高考物理动能与动能定理练习题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理动能与动能定理练习题及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。 (1)求小物块经过B 点时对轨道的压力大小;
(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】
(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04
m /5m /cos370.8
A v v s s =
==︒
小物块经过A 点运动到B 点,根据机械能守恒定律有:
()2211cos3722
A B mv mg R R mv +-︒= 小物块经过B 点时,有:2
B
NB v F mg m R
-= 解得:()232cos3762N B
NB
v F mg m R
=-︒+=
根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:
22011222
C B mgL mg r mv mv μ--⋅=
- 在C 点,由牛顿第二定律得:2
C
NC v F mg m r
+=
代入数据解得:60N NC F =
根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N
(3)小物块刚好能通过C 点时,根据22C
v mg m r
=
解得:2100.4m /2m /C v gr s s =
=⨯=
小物块从B 点运动到C 点的过程,根据动能定理有:
22211222
C B mgL mg r mv mv μ--⋅=
- 代入数据解得:L =10m
2.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g =10m/s 2,忽略空气阻力.求:
(1)物块第一次通过C 点时的速度大小v C .
(2)物块第一次通过D 点时受到轨道的支持力大小F D . (3)物块最终所处的位置.
【答案】(1)32m/s (2)7.4N (3)0.35m 【解析】 【分析】
由题中“斜面ABC 下端与光滑的圆弧轨道CDE 相切于C”可知,本题考查动能定理、圆周运动和机械能守恒,根据过程分析,运用动能定理、机械能守恒和牛顿第二定律可以解答. 【详解】
(1)BC 长度tan 530.4m l R ==o ,由动能定理可得
21
()sin 372
B mg L l mv -=o
代入数据的
32m/s B v =
物块在BC 部分所受的摩擦力大小为
cos370.60N f mg μ==o
所受合力为
sin 370F mg f =-=o
故
C B v v ==
(2)设物块第一次通过D 点的速度为D v ,由动能定理得
2211
(1cos37)22
D C mgR mv mv -=
-o 有牛顿第二定律得
2
D D v F mg m R
-= 联立解得
7.4N D F =
(3)物块每次通过BC 所损失的机械能为
0.24J E fl ∆==
物块在B 点的动能为
21
2
kB B E mv =
解得0.9J kB E = 物块经过BC 次数
0.9J
=3.750.24J
n =
设物块最终停在距离C 点x 处,可得
()sin 37(3+)0mg L x f l x --=o
代入数据可得
0.35m x =
3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。已知它落到水面上时相对于O 点(D 点正下方)的水平距离10m OB =。为了能让滑车抛到水面上的更远处,有人在轨道的下方紧贴D 点安装一水平传送带,传送带右端轮子的圆心与D 点的水平距离为8m ,轮子半径为0.4m (传送带的厚度不计),若传送带与玩具滑车之间的动摩擦因数为0.4,玩具滑车的质量为4kg ,不计空气阻力(把玩具滑车作质点处理),求 (1)玩具滑车到达D 点时对D 点的压力大小。
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。 (3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。