k ∈Z )即为f (x )的单调递增区间,故选C. 5.已知f (x )=2sin ⎝⎛⎭⎫2x +π4.(1)求函数f (x )图象的对称轴方程; (2)求f (x )的单调递增区间; (3)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)f (x )=2sin ⎝⎛⎭⎫2x +π4,令2x +π4=k π+π2,k ∈Z ,则x =k π2+π8,k ∈Z .所以函数f (x )图象的对称轴方程是x =k π2+π8,k ∈Z .(2)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z .(3)当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.6.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间.解:(1)因为x ∈⎣⎡⎦⎤0,π2,所以2x +π6∈⎣⎡⎦⎤π6,7π6.所以sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, 所以-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ].所以f (x )∈[b ,3a +b ], 又因为-5≤f (x )≤1,所以b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得,f (x )=-4sin ⎝⎛⎭⎫2x +π6-1,g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1=4sin ⎝⎛⎭⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,所以4sin ⎝⎛⎭⎫2x +π6-1>1,所以sin ⎝⎛⎭⎫2x +π6>12,所以2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,所以g (x )的单调增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z .又因为当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z .所以g (x )的单调减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .。
第四章 第5讲 三角函数的图象与性质-2025年高考数学备考
第四章三角函数第5讲三角函数的图象与性质课标要求命题点五年考情命题分析预测1.借助单位圆能画出三角函数(正弦、余弦、正切)的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值.2.借助图象理解正弦函数、余弦函数在[0,2π]上,正切函数在(-π2,π2)上的性质.三角函数的定义域本讲每年必考,主要考查三角函数的定义域、值域(最值)、周期性、单调性、对称性和奇偶性,有时与函数零点和极值点综合命题,题型以选择题和填空题为主,难度中等.预计2025年高考命题趋势变化不大,备考时要注意区分正弦函数和余弦函数的图象与性质,不要混淆,另应关注新角度、新综合问题.三角函数的值域(最值)2021全国卷乙T4三角函数的性质及应用2023新高考卷ⅠT15;2023全国卷乙T6;2023天津T5;2022新高考卷ⅠT6;2022全国卷乙T15;2022全国卷甲T11;2022北京T5;2021新高考卷ⅠT4;2020全国卷ⅢT16;2019全国卷ⅠT11;2019全国卷ⅡT9学生用书P0801.用“五点法”作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,0),(π2,1),①(π,0),(3π2,-1),②(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,起关键作用的五个点是(0,1),(π2,0),③(π,-1),(3π2,0),④(2π,1).五点法作图有三步:列表、描点、连线(注意光滑).2.正弦、余弦、正切函数的图象与性质三角y =sin xy =cos xy =tan x函数图象定义域R R ⑤{x |x ≠k π+2,k ∈Z}值域⑥[-1,1]⑦[-1,1]R周期性周期是2k π(k ∈Z 且k ≠0),最小正周期是⑧2π.周期是2k π(k ∈Z 且k ≠0),最小正周期是⑨2π.周期是k π(k ∈Z 且k ≠0),最小正周期是⑩π.对称性对称轴方程是⑪x =k π+2(k ∈Z ),对称中心是⑫(k π,0)(k ∈Z ).对称轴方程是⑬x =k π(k ∈Z ),对称中心是⑭(k π+2,0)(k ∈Z ).无对称轴,对称中心是⑮(2,0)(k ∈Z ).奇偶性⑯奇函数⑰偶函数⑱奇函数单调性在⑲[-2+2k π,2+2k π](k ∈Z )上单调递增,在⑳[2+2k π,32+2k π](k ∈Z )上单调递减.在㉑[2k π-π,2k π](k ∈Z )上单调递增,在㉒[2k π,2k π+π](k ∈Z )上单调递减.在㉓(-2+k π,2+k π)(k ∈Z )上单调递增.注意y =tan x 在其定义域内不单调.常用结论1.三角函数的对称性与周期T 的关系(1)相邻的两条对称轴(或两个对称中心)之间的距离为2;(2)相邻的对称中心与对称轴之间的距离为4;(3)相邻的两个最低点(或最高点)之间的距离为T .2.与三角函数奇偶性有关的结论(1)若函数y =A sin (ωx +φ)(x ∈R )是奇函数,则φ=k π(k ∈Z );若为偶函数,则φ=k π+π2(k ∈Z ).(2)若函数y =A cos (ωx +φ)(x ∈R )是奇函数,则φ=k π+π2(k ∈Z );若为偶函数,则φ=k π(k ∈Z ).(3)若y=A tan(ωx+φ)为奇函数,则φ=kπ(k∈Z).1.设A是△ABC最小的内角,则sin A+cos A的取值范围是(D)A.(-2,2)B.[-2,2]C.(1,2)D.(1,2]解析∵A是△ABC最小的内角,∴0<A≤π3,∴π4<A+π4≤7π12,sin(A+π4)≤1,则sin A+cos A=2sin(A+π4)∈(1,2],故选D.2.函数f(x)=tan(-4x+π6)的最小正周期为(A)A.π4B.π2C.πD.2π解析函数f(x)=tan(-4x+π6)的最小正周期T=π||=π|-4|=π4.3.[全国卷Ⅱ]若x1=π4,x2=3π4是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=(A)A.2B.32C.1D.12解析依题意得函数f(x)的最小正周期T=2π=2×(3π4-π4)=π,解得ω=2,选A.4.函数f(x)=sin(x-π4)的图象的一条对称轴的方程是(C)A.x=π4B.x=π2C.x=-π4D.x=-π2解析函数y=sin x的图象的对称轴方程为x=kπ+π2(k∈Z),令x-π4=kπ+π2(k∈Z),得x=kπ+3π4(k∈Z),故函数f(x)=sin(x-π4)的图象的对称轴方程为x=kπ+3π4(k∈Z).令k=-1,得x=-π4.故选C.5.[易错题]函数y=2sin(-x+π3)(x∈[-π,0])的单调递增区间是(A)A.[-π,-π6]B.[-5π6,-π6]C.[-π3,0]D.[-π6,0]解析令π2+2kπ≤-x+π3≤3π2+2kπ,k∈Z,则-7π6-2kπ≤x≤-π6-2kπ,k∈Z.又x∈[-π,0],所以所求单调递增区间为[-π,-π6].6.函数f(x)=tan(3x+π6)的图象的对称中心为(χ6-π18,0)(k∈Z).解析令3x +π6=χ2,k ∈Z ,解得x =χ6-π18,k ∈Z ,所以f (x )的图象的对称中心为(χ6-π18,0),k ∈Z.学生用书P082命题点1三角函数的定义域例1函数y =lg (sin x 的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.解析要使函数有意义,则sin >0,Hs -12≥0,解得2χ<<π+2χ(Ap,-π3+2χ≤≤π3+2χ(Ap,所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为{x |2k π<x ≤π3+2k π,k ∈Z}.方法技巧求三角函数的定义域实质上是解不等式或不等式组,常借助于三角函数的图象解决.训练1函数f (x )=tanbtan2tan2-tan 的定义域为{x |x ≠χ4,k ∈Z}.解析tan 2x ,tan x 有意义,则≠π2+χ,2≠π2+χ,k ∈Z ,又tan 2x -tan x ≠0,即2tan1-tan 2-tan x ≠0,则tan x ≠0,即x ≠k π,k ∈Z ,综上可得,x ≠χ4,k ∈Z ,则函数f (x )的定义域为{x |x ≠χ4,k ∈Z}.命题点2三角函数的值域(最值)例2(1)[2021全国卷乙]函数f (x )=sin3+cos3的最小正周期和最大值分别是(C)A.3π和2B.3π和2C.6π和2D.6π和2解析因为函数f (x )=sin3+cos 3=2(sin 3cos π4+cos3sin π4)=2sin (3+π4),所以函数f (x )的最小正周期T =2π13=6π,最大值为2.故选C.(2)已知函数f (x )=cos (2x +π3)+2的定义域为[α,π],值域为[52,3],则α的取值范围是(C )A.[2π3,π]B.[0,2π3]C.[2π3,5π6]D.[π2,5π6]解析由题意知,2x+π3∈[2α+π3,7π3],且y=cos(2x+π3)在[α,π]上的值域为[12,1],∴2α+π3≥5π3,且2α+π3≤2π,解得2π3≤α≤5π6,∴α的取值范围是[2π3,5π6],故选C.方法技巧三角函数值域的不同求法1.把所给的三角函数式变换成y=A sin(ωx+φ)+b的形式求值域.2.把sin x或cos x看作一个整体,转换成二次函数求值域.3.利用sin x±cos x和sin x cos x的关系转换成二次函数求值域.训练2(1)[2023四川省模拟]已知函数f(x)=cos2x+sin x-14的定义域为[0,m],值域为[34,1],则实数m的最大值为(A)A.πB.7π6C.4π3D.3π2解析由已知,得f(x)=cos2x+sin x-14=1-sin2x+sin x-14=-sin2x+sin x+34,令t=sin x,函数f(x)可转换为y=-t2+t+34=-(t-12)2+1,因为y∈[34,1],所以根据二次函数的图象与性质可得t∈[0,1],即sin x∈[0,1],又x∈[0,m],所以根据三角函数的图象与性质可得m∈[π2,π],所以实数m的最大值为π,故选A.(2)函数y=sin x-cos x+sin x cos x12解析令sin x-cos x=t,则t=2sin(x-π4),t∈[-2,2],t2=sin2x+cos2x-2sin x cos x,故sin x cos x=1-22,所以y=t+1-22=-12(t-1)2+1,所以当t=1时,函数有最大值1;当t=-2时,函数有最小值-2-12,即值域为[-2-12,1].命题点3三角函数的性质及应用角度1三角函数的周期性例3(1)[2023天津高考]已知函数f(x)图象的一条对称轴为直线x=2,f(x)的一个周期为4,则f(x)的解析式可能为(B)A.f(x)=sin(π2x)B.f(x)=cos(π2x)C.f(x)=sin(π4x)D.f(x)=cos(π4x)解析对于A,f(x)=sin(π2x),其最小正周期为2ππ2=4,因为f(2)=sinπ=0,所以函数f(x)=sin(π2x)的图象不关于直线x=2对称,故排除A;对于B,f(x)=cos(π2x),其最小正周期为2ππ2=4,因为f(2)=cosπ=-1,所以函数f(x)=cos(π2x)的图象关于直线x=2对称,故选项B符合题意;对于C,D,函数y=sin(π4x)和y=cos(π4x)的最小正周期均为2ππ4=8,均不符合题意,故排除C,D.综上,选B.(2)[全国卷Ⅲ]函数f(x)=tG1+B2的最小正周期为(C)A.π4B.π2C.πD.2π解析f(x)=tan1+tan2=sin cos1+sin2cos2=sinvoscos2+sin2=sin x cos x=12sin2x,所以f(x)的最小正周期T=2π2=π.故选C.方法技巧1.求三角函数周期的基本方法(1)定义法.(2)公式法:函数y=A sin(ωx+φ)(或y=A cos(ωx+φ))的最小正周期T=2π||,函数y=A tan(ωx+φ)的最小正周期T=π||.(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y=|A sin(ωx+φ)|,y=|A cos(ωx+φ)|,y=|A tan(ωx+φ)|的最小正周期T均为π||.(2)函数y=|A sin(ωx+φ)+b|(b≠0),y=|A cos(ωx+φ)+b|(b≠0)的最小正周期T均为2π||.角度2三角函数的单调性例4(1)[2022北京高考]已知函数f(x)=cos2x-sin2x,则(C)A.f(x)在(-π2,-π6)上单调递减B.f(x)在(-π4,π12)上单调递增C.f(x)在(0,π3)上单调递减D.f(x)在(π4,7π12)上单调递增解析依题意可知f(x)=cos2x-sin2x=cos2x,对于A,因为x∈(-π2,-π6),所以2x∈(-π,-π3),函数f(x)=cos2x在(-π2,-π6)上单调递增,所以A不正确;对于B,因为x∈(-π4,π12),所以2x∈(-π2,π6),函数f(x)=cos2x在(-π4,π12)上不单调,所以B不正确;对于C,因为x∈(0,π3),所以2x∈(0,2π3),函数f(x)=cos2x在(0,π3)上单调递减,所以C正确;对于D,因为x∈(π4,7π12),所以2x∈(π2,7π6),函数f(x)=cos2x在(π4,7π12)上不单调,所以D不正确.故选C.(2)[全国卷Ⅱ]若f(x)=cos x-sin x在[-a,a]上是减函数,则a的最大值是(A)A.π4B.π2C.3π4D.π解析f(x)=cos x-sin x=2cos(x+π4),因为函数y=cos x在区间[0,π]上单调递减,则由0≤x+π4≤π,得-π4≤x≤3π4.因为f(x)在[-a,a]上是减函数,|-π4|<3π4,所以-a≥-π4,解得a≤π4.又区间[-a,a]有意义时,a>0,所以0<a≤π4,所以a的最大值是π4.方法技巧三角函数单调性问题的常见类型及求解策略常见类型求解策略已知三角函数解析式求单调区间(1)将函数化简为“一角一函数”的形式,如y=A sin(ωx+φ)+b(A>0,ω>0);(2)利用整体思想,视“ωx+φ”为一个整体,根据y=sin x的单调区间列不等式求解.对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解.注意求函数y=A sin(ωx+φ)+b的单调区间时要先看A和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.已知三角函数的单调性求参数(1)求出原函数的相应单调区间,由已知区间是求出的单调区间的子集,列不等式(组)求解.(2)由所给区间求出“ωx+φ”的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.角度3三角函数的奇偶性与对称性例5(1)[2022全国卷甲]将函数f(x)=sin(ωx+π3)(ω>0)的图象向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是(C)A.16B.14C.13D.12解析记曲线C的函数解析式为g(x),则g(x)=sin[ω(x+π2)+π3]=sin[ωx+(π2ω+π3)].因为函数g(x)的图象关于y轴对称,所以π2ω+π3=kπ+π2(k∈Z),得ω=2k+13(k∈Z).因为ω>0,所以ωmin=13.故选C.(2)[2022新高考卷Ⅰ]记函数f(x)=sin(ωx+π4)+b(ω>0)的最小正周期为T.若2π3<T <π,且y=f(x)的图象关于点(3π2,2)中心对称,则f(π2)=(A)A.1B.32C.52D.3解析因为2π3<T<π,所以2π3<2π<π,解得2<ω<3.因为y=f(x)的图象关于点(3π2,2)中心对称,所以b=2,且sin(3π2ω+π4)+b=2,即sin(3π2ω+π4)=0,所以3π2ω+π4=kπ(k∈Z),又2<ω<3,所以13π4<3π2ω+π4<19π4,所以3π2ω+π4=4π,解得ω=52,所以f(x)=sin(52x+π4)+2,所以f(π2)=sin(52×π2+π4)+2=sin3π2+2=1.故选A.方法技巧1.三角函数图象的对称轴和对称中心的求解方法:对于函数f(x)=A sin(ωx+φ)(ω≠0),令ωx+φ=kπ+π2,k∈Z,求出对称轴方程;令ωx+φ=kπ,k∈Z,求出对称中心的横坐标(纵坐标为0).对于y=A cos(ωx+φ),y=A tan(ωx+φ),可以利用类似方法求解(注意y=A tan(ωx+φ)的图象无对称轴).说明选择题可以通过验证f(x0)的值进行判断,即f(x0)=±A⇔x=x0是函数f(x)图象的对称轴方程;f(x0)=0⇔点(x0,0)是函数f(x)图象的对称中心.2.三角函数中奇函数一般可化为y=A sinωx或y=A tanωx的形式,而偶函数一般可化为y =A cosωx+b的形式.训练3(1)[2023全国卷乙]已知函数f(x)=sin(ωx+φ)在区间(π6,2π3)单调递增,直线x=π6和x=2π3为函数y=f(x)的图象的两条相邻对称轴,则f(-5π12)=(D)A. B.-12 C.12解析由题意得12×2π||=2π3-π6=π2,解得|ω|=2,易知x=π6是f(x)的最小值点.若ω=2,则π6×2+φ=-π2+2kπ(k∈Z),得φ=-5π6+2kπ(k∈Z),于是f(x)=sin(2x-6π5+2kπ)=sin(2x-5π6),f(-5π12)=sin(-5π12×2-5π6)=sin(-5π3)=sinπ3=ω=-2,则π6×(-2)+φ=-π2+2kπ(k∈Z),得φ=-π6+2kπ(k∈Z),于是f(x)=sin(-2x-π6+2kπ)=sin(-2x-π6)=sin(2x-56π),所以f(-5π12)故选D.(2)在函数①y=cos|2x|,②y=|cos x|,③y=cos(2x+π6),④y=tan(2x-π4)中,最小正周期为π的所有函数为(A)A.①②③B.①③④C.②④D.①③解析对于①,y=cos|2x|=cos2x,其最小正周期为2π2=π;对于②,y=|cos x|的最小正周期为π;对于③,y=cos(2x+π6)的最小正周期为2π2=π;对于④,y=tan(2x-π4)的最小正周期为π2.所以最小正周期为π的所有函数为①②③.(3)函数f(x)=3sin(2x-π3+φ)+1,φ∈(0,π),且f(x)为偶函数,则φ=5π6,f(x)图象的对称中心为(π4+χ2,1),k∈Z.解析∵f(x)=3sin(2x-π3+φ)+1为偶函数,∴-π3+φ=kπ+π2,k∈Z,即φ=5π6+kπ,k∈Z.又φ∈(0,π),∴φ=5π6,∴f(x)=3sin(2x+π2)+1=3cos2x+1.由2x=π2+kπ,k∈Z,得x=π4+χ2,k∈Z,∴f(x)图象的对称中心为(π4+χ2,1),k∈Z.1.[命题点2/2023福建模拟]若对任意x∈R都有f(sin x)=-cos2x+cos2x+2sin x-3,则f(x)的值域为[-4,0].解析易知f(sin x)=2sin2x-1+1-sin2x+2sin x-3=sin2x+2sin x-3,所以f(x)=x2+2x-3(-1≤x≤1),曲线y=x2+2x-3的对称轴为直线x=-1,所以函数f(x)在区间[-1,1]上单调递增,所以f(-1)≤f(x)≤f(1),即-4≤f(x)≤0,所以f(x)的值域为[-4,0].2.[命题点2/2023潍坊市高三统考]已知函数f(x)=3sin x+4cos x,且f(x)≤f(θ)对任意x∈R恒成立,若角θ的终边经过点P(4,m),则m=3.解析因为f(x)=3sin x+4cos x=5sin(x+φ),其中cosφ=35,sinφ=45,则sin(θ+φ)=1,所以θ+φ=π2+2kπ(k∈Z),所以θ=π2-φ+2kπ(k∈Z),所以sinθ=sin(π2-φ)=cosφ=35,同理cosθ=45,所以tanθ=4=sin cos=34,所以m=3.3.[命题点3角度1/多选/2023福建省福州市联考]如图所示,一个质点在半径为2的圆O上以点P为起始点,沿逆时针方向运动,每3s转一圈.该质点到x轴的距离关于时间t的函数记为f(t).下列说法正确的是(AC)A.f(t)=|2sin(2π3t-π4)|B.f(t)=2sin(2π3t-π4)C.f(t)的最小正周期为32D.f(t)的最小正周期为3解析由题可知,质点的角速度为2π3rad/s,因为点P为起始点,沿逆时针方向运动,设经过t s之后所成角为φ,则φ=2π3-π4,根据任意角的三角函数定义有y P=2sin(2π3-π4),所以该质点到x轴的距离为f(t)=|2sin(2π3t-π4)|,故A正确,B错误;因为f(t)=|2sin(2π3t-π4)|,所以f(t)的最小正周期为π2π3=32,故C正确,D错误.故选AC.4.[命题点3/多选/2023河北名校联考]已知函数f(x)=2sin(ωx+π4)+b(ω>0)的最小正周期T满足π2<T<3π2,且P(-π8,1)是f(x)图象的一个对称中心,则(AC)A.ω=2B.f(x)的值域是[-2,2]C.直线x=π8是f(x)图象的一条对称轴D.f(x+π4)是偶函数解析对于A,因为P(-π8,1)是函数f(x)图象的一个对称中心,所以-π8ω+π4=kπ(k∈Z),且b=1,得ω=2-8k(k∈Z).又π2<T<3π2,且ω>0,即π2<2π<3π2,所以43<ω<4,所以ω=2,故A正确.对于B,由对A的分析得f(x)=2sin(2x+π4)+1,因为-1≤sin(2x+π4)≤1,所以f(x)∈[-1,3],故B不正确.对于C,解法一由2x+π4=kπ+π2(k∈Z),得x=χ2+π8(k∈Z),当k=0时,x=π8,所以直线x=π8是函数f(x)图象的一条对称轴,故C正确.解法二将x=π8代入f(x),可得f(π8)=3(f(x)的最大值),所以直线x=π8是f(x)图象的一条对称轴,故C正确.对于D,因为f(x+π4)=2sin[2(x+π4)+π4]+1=2sin(2x+π2+π4)+1=2cos(2x+π4)+1,显然该函数不是偶函数,故D不正确.综上所述,选AC.学生用书·练习帮P2961.函数f(x)=tan(2x+π4)的定义域为(C)A.{x|x≠kπ+π2,k∈Z}B.{x|x≠2kπ+π2,k∈Z}C.{x|x≠χ2+π8,k∈Z}D.{x|x≠kπ+π8,k∈Z}解析由2x+π4≠kπ+π2,k∈Z,得2x≠kπ+π4,k∈Z,∴x≠χ2+π8,k∈Z,∴函数y=tan(2x+π4)的定义域为{x|x≠χ2+π8,k∈Z}.2.[2023天津新华中学统练]下列函数中,最小正周期为π的奇函数是(D)A.y=sin(2x+π2)B.y=tan2xC.y=2sin(π-x)D.y=tan(x+π)解析对于函数y=sin(2x+π2)=cos2x,最小正周期为π,是偶函数,排除A;对于函数y=tan2x,最小正周期为π2,是奇函数,排除B;对于函数y=2sin(π-x)=2sin x,最小正周期为2π,是奇函数,排除C;对于函数y=tan(π+x)=tan x,最小正周期为π,是奇函数,故选D.3.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是(A)A.f(x)=|cos2x|B.f(x)=|sin2x|C.f(x)=cos|x|D.f(x)=sin|x|解析A中,函数f(x)=|cos2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递增,故A正确;B中,函数f(x)=|sin2x|的最小正周期为π2,当x∈(π4,π2)时,2x∈(π2,π),函数f(x)单调递减,故B不正确;C中,函数f(x)=cos|x|=cos x的最小正周期为2π,故C不正确;D中,f(x)=sin|x|=sin,≥0,由正弦函数图象知,在x≥0和x<0时,f(x)均以2π为周期,但在整个-sin,<0,定义域上f(x)不是周期函数,故D不正确.故选A.4.已知函数f(x)=sin(ωx+θ)+3cos(ωx+θ)(θ∈[-π2,π2])是偶函数,则θ的值为(B)A.0B.π6C.π4D.π3解析由已知可得f(x)=2sin(ωx+θ+π3),若函数为偶函数,则必有θ+π3=kπ+π2(k∈Z),又由于θ∈[-π2,π2],故有θ+π3=π2,解得θ=π6,经代入检验符合题意.故选B.5.[2023江西月考]已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π2)的两个相邻的零点为-13,23,则f(x)的图象的一条对称轴方程是(B)A.x=-16B.x=-56C.x=13D.x=23解析设f(x)的最小正周期为T,则2=23-(-13)=1,得T=2π=2,所以ω=π,又因为-π3+φ=kπ(k∈Z),且0<φ<π2,所以φ=π3,则f(x)=sin(πx+π3),由πx+π3=kπ+π2(k∈Z),解得x=k+16(k∈Z),取k=-1,得一条对称轴方程为x=-56.6.已知函数f(x)=-2tan(2x+φ)(0<φ<π2)的图象的一个对称中心是点(π12,0),则该函数的一个单调递减区间是(D)A.(-5π6,π6)B.(-π6,π3)C.(-π3,π6)D.(-5π12,π12)解析因为函数f(x)=-2tan(2x+φ)的图象的一个对称中心是点(π12,0),所以2×π12+φ=χ2,k∈Z,解得φ=χ2-π6,k∈Z.又0<φ<π2,所以φ=π3,所以f(x)=-2tan(2x+π3).令-π2+kπ<2x+π3<π2+kπ,k∈Z,解得-5π12+χ2<x<π12+χ2,k∈Z,所以函数f(x)的单调递减区间为(-5π12+χ2,π12+χ2),k∈Z.当k=0时,得f(x)的一个单调递减区间为(-5π12,π12).7.[全国卷Ⅰ]设函数f(x)=cos(ωx+π6)在[-π,π]的图象大致如图,则f(x)的最小正周期为(C)A.10π9B.7π6C.4π3D.3π2解析解法一由题图知,f(-4π9)=0,∴-4π9ω+π6=π2+kπ(k∈Z),解得ω=-3+94(k∈Z).设f(x)的最小正周期为T,易知T<2π<2T,∴2π||<2π<4π||,∴1<|ω|<2,当且仅当k=-1时,符合题意,此时ω=32,∴T=2π=4π3.故选C.解法二由题图知,f(-4π9)=0且f(-π)<0,f(0)>0,∴-4π9ω+π6=-π2(ω>0),解得ω=32,经验证符合题意,∴f(x)的最小正周期T=2π=4π3.故选C.8.[2024安徽铜陵模拟]已知函数f(x)=a sin4x+cos4x的图象关于直线x=π12对称,则f(π24)=(A)A.3 C.-12 D.-1解析由题设f(x)=2+1sin(4x+φ)(a≠0)且tanφ=1,又函数图象关于直线x=π12对称,所以π3+φ=π2+kπ,k∈Z⇒φ=π6+kπ,k∈Z,则tanφ=tan(π6+kπ)=tanπ6=1⇒a=3,综上,f(x)=3sin4x+cos4x=2sin(4x+π6),故f(π24)=2sinπ3=3.故选A.9.[多选/2023江苏南京模拟]已知x1,x2是函数f(x)=2sin(ωx-π6)(ω>0)的两个不同零点,且|x1-x2|的最小值是π2,则下列说法正确的是(ABD)A.函数f(x)在[0,π3]上单调递增B.函数f(x)的图象关于直线x=-π6对称C.函数f(x)的图象关于点(π,0)中心对称D.当x∈[π2,π]时,函数f(x)的值域是[-2,1]解析由题意可知,最小正周期T=2π=π,所以ω=2,f(x)=2sin(2x-π6).对于选项A,当x∈[0,π3]时,2x-π6∈[-π6,π2],所以f(x)在[0,π3]上单调递增,故A正确;对于选项B,f(-π6)=2sin[2×(-π6)-π6]=2sin(-π2)=-2,所以f(x)的图象关于直线x =-π6对称,故B正确;对于选项C,f(π)=2sin(2π-π6)=-1≠0,所以f(x)的图象不关于点(π,0)中心对称,故C错误;对于选项D,当x∈[π2,π]时,2x-π6∈[5π6,11π6],sin(2x-π6)∈[-1,12],f(x)∈[-2,1],故D正确.故选ABD.10.定义运算a*b为:a*b=(≤p,(>p,例如,1*2=1,则函数f(x)=sin x*cos x的值域为[-1,22].解析f(x)=sin x*cos x,当x∈[π+2kπ,5π4+2kπ],k∈Z,这时sin x≥cos x,所以f(x)=cos x,这时函数的值域为[-1;当x∈[-3π4+2kπ,π4+2kπ],k∈Z,这时sin x≤cos x,所以f(x)=sin x,这时函数的值域为[-1综上,函数的值域为[-1 11.[2023上海松江二中模拟]若函数y=sin(πx-π6)在[0,m]上单调递增,则m的最大值为23.解析由x∈[0,m],知πx-π6∈[-π6,mπ-π6],因为函数在[0,m]上单调递增,所以-π6<mπ-π6≤π2,即0<m≤23,所以m的最大值为23.12.[2024安徽合肥一中模拟]已知函数f(x)=sin x cos x-3cos2x(1)求函数f(x)的最小正周期和单调递减区间;(2)求函数f(x)在区间[-π6,π4]上的值域.解析(1)因为f(x)=sin x cos x-3cos2x=12sin2x=12sin2x-2x=sin(2x-π3),所以函数f(x)的最小正周期为T=2π2=π.由2kπ+π2≤2x-π3≤2kπ+3π2(k∈Z)可得kπ+5π12≤x≤kπ+11π12(k∈Z),所以函数f(x)的单调递减区间为[kπ+5π12,kπ+11π12](k∈Z).(2)当-π6≤x≤π4时,-2π3≤2x-π3≤π6,则-1≤sin(2x-π3)≤12,因此,函数f(x)在区间[-π6,π4]上的值域为[-1,12].13.设函数f(x)=2cos(12x-π3),若对于任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为(C)A.π2B.πC.2πD.4π解析函数f(x)=2cos(12x-π3),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2),则f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半个周期,故2=12×2π12=2π,故选C.14.[2023湘潭模拟]若函数f(x)=cos2x+sin(2x+π6)在(0,α)上恰有2个零点,则α的取值范围为(B)A.[5π6,4π3)B.(5π6,4π3]C.[5π3,8π3)D.(5π3,8π3]解析由题意得,函数f(x)=cos2x+sin(2x+π6)=3sin(2x+π3),因为0<x<α,所以π3<2x+π3<2α+π3,又由f(x)在(0,α)上恰有2个零点,可得2π<2α+π3≤3π,解得5π6<α≤4π3,所以α的取值范围为(5π6,4π3].15.[2023福建龙岩模拟]已知函数f(x)=2|sin x|+cos x,则f(x)的最小值为(C)A.-5B.-2C.-1D.0解析解法一f(x)=2|sin x|+cos x,分别作出y=2|sin x|(图1)与y=cos x (图2)的部分图象,如图所示.图1图2从图中可以看出,当x=π时,两个函数同时取得最小值,此时f(π)=2|sinπ|+cosπ=-1最小.解法二因为f(-x)=2|sin(-x)|+cos(-x)=2|sin x|+cos x=f(x),所以f(x)=2|sin x|+cos x为偶函数,又f(x+2π)=2|sin(x+2π)|+cos(x+2π)=2|sin x|+cos x=f(x),所以f(x)的一个周期为2π.当x∈[0,π]时,f(x)=2sin x+cos x,f'(x)=2cos x-sin x,令f'(x)=0,则tan x=2,故存在x0∈(0,π2),使得f'(x0)=0,当x∈[0,x0)时,f'(x)>0,f(x)单调递增;当x∈(x0,π]时,f'(x)<0,f(x)单调递减,又f(0)=1,f(π)=-1,结合f(x)为偶函数,周期为2π,作出f(x)=2|sin x|+cos x的图象如图,由图可知,函数的最小值为-1.故选C.16.[多选/2022新高考卷Ⅱ]已知函数f(x)=sin(2x+φ)(0<φ<π)的图象关于点(2π3,0)中心对称,则(AD)A.f(x)在区间(0,5π12)单调递减B.f(x)在区间(-π12,11π12)有两个极值点C.直线x=7π是曲线y=f(x)的对称轴D.直线y x是曲线y=f(x)的切线解析因为函数f(x)的图象关于点(2π3,0)中心对称,所以sin(2×2π3+φ)=0,可得4π3+φ=kπ(k∈Z),结合0<φ<π,得φ=2π3,所以f(x)=sin(2x+2π3).对于A,解法一由2kπ+π2≤2x+2π3≤2kπ+3π2(k∈Z),得kπ-π12≤x≤kπ+5π12(k∈Z);当k =0时,-π12≤x≤5π12.因为(0,5π12)⊆(-π12,5π12),所以函数f(x)在区间(0,5π12)单调递减,故A正确.解法二当x∈(0,5π12)时,2x+2π3∈(2π3,3π2),所以函数f(x)在区间(0,5π12)单调递减,故A正确.对于B,解法一由2x+2π3=kπ+π2(k∈Z),得x=χ2-π12(k∈Z),当k=0时,x=-π12;当k=1时,x=5π12;当k=2时,x=11π12.所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.解法二当x∈(-π12,11π12)时,2x+2π3∈(π2,5π2),所以函数f(x)在区间(-π12,11π12)只有一个极值点,故B不正确.对于C,解法一由选项B解法一的分析知,函数f(x)图象的对称轴方程为x=χ2-π12(k∈Z),而方程χ2-π12=7π6(k∈Z)无解,故C不正确.解法二因为f(7π6)=sin(2×7π6+2π3)=sin3π=0,所以x=7π6不是曲线y=f(x)的对称轴,故C不正确.对于D,因为f'(x)=2cos(2x+2π3),若直线y x为曲线y=f(x)的切线,则由2cos(2x+2π3)=-1,得2x+2π3=2kπ+2π3或2x+2π3=2kπ+4π(k∈Z),所以x=kπ或x=kπ+π3(k∈Z).当x=kπ(k∈Z)时,f(x)kπ(k∈Z),解得k=0;当x=kπ+π3(k∈Z)时,f(x)kπ-π3(k∈Z)无解.综上所述,直线y x为曲线y=f(x)的切线,故D正确.综上所述,选AD.17.[条件创新]已知函数f(x)=2sinωx(ω>0)在区间[-3π4,π4]上单调递增,且直线y=-2与函数f(x)的图象在[-2π,0]上有且仅有一个交点,则实数ω的取值范围是[14,23].解析易知f(x)的图象关于点(0,0)对称,则由函数f(x)在[-3π4,π4]上单调递增可得4≥3π4(T为f(x)的最小正周期),即2π4≥3π4,结合ω>0,解得0<ω≤23.因为直线y=-2与函数f(x)的图象在[-2π,0]×2π≤2π,×2π>2π,解得14≤ω<54.综上,ω∈[14,23].18.[2023湖北省部分重点中学联考]已知函数f(x)=4sin2(π4+2)sin x+(cos x+sin x)·(cos x-sin x)-1.(1)求f(x)的解析式及其图象的对称中心;(2)若函数g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1在区间[-π4,π2]上的最大值为2,求实数a的值.解析(1)f(x)=2[1-cos(π2+x)]·sin x+cos2x-sin2x-1=sin x·(2+2sin x)+1-2sin2x-1=2sin x.对称中心为(kπ,0),k∈Z.(2)g(x)=sin2x+a sin x-a cos x-2-1,令sin x-cos x=t,则sin2x=1-t2,(小技巧:函数式中既含正余弦的和或差(sin x-cos x或sin x+cos x),又含二者的乘积(即sin x·cos x),可令sin x-cos x=t或sin x+cos x=t,然后转化为关于t的二次函数求最值)∴y=1-t2+at-2-1=-(t-2)2+2 4-2.∵t=sin x-cos x=2sin(x-π4),x∈[-π4,π2],∴x-π4∈[-π2,π4],∴-2≤t≤1.①当2<-2,即a <-22时,y max =-(-2-2)2+24-2=-2a -2-2.令-2a -2-2=2,解得a .②当-2≤2≤1,即-22≤a ≤2时,y max =24-2,令24-2=2,解得a =-2或a =4(舍去).③当2>1,即a >2时,y max =-(1-2)2+24-2=2-1,由2-1=2,得a =6.综上,a =-2或6.19.[条件创新/多选]已知函数f (x )=cos (2x +φ)(|φ|<π2),F (x )=f (x )+'(x )为奇函数,则下述四个结论正确的是(BC )A.tan φ=3B.若f (x )在[-a ,a ]上存在零点,则a 的最小值为π6C.F (x )在(π4,3π4)上单调递增D.f (x )在(0,π2)上有且仅有一个极大值点解析由f (x )=cos (2x +φ),得f '(x )=-2sin (2x +φ),则F (x )=f (x )+'(x )=cos (2x +φ)-3sin (2x +φ)=-2sin (2x +φ-π6).因为F (x )为奇函数,所以φ-π6=k π(k ∈Z ),所以φ=k π+π6(k ∈Z ).因为|φ|<π2,所以φ=π6.对于A ,由以上可得tan φA 错误;对于B ,令f (x )=cos (2x +π6)=0,得2x +π6=k π+π2(k ∈Z ),则x =χ2+π6(k ∈Z ),即函数f (x )的零点为x =χ2+π6(k ∈Z ),且该函数零点的绝对值的最小值为π6,所以a 的最小值为π6,故B 正确;对于C ,F (x )=-2sin 2x ,当x ∈(π4,3π4)时,2x ∈(π2,3π2),此时函数F (x )单调递增,故C 正确;对于D ,函数f (x )=cos (2x +π6),令2x +π6=2k π(k ∈Z ),得x =k π-π12(k ∈Z ),所以函数f (x )在(0,π2)上无极大值点,故D 错误.。
三角函数的图像与性质
2
y=sin2x图象由y=sinx图象(纵标不变), 1 横标缩短 而得。 2
y=si nx
y=si n2x
2π O x
横标伸长2倍而得。
1 y=sin 2 x图象由y=sinx图象(纵标不变),
返回目录
π 例2:如何由y=sinx 的图象得到y=3sin(2x+ 3
)
方法1:y=sinx
纵向伸长3倍
返回目录
2.求函数 y=sin4x+2 3 sinxcosx-cos4x 的最小正周期和最小值, 并写出该函数在 [0, ] 上的单调增区间. 解: ∵ y=sin4x+2 3 sinxcosx-cos4x =(sin2x-cos2x)(sin2x+cos2x)+ 3 sin2x = 3 sin2x-cos2x
2 2
(
2
k ,
2
k )( k z )
递增
递减
x 2k
2
y , k z 时, m ax 1
y , k z 时,m in 1
x 2 k , k z 时,y m a x 1
最值
奇偶性
x 2k
2
x 2k , k z
纵向伸长3倍
y=3sinx
y
方法2: y=sinx - O 6 纵向伸长3倍 y=3sinx 1 横向缩短 2 y=3sin2x π 左移 6 y=3sin(2x+π ) 3
π 3 π y=3sin(x+ 3 ) 1 横向缩短 2 π y=3sin(2x+ ) 3
左移
y=3sinx
三角函数的图象和性质
在区间 [0,
2
]
上是单调函数,
必有
2
≤
,
即 0<≤2.
∴0<
4k+2 3
≤2(kZ).
解得 k=0 或 1.
∴=2
或
2 3
.
综上所述,
=
2
,
=2 或
2 3
.
6.如果函数 的值.
y=sin2x+acos2x
的图象关于直线
x=-
8
对称,
求a
解: y=sin2x+acos2x= a2+1 sin(2x+), 其中, tan=a.
3.周期性: ①y=sinx、y=cosx 的最小正周期都是
Asin(x+) 和 f(x)=Acos(x+)的最小正周期都是
2;
T=
2|②| .f(x)=
4.奇偶性与对称性: 正弦函数y=sinx(xR)是奇函数, 对称中心
是 (x(kR),是0)偶(k函Z数),,对对称称轴中是心直是线(kx=+k2,+02)((kkZZ)),;对余称弦轴函是数直y=线coxs=x k (kZ) (正(余)弦型函数的对称轴为过最高点或最低点且垂
性, 如果是周期函数, 求出它的一个周期.
解:
(1)由∴∵∴2kfsfs((iixnx+n))xx=的4--lcoc<定oogxss<21xx义(2s=>ik域n0,x2+为-s即ic5n4o{(xsx,x2|-k)s2≥ik4nlZ)(o≤x+g-21424<2,)x>=<0-2得k12:.+
5
4
三角函数三角函数的图象与性质课件
《三角函数三角函数的图象与性质课件pptx》2023-10-26•引言•三角函数的概念与性质•三角函数的图象表示目录•三角函数的应用•习题解答•总结与展望01引言三角函数是数学中的基础科目,对于高中生来说,掌握好三角函数的知识可以为后续的高等数学学习打下基础。
在本课程中,我们将从定义、图象、性质和应用等方面全面介绍三角函数的知识。
课程背景介绍课程目标熟悉三角函数的图象和变化趋势。
让学生掌握三角函数的定义、公式和基本性质。
培养学生的数学思维和逻辑推理能力。
能够灵活运用三角函数解决实际问题。
课程大纲•第一部分:三角函数的定义与公式•正弦函数、余弦函数和正切函数的定义与基本公式。
•角度与弧度的转换。
•第二部分:三角函数的图象与性质•正弦函数、余弦函数和正切函数的图象与性质。
•三角函数的周期性、最值和对称性。
•第三部分:三角函数的应用•利用三角函数解决实际问题,如物理、工程、计算机等领域的问题。
•三角函数在复数、极坐标系中的应用。
02三角函数的概念与性质1 2 3$y = \sin x$,表示单位圆上点的纵坐标。
正弦函数$y = \cos x$,表示单位圆上点的横坐标。
余弦函数$y = \tan x$,表示单位圆上点的纵坐标与横坐标的比值。
正切函数奇偶性正弦函数和正切函数为奇函数,余弦函数为偶函数。
值域正弦函数和余弦函数的值域为$\lbrack -1,1\rbrack$,正切函数的值域为全体实数。
周期性正弦函数、余弦函数和正切函数都具有周期性,最小正周期为$2\pi$。
定义域正弦函数和余弦函数的定义域为全体实数,正切函数的定义域为不等于$\frac{k\pi}{2} + \pi$的全体实数。
正弦函数的周期性$y = \sin x$的周期为$2\pi$,即$\sin(x + 2k\pi) = \sin x(k \in \mathbf{Z})$。
三角函数的周期性余弦函数的周期性$y = \cos x$的周期为$2\pi$,即$\cos(x + 2k\pi) = \cos x(k \in \mathbf{Z})$。
三角函数的图象与性质课件
方法与技巧 1.利用函数的有界性(-1≤sin x≤1,-1≤cos x≤1), 求三角函数的值域(最值). 2.利用函数的单调性求函数的值域或最值. 3.利用换元法求复合函数的单调区间(要注意x系数的正负号). 4.正余弦函数的线性关系式都可以转化为f(x)= asin x+bcos x= 特别注意把思想方法感悟提高 5.注意sin x+cos x与cos xsin x的联系,令t= sin x+cos x (- ≤t≤ )时, 失误与防范 1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.求三角函数的单调区间时,应先把函数式化成形如y=Asin( x+ )( 0)的形式,再根据基本三角函数的单调区间,求出x所在的区间. 应特别注意,考虑问题应在函数的定义域内考虑.注意区分下列两题的单调增区间不同: 3.利用换元法求三角函数最值时注意三角函数有界性,如:y=sin2x-4sin x+5,令t=sin x(|t|≤1), 则y=(t-2)2+1≥1,解法错误. 一、选择题 1.(2009??福建理,1)函数f(x)=sin xcos x的最小值是()解析∵f(x)=sin xcos x= B 定时检测 2.(2009??全国Ⅰ理,8)如果函数y=3cos(2x+ )的图象关于点中心对称,那么|φ|的最小值为()解析由y=3cos(2x+φ)的图象关于点 A 3.已知函数在区间〔0,t〕上至少取得2次最大值,则正整数t的最小值是()A.6B.7C.8D.9 解析 C 4.已知在函数f(x)=图象上,相邻的一个最大值点与一个最小值点恰好在x2+y2=R2上,则f(x)的最小正周期为() A.1 B.2 C.3D.4 解析∵x2+y2=R2,∴x∈〔-R,R〕. ∵函数f(x)的最小正周期为2R, D 5.(2009??浙江理,8)已知a是实数,则函数 f(x)=1+asinax的图象不可能是()解析图A中函数的最大值小于2,故0 a 1,而其周期大于2 .故A中图象可以是函数f(x)的图象.图 B中,函数的最大值大于2,故a应大于1,其周期小于2 ,故B中图象可以是函数f(x)的图象.当a=0时,f(x)=1,此时对应C中图象,对于D可以看出其最大值大于2,其周期应小于2 ,而图象中的周期大于 2 ,故D中图象不可能为函数f(x)的图象. 答案 D 6.给出下列命题:①函数是奇函数;②存在实数 ,使得③④⑤其中正确的序号为() A.①③ B.②④ C.①④ D.④⑤解析①是奇函数;②③④ * §4.3三角函数的图象与性质要点梳理 1.“五点法”作图原理:在确定正弦函数y=sin x 在〔0,2 〕上的图象形状时,起关键作用的五个点是、、、、 .余弦函数呢? (0,0) 基础知识自主学习 2.三角函数的图象和性质: R 值域图象定义域 y=tan x y=cos x y=sin x 函数性质 [-1,1] [-1,1] RR (k∈Z) 奇偶性单调性周期对称性;;;;奇奇偶 3.一般地对于函数f(x),如果存在一个不为0的常数T,使得当x取定义域内的每一个值时,都有 f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期,把所有周期中存在的最小正数,叫做最小正周期(函数的周期一般指最小正周期).函数y=Asin( x+ )或y=Acos( x+ )( 0且为常数)的周期函数y=Atan( x+ )( 0)的周期基础自测 1.函数y=1-2sin xcos x的最小正周期为()解析 B 2.设点P是函数f(x)=sin x ( ≠0)的图象C的一个对称中心,若点P到图象C的对称轴的距离的最小值是则f(x)的最小正周期是()解析由正弦函数的图象知对称中心与对称轴的距离的最小值为最小正周期的故f(x)的最小正周期为T= B 3.函数y=sin 的图象() A.关于点对称 B.关于直线对称 C.关于点对称 D.关于直线对称解析验证法: A 4.在下列函数中,同时满足以下三个条件的是( ) ①在上递减;②以为周期;③是奇函数. A.y=tan x B.y=cos x C.y=-sin x D.y=sin xcos x 解析 y=tan x的周期为,故A错. y=cos x为偶函数,故B错. y=sin xcos x= sin 2x的周期为,故D错. y=-sin x的周期为2 ,是奇函数,由图象知在上是递减函数,故C正确. C 5.(2009??四川文,4)已知函数f(x)=sin (x∈R),下面结论错误的是() A.函数f(x)的最小正周期为 2 B.函数f(x)在区间上是增函数 C.函数f(x)的图象关于直线x=0对称 D.函数f(x)是奇函数解析 A正确; 由图象知y=-cos x关于直线x=0对称,C正确. y=-cos x是偶函数,D错误. D 题型一与三角函数有关的函数定义域求下列函数的定义域:(1)y=lgsin(cos x);(2)y= 本题求函数的定义域:(1)需注意对数的真数大于零,然后利用弦函数的图象求解; (2)需注意偶次根式的被开方数大于或等于零,然后利用函数的图象或三角函数线求解. 解 (1)要使函数有意义,必须使sin(cos x) 0. ∵-1≤cos x≤1,∴0 cos x≤1. 题型分类深度剖析方法一利用余弦函数的简图得知定义域为方法二利用单位圆中的余弦线OM,依题意知0 OM≤1, ∴OM只能在x轴的正半轴上,∴其定义域为(2)要使函数有意义,必须使sin x-cosx≥0. 方法一利用图象.在同一坐标系中画出〔0,2 〕上y=sin x和y=cos x的图象,如图所示. 在〔0,2 〕内,满足sin x=cos x的x为再结合正弦、余弦函数的周期是2 , 所以定义域为方法二利用三角函数线,如图MN为正弦线, OM为余弦线,要使sin x≥cos x,即MN≥OM,方法三 (1)对于含有三角函数式的(复合)函数的定义域,仍然是使解析式有意义即可. (2)求三角函数的定义域常常归结为解三角不等式(或等式). (3)求三角函数的定义域经常借助两个工具,即单位圆中的三角函数线和三角函数的图象,有时也利用数轴. 知能迁移1 求下列函数的定义域:解 (1)要使函数有意义,必须有可利用单位圆中三角函数线直观地求得上述不等式组的解集,如图所示:题型二三角函数的单调性与周期性(1)化为再求单调区间;(2)先化为,再求单调区间. 解(1)求形如y=Asin( x+ )或y=Acos( x + ) (其中A≠0, 0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是: ①把“ x+ ( 0)”视为一个“整体”;②A 0(A 0)时,所列不等式的方向与y=sin x(x∈R), y=cos x(x∈R)的单调区间对应的不等式方向相同(反). (2)对于y=Atan( x+ ) (A、、为常数),其周期单调区间利用解出x的取值范围,即为其单调区间.对于复合函数y=f(v),v= (x),其单调性判定方法是:若y=f(v) 和v= (x)同为增(减)函数时,y=f( (x))为增函数;若y=f(v)和v= (x)一增一减时,y=f( (x))为减函数. 知能迁移 2 求函数的单调区间. 解方法一方法二题型三三角函数的对称性与奇偶性已知f(x)=sin x+ cosx(x∈R),函数 y=f(x+ )的图象关于直线x=0对称,则的值可以是()先求出f(x+ )的函数表达式.f(x+ )关于x=0对称,即f(x+ )为偶函数. 解析答案 D f(x)=Asin( x+ )若为偶函数,则当x= 0时,f(x)取得最大或最小值. 若f(x)=Asin( x+ )为奇函数,则当x=0时,f(x)=0. 如果求f(x)的对称轴,只需令 x+ = 求x. 如果求f(x)的对称中心的横坐标,只需令 x+ =k 即可. 知能迁移3 使奇函数f(x)=sin(2x+ )+ cos(2x+ ) 在上为减函数的的值为 ( ) 解析 D 题型四三角函数的值域及最值(12分)已知函数f(x)=2asin 的定义域为函数的最大值为1,最小值为-5,求a和b的值. 求出2x- 的范围 a 0时,利用最值求a、b a 0时,利用最值求a、b 解 3分 7分 11分 12分解决此类问题,首先利用正弦函数、余弦函数的有界性或单调性求出y=Asin( x+ )或y=Acos( x+ )的最值,再由方程的思想解决问题. 知能迁移 4 (2009??江西理,4)若函数f(x) =(1+ tan x)??cos x,0≤x ,则f(x)的最大值为() A.1B.2C.D. 解析 B * <div id="loadingAD"><divclass="ad_box"><div class="waiting"><strong>文档加载中...</strong>广告还剩<em id="adtime"></em>秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五课时 三角函数的图像与性质
【学习目标】
1. 能画出正弦函数,余弦函数,正切函数的图像。
2. 了解0),sin(>+=ϕϕωx A y 的实际意义。
3. 了解函数的周期性
4. 以极度的热情投入学习,体会成功的快乐。
【学习重点】
三角函数的图象变换
【学习难点】
三角函数的图象变换
[自主学习]
1.用“五点法”作正弦、余弦函数的图象.
“五点法”作图实质上是选取函数的一个 ,将其四等分,分别找到图象的 点, 点及“平衡点”.由这五个点大致确定函数的位置与形状.
注:⑴ 正弦函数的对称中心为 ,对称轴为 .
⑵ 余弦函数的对称中心为 ,对称轴为 . ⑶ 正切函数的对称中心为 .
3.“五点法”作y =Asin(ωx+ϕ)(ω>0)的图象.
令x'=ωx+ϕ转化为y =sinx',作图象用五点法,通过列表、描点后作图象.
4.函数y =Asin(ωx+ϕ)的图象与函数y =sinx 的图象关系.
振幅变换:y =Asinx(A>0,A≠1)的图象,可以看做是y =sinx 的图象上所有点的纵坐标都 ,(A>1)或 (0<A<1)到原来的 倍(横坐标不变)而得到的.
周期变换:y =sinωx(ω>0,ω≠1)的图象,可以看做是把y =sinx 的图象上各点的横坐标 (ω>1)或 (0<ω<1)到原来的 倍(纵坐标不变)而得到的.由于y =sinx 周期为2π,故y =sinωx(ω>0)的周期为 .
相位变换:y =sin(x +ϕ)(ϕ≠0)的图象,可以看做是把y =sinx 的图象上各点向 (ϕ>0)或向 (ϕ<0)平移 个单位而得到的.
由y =sinx 的图象得到y =Asin(ωx+ϕ)的图象主要有下列两种方法:
或
说明:前一种方法第一步相位变换是向左(ϕ>0)或向右(ϕ<0)平移 个单位.后一种方法第二步相位变换是向左(ϕ>0)或向右(ϕ<0)平移 个单位.
[典型例析]例1. 已知函数y =Asin(ωx+ϕ)(A>0,ω>0)
⑴ 若A =3,ω=21,ϕ=-3
π,作出函数在一个周期内的简图. ⑵ 若y 表示一个振动量,其振动频率是π2,当x =24π时,相位是3
π,求ω和ϕ.
例2.已知函数y=3sin )4
21(π−x (1)用五点法作出函数的图象;
(2)说明此图象是由y=sinx 的图象经过怎么样的变化得到的;
(3)求此函数的振幅、周期和初相;
(4)求此函数图象的对称轴方程、对称中心.
例3.已知函数23cos sin 3)(2
+−=x x xcox x f ϖϖϖ ),(R x R ∈∈ϖ的最小正周期为π且图象关于6π=x 对称;
(1) 求f(x)的解析式;
(2) 若函数y =1-f(x)的图象与直线y =a 在]2
,0[π上中有一个交点,求实数a 的范围.
例4 设关于x 的方程cos2x +
3sin2x =k +1在[0,2
π]内有两不同根α,β,求α+β的值及k 的取值范围.
[当堂检测] ⒈把函数x x y sin cos 3−=的图象向右平移m 个单位,所得图象关于y 轴对称,则m 的最小值是________________________
⒉把函数x y cos =的图象上的所有点的坐标缩小到原来的一半,纵坐标扩大到原来的两倍,然后把图象向左平移4π
个单位,则所得图形表示的函数的解析式为___________
3函数)2
52sin(π+=x y 的图象的一条对称轴为___________________
4. 把函数)3sin 3(cos 2
2x x y −=的图象适当变换就可以得到)3sin(x y −=的图象,这种变换可以是______________________
[学后反思]____________________________________________________ _______
_____________________________________________________________
_____________________________________________________________。