基于BP神经网络PID整定原理和算法步骤
基于BP神经网络的PID参数自适应整定
基于BP 神经网络的PID 参数自适应整定曾正1,蔡容容2,詹立新21 武汉大学电气工程学院,430072 2 武汉大学动力与机械学院,430072 联系方式:zengerzheng@摘 要:针对简单单入单出(SISO )系统中PID 控制的参数整定问题进行了仿真研究,利用BP 神经网络进行PID 参数自适应整定。
首先,得到了问题的传递函数模型,并建立了对应的离散化传递函数模型作为仿真研究的对象,并对未校正系统进行了相关的理论分析。
然后,利用BP 神经网络算法在线进行PID 参数自适应整定。
同时,为了形成参照,给出了运用模拟退火算法离线整定PID 参数的仿真过程。
建立了3层BP 网络结构,以δ规则为学习规则,控制器算法为有监督的Hebb 算法,教师信号为给定与被控对象的输出间的偏差信号。
最后,针对系统在多工况下的复杂情况,从静态稳定和动态稳定的角度,对系统稳定性进行了仿真分析。
仿真结果表明,所设计的基于BP 神经网络参数自适应PID 控制系统,控制品质高、鲁棒性强。
为了支持更加复杂情况下的仿真,还搭建GUI 仿真界面。
关键字:PID 控制;参数整定;BP 神经网络;稳定分析;GUI ;1 问题背景分析 1.1 准备知识1.1.1 控制系统的性能指标当系统的时间响应()y t 中的瞬态分量较大而不能忽视时,称系统处于动态或过渡过程中,这时系统的特性称为动态特性。
动态特性指标通常根据系统的阶跃响应曲线定义。
设系统的阶跃响应曲线如图1所示,图中()lim ()x y y t →∞∞=称为稳态值。
动态性能指标主要有以下几种[1]。
图1 系统的阶跃响应曲线(1)上升时间r t :阶跃响应曲线从零第一次上升到稳态值所需的时间为上升时间。
若阶跃曲线不超过稳态值(称为过阻尼系统),则定义阶跃响应曲线从稳态值的10%上升到90%所对应的时间为上升时间。
(2)最大超调p σ:设阶跃响应曲线的最大值为()p y t ,则对大超调p σ为()()100%()p p y t y y σ-∞=⨯∞ (1)p σ大,称系统阻尼小。
基于BP神经网络的PID控制器设计
基于BP神经网络的PID控制器设计PID控制器是一种常用的控制器,可以通过根据系统的误差、历史误差和误差的变化率来计算控制信号,从而实现对系统的控制。
传统的PID控制器可以通过调节PID参数来实现对系统动态特性的控制,但是参数调节过程往往需要经验和反复试验,而且很难实现对非线性系统的精确控制。
近年来,基于BP神经网络的PID控制器设计方法得到了广泛的关注。
BP神经网络是一种常用的人工神经网络模型,可以通过训练得到输入与输出之间的映射关系。
在PID控制器设计中,可以将误差、历史误差和误差的变化率作为BP神经网络的输入,将控制信号作为输出,通过训练神经网络来实现对控制信号的合理生成。
1.数据预处理:首先需要采集系统的输入输出数据,包括系统的误差、历史误差和误差的变化率以及相应的控制信号。
对这些数据进行归一化处理,以便神经网络能够更好地学习和训练。
2.网络结构设计:根据系统的特性和要求,设计BP神经网络的输入层、隐藏层和输出层的神经元数量。
通常情况下,隐藏层的神经元数量可以根据经验设置为输入层和输出层神经元数量的平均值。
3.训练网络:采用反向传播算法对神经网络进行训练,以获得输入和输出之间的映射关系。
在训练过程中,需要设置学习率和动量系数,并且根据训练误差的变化情况来确定训练的终止条件。
4.参数调整:将训练得到的神经网络与PID控制器相结合,根据神经网络的输出和系统的误差、历史误差和误差的变化率来计算控制信号,并通过对PID参数的调整来实现对系统的控制。
1.适应能力强:BP神经网络能够通过训练来学习系统的动态特性,从而实现对非线性系统的精确控制。
2.自适应性高:BP神经网络能够根据实时的系统状态来实时调整控制信号,从而实现对系统动态特性的自适应控制。
3.参数调节方便:通过BP神经网络的训练过程,可以直接得到系统的输入和输出之间的映射关系,从而减少了传统PID控制器中参数调节的工作量。
4.系统稳定性好:基于BP神经网络的PID控制器能够根据系统状态及时调整控制信号,从而提高了系统的稳定性和鲁棒性。
基于BP神经网络PID整定原理和算法步骤_精品
基于BP神经网络PID整定原理和算法步骤_精品1.收集实验数据:首先需要收集系统的输入和输出数据,包括输入变量(如温度、压力等)和输出变量(如阀门开度、电机转速等)。
同时,需要记录系统的环境条件,如温度、湿度等。
2.数据预处理:对收集到的数据进行预处理,包括数据清洗、去除异常值等。
确保数据质量的同时,也要注意保持数据的连续性和完整性。
3.构建神经网络:使用BP神经网络构建PID整定模型。
BP神经网络是一种具有前馈和反馈连接的多层感知器,可以用于解决非线性问题。
根据PID控制器的输入和输出关系,设计网络的输入层、隐含层和输出层。
4. 网络训练:使用收集到的实验数据对神经网络进行训练。
训练的目标是使网络的输出尽可能接近实际输出,从而建立输入和输出之间的映射关系。
可以使用误差反向传播算法(Backpropagation)来调整网络的权重和阈值。
5.网络评估:训练完成后,使用预留的一部分数据对网络进行评估。
通过比较网络的输出和实际输出,可以评估网络的准确性和稳定性。
如果评估结果不满意,可以进行网络调整和再训练。
6. PID参数计算:根据已经训练好的神经网络,可以使用PID整定算法计算PID参数值。
常用的PID整定算法包括Ziegler-Nichols方法、Chien-Hrones-Reswick方法等。
根据系统的响应特性和性能指标,选择合适的算法进行参数计算。
7.参数调整和优化:根据实际应用需求,对计算得到的PID参数进行调整和优化。
可以通过仿真和实验验证的方式,不断调整参数,直到满足系统的性能要求。
8.实际应用:将优化后的PID参数应用到实际控制系统中。
根据系统的特点和要求,可以进一步进行参数调整和优化。
同时,需要不断监测和评估系统的性能,并及时调整和优化PID参数。
综上所述,基于BP神经网络的PID整定原理和算法步骤主要包括数据收集、数据预处理、神经网络构建、网络训练、网络评估、PID参数计算、参数调整和优化以及实际应用等步骤。
基于BP神经网络的PID控制系统设计
基于BP神经网络的PID控制系统设计一、引言PID控制系统是目前工业控制中广泛应用的一种基本控制方法,它通过测量控制系统的偏差来调节系统的输出,以实现对控制对象的稳定控制。
然而,传统的PID控制器需要事先对系统建模,并进行参数调整,工作效果受到控制对象模型的准确性和外部干扰的影响。
而BP神经网络具有非线性映射、自适应性强、鲁棒性好等优点,可以有效地克服传统PID控制器的缺点。
因此,基于BP神经网络的PID控制系统设计成为当前研究的热点之一二、基于BP神经网络的PID控制系统设计理论1.PID控制器设计原理PID控制器是由比例环节(Proportional)、积分环节(Integral)和微分环节(Derivative)组成的控制器,其输出信号可以表示为:u(t) = Kp*e(t) + Ki*∫e(t)dt + Kd*(de(t)/dt),其中e(t)为控制系统的输入偏差,t为时间,Kp、Ki和Kd分别为比例系数、积分系数和微分系数。
2.BP神经网络理论BP神经网络是一种前馈型神经网络,通过反向传播算法对输入信号进行学习和训练,从而得到最优的网络结构和参数。
BP神经网络由输入层、隐层和输出层组成,其中每个神经元与上、下相邻层之间的神经元互相连接,并具有非线性的激活函数。
3.基于BP神经网络的PID控制系统设计理论基于BP神经网络的PID控制系统设计的核心思想是将BP神经网络作为PID控制器的自适应调节器,根据控制对象的输入信号和输出信号之间的误差进行训练和学习,通过调整BP神经网络的权重和阈值来实现PID 控制器的参数调节,从而提高控制系统的稳定性和鲁棒性。
三、基于BP神经网络的PID控制系统设计步骤1.系统建模首先,需要对待控制对象进行建模,获取其数学模型。
对于一些复杂的非线性系统,可以采用黑箱建模的方法,利用系统的输入和输出数据进行数据拟合,获取系统的数学模型。
2.BP神经网络训练将系统的数学模型作为BP神经网络的训练集,通过反向传播算法对BP神经网络进行训练,得到最优的网络结构和参数。
基于BP神经网络PID整定原理和算法步骤
基于BP神经网络PID整定原理和算法步骤BP神经网络是一种常用的非线性拟合和模式识别方法,可以在一定程度上应用于PID整定中,提高调节器的自适应性。
下面将详细介绍基于BP神经网络的PID整定原理和算法步骤。
一、基本原理:BP神经网络是一种具有反馈连接的前向人工神经网络,通过训练样本的输入和输出数据,通过调整神经元之间的连接权重来模拟输入和输出之间的映射关系。
在PID整定中,可以将PID控制器的参数作为网络的输入,将控制效果指标作为网络的输出,通过训练网络来获取最优的PID参数。
二、算法步骤:1.确定训练数据集:选择一组适当的PID参数和相应的控制效果指标作为训练数据集,包括输入和输出数据。
2.构建BP神经网络模型:确定输入层、隐藏层和输出层的神经元数量,并随机初始化神经元之间的连接权重。
3.设置训练参数:设置学习速率、误差收敛条件和训练迭代次数等训练参数。
4.前向传播计算输出:将训练数据集的输入作为网络的输入,通过前向传播计算得到网络的输出。
5.反向传播更新权重:根据输出与期望输出之间的误差,利用误差反向传播算法来调整网络的连接权重,使误差逐渐减小。
6.判断是否达到收敛条件:判断网络的训练误差是否满足收敛条件,如果满足则跳转到第8步,否则继续迭代。
7.更新训练参数:根据训练误差的变化情况,动态调整学习速率等训练参数。
8.输出最优PID参数:将BP神经网络训练得到的最优权重作为PID 控制器的参数。
9.测试PID控制器:将最优PID参数应用于实际控制系统中,观察控制效果并进行评估。
10.调整PID参数:根据实际控制效果,对PID参数进行微调,以进一步优化控制性能。
三、应用注意事项:1.训练数据集的选择应尽量全面、充分,覆盖各种不同工况和负载情况。
2.隐藏层神经元数量的选择应根据实际情况进行合理调整,避免过拟合或欠拟合现象。
3.学习速率和训练迭代次数的设置应根据系统复杂度和训练误差的变化情况进行调整。
基于BP_神经网络的PID_控制算法参数优化
- 22 -高 新 技 术从本质上来看,PID 控制算法就是对比例、积分和比例微分间的关系进行控制的一种算法。
PID 控制调节器具有适应性强、鲁棒性良好的特征,因此被广泛应用于工业控制领域。
但是,随着科学技术、控制理论发展,在工业生产中被控对象逐渐向复杂化和抽象化的趋势发展,并呈现滞后性、时变性和非线性的特征,这使传统PID 控制器难以精准调控这种较复杂的控制系统。
为了解决该问题,研究人员将控制理论与其他先进的算法相结合,形成全新的控制理论,包括神经网络控制、遗传算法以及模糊控制等。
对神经网络算法来说,由于其具有较高的鲁棒性和容错性,因此适用于复杂的非线性控制系统中,并且具有广阔的应用前景和较大的发展潜力。
1 BP 神经网络结构及算法BP 神经网络将网络视为一个连续域,在这个网络中,输入层和输出层都是任意时刻、任意数目的样本值,网络输出层值与输入层值间也可以具有任意关系,这个学习过程就称为BP 神经网络学习过程。
作为一种被广泛应用的神经网络模型,BP 神经网络由输入层、输出层和隐含层组成:1) 输入层。
从第i 个输入向量中产生相应的输出值。
2) 输出层。
在输出值的作用下将其转换为输入数据。
3) 隐含层。
在输出值的作用下对数据进行隐含处理,将处理后的结果反馈给输入层,3个输入层构成1个BP 神经网络。
当输入数据在时间域内经过多次的误差传播时,最后被一个误差源作为输出信号,即经过输入单元和输出组的中间信息。
如果该误差源的误差小于输出单元和输出组中各单元间的误差,那么这些单元在计算输出时就会有很大的变化;如果超过了期望值,那么这一单元被认为是输入量存在误差(也就是输入信号存在误差),将不再使用该单元;如果仍然超过期望值,那么输出量又会存在误差[1]。
通过分析输入与输出量间的关系可以得出BP 网络中各个隐藏层上节点数与该输出量间的关系。
BP 神经网络的拓扑结构如图1所示。
为了对BP 神经网络进行运算和优化,该文设定了中间层的加权和结点临界,以便将全部采样的真实输出量与预期的输出量的偏差控制在一个很低的区间,并且通过调节这个区间来保证它的稳定性。
基于BP神经网络的PID控制器的设计
基于BP神经网络的PID控制器的设计简介:PID控制器是一种常用的控制方法,可以使控制系统快速、稳定地对目标进行调节。
然而,传统的PID控制器需要依赖经验的设置参数,很难适用于非线性复杂的系统。
为了改善这一问题,本文提出了一种基于BP神经网络的PID控制器的设计方法。
一、神经网络介绍BP神经网络是一种常用的人工神经网络,通过反向传播算法进行学习和适应。
它可以用来建模非线性关系、解决分类和回归问题等。
BP神经网络由输入层、隐藏层和输出层构成,通过调整权重和偏置项,使得网络的输出接近于期望输出。
二、PID控制器的基本原理PID控制器是由比例(P)、积分(I)和微分(D)三个部分组成的,它们分别对应了系统的比例性能、整定性能和微分性能。
PID控制器的输出是由目标值与实际值之间的误差来决定的。
比例作用是根据误差的大小进行调节,积分作用是根据误差的积分值进行调节,微分作用是根据误差的变化率进行调节。
三、BP神经网络的PID控制器设计1.建立神经网络模型:确定输入层节点数、隐藏层节点数和输出层节点数。
2.确定权重和偏置项的初始值:可以使用随机数进行初始化。
3.设置训练样本集:训练样本集包括输入和输出的数据,可以根据实际情况进行设置。
4.确定学习率和训练次数:学习率决定了网络的更新速度,训练次数决定了网络的学习程度。
5.神经网络训练:使用BP算法对神经网络进行训练,通过反向传播算法调整权重和偏置项。
6.测试神经网络性能:使用测试数据对神经网络进行测试,评估其性能是否满足要求。
7.参数调整:根据测试结果对PID控制器的参数进行调整,使得神经网络对系统的控制更加精确。
四、实验结果分析通过对比传统的PID控制器和基于BP神经网络的PID控制器,可以发现基于BP神经网络的PID控制器具有更好的系统控制性能。
因为BP神经网络能够自适应地调整参数,适应非线性复杂系统的控制要求。
总结:基于BP神经网络的PID控制器是一种有效的控制方法,可以提高系统控制的精度和稳定性。
基于BP神经网络PID整定原理和算法步骤_精品
WORD格式整理摘要神经网络作为一门新兴的信息处理科学,是对人脑若干基本特性的抽象和模拟。
它是以人的大脑工作模式为基础,研究自适应及非程序的信息处理方法。
这种工作机制的特点表现为通过网络中大量神经元的作用来体现自身的处理功能,从模拟人脑的结构和单个神经元功能出发,达到模拟人脑处理信息的目的。
目前,在国民经济和国防科技现代化建设中神经网络具有广阔的应用领域和发展前景,其应用领域主要表现在信息领域、自动化领域、工程领域和经济领域等。
本文以BP神经网络作为研究对象。
研究的内容主要有:首先介绍了神经网络的概念、控制结构,学习方式等。
其次,介绍了人工神经元模型,并对BP神经网络的基本原理及推导过程进行详细阐述。
再次将BP神经网络的算法应用于PID 中,介绍了基于BP神经网络PID整定原理和算法步骤。
最后利用 MATLAB/Simulink 对BP神经网络PID控制系统进行仿真,得出BP神经网络的控制效果明显好,它具有很强的自整定,自适应功能。
关键词:BP算法,PID控制,自整定ABSTRACTAs a kind of emerging information processing science,the neural network can simulate some basic characteristic of human brain. It is an information-processed method which takes person's cerebrum working pattern as a foundation and studies the model of adaptive and non- program. The characteristics of this kind of work mechanism are that it can show its processing function through the massive neurons function in the network. Then, it starts with simulating the human brain structure and the single neuron function to achieve the goal that simulates the human brain to process information.Nowadays, the neural network has wide application fields and prospects in the national economy and modernization of national defense science. It mainly applies in information, automation, economical and so on.This article takes the BP neural network as the research object. The content of the research mainly contain: firstly, it introduces the concept of neural network, control structure and mode of study and so on. Secondly, it introduces the artificial neuron model, the basic principles of BP neural network and the derivation process in detail. Then, it applies BP neural network in the PID, and introduces the tuning principles of PID based the BP neural network and steps of the algorithm. Finally, Matlab/Simulink is used to simulate the BP neural network PID control system. In the consequence, the performance of BP neutral network control significantly good. BP neural network control system has a strongself-tuning, adaptive function.KEY WORDS: BP algorithm, PID control, self-tuning目录摘要 (I)ABSTRACT (II)第1章绪论 (3)1.1选题背景和意义 (3)1.2神经网络技术国内外发展现状 (4)第2章神经网络的原理和应用 (7)2.1神经网络的基本概念 (7)2.2神经网络的控制结构 (7)2.2.1 前馈网络 (7)2.2.2 反馈网络 (7)2.3神经网络的功能 (8)2.4神经网络的学习 (8)2.4.1神经网络的学习方式 (8)2.4.2神经网络的学习算法 (9)2.5人工神经元(MP)模型 (9)2.6BP算法原理 (11)2.7BP网络的前馈计算 (12)2.8BP网络权系数的调整规则 (13)2.9BP网络学习算法的计算步骤 (15)2.10本章小结 (15)第3章 BP神经网络PID控制方法研究 (16)3.1引言 (16)3.2基于BP神经网络的PID整定原理 (16)3.3本章小结 (21)第4章仿真研究 (22)4.1BP神经网络自整定PID控制系统 (22)4.2仿真结果分析 (27)4.3本章小结 (29)第5章结论与展望 (28)参考文献 (32)附录 (33)致谢.......................................... 错误!未定义书签。
基于BP神经网络PID整定原理和算法步骤
基于BP神经网络PID整定原理和算法步骤PID(比例、积分、微分)控制是一种常用的控制算法,用于调节系统的输出使其接近期望值。
BP(Back Propagation)神经网络是一种具有强大机器学习能力的神经网络模型。
基于BP神经网络的PID整定方法结合了PID控制算法和神经网络的优点,通过神经网络的学习能力优化PID 参数的选择,提高了控制系统的鲁棒性和适应性。
以下是基于BP神经网络的PID整定原理和算法步骤:一、原理:1.神经网络模型:建立一个具有输入层、隐藏层和输出层的BP神经网络模型,其中输入层接收系统的输入信号,输出层输出控制信号的PID 参数,隐藏层的神经元通过学习调整连接权重以优化参数选择。
2.参数训练:基于反向传播算法,通过输入输出样本对神经网络进行训练,使其学习输入输出之间的映射关系。
训练过程是一个迭代过程,通过不断调整连接权重和偏置,使神经网络的输出结果逼近期望值。
3.PID原理:PID控制算法根据系统当前误差,通过比例、积分和微分项生成控制信号。
调节PID参数可以改变控制信号的响应特性,使其更好地适应控制对象的动态特性。
二、算法步骤:1.数据采集:收集系统的输入输出数据,用于训练神经网络模型。
2.数据预处理:对采集到的数据进行预处理,包括去除噪声、归一化等处理,以提高神经网络的训练效果。
3.网络构建:根据需要构建BP神经网络模型,包括输入层、隐藏层和输出层。
隐藏层的神经元数量和层数可以根据实际情况进行选择。
4.神经网络训练:将预处理后的数据输入到神经网络中,利用反向传播算法对神经网络进行训练。
根据实际需求设置训练的轮数和学习率等参数。
5.训练结果评估:通过评估神经网络的训练结果,包括误差曲线、训练时间等指标,来判断训练是否达到预期效果。
6.PID参数优化:根据神经网络的输出结果调整PID的比例、积分和微分参数。
可以通过试错法或者自适应控制方法对参数进行调整。
7.控制性能评估:利用调整后的PID参数进行控制,通过评估系统的性能指标,例如超调量、调整时间等,来判断PID参数的选择是否合理。
基于BP神经网络的PID控制器设计【范本模板】
早在20世纪初,人们就已经发现人脑的工作方式与现在的计算机是不同的.人脑是由极大量基本单元(称之为神经元)经过复杂的相互连接而成的一种高度复杂的、非线性的、并行处理的信息处理系统。人工神经网络,是借鉴人脑的结构和特点,通过大量简单处理单元(神经元或节点)互连组成的大规模并行分布式信息处理和非线性动力学系统。它具有巨量并行性、结构可变性、高度非线性、自学习性和自组织性等特点.因此,它能解决常规信息处理方法难以解决或无法解决的问题,尤其是那些属于思维(形象思维)、推理及意识方面的问题从人脑的生理结构出发来研究人的智能行为,模拟人脑信息处理的过程,即人工神经网络的研究,自20世纪40年代以来,它的发展经历了一条由兴起、萧条和兴盛三个阶段构成的曲折道路。早在1943年精神病学家和神经解剖学家McCulloch与数学家Pitts在数学生物物理学会刊((Bulletin ofMathematical Biophysics))上发表文章,总结了生物神经元的一些基本生理特征,提出了形式神经元的数学描述与结构,即MP模型。他们的神经元模型假定遵循一种所谓“有或无"规则。如果如此简单的神经元数目足够多和适当设置突触连接并且同步操作,McCulloch和Pitts证明这样构成的网络原则上可以计算任何可计算函数。这是一个有重大意义的结果,有了它就标志着神经网络和人工智能学科的诞生。1958年,计算机科学家Rosenblatt提出感知机(Perceptron),首次把神经网络理论付诸工程实现。这是一种学习和自组织的心理学模型,它基本上符合神经生物学的知识,模型的学习环境是有噪声的,网络构造中存在随机连接,这是符合动物学习的自然环境。当时,人们对神经网络的研究过于乐观,认为只要将这种神经元互连成一个网络,就可以解决人脑思维的模型问题。但是,随之而来的Minsky和Papert(1969)所著的《Percepen》一书,利用数学证明单层感知器所能计算的根本局限,提出感知器的处理能力有限,甚至连XOR这样的问题也不能解决,并在多层感知器的总结章中,论述了单层感知器的所有局限性在多层感知器中是不可能被全部克服的。使人们降低了对神经网络研究的热情,从而使神经网络进入萧条时期[7]。但在其间,一些人工神经网络的先驱仍然致力于这一研究,美国波士顿大学的Crrossberg提出了自适应共谐振理论(ART网),芬兰的Kohonen提出了自组织映射(SOM),Amari致力于神经网络数学理论的研究,这些都为神经网络的进一步研究与发展奠定了基础.1986年Remelhart和Mcllelland等人提出了并行分布处理的理论,同时,Werbos和Parker独立发展了多层网络的BP算法,这是目前最普遍的网络,广泛用于实际问题求解。如今,神经网络的应用,已渗透到模式识别、图像处理、非线性优化、语音处理、自然语言理解、自动目标识别、机器人、专家系统等各个领域,并取得了令人瞩目的成果。从众多应用研究领域取得的丰硕成果来看,人工神经网络的发展具有强大的生命力。当前存在的问题是智能水平还不高,许多应用方面的要求还不能得到很好的满足:网络分析与综合的一些理论性问题(如稳定性、收敛性的分析,网络的结构综合等)还未得到很好的解决.随着人们对大脑信息处理机理认知的深化,以及人工神经网络智能水平的提高,人工神经网络必将在科学技术领域发挥更大的作用。
pid整定算法
PID整定算法引言PID整定算法是控制工程中常用的一种控制器参数整定方法。
该算法主要应用于反馈控制系统中,通过对比反馈信号与期望信号的差异,调整控制器的参数值,以实现系统的稳定性、快速响应和抗干扰能力。
本文将对PID整定算法的原理、具体步骤以及优化方法进行全面、详细、完整和深入地探讨。
PID整定算法原理PID整定算法的核心思想是根据系统的动态特性来确定合适的比例系数Kp、积分时间Ti和微分时间Td,使系统的响应满足要求。
PID控制器的输出为:u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,e(t)为反馈信号与期望信号的差异,∫e(t)dt和de(t)/dt分别表示e(t)的积分和微分。
Kp、Ki和Kd为比例、积分和微分系数。
PID整定算法步骤PID整定算法主要包括以下步骤:1. 初始参数设定选择合适的初始参数值,可以根据经验值进行初步估计,后续进行参数整定时再进行调整。
2. 系统响应测试对控制系统进行开环或闭环测试,记录系统的超调量、调节时间、稳态误差等指标。
3. 比例系数整定通过调整比例系数Kp,使得系统的超调量达到要求。
较大的Kp会减小超调,但可能导致系统震荡或不稳定。
4. 积分时间整定通过调整积分时间Ti,使系统的稳态误差达到要求。
较大的Ti会减小稳态误差,但可能导致系统响应速度变慢。
5. 微分时间整定通过调整微分时间Td,使系统的快速响应能力和抗干扰能力达到要求。
较大的Td会加快系统响应速度,但可能导致系统对干扰更敏感。
6. 总结和优化根据实际应用效果进行总结和优化,调整参数值以满足系统要求。
PID整定算法的优化方法除了基本的整定步骤外,还存在一些优化方法,以进一步提高PID整定算法的性能:1. Ziegler-Nichols整定法Ziegler-Nichols整定法是一种经验法则,通过测试系统的临界增益和临界周期来确定PID参数。
该方法简单易行,但对系统参数要求较高。
基于BP神经网络的自适应PID控制器设计
基于BP神经网络的自适应PID控制器设计自适应PID控制器是一种基于BP神经网络的控制器设计方法,它结合了传统的PID控制器与神经网络的优势,可以适应系统参数变化、非线性和模型误差的情况。
本文将详细介绍基于BP神经网络的自适应PID控制器的设计原理和实现步骤。
1.简介PID控制器是一种经典的控制方法,通过计算误差的比例、积分和微分部分,调节输出控制量来实现对系统的控制。
然而,传统的PID控制器无法处理非线性和参数变化的系统,容易产生较大的误差。
而BP神经网络则具有非线性映射和自适应学习的能力,可以对非线性系统进行建模和控制。
2.BP神经网络的建模BP神经网络是一种前馈神经网络,具有输入层、隐含层和输出层。
输入层接收系统的输入量,输出层输出控制量,隐含层则通过一系列的神经元进行信息传递和处理。
BP神经网络通过训练集的样本进行学习,调整网络的权值和偏置,使得网络的输出与期望输出尽可能一致。
3.PID控制器的设计PID控制器由比例、积分和微分三个部分组成。
比例部分通过调节误差的大小来控制输出,积分部分可以控制持续的误差,微分部分则可以控制误差的变化率,提高系统的响应速度。
PID控制器的参数可以根据系统的特性进行调整。
4.自适应PID控制器的设计a.构建BP神经网络模型,通过训练集对模型进行学习,得到网络的权值和偏置。
b.使用PID控制器的比例、积分和微分部分计算出控制量,并将控制量作为输入量输入到BP神经网络中。
c.根据神经网络的输出,计算系统的输出,将其与期望输出进行比较,得到误差。
d.根据误差的大小,调整PID控制器的参数。
e.重复步骤b-d,直到系统达到期望输出。
5.应用实例自适应PID控制器可以应用于各种系统的控制中,如温度控制、位置控制等。
以温度控制为例,系统输入为温度传感器的读数,输出为控制器输出的控制量。
通过采集训练集数据和期望温度值,利用BP神经网络对系统进行建模和学习,然后根据PID控制器的参数计算出控制量,进而控制温度的变化。
基于BP神经网络的PID参数智能整定
基 于 B P 神经网络的P ID 参数智能整定
李博 ( 西 安 工 程 大 学 陕 西 省 西 安 市 710048 )
自动化控制 Automatic Control
摘 要 :本文将性能指标和参数的单次调整量作为神经网络的输入层和输出层,训练 数据 是 人 工 整 定PID参数的过程中收集的,等同 于让神经网络跟随工程人员学习PID调试的规则以及人工调试的经验。这样训练完成的网络,不再受到控制模型的约束,适用的范围大幅 增 加 , 当稳定性不达标时,投 入 到 整 定 PID参数的过程中,实现控制系统的智能化。
燕 山 大 学 学 报 ,2017, 41 (03):51-55+80. [4] 胡 林 文 . 神 经 网 络 PID控 制 器 的 研 究 及 解 耦 应 用 [D] . 泉 州 :
华 价 大 学 ,2011.
作者简介 李 博 (1 9 9 2 - ) , 男,陕 西 省 西 安 市 人 。研究 生。研究方向为电气 与智能控制。
110
3 数据收集与网络训练
为了 能够 让神经网络能够学习P丨D 参数调试的 策略 ,就需要用 能够表现出性能指标与参数之间动态关系的数据来训练网络。这就 需 要 在 PID控制器从初始参数调试到最佳参数组合的过程中,收集 训练数据。表 2 为收集到的部分数据。
随 机 选 取 数 据 的 7 0 % 作为训练集,剩 余 3 0 % 作为测 试 集 。训
参考文献 [1] 谢 炜 . 基 于 BP神 经 网 络 PID算 法 的 多 电 机 同 步 控 制 研 究 [D].
沈 阳 :沈 阳 工 业 大 学 ,2017. [2] 黄 剑 平 . 基 于 BP神 经 网 络 的 PID控 制 研 究 [J] . 计 算 机 仿
基于BP算法的神经网络PID控制器设计及仿真
se s s G 5.01101)(−+=()(1)[(1)]()[()2(1)(2)]/p I D Iu k u k K e k K e k K e k e k e k T T =−+−++−−+−神经网络PID 控制器的设计及仿真一、传统PID 控制数字PID 控制算法分位置式和增量式两种,工程上常用的增量式PID 控制算法,其控制算式为:式中,pK 为比例系数,I K =p K /T T为积分系数,/D D K T T =为微分系数,T 为采样周期,IT 为积分时间,DT 为微分时间,()e k 为t kT =时刻的误差。
上述PID 控制算法易于用微机软件实现,PID 控制系统框图如图示。
现有一被控对象为:根据“稳定边界法”即临界比例度法,来整定调节器的参数,带入“稳定边界法整定参数计算表”得到,当采取P 调节时,KP=16,;当采取PI 调节时,KP=14.545,i T =1.7;当采取PID 调节时,KP=18.824,i T =1,d T =0.25。
通过Simulink 进行如下图所示的仿真:仿真结果如下图所示:二、基于BP算法的PID控制基于BP神经网络的PID控制系统结构如下图所示,控制器由两个部分组成:①经典的PID控制器:直接对被控对象进行闭环控制,并且KP,KI,KD三个参数为在线P,I,D整定;②神经网络NN:根据系统的运行状态,调节PID控制器的参数,以期达到某种性能指标的最优化。
即使神经网络的输出层神经元的输出状态对应于PID控制器的三个可调参数KP,KI,KD,通过神经网络的自学习、调整权系数,从而使其稳定P,I,D状态对应于某种最优控制规律下的PID控制器参数。
在这里设计的BP网络采用结构简单的三层BP神经网络,其结构如下图所示,有m个输入节点、Q个隐含层节点、3个输出节点。
输入节点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化K K K。
基于BP神经网络PID整定原理和算法步骤_精品
基于BP神经网络PID整定原理和算法步骤_精品1.基本原理PID控制器是一种经典的闭环控制算法,由比例项、积分项和微分项组成。
BP神经网络是一种具有自适应性的模型,可以根据输入和输出之间的关系来自动调整权重和偏置。
2.算法步骤2.1样本数据的采集在PID控制系统中,需要采集一些样本数据来训练神经网络。
可以通过试验或仿真的方式,对控制系统进行加扰动或变动目标值的操作,得到系统的输入与输出数据。
2.2数据的预处理对采集到的数据进行预处理,主要包括去除噪声、标准化等操作,使得数据更加准确和可靠。
2.3神经网络的构建根据PID控制器的结构,构建对应的BP神经网络模型。
一般来说,BP神经网络由输入层、隐含层和输出层组成。
输入层接收系统的输入数据,隐含层进行特征提取和非线性变换,输出层得到控制系统的输出。
2.4神经网络的训练将预处理后的样本数据输入到神经网络中进行训练。
训练过程中,通过调整网络的权重和偏置,使得网络的输出与期望的输出之间的误差最小化。
2.5PID参数的优化在神经网络训练完成后,可以得到最优的网络结构和权重。
根据神经网络的输出,可以得到相应的PID参数。
一般来说,比例项的参数可直接取输出层的权重,积分项和微分项的参数则可以根据网络的偏置来计算。
2.6控制系统的实时调整将优化得到的PID参数应用到实际的控制系统中。
在控制过程中,根据系统的实时反馈信号,可以通过PID控制器进行实时的调整,使得系统的响应特性达到最佳。
总结:基于BP神经网络的PID整定,通过训练神经网络来寻找最佳的PID 参数,以达到控制系统的最优响应特性。
该方法可以应用于各种复杂的控制系统中,具有很好的适应性和鲁棒性。
但需要注意的是,BP神经网络的训练过程需要较长的时间和大量的样本数据,因此在实际应用中需要进行一定的优化和加速。
基于BP神经网络的PID自整定程序源码
基于BP神经网络的PID自整定程序源码最近在学习神经网络,并打算设计基于BP神经网络的PID参数自整定控制器。
到处找资料,发现介绍这方面的资料不少,但都说得比较泛。
其实,大道理我们都懂,却不知道一些实际的操作问题,比如如何用MATLAB进行仿真。
看了些资料,发现现在仿真基于BP神经网络的PID控制器的方法有以下几种:1)编写代码实现。
直接编写M文件,用代码的方式来实现BP网络的权值调整,以及最终的控制器输出等。
2)将神经PID控制器编写成S函数,然后将其封装成simulink模块,直接在Simulink中搭建系统模型。
这种方式的好处是系统结构比较直观,而且不需要将被控对象用代码来表示,但S函数编写很困难,对于一般人来说好像不好掌握。
3)将神经PID控制器编写成M函数,然后同样在Simulink中搭建模块。
不过这种方法我还没看到有具体的实例,只是听人家这样说过。
%BP based PID Controlclear all;close all;xite=0.25;alfa=0.05;S=2; %Signal typeIN=4;H=5;Out=3; %NN Structureif S==1 %Step Signalwi=[-0.6394 -0.2696 -0.3756 -0.7023;-0.8603 -0.2013 -0.5024 -0.2596;-1.0749 0.5543 -1.6820 -0.5437;-0.3625 -0.0724 -0.6463 -0.2859;0.1425 0.0279 -0.5406 -0.7660]; %wi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=[0.7576 0.2616 0.5820 -0.1416 -0.1325;-0.1146 0.2949 0.8352 0.2205 0.4508;0.7201 0.4566 0.7672 0.4962 0.3632]; %wo=0.50*rands(Out,H); wo_1=wo;wo_2=wo;wo_3=wo;endif S==2 %Sine Signalwi=[-0.2846 0.2193 -0.5097 -1.0668;-0.7484 -0.1210 -0.4708 0.0988;-0.7176 0.8297 -1.6000 0.2049;-0.0858 0.1925 -0.6346 0.0347;0.4358 0.2369 -0.4564 -0.1324]; %wi=0.50*rands(H,IN);wi_1=wi;wi_2=wi;wi_3=wi;wo=[1.0438 0.5478 0.8682 0.1446 0.1537;0.1716 0.5811 1.1214 0.5067 0.7370;1.0063 0.7428 1.0534 0.7824 0.6494]; %wo=0.50*rands(Out,H); wo_1=wo;wo_2=wo;wo_3=wo;endx=[0,0,0];u_1=0;u_2=0;u_3=0;u_4=0;u_5=0;y_1=0;y_2=0;y_3=0;Oh=zeros(H,1); %Output from NN middle layer I=Oh; %Input to NN middle layer error_2=0;error_1=0;ts=0.001;for k=1:1:6000time(k)=k*ts;rin(k)=1.0;%Unlinear modela(k)=1.2*(1-0.8*exp(-0.1*k));yout(k)=a(k)*y_1/(1+y_1^2)+u_1;error(k)=rin(k)-yout(k);xi=[rin(k),yout(k),error(k),1];x(1)=error(k)-error_1;x(2)=error(k);x(3)=error(k)-2*error_1+error_2;epid=[x(1);x(2);x(3)];I=xi*wi';for j=1:1:HOh(j)=(exp(I(j))-exp(-I(j)))/(exp(I(j))+exp(-I(j))); %Middle Layer endK=wo*Oh; %Output Layerfor l=1:1:OutK(l)=exp(K(l))/(exp(K(l))+exp(-K(l))); %Getting kp,ki,kdendkp(k)=K(1);ki(k)=K(2);kd(k)=K(3); Kpid=[kp(k),ki(k),kd(k)]; du(k)=Kpid*epid;u(k)=u_1+du(k);if u(k)>=10 % Restricting the output of controlleru(k)=10;endif u(k)<=-10u(k)=-10;enddyu(k)=sign((yout(k)-y_1)/(u(k)-u_1+0.0000001));%Output layerfor j=1:1:OutdK(j)=4/(exp(K(j))+exp(-K(j)))^2;delta3(j)=error(k)*dyu(k)*epid(j)*dK(j); endfor l=1:1:Outfor i=1:1:Hd_wo=xite*delta3(l)*Oh(i)+alfa*(wo_1-wo_2);endendwo=wo_1+d_wo+alfa*(wo_1-wo_2); %Hidden layerfor i=1:1:HdO(i)=4/(exp(I(i))+exp(-I(i)))^2; endsegma=delta3*wo;for i=1:1:Hdelta2(i)=dO(i)*segma(i);endd_wi=xite*delta2'*xi;wi=wi_1+d_wi+alfa*(wi_1-wi_2);%Parameters Updateu_5=u_4;u_4=u_3;u_3=u_2;u_2=u_1;u_1=u(k); y_2=y_1;y_1=yout(k);wo_3=wo_2;wo_2=wo_1;wo_1=wo;wi_3=wi_2;wi_2=wi_1;wi_1=wi;error_2=error_1;error_1=error(k);endfigure(1);plot(time,rin,'r',time,yout,'b');xlabel('time(s)');ylabel('rin,yout'); figure(2);plot(time,error,'r');xlabel('time(s)');ylabel('error'); figure(3);plot(time,u,'r');xlabel('time(s)');ylabel('u'); figure(4);subplot(311);plot(time,kp,'r');xlabel('time(s)');ylabel('kp'); subplot(312); plot(time,ki,'g');xlabel('time(s)');ylabel('ki'); subplot(313); plot(time,kd,'b');xlabel('time(s)');ylabel('kd');。
基于BP神经网络的PID控制器设计
基于BP神经网络的PID控制器设计1.引言在工业控制系统中,PID(比例、积分、微分)控制器被广泛应用于各种自动控制任务。
然而,传统的PID控制器在处理非线性、时变以及多输入多输出(MIMO)系统时存在一些固有的局限性。
为了克服这些问题,本文提出了基于BP神经网络的PID控制器设计方法。
2.BP神经网络BP神经网络是一种前向反馈的人工神经网络,具有强大的非线性建模能力和自适应性能。
它由输入层、隐藏层和输出层组成,每个神经元与前一层的所有神经元和后一层的所有神经元连接。
BP神经网络通过反向传播算法来训练权重和偏置,实现输入与输出之间的映射关系。
3.PID控制器PID控制器由比例项、积分项和微分项组成,具有良好的稳定性和抗干扰能力。
比例项根据控制误差与参考值的比例进行调整,积分项根据控制误差与时间的积分进行调整,微分项根据控制误差的变化率进行调整。
4.BP神经网络与PID控制器结合将BP神经网络与PID控制器相结合,可以克服传统PID控制器在处理非线性、时变和MIMO系统时的局限性。
具体而言,可以使用BP神经网络来精确建模控制对象的非线性行为,并将其应用于PID控制器中,实现自适应调节。
在实际应用中,可以按照以下步骤进行基于BP神经网络的PID控制器设计:(1)收集系统输入输出数据,并进行预处理,例如归一化处理。
(2)使用BP神经网络对控制对象进行建模。
选择适当的网络结构、激活函数和误差函数,并使用反向传播算法进行网络训练。
(3)设计PID控制器,确定比例项、积分项和微分项的权重。
(4)将BP神经网络的输出作为PID控制器的输入,进行控制操作。
根据控制误差和调节参数,调整PID控制器的输出。
(5)反复迭代并调整BP神经网络和PID控制器的参数,使系统能够快速、准确地响应控制需求。
5.实验验证为了验证基于BP神经网络的PID控制器的有效性,可以选择一个具有非线性、时变特性的控制对象进行实验。
在实验中,可以使用MATLAB或其他神经网络工具箱来实现BP神经网络,并结合传统PID控制器进行控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要神经网络作为一门新兴的信息处理科学,是对人脑若干基本特性的抽象和模拟。
它是以人的大脑工作模式为基础,研究自适应及非程序的信息处理方法。
这种工作机制的特点表现为通过网络中大量神经元的作用来体现自身的处理功能,从模拟人脑的结构和单个神经元功能出发,达到模拟人脑处理信息的目的。
目前,在国民经济和国防科技现代化建设中神经网络具有广阔的应用领域和发展前景,其应用领域主要表现在信息领域、自动化领域、工程领域和经济领域等。
本文以BP神经网络作为研究对象。
研究的内容主要有:首先介绍了神经网络的概念、控制结构,学习方式等。
其次,介绍了人工神经元模型,并对BP神经网络的基本原理及推导过程进行详细阐述。
再次将BP神经网络的算法应用于PID 中,介绍了基于BP神经网络PID整定原理和算法步骤。
最后利用 MATLAB/Simulink 对BP神经网络PID控制系统进行仿真,得出BP神经网络的控制效果明显好,它具有很强的自整定,自适应功能。
关键词:BP算法,PID控制,自整定ABSTRACTAs a kind of emerging information processing science,the neural network can simulate some basic characteristic of human brain. It is an information-processed method which takes person's cerebrum working pattern as a foundation and studies the model of adaptive and non- program. The characteristics of this kind of work mechanism are that it can show its processing function through the massive neurons function in the network. Then, it starts with simulating the human brain structure and the single neuron function to achieve the goal that simulates the human brain to process information.Nowadays, the neural network has wide application fields and prospects in the national economy and modernization of national defense science. It mainly applies in information, automation, economical and so on.This article takes the BP neural network as the research object. The content of the research mainly contain: firstly, it introduces the concept of neural network, control structure and mode of study and so on. Secondly, it introduces the artificial neuron model, the basic principles of BP neural network and the derivation process in detail. Then, it applies BP neural network in the PID, and introduces the tuning principles of PID based the BP neural network and steps of the algorithm. Finally, Matlab/Simulink is used to simulate the BP neural network PID control system. In the consequence, the performance of BP neutral network control significantly good. BP neural network control system has a strong self-tuning, adaptive function.KEY WORDS: BP algorithm, PID control, self-tuning目录摘要 (I)ABSTRACT (II)第1章绪论 (2)1.1选题背景和意义 (2)1.2神经网络技术国内外发展现状 (3)第2章神经网络的原理和应用 (6)2.1神经网络的基本概念 (6)2.2神经网络的控制结构 (6)2.2.1 前馈网络 (6)2.2.2 反馈网络 (6)2.3神经网络的功能 (7)2.4神经网络的学习 (7)2.4.1神经网络的学习方式 (7)2.4.2神经网络的学习算法 (8)2.5人工神经元(MP)模型 (8)2.6BP算法原理 (10)2.7BP网络的前馈计算 (11)2.8BP网络权系数的调整规则 (12)2.9BP网络学习算法的计算步骤 (14)2.10本章小结 (14)第3章 BP神经网络PID控制方法研究 (15)3.1引言 (15)3.2基于BP神经网络的PID整定原理 (15)3.3本章小结 (19)第4章仿真研究 (20)4.1BP神经网络自整定PID控制系统 (20)4.2仿真结果分析 (27)4.3本章小结 (27)第5章结论与展望 (28)参考文献 (30)附录 (31)致谢............................................ 错误!未定义书签。
第1章绪论1.1选题背景和意义在计算机技术没有发展的条件下,大量需求的控制对象是一些较为简单的单输入单输出线性系统,而且对这些对象的自动控制要求是保持输出变量为要求的恒值,消除或减少输出变量与给定值之误差、误差速度等。
而PID控制的结构,正是适合于这种对象的控制要求。
因此PID控制是最早发展起来的控制策略之一,由于其算法简单,鲁棒性好和可靠性高,被广泛应用于过程控制中,尤其适用于可建立精确数学模型的确定性控制系统。
然而实际工业生产过程往往具有非线性,时变不确定性,难以建立精确地数学模型,应用常规PID控制器不能达到理想的控制效果,而且在实际生产现场中,由于受到参数整定方法繁杂的困扰,常规PID控制器往往整定不良,性能欠佳,对运行工况的适应性很差。
所以人们从工业生产过程需要出发,基于常规PID控制器的基本原理,对其进行了各种各样的改进,形成所谓智能PID控制[1]。
而其中神经网络所具有的大规模的并行处理和分布式的信息存储;极强的自学、联想额容错能力;良好的自适应和自组织性;多输入、多输出的非线性系统都基本符合工程的要求。
人工神经网络作为生物控制论的一个成果,其触角几乎延伸到各个工程领域,并且在这些领域中形成新的生长点。
以神经网络研究为开端,整个学术界对计算的概念和作用有了新的认识和提高。
计算不仅仅局限于数学中,更不仅采取逻辑的、离散的形式,在大量的物理现象以至生物学对象中,进行各种各样的计算,而且大量的运算表现在对模糊低精度模拟量的并行计算,对于这一类计算,传统的计算机是无能为力的。
神经网络的数学理论本质是非线性的数学理论,因此,现代非线性科学方面的进展必将推动神经网络的研究,同时,神经网络理论也会对非线性科学提出新课题。
神经网络研究的对象是神经系统,这是高度进化的复杂系统,也是系统科学中一个重要的具体的领域。
神经网络的研究不仅重视系统的动态特性,而且强调事件和信息在系统内部的表达和产生。
神经网络应用时不需考虑过程或现象的内在机理,一些高度非线性和高度复杂的问题能较好地得到处理,因此神经网络在控制领域取得了较大的发展,特别在模型辨识、控制器设计、优化操作、故障分析与诊断等领域迅速得到应用。
神经网络控制作为二十一世纪的自动化控制技术,国内外理论与实践均充分证明,其在工业复杂过程控制方面大有用武之地。
而工业现场需要先进的控制方法,迫切需要工程化实用化的神经网络控制方法,所以研究神经网络在控制中的应用,对提高我国的自动化水平和企业的经济效益具有重大意义[2]。
神经网络具有很强的非线性逼近能力和自学习能力,所以将BP神经网络算法与PID 控制相结合产生的间接自校正控制策略,能自动整定控制器的参数,使系统在较好的性能下运行。
虽然人工神经网络存在着以上的许多优点及广泛的应用,但同时也存在着一些不足,由于神经网络的不足阻碍了神经网络的发展,在现实应用中BP神经网络是最为广泛的神经网络模型,BP神经网络是在1986年被提出的,因其系统地解决了多层网络中隐含单元连接权的学习问题,它同样具有人工神经网络所具有的特点。
本课题是以BP神经网络模型研究为主。
BP神经网络的缺点主要表现在以下几个方面:(1)学习过程收敛速度慢,训练易陷入瘫痪;(2)训练过程中易陷入局部极小值;(3)网络泛化能力差;(4)隐节点数及权重和阈值初始值的选取缺乏理论指导:(5)未考虑样本选择对系统的影响;(6)未考虑传递函数对神经网络系统的影响;另外,网络结构的确定:包括隐含层数及各隐含层节点数的确定:以及学习率的选取等问题的存在严重阻碍了BP神经网络的发展,致使其理论发展缓慢。
同时也因为BP网络的这些缺点限制了其应用领域的拓宽及应用程度的深入,不利于国民经济的健康发展。
因此,研究BP神经网络显然具有重要理论意义和重要的应用价值。
1.2神经网络技术国内外发展现状当今的自动控制技术都是基于反馈的概念。
反馈理论的要素包括三个部分:测量、比较和执行。
测量关心的变量,与期望值相比较,用这个误差纠正调节控制系统的响应。
PID (比例-积分-微分)控制器作为最早实用化的控制器已有50多年历史,现在仍然是应用最广泛的工业控制器。
PID控制器简单易懂,使用中不需精确的系统模型等先决条件,因而成为应用最为广泛的控制器。
PID控制器由比例单元(P)、积分单元(I)和微分单元(D)组成。
在实际生产过程中,由于受到参数整定方法繁杂的困扰,因此常规PID控制的应用受到很大的限制和挑战。
人们对PID应用的同时,也对其进行各种改进,主要体现在两个方面:一是对常规PID本身结构的改进,即变结构PID控制。