离散数学期末复习辅导
离散数学复习要点
离散数学复习要点离散数学是数学的一个分支领域,主要研究离散的结构和离散情形下的数学对象及其相关性质。
它与连续数学不同,离散数学的对象是离散的,如集合、图、布尔代数等。
在计算机科学、信息科学、通信工程等领域中,离散数学的理论和方法被广泛应用。
以下是离散数学的一些重要的复习要点:1.集合论:集合是离散数学的基础,集合的基本运算如交、并、差等,以及集合的基本性质如并集和交集的结合律、分配律等,都是需要复习的内容。
此外,还需要了解集合的基数和幂集等概念。
2.命题逻辑:命题是一个可以判断真假的陈述句,命题逻辑是研究命题及其逻辑关系的数学体系。
需要复习的内容包括命题的逻辑运算,如非、与、或、异或等,以及逻辑等价、逻辑推理等。
3.谓词逻辑:谓词逻辑是对自然语言中的谓词进行形式化表示和推理的系统。
复习重点包括一阶谓词逻辑的基本概念,如谓词、量词、域、项等,以及谓词的合取、析取、全称量词和存在量词等逻辑联结词的语义。
4.图论:图论是研究图及其性质的数学分支。
需要复习的内容包括图的基本概念,如顶点、边、路径、圈等,以及图的表示方法、图的遍历算法、连通图、树等。
5. 网络流模型:网络流模型是研究流动网络的数学方法,主要包括最大流、最小割等问题。
需要复习的内容包括网络的基本概念,如容量、割、流等,以及Ford-Fulkerson算法等解决网络流问题的方法。
6.布尔代数:布尔代数是一种关于逻辑运算的代数系统,常用于电路设计和逻辑推理。
需要复习的内容包括布尔代数的基本运算,如与、或、非等,以及布尔函数的最小项与最大项表示、卡诺图等。
7.组合数学:组合数学是研究离散中的计数问题的数学分支。
需要复习的内容包括排列、组合、多元排列组合等的计数方法,如乘法原理、加法原理、排列组合的顺序问题等。
8.代数系统:代数系统是研究代数结构及其性质的数学分支,包括群、环、域等。
需要复习的内容包括群的基本概念和性质,如封闭性、结合律、单位元、逆元等。
1009离散数学期末复习指导
离散数学期末复习指导注意:1试题类型及结构:单项选择题的分数占15%,填空题的分数占15%,公式翻译题的分数占12%,判断说明题的分数占14%,计算题的分数占36%;证明题的分数占8%.2考试重点:本学期的三次教学活动资料、学习笔记和历年试题!3离散数学期末复习指导分为两个部分:第一部分,离散数学历年试题汇编,熟悉考试试题及解题方法;第二部分,例题精讲。
4请大家充分利用课程学习平台教学活动资料栏目(尤其是本学期 11 月 3 日 , 24 日和 12 月 9 日 的三次教学辅导活动资料)、学习笔记栏目和课程复习 — 自测栏目中的资料,抓住重点进行复习争取期末考试获得好成绩。
第一部分,离散数学历年试题汇编一、单项选择题1.若集合A ={1,{1},{2},{1,2}},则下列表述正确的是(A ).A .{2}∈AB .{1,2}⊂AC .1∉AD .2 ⊂ A 2.设G 为无向图,则下列结论成立的是 ( C ) . A .无向图G 的结点的度数等于边数的两倍. B .无向图G 的结点的度数等于边数.C .无向图G 的结点的度数之和等于边数的两倍.D .无向图G 的结点的度数之和等于边数. 3.图G 如图一所示,以下说法正确的是(C ) . A .{(a ,b )}是边割集 B .{ a ,c }是点割集 C .{d }是点割集 D .{ (c ,d )}是边割集图一4.设集合A ={1},则A 的幂集为( D ).A .{{1}}B .{1,{1}}C .{∅,1}D .{∅,{1}}5.设A (x ):x 是人,B (x ):x 犯错误,则命题“没有不犯错误的人” 可符号化为( B ).A .┐(∃x )( A (x ) → ┐B(x))B .┐(∃x )( A (x )∧┐B (x ))C .┐(∃x )( A (x )∧B (x ))D .(∀x )( A (x )∧B (x ))6.若集合A={a,{1}}则下列表述正确的是( A).. {1}. {1}. {}. A A B A C a AD A∈⊆∈∅∈7. 设图,,GV E v V=<>∈,则下列结论成立的是(D).A 、deg()2v E =B 、deg()v E=οο ο οοο a b c defC 、deg()v Vv E ∈=∑ D 、deg()2v Vv E ∈=∑8. 如图一所示,以下说法正确的是(B )。
电大离散数学图论部分期末复习辅导Word版
离散数学图论部分期末复习辅导一、单项选择题 1.设图G =<V , E >,v V ,则下列结论成立的是 ( ) .A .deg(v )=2EB .deg(v )=EC .deg()2||v Vv E ∈=∑ D .deg()||v Vv E ∈=∑解 根据握手定理(图中所有结点的度数之和等于边数的两倍)知,答案C 成立。
答 C2.设无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100100110, 则G 的边数为( ).A .6B .5C .4D .3解 由邻接矩阵的定义知,无向图的邻接矩阵是对称的.即当结点v i 与v j 相邻时,结点v j 与v i 也相邻,所以连接结点v i 与v j 的一条边在邻接矩阵的第i 行第j 列处和第j 行第i 列处各有一个1,题中给出的邻接矩阵中共有10个1,故有102=5条边。
答 B3.已知无向图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111110101110001000111010,则G 有( ).A .5点,8边B .6点,7边C .6点,8边D .5点,7边解 由邻接矩阵的定义知,矩阵是5阶方阵,所以图G 有5个结点,矩阵元素有14个1,14÷2=7,图G 有7条边。
答 D4.如图一所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集C .{(a, e ) ,(b, c )}是边割集D .{(d, e)}是边割集定义3.2.9 设无向图G =<V ,E >为连通图,若有边集E 1ÌE ,使图G 删除了E 1的所有边后,所得的子图是不连通图,而删除了E 1的任何真子集后,所得的子图仍是连通图,则称E 1是G 的一个边割集.若边割集为单元集{e },则称边e 为割边(或桥).解 割边首先是一条边,因为答案A 中的是边集,不可能是割边,因此答案A 是错误的.删除答案B 或C 中的边后,得到的图是还是连通图,因此答案B 、C 也是错误的.在图一中,删去(d , e )边,图就不连通了,所以答案D 正确. 答 D注:如果该题只给出图的结点和边,没有图示,大家也应该会做.如:若图G =<V , E >,其中V ={ a , b , c , d , e },E ={ (a , b ), (a , c ) , (a , e ) , (b , c ) , (b , e ) , (c , e ) , (e , d )},则该图中的割边是什么?5.图G 如图二所示,以下说法正确的是 ( ). A .a 是割点 B .{b, c}是点割集 C .{b , d }是点割集 D .{c }是点割集定义3.2.7 设无向图G =<V ,E >为连通图,若有点集V 1ÌV ,使图G 删除了V 1的所有结点后,所得的子图是不连通图,而删除了V 1的任何真子集后,所得的子图仍是连通图,则称V 1是G 的一个点割集.若点割集为单元集{v },则称结点v 为割点.οοο ο a bc d图一 οe ο οο a b c d图二ο解 在图二中,删去结点a 或删去结点c 或删去结点b 和d 图还是连通的,所以答案A 、C 、D 是错误的.在图二中删除结点b 和c ,得到的子图是不连通图,而只删除结点b 或结点c ,得到的子图仍然是连通的,由定义可以知道,{b, c }是点割集.所以答案B 是正确的. 答 B6.图G 如图三所示,以下说法正确的是 ( ) . A .{(a, d )}是割边 B .{(a, d )}是边割集C .{(a, d) ,(b, d)}是边割集D .{(b , d )}是边割集解 割边首先是一条边,{(a, d )}是边集,不可能是割边.在图三中,删除答案B 或D 中的边后,得到的图是还是连通图.因此答案A 、B 、D 是错误的.在图三中,删去(a,d )边和(b, d )边,图就不连通了,而只是删除(a, d )边或(b, d )边,图还是连通的,所以答案C 正确.7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是( ).图四A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的复习:定义3.2.5 在简单有向图中,若在任何结点偶对中,至少从一个结点到另一个结点可达的,则称图G 是单向(侧)连通的;若在任何结点偶对中,两结点对互相可达,则称图G 是强连通的;若图G 的底图,即在图G 中略去边的方向,得到的无向图是连通的,则称图G 是弱连ο ο ο a bcd图三ο通的.显然,强连通的一定是单向连通和弱连通的,单向连通的一定是弱连通,但其逆均不真.定理3.2.1一个有向图是强连通的,当且仅当G中有一个回路,其至少包含每个结点一次.单侧连通图判别法:若有向图G中存在一条经过每个结点至少一次的路,则G是单侧连通的。
离散数学复习资料
离散数学复习资料离散数学是计算机科学与数学领域中的重要学科,它研究的是离散的数学结构和离散的数学对象。
在计算机科学领域,离散数学是构建算法和设计计算机系统的基础。
为了更好地复习离散数学,我们可以从以下几个方面入手。
一、集合论集合论是离散数学的基础,它研究的是集合及其运算。
在集合论中,我们需要了解集合的定义、基本运算和集合间的关系。
此外,还需要掌握集合的代数运算法则,如交、并、差和补集等。
复习时可以通过解题来加深理解,例如证明集合之间的等价关系、集合的幂集等。
二、逻辑与命题逻辑是离散数学中的重要分支,它研究的是推理和论证的规则。
在逻辑中,命题是最基本的逻辑单位。
复习时需要了解命题的定义和常见的逻辑运算符,如非、与、或、异或等。
此外,还需要熟悉命题的真值表和命题之间的逻辑等价关系。
通过解题和推理,可以提高对逻辑的理解和应用能力。
三、图论图论是离散数学中的一个重要分支,它研究的是图及其性质。
在图论中,我们需要了解图的基本概念,如顶点、边、路径、环等。
此外,还需要熟悉图的表示方法,如邻接矩阵和邻接表。
复习时可以通过解题来加深对图的理解,例如求最短路径、判断图的连通性等。
四、代数系统代数系统是离散数学中的一个重要内容,它研究的是代数结构及其性质。
在代数系统中,我们需要了解群、环、域等代数结构的定义和性质。
此外,还需要熟悉代数运算法则和代数结构之间的关系。
复习时可以通过解题来加深对代数系统的理解,例如证明一个集合构成一个群、判断一个环是否是域等。
五、概率论与统计学概率论与统计学是离散数学中的一个重要分支,它研究的是随机事件和随机变量的概率性质。
在概率论与统计学中,我们需要了解概率的定义和性质,掌握常见的概率分布和统计方法。
此外,还需要熟悉概率的运算法则和统计推断的基本原理。
复习时可以通过解题和实际问题的分析来加深对概率论与统计学的理解。
总之,离散数学作为计算机科学与数学领域中的重要学科,对于计算机科学专业的学生来说具有重要意义。
离散数学复习提纲(完整版)解析
《离散数学》期末复习大纲(完整版)(含例题和考试说明)一、命题逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价↔),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
[疑难解析]1、公式类型的判定判定公式的类型,包括判定公式是重言的、矛盾的或是可满足的。
具体方法有两种,一是真值表法,二是等值演算法。
2、范式求范式,包括求析取范式、合取范式、主析取范式和主合取范式。
关键有两点:一是准确理解掌握定义;另一是巧妙使用基本等值式中的分配律、同一律和互补律(排中律、矛盾律),结果的前一步适当使用幂等律,使相同的短语(或子句)只保留一个。
3、逻辑推理掌握逻辑推理时,要理解并掌握12个(除第10,11)推理规则和3种证明法(直接证明法、附加前提证明法和归谬法)。
例1.试求下列公式的主析取范式:(1)))()((P Q Q P P ⌝∨⌝⌝∧→→;(2))))((R Q Q P P →⌝∨→⌝∨())()(())()((:)1P Q Q P Q P P P Q Q P P ∧∧∨∧∧⌝∨⌝=∧∧∨⌝∨⌝=原式解 Q P P P Q P P Q P ∨⌝=∨⌝∧∨⌝=∧∨⌝=)()()())(())((Q P P Q Q P ∧∨⌝∨∨⌝∧⌝=)()()(Q P Q P Q P ∧∨∧⌝∨⌝∧⌝=)))((()))(((:)2R Q Q P P R Q Q P P ∨∨∨∨=→⌝∨→⌝∨解)()()()(R Q P R Q P R Q P R Q P R Q P ∧⌝∧∨∧∧⌝∨⌝∧∧⌝∨∧⌝∧⌝=∨∨=)()()(R Q P R Q P R Q P ∧∧∨⌝∧∧∨⌝∧⌝∧∨)2.用真值表判断下列公式是恒真?恒假?可满足?(1)(P ∧⌝P )↔Q(2)⌝(P →Q )∧Q(3)((P →Q )∧(Q →R ))→(P →R )解:(1) 真值表因此公式(1)为可满足。
离散数学期末复习要点与重点
离散数学期末复习要点与重点离散数学是计算机科学及其他相关学科中的一门重要的基础课程。
它主要研究离散的结构和对象,以及它们之间的关系和性质。
离散数学的核心内容包括集合论、关系、图论、布尔代数和逻辑等。
下面是离散数学期末复习的要点与重点。
一、集合论1.集合的基本概念,包括元素、子集、幂集、集合的运算等。
2.集合的性质,如交换律、结合律、分配律等。
3.集合的表示方法,包括列举法、描述法、特征函数法等。
4.集合的运算,如并、交、差、对称差等。
5.集合的关系,包括子集关系、相等关系、真子集关系等。
二、关系1.关系的基本概念,包括序偶、笛卡尔积、关系的定义等。
2.关系的性质,如自反性、对称性、传递性等。
3.关系的表示方法,包括关系矩阵、关系图、关系表等。
4.关系的运算,如复合、逆、幂等等。
5.等价关系和偏序关系的特性和性质。
6.关系的闭包,包括自反闭包、对称闭包、传递闭包等。
三、图论1.图的基本概念,包括顶点、边、路径、环等。
2.不同类型的图,包括无向图、有向图、简单图、多重图等。
3.图的表示方法,包括邻接矩阵、邻接表等。
4.图的遍历算法,包括深度优先(DFS)和广度优先(BFS)。
5. 最小生成树算法,包括Prim算法和Kruskal算法。
6. 最短路径算法,包括Dijkstra算法和Floyd-Warshall算法。
四、布尔代数1.布尔代数的基本运算,包括与、或、非等。
2.布尔函数的最小项和最大项表示方法。
3.布尔函数的化简,包括代数化简和卡诺图化简。
4.布尔函数的特性,包括恒等律、零律、单位律等。
5.布尔函数的逻辑门电路实现,包括与门、或门、非门等。
五、逻辑1.命题逻辑的基本概念,包括命题、命题变量、逻辑联结词等。
2.命题逻辑的语法,包括命题公式的形式化定义和语法规则。
3.命题逻辑的证明方法,包括直接证明、间接证明、反证法等。
4.谓词逻辑的基本概念,包括谓词、量词、合取范式等。
5.谓词逻辑的语义,包括赋值、满足关系等。
离散数学期末复习大纲
代数系统的定义
由非空集合及定义在该集 合上的一组运算构成的数 学结构。
代数系统的性质
封闭性、结合律、交换律、 分配律、吸收律等。
同态与同构
保持运算的映射关系,探 讨不同代数系统之间的结 构与性质相似性。
群、环、域等代数结构介绍
STEP 02
STEP 03
域的定义及性质
每个非零元素都有乘法逆 元的交换环,具有更丰富 的数学性质。
集合间关系与运算
集合间的关系
子集、真子集、相等集合等概念及其性质。
集合的运算
并集、交集、差集、补集等运算的定义、性 质及计算方法。
集合运算的优先级
括号>补集>交集>并集,在运算中应注意运 算优先级。
笛卡尔积与幂集
01
笛卡尔积的定义
设A和B为任意两个集合,则所有 有序对(a,b)的集合,其中a∈A, b∈B,称为A和B的笛卡尔积, 记作A×B。
形式语言与自动机
运用代数方法研究形式语言的语 法和语义,以及自动机的结构和 性质。
自动机理论
将计算过程抽象为状态转移的过 程,利用代数系统描述和分析自 动机的行为。
Part
07
总结与展望
关键知识点回顾与总结
命题逻辑
谓词逻辑
ቤተ መጻሕፍቲ ባይዱ
集合论
图论
代数系统
掌握命题、联结词、真 值表、逻辑等价、范式 等基本概念和性质,能 够运用推理规则进行逻 辑推理和证明。
Part
04
逻辑初步
命题逻辑基本概念及公式化简方法
命题逻辑基本概念
命题、联结词、真值表、命题公式、重言式、矛盾式 等。
公式化简方法
利用逻辑等价公式进行化简,如德摩根定律、分配律 等。
离散数学辅导大纲
离散数学期末复习提纲一、基本概念:1.数理逻辑中使用哪8条推理规则?其中哪几条规则的使用是有条件限制的?2.把实际问题符号化时,全称量词对应哪个逻辑连接词?存在量词对应哪个逻辑连接词?3.一个谓词公式一经量化就是一个确定的命题,假设个体域为S={1,2,3,⋯}如何确定(∀x)A(x)和(∃x)A(x)的真值?4.何为极小项(极大项)?极小项(极大项)一定是基本积(基本和)吗?5.何为判定问题?解决判定问题的途径是什麽?6.对偶式和对偶原理相同吗?7.一个谓词公式的前束范式具有什麽样的结构?8.⎨⌝,∧,∨⎬是最小功能完备集吗?为什麽?9.设A和B为任意两个集合,A⨯B一定是二元关系吗?10.一个关系可能具有哪些性质?每种性质的形式化描述如何?11.如何从一个关系的关系矩阵来判断其性质?在关系上可以进行哪些运算?12.R*和R+的意义各是什麽?13.我们都介绍了哪些特种关系?它们的形式化定义是什麽?14.划分和什麽关系相对应?覆盖和什麽关系相对应?15.盖复和覆盖是同一个概念吗?什麽关系使用哈斯图?画哈斯图时用到什麽概念?16.极大员、极小员、最大员、最小员和上界、下界、上确界、下确界定义的根本区别在哪里?17.是关系一定是函数,是函数一定是关系这两句话哪一句是正确的?18.一个关系若存在,则其逆关系一定存在;一个函数若存在,则其反函数一定存在这两句话哪一句是正确?19.我们介绍了哪些特种函数?20.当一个函数满足什麽条件时,就是运算?一个零元运算又叫集合X中的特异元素,我们介绍了哪些特异元素?21.两个无限集通过什麽方法比较大小?22.何为两个代数系统的同态,同构?23.何为同余关系?一个同余关系会造成一个集合的商集,一个商集一定是原集合的覆盖吗?24.何为群?寻找子群的Laglangre定理?25.何为格?何为布尔代数?一个元素的补元唯一吗?如果存在一个元素没有补元,还能构成格吗?26.何为图(指图的抽象数学定义)?图的度?d度正则图指的是有向图还是无向图?何为路径?从V i到Vj可达,从Vj到V i一定可达吗?强连通,单向连通,弱连通是指有向图还是指无向图而言?何为一个结点的可达集?设图的邻接矩阵为A,A中行上1的个数,列上1的个数各代表什麽含义?A²和A'²'中的元素含义各是什麽?何为欧拉图?何为哈密顿图?是哈密顿路一定是欧拉路,是欧拉路一定是哈密顿路,这两句话哪一句正确?二元树和二叉树的概念相同吗?什麽是叶加权最优二叉树?公式∑W(V)∙L(v)中各参数的含义是什麽?v∈V27.遍历二叉树有几种方法?二.能够熟练解决以下问题:1.命题逻辑中通过求主范式进行判定的问题。
离散数学 复习资料
离散数学复习资料离散数学复习资料离散数学是计算机科学和数学领域的重要基础课程,它涉及到离散结构和离散对象的研究,如集合论、图论、逻辑、代数和组合数学等。
在计算机科学领域,离散数学为算法设计、数据结构和计算机网络等问题提供了理论基础。
本文将为大家提供一些离散数学复习资料,帮助大家更好地掌握这门课程。
一、集合论集合论是离散数学的基础,它研究的是集合及其元素之间的关系。
在集合论中,我们需要了解集合的定义、运算、关系和函数等基本概念。
此外,还需要熟悉集合的证明方法,如直接证明、间接证明、归谬证明等。
在复习集合论时,可以通过做一些练习题来加深理解,同时也可以查阅一些相关的教材和参考资料。
二、图论图论是离散数学中的一个重要分支,它研究的是图及其性质和应用。
图由节点和边组成,节点表示对象,边表示对象之间的关系。
在图论中,我们需要了解图的基本概念,如有向图和无向图、路径和回路、连通性和强连通性等。
此外,还需要掌握一些图的算法,如最短路径算法、最小生成树算法和网络流算法等。
复习图论时,可以通过绘制图和解决一些图的实际问题来加深理解。
三、逻辑逻辑是离散数学中的另一个重要分支,它研究的是推理和证明的规则。
在逻辑中,我们需要了解命题逻辑和谓词逻辑的基本概念,如命题、命题变量、逻辑连接词、真值表和推理规则等。
此外,还需要熟悉一些逻辑证明的方法,如直接证明、间接证明和数学归纳法等。
复习逻辑时,可以通过做一些逻辑推理题和证明题来提高逻辑思维能力。
四、代数代数是离散数学中的一个重要分支,它研究的是代数结构和运算。
在代数中,我们需要了解集合的代数结构,如半群、幺半群、群、环和域等。
此外,还需要掌握一些代数运算,如集合的并、交和补运算,以及代数方程的求解方法。
复习代数时,可以通过做一些代数运算题和代数方程的求解题来加深理解。
五、组合数学组合数学是离散数学中的一个重要分支,它研究的是离散对象的组合和排列问题。
在组合数学中,我们需要了解组合和排列的基本概念,如组合数、排列数、二项式系数和多项式系数等。
离散数学数理逻辑部分期末复习题
离散数学数理逻辑部分综合练习辅导一、单项选择题1.设P :我将去打球,Q :我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A .P Q →B .Q P →C .Q P ↔D .Q P ⌝∨⌝因为语句“仅当我有时间时”是“我将去打球”的必要条件,所以选项B 是正确的.正确答案:B一般地,当语句是由“……,仅当……”组成,它的符号化用条件联结词→. 问:如果把“我将去打球”改成“我将去学习”、“我将去旅游”等,会符号化吗?2.设命题公式G :)(R Q P ∧→⌝,则使公式G 取真值为1的P ,Q ,R 赋值分别是 ( ).A .0, 0, 0B .0, 0, 1C .0, 1, 0D .1, 0, 0 个人收集整理 勿做商业用途当P 为真值为1时,P ⌝的真值为0,无论()Q R ∧的真值是1还是0,命题公式G 的真值为1.所以选项D 是正确的.正确答案:D3.命题公式P ∨Q 的合取范式是 ( ).A .P ∧QB .(P ∧Q )∨(P ∨Q )C .P ∨QD .⌝(⌝P ∧⌝Q )复习合取范式的定义:定义6.6.2 一个命题公式称为合取范式,当且仅当它具有形式:A 1∧A 2∧…∧A n , (n ≥1)其中A 1,A 2,…,A n 均是由命题变元或其否定所组成的析取式.由此可知,选项B 和D 是错的.又因为P ∧Q 与P ∨Q 不是等价的,选项A 是错的.所以,选项C 是正确的.正确答案:C4.命题公式)(Q P →⌝的析取范式是( ).A .Q P ⌝∧B Q P ∧⌝C .Q P ∨⌝D .Q P ⌝∨复习析取范式的定义:定义6.6.3 一个命题公式称为析取范式,当且仅当它具有形式:A 1∨A 2∨…∨A n , (n ≥1)其中A 1,A 2,…,A n 均是有命题变元或其否定所组成的合取式.公式)(Q P →⌝与Q P ⌝∧是等价的,Q P ⌝∧满足析取范式的定义,所以,选项A是正确的.正确答案:A5.下列公式成立的为( ).A.⌝P∧⌝Q ⇔P∨Q B.P→⌝Q⇔⌝P→QC.Q→P⇒ P D.⌝P∧(P∨Q)⇒Q因为:⌝P∧(P∨Q)⇒Q所以,选项D是正确的.正确答案:D6.下列公式( )为重言式.A.⌝P∧⌝Q↔P∨Q B.(Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C.(P→(⌝Q→P))↔(⌝P→(P→Q)) D.(⌝P∨(P∧Q)) ↔Q(P→(⌝Q→P)) ⇔⌝P∨(Q∨ P),(⌝P→(P→Q)) ⇔ P∨(⌝P∨Q) 所以,C是重言式,也就是永真式.正确答案:C说明:如果题目改为“下列公式( )为永真式”,应该是一样的.7.设A(x):x是人,B(x):x是学生,则命题“不是所有人都是学生”可符号化为().A.(∀x)(A(x)∧B(x)) B.⌝(∃x)(A(x)∧B(x))C.⌝(∀x)(A(x)→B(x))D.⌝(∃x)(A(x)∧⌝B(x))由题设知道,A(x)→B(x)表示只要是人,就是学生,而“不是所有”应该用全称量词的否定,即⌝∀x,得到公式C.个人收集整理勿做商业用途正确答案:C8.设C(x):x是国家级运动员,G(x):x是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为( ).个人收集整理勿做商业用途A.))G(xx)(⌝∀(→x⌝C((x()Gx∧x⌝C⌝∀B.)) C.))G(x()(x∧x⌝C⌝∃x⌝∃D.)))((x(Gx⌝→C由题设知道,C(x)∧⌝ G(x)表示国家级运动员不是健壮的,而“没有一个”就是“不存在一个”,因此用存在量词的否定,即⌝∃x,得到公式D.个人收集整理勿做商业用途正确答案:D9.表达式))RyQzyxP∧∨∃→x∀∀中x(x(,)())(zQ((zy,)∀的辖域是( ).A.P(x, y) B.P(x, y)∨Q(z) C.R(x, y) D.P(x, y)∧R(x, y)个人收集整理勿做商业用途所谓辖域是指“紧接于量词之后最小的子公式称为量词的辖域”.那么看题中紧接于量词∀x之后最小的子公式是什么呢?显然是P(x, y)∨Q(z),因此,选项B是正确的.个人收集整理勿做商业用途正确答案:B10.在谓词公式(∀x )(A (x )→B (x )∨C (x ,y ))中,( ).A .x ,y 都是约束变元B .x ,y 都是自由变元C .x 是约束变元,y 都是自由变元D .x 是自由变元,y 都是约束变元约束变元就是受相应的量词约束的变元.而自由变元就是不受任何量词约束的变元.所以选项C 是正确的.正确答案:C注:如果该题改为填写约束变元或自由变元的填空题,大家也应该掌握.二、填空题1.命题公式()P Q P →∨的真值是.因为()P Q P →∨⇔⌝P ∨(Q ∨P )⇔1,所以应该填写:1.应该填写:1问:命题公式Q Q →、Q Q ⌝∨的真值是什么?2.设P :他生病了,Q :他出差了.R :我同意他不参加学习. 则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为.个人收集整理 勿做商业用途一般地,当语句是由“如果……,那么……”,或“若……,则……”组成,它的符号化用条件联结词→.应该填写:(P ∨Q )→R3.含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 .复习主析取范式的定义:定义6.6.5 对于给定的命题变元,如果有一个等价公式,它仅仅有小项的析取组成,则该等价式称为原式的主析取范式.个人收集整理 勿做商业用途而小项的定义是:定义6.6.4 n 个命题变元的合取式,称为布尔合取或小项,其中每个变元与它的否定不能同时存在,但两者必须出现且仅出现一次.个人收集整理 勿做商业用途由小项的定义知道,命题公式P ∧Q 中缺少命题变项R 与它的否定,因此,应该补上,即P ∧Q ⇔P ∧Q ∧ (R ∨⌝R ) ⇔(P ∧Q ∧ R ) ∨(P ∧Q ∧⌝R )得到命题公式P ∧Q 的主析取范式.应该填写:(P ∧Q ∧R )∨ (P ∧Q ∧⌝R )4.设个体域D ={a , b },那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为. 因为在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则 所以,应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))应该填写:(A (a )∨ A (b ))∨ (B (a )∧ B (b ))如果个体域是D ={1, 2},D ={a , b , c }, 或谓词公式变为(()())x A x B x ∃∨,怎么做?5.设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为.因为(∃x)A(x)⇔A(1)∨A(2)∨A(3)⇔1∨1∨0⇔1应该填写:16.谓词命题公式(∀x)((A(x)∧B(x)) ∨C(y))中的自由变元为.因为自由变元就是不受任何量词约束的变元,在公式(∀x)((A(x)∧B(x)) ∨C(y))中,y是不受全称量词∀约束的变元.所以应该填写:y.个人收集整理勿做商业用途应该填写:y问: 公式中的约束变元是什么?三、公式翻译题1.请将语句“今天是天晴”翻译成命题公式.解:设P:今天是天晴;则命题公式为:P.问:“今天不是天晴”的命题公式是什么?2.请将语句“小王去旅游,小李也去旅游.”翻译成命题公式.解:设P:小王去旅游,Q:小李去旅游,则命题公式为:P∧Q.注:语句中包含“也”、“且”、“但”等连接词,命题公式要用合取“∧”.3.请将语句“他去旅游,仅当他有时间.”翻译成命题公式.解:设P:他去旅游,Q:他有时间,则命题公式为:P→Q.4.请将语句“所有人都努力工作.”翻译成谓词公式.解:设P(x):x是人,Q(x):x努力工作.谓词公式为:(∀x)(P(x)→ Q(x)).四、判断说明题(判断下列各题,并说明理由.)1.命题公式P P⌝∧的真值是1.解错误.因为P P⌝∧是永假式(教材167页的否定律).2.命题公式⌝P∧(P→⌝Q)∨P为永真式.解:正确因为,由真值表P Q ⌝P ⌝Q P→⌝Q⌝P∧(P→⌝Q)∨P0 0 1 1 1 10 1 1 0 1 110 0 1 1 1 1 1 0 0 0 1可知,该命题公式为永真式.注:如果题目改为该命题公式为永假式,如何判断并说明理由?3.下面的推理是否正确,请给予说明.(1) (∀x )A (x ) ∧ B (x ) 前提引入(2) A (y ) ∧B (y ) US (1)解:错第2步应为:A (y )∧B (x )因为A (x )中的x 是约束变元,而B (x )中的x 是自由变元,换名时,约束变元与自由变元不能混淆.五.计算题1. 求P →Q ∨R 的析取范式,合取范式、主析取范式,主合取范式.解 P →Q ∨R ⇔⌝P ∨Q ∨R (析取范式、合取范式、主合取范式)⇔(⌝P ∧(Q ∨⌝Q )∧(R ∨⌝R ))∨((P ∨⌝P )∧Q ∧(R ∨⌝R ))∨((P ∨⌝P )∧(Q ∨⌝Q )∧R )个人收集整理 勿做商业用途 (补齐命题变项)⇔(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧⌝Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(⌝P ∧Q ∧R )∨(⌝P ∧⌝Q ∧R ) (∧对∨的分配律)个人收集整理 勿做商业用途⇔(⌝P ∧⌝Q ∧⌝R )∨(⌝P ∧⌝Q ∧R )∨(⌝P ∧Q ∧⌝R )∨(⌝P ∧Q ∧R )∨(P ∧⌝Q ∧R )∨(P ∧Q ∧⌝R )∨(P ∧Q ∧R ) (主析取范式)个人收集整理 勿做商业用途注:如果题目只是求“析取范式”或“合取范式”,大家一定不要再进一步求“主析取范式”或“主合取范式”.2.设谓词公式()((,)()(,,))()(,)x P x y z Q y x z y R y z ∃→∀∧∀.(1)试写出量词的辖域;(2)指出该公式的自由变元和约束变元.解 (1)量词x ∃的辖域为(,)(,,)P x y zQ y x z →∀,z ∀的辖域为(,,)Q y x z ,y ∀的辖域为(,)R y z .(2)自由变元为(,)(,,)P x y zQ y x z →∀中的y ,(,)R y z 中的z .约束变元为(,)(,,)P x y zQ y x z →∀中的x ,(,,)Q y x z 中的z ,(,)R y z 中的y .3.设个体域为D ={a 1, a 2},求谓词公式∀y ∃xP (x ,y )消去量词后的等值式.解:∀y ∃xP (x , y )⇔(∃xP (x , a 1))∧(∃xP (x , a 2))⇔(P (a 1, a 1)∨P (a 2, a 1))∧(P (a 1, a 2)∨P (a 2, a 2))六、证明题1.试证明命题公式(P→(Q∨⌝R))∧⌝P∧Q与⌝(P∨⌝Q)等价.证:(P→(Q∨⌝R))∧⌝P∧Q⇔(⌝P∨(Q∨⌝R))∧⌝P∧Q⇔((⌝P∨Q∨⌝R)∧⌝P)∧Q⇔⌝P∧Q(吸收律)⇔⌝(P∨⌝Q) (摩根律)2.试证明(∃x)(P(x)∧R(x))⇒(∃x)P(x)∧(∃x)R(x).分析:前提:(∃x)(P(x)∧R(x)),结论:(∃x)P(x)∧(∃x)R(x) .证明(1) (∃x)(P(x)∧R(x)) P(2) P(a)∧R(a) ES(1) (存在指定规则)(3) P(a) T(2) (化简)(4) (∃x)P(x) EG(3) (存在推广规则)(5)R(a) T(2) (化简)(6) (∃x)R(x) EG(5) (存在推广规则)(7) (∃x)P(x)∧(∃x)R(x) T(4)(6) (合取引入)。
离散数学期末复习共32页
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
离散数学期末复习
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
谢谢你的阅读
离散数学期末复习指导经典
一、各章复习示例与解析第一章集合例1,将“大于3而小于或等于7的整数集合”用集合表示出来。
[解析]集合的表示方法一般有两种,一种称为列举法,一种称为描述法。
列举法将集合的元素按任意顺序逐一列在花括号内,并用逗号分开。
“大于3而小于或等于7的整数”有4、5、6、7,用列举法表示为{4、5、6、7};描述法是利用集合中的元素满足某种条件或性质用文字或符号在花括号内竖线后面表示出来。
上例用描述法表示为{x| x∈Z并且3<x≤7},其中Z为整数集合。
答:{4、5、6、7}或{x| x∈Z并且3<x≤7}。
例2,判定下列各题的正确与错误:(1)a∈{{a}};(2){a}⊆{ a,b,c };(3)∅∈{ a,b,c };(4)∅⊆{ a,b,c };(5){a,b}⊆{a,b,c,{ a,b,c }};(6){{a},1,3,4}⊂{{a},3,4,1};(7){a,b}⊆{a,b,{ a,b }};(8)如果A⋂B=B,则A=E。
[解析]此题涉及到集合中子集的概念,集合的包含关系,空集与集合的关系。
解题时要注意区分两个集合之间的关系以及集合中元素与集合之间的关系的不同。
集合之间的关系分为包含关系(子集、真子集)、相等关系、幂集等,判断时要准确理解这些概念,才能正确地运用这些知识。
集合与它的元素之间的关系有两种:一个元素a属于一个集合A,记为a∈A;一个元素A不属于一个集合A,记为a∉A。
要注意符号的记法(∈)与集合包含符号记法(⊆,⊂)的不同。
答:正确的是(2)、(4)、(5)、(7);其余的都是错误的。
例3,设A,B是两个集合,A={1,2,3},B={1,2},请计算ρ(A)–ρ(B)。
[解析]集合的概念一般在中学阶段已经学过,这里只多了一个幂集概念,重点对幂集加以掌握,一是掌握幂集的构成,由集合A的所有子集组成的集合,称为A 的幂集,记作ρ(A)或2A;一是掌握幂集元数为2n,n为集合A的元数。
离散数学辅导
离散数学辅导
对于离散数学,以下是一些辅导建议:
1.熟悉基础概念:学习离散数学的第一步是掌握基础概念,如集合论、逻辑、图论等。
建议花费时间逐一学习,通过练习来加深印象。
2.进一步学习:掌握基础概念后可以学习一些进阶的主题,如算法分析、离散概率、图算法等。
这些主题需要一些数学基础,但是可以帮助你
理解离散数学在现代计算机科学中的重要性。
3.实践练习:对于离散数学来说,实践练习尤其重要。
尽可能多地做
习题和编写代码,这将有助于您深入理解学习的概念和主题。
4.寻找辅导:如果你在学习离散数学的过程中遇到困难,可以通过寻
找同样在学习离散数学的同学或咨询辅导人员来解决问题。
5.学习资源:有很多学习资源可以帮助你学习离散数学,如教科书、
网上课程、视频教程等。
建议你选定一个适合你的学习资源来提高学习效率。
离散数学复习辅导之一
离散数学复习辅导之一第1章 集合及其运算一、主要内容1.集合的概念集合与元素——具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素.集合的元素不能重复出现,集合中的元素无顺序之分. 集合与其元素之间存在属于“∈”或不属于“∉”关系.集合A 中元素的个数为集合的元数,记作∣A ∣.集合的表示方法列举法是列出集合的所有元素,并用花括号括起来.例如A = {a b c d ,,,},N = {0, 1, 2, 3, …}.描述法是将集合中元素的共同属性描述出来.例如B = {x x x R 210-=∈且},D = {x x 是正整数}.文氏图法是用一个简单的平面区域表示一个集合,用区域内的点表示集合内的元素.2.集合的关系包含(子集)——若对任一A a ∈,都有B a ∈,则称B 包含A (或A 包含于B ),称A 是B 的子集,记B A ⊆;又若A ≠B ,则称A 是B 的真子集,记A ⊂B .集合相等——若A ⊆B ,B ⊆A ,则A =B.注意:要正确理解元素与集合、集合与子集、子集与幂集、∈与⊂(⊆)、空集∅与所有集合等的关系.3.特殊集合全集合E ——在一个具体问题中,所涉及的集合都是某个集合的子集,该集合为全集.空集∅——不含任何元素的集合为空集,空集是惟一的,它是任何集合的子集. 集合A 的幂集P (A)——集合A 的所有子集构成的集合称为A 的幂集,记作P (A)=}{A x x ⊆.若∣A ∣=n ,则∣P (A)∣=2n .4.集合的运算集合A 和B 的并A ⋃B ——由集合A 和B 的所有元素组成的集合.集合A 和B 的交A ⋂B ——由集合A 和B 的公共元素组成的集合.集合A 的补集~A ——属于E 但不属于集合A 的元素组成的集合,记作~A .补集总相对于一个全集.集合A 与B 的差集A -B ——由属于A ,而不属于B 的所有元素组成的集合.. 集合A 与B 的对称差记作A ⊕B =(A -B )⋃(B -A ),或A ⊕B =)A ⋃B 〕-(A ⋂B )要熟练掌握运算的性质 (运算律),即交换律、结合律、分配律、幂等律、同一律、零律、补余律、吸收律、摩根律和双补律等.5.恒等式证明集合运算部分有三个方面的问题:其一是进行集合的运算;其二是集合运算式的化简;其三是集合恒等式的推理证明.集合恒等式的证明方法通常有二:(1) 要证明A=B,只需要证明A⊆B,又A⊇B;(2) 通过运算律进行等式推导.6.有限集合的计数方法首先根据已知条件把对应的文氏图画出来,然后将已知集合的元素填入表示该集合的区域内.通常从几个集合的交集填起,根据计算结果将数字逐步填入所有的空白区域内.如果交集的数字是未知的,可以将其设为x,再根据已知条件列出方程或方程组,解出未知数x.也可以用容斥定理计算有限集合的元素个数.定理1.2.2(容斥定理)对任意两个有限集合A和B,有⋂⋃= A+B- A BA B其中A,B分别表示A,B的元素个数.定理1.2.2的推广结论:对于任意三个有限集合A, B, C,有⋃⋃= A+B+C-A B⋂⋂A B C⋂-A C⋂+A B C⋂-B C二、实例例1已知S={2, a, {3}, 4},R={{a}, 3, 4, 1},判断下列各题是否正确:.(1) {a}∈S; (2) {a}∈R;(3) {a, 4, {3}}⊆S; (4) {{a}, 1, 3, 4}⊆R;(5) R=S; (6) {a}⊆S(7) {a}⊆R(8) ∅⊂R(9) ∅⊆{{a}}⊆R(10) {∅}⊆S(11) ∅∈R(12) ∅⊆{{3}, 4}解集合S有四个元素:2,a,{3},4,而元素{3}又是集合;集合R类似.(1) 错.因为{a}是单元素的集合,{a}不是集合S的元素,所以“{a}∈S”是错的.(2) 对.因为{a}是R的元素,所以“{a}∈R”是正确的.(3) 对.因为a, 4, {3}都是S的元素,以此为元素构成的集合是S的子集.所以“{a,4,{3}}⊆S”是正确的.(4) 对.因为{a}, 1, 3, 4都是R的元素,以此为元素构成的集合是R的子集,所以“{{a},1,3,4}⊆R”是正确的.(5) 错.因为元素2∈S,但2∉R,所以S≠ R.(6),,和题号的命题真值为1;而, ,题号命题真值为0.(7) 错.因为{a}是集合R的元素,元素与集合之间不能用“⊆”,正确的表示为:{a}∈R.(8) 对.因为空集∅是任意集合的子集。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散数学期末复习要点与重点离散数学是中央广播电视大学开放教育本科电气信息类计算机科学与技术专业的一门统设必修学位课程,共72学时,开设一学期.该课程的主要内容包括:集合论、图论、数理逻辑等.下面按章给出复习要点与重点.第1章 集合及其运算复习要点1.理解集合、元素、集合的包含、子集、相等,以及全集、空集和幂集等概念,熟练掌握集合的表示方法.具有确定的,可以区分的若干事物的全体称为集合,其中的事物叫元素..集合的表示方法:列举法和描述法.注意:集合的表示中元素不能重复出现,集合中的元素无顺序之分.掌握集合包含(子集)、真子集、集合相等等概念.注意:元素与集合,集合与子集,子集与幂集,∈与⊂(⊆),空集∅与所有集合等的关系.空集∅,是惟一的,它是任何集合的子集.集合A 的幂集P (A )=}{A x x ⊆, A 的所有子集构成的集合.若∣A ∣=n ,则∣P (A )∣=2n .2.熟练掌握集合A 和B 的并A ⋃B ,交A ⋂B ,补集~A (~A 补集总相对于一个全集).差集A -B ,对称差⊕,A ⊕B =(A -B )⋃(B -A ),或A ⊕B =(A ⋃B )-(A ⋂B )等运算,并会用文氏图表示.掌握集合运算律(见教材第9~11页)(运算的性质).3.掌握用集合运算基本规律证明集合恒等式的方法.集合的运算问题:其一是进行集合运算;其二是运算式的化简;其三是恒等式证明.证明方法有二:(1)要证明A =B ,只需证明A ⊆B ,又A ⊇B ;(2)通过运算律进行等式推导.重点:集合概念,集合的运算,集合恒等式的证明.第2章 关系与函数复习要点1.了解有序对和笛卡儿积的概念,掌握笛卡儿积的运算.有序对就是有顺序二元组,如<x , y >,x , y 的位置是确定的,不能随意放置.注意:有序对<a ,b >≠<b , a >,以a , b 为元素的集合{a , b }={b , a };有序对(a , a )有意义,而集合{a , a }是单元素集合,应记作{a }.集合A ,B 的笛卡儿积A ×B 是一个集合,规定A ×B ={<x ,y >∣x ∈A ,y ∈B },是有序对的集合.笛卡儿积也可以多个集合合成,A 1×A 2×…×A n .2.理解关系的概念:二元关系、空关系、全关系、恒等关系.掌握关系的集合表示、关系矩阵和关系图,掌握关系的集合运算和求复合关系、逆关系的方法.二元关系是一个有序对集合,},{B y A x y x R ∈∧∈><=,记作xRy .关系的表示方法有三种:集合表示法, 关系矩阵:R ⊆A ×B ,R 的矩阵⎪⎪⎭⎫ ⎝⎛==⎪⎩⎪⎨⎧/==⨯n j m i b R a Rb a r r M j i j i ij n m ij R ,...,2,1,...,2,101,)(. 关系图:R 是集合上的二元关系,若<a i , b j >∈R ,由结点a i 画有向弧到b j 构成的图形.空关系∅是唯一、是任何关系的子集的关系; 全关系},,{A b a b a E A ∈><=A A ⨯≡; 恒等关系},{A a a I A ∈><=,恒等关系的矩阵M I 是单位矩阵.关系的集合运算有并、交、补、差和对称差. 复合关系}),,(,{2121R c b R b a b c a R R R >∈<∧>∈<∃><=∙=;复合关系矩阵:21R R R M M M ⨯=(按布尔运算); 有结合律:(R ∙S )∙T =R ∙(S ∙T ),一般不可交换. 逆关系},,{1R y x x y R >∈<><=-;逆关系矩阵满足:T R R M M =-1;复合关系与逆关系存在:(R ∙S )-1=S -1∙R -1.3.理解关系的性质(自反性和反自反性、对称性和反对称性、传递性的定义以及矩阵表示或关系图表示),掌握其判别方法(利用定义、矩阵或图,充分条件),知道关系闭包的定义和求法.注:(1)关系性质的充分必要条件:① R 是自反的⇔I A ⊆R ;②R 是反自反的⇔I A ⋂R =∅;③R 是对称的 ⇔R =R -1;④R 是反对称的⇔R ⋂R -1⊆I A ;⑤R 是传递的⇔R ∙R ⊆R .(2)I A 具有自反性,对称性、反对称性和传递性.E A 具有自反性,对称性和传递性.故I A ,E A 是等价关系.∅具有反自反性、对称性、反对称性和传递性.I A 也是偏序关系.4.理解等价关系和偏序关系概念,掌握等价类的求法和作偏序集哈斯图的方法.知道极大(小)元,最大(小)元的概念,会求极大(小)元、最大(小)元、最小上界和最大下界.等价关系和偏序关系是具有不同性质的两个关系. ⎩⎨⎧==+⎭⎬⎫⎩⎨⎧+偏序关系等价关系传递性反对称性对称性自反性 知道等价关系图的特点和等价类定义,会求等价类.一个子集的极大(小)元可以有多个,而最大(小)元若有,则惟一.且极元、最元只在该子集内;而上界与下界可以在子集之外.由哈斯图便于确定任一子集的最大(小)元,极大(小)元.5.理解函数概念:函数(映射),函数相等,复合函数和反函数.理解单射、满射和双射等概念,掌握其判别方法. 设f 是集合A 到B 的二元关系,∀a ∈A ,存在惟一b ∈B ,使得<a , b >∈f ,且Dom(f )=A ,f 是一个函数(映射).函数是一种特殊的关系.集合A ×B 的任何子集都是关系,但不一定是函数.函数要求对于定义域A 中每一个元素a ,B 中有且仅有一个元素与a 对应,而关系没有这个限制.二函数相等是指:定义域相同,对应关系相同,而且定义域内的每个元素的对应值都相同.函数有:单射——若)()(2121a f a f a a ≠⇒≠;满射——f (A )=B 或,,A x B y ∈∃∈∀使得y =f (x );双射——单射且满射.复合函数,:,:,:C A f g C B g B A f →→→ 则 即))(()(x f g x f g = .复合成立的条件是:)(Dom )(Ran g f ⊆.一般g f f g ≠,但f g h f g h )()(=.反函数——若f :A →B 是双射,则有反函数f -1:B →A , },)(,,{1A a b a f B b a b f ∈=∈><=-,f f g f f g ==-----11111)(,)(重点:关系概念与其性质,等价关系和偏序关系,函数.第3章 图的基本概念复习要点1.理解图的概念:结点、边、有向图,无向图、简单图、完全图、结点的度数、边的重数和平行边等.理解握手定理. 图是一个有序对<V ,E >,V 是结点集,E 是联结结点的边的集合.掌握无向边与无向图,有向边与有向图,混合图,零图,平凡图、自回路(环),无向平行边,有向平行边等概念. 简单图,不含平行边和环(自回路)的图、在无向图中,与结点v (∈V )关联的边数为结点度数deg (v );在有向图中,以v (∈V )为终点的边的条数为入度deg -(v ),以v (∈V )为起点的边的条数为出度deg +(v ),deg(v )=deg +(v ) +deg -(v ). 无向完全图K n 以其边数)1(21-=n n E ;有向完全图以其边数)1(-=n n E . 了解子图、真子图、补图和生成子图的概念.生成子图——设图G =<V , E >,若E '⊆E ,则图<V , E '>是<V , E >的生成子图.知道图的同构概念,更应知道图同构的必要条件,用其判断图不同构.重要定理:(1) 握手定理 设G =<V ,E >,有∑∈=V v E v 2)deg(;(2) 在有向图D =<V , E >中,∑∑∈+∈-=V v V v v v )(deg )(deg ;(3) 奇数度结点的个数为偶数个.2.了解通路与回路概念:通路(简单通路、基本通路和复杂通路),回路(简单回路、基本回路和复杂回路).会求通路和回路的长度.基本通路(回路)必是简单通路(回路).了解无向图的连通性,会求无向图的连通分支.了解点割集、边割集、割点、割边等概念.了解有向图的强连通强性;会判别其类型.设图G =<V ,E >,结点与边的交替序列为通路.通路中边的数目就是通路的长度.起点和终点重合的通路为回路.边不重复的通路(回路)是简单通路(回路);结点不重复的通路(回路)是基本通路(回路).无向图G 中,结点u , v 存在通路,u , v 是连通的,G 中任意结点u , v 连通,G 是连通图.P (G )表示图G 连通分支的个数.在无向图中,结点集V '⊂V ,使得P (G -V ')>P (G ),而任意V "⊂V ',有P (G -V ")=P (G ),V '为点割集. 若V '是单元集,该结点v 叫割点;边集E '⊂E ,使得P (G -V ')>P (G ),而任意E "⊂E ',有P (G -E ")=P (G ),E '为边割集.若E '是单元集,该边e 叫割边(桥).要知道:强连通−−→−必是单侧连通−−→−必是弱连通,反之不成立.3.了解邻接矩阵和可达矩阵的概念,掌握其构造方法及其应用.重点:图的概念,握手定理,通路、回路以及图的矩阵表示.第4章 几种特殊图复习要点1.理解欧拉通路(回路)、欧拉图的概念,掌握欧拉图的判别方法.通过连通图G 的每条边一次且仅一次的通路(回路)是欧拉通路(回路).存在欧拉回路的图是欧拉图.欧拉回路要求边不能重复,结点可以重复.笔不离开纸,不重复地走完所有的边,走过所有结点,就是所谓的一笔画.欧拉图或通路的判定定理(1) 无向连通图G 是欧拉图⇔G 不含奇数度结点(即G 的所有结点为偶数度);(2) 非平凡连通图G 含有欧拉通路⇔G 最多有两个奇数度的结点;(3) 连通有向图D 含有有向欧拉回路⇔D 中每个结点的入度=出度.连通有向图D 含有有向欧拉通路⇔D 中除两个结点外,其余每个结点的入度=出度,且此两点满足deg -(u )-deg+(v )=±1.2.理解汉密尔顿通路(回路)、汉密尔顿图的概念,会做简单判断.通过连通图G 的每个结点一次,且仅一次的通路(回路),是汉密尔顿通路(回路).存在汉密尔顿回路的图是汉密尔顿图.汉密尔顿图的充分条件和必要条件(1) 在无向简单图G =<V ,E >中,∣V ∣≥3,任意不同结点V v u G v u ≥+∈)deg()deg(,,,则G 是汉密尔顿图.(充分条件)(2) 有向完全图D =<V ,E >, 若3≥V ,则图D 是汉密尔顿图. (充分条件)(3) 设无向图G =<V ,E >,任意V 1⊂V ,则W (G -V 1)≤∣V 1∣(必要条件)若此条件不满足,即存在V 1⊂V ,使得P (G -V !)>∣V 1∣,则G 一定不是汉密尔顿图(非汉密尔顿图的充分条件).3.了解平面图概念,平面图、面、边界、面的次数和非平面图.掌握欧拉公式的应用.平面图是指一个图能画在平面上,除结点之外,再没有边与边相交.面、边界和面的次数)deg(r 等概念. 重要结论:(1)平面图e r e E v V E V G ri i 2)deg(,,,,1===>=<∑=则.(2)欧拉公式:平面图,,,,e E v V E V G ==>=< 面数为r ,则2=+-r e v (结点数与面数之和=边数+2)(3)平面图633,,,,-≤≥==>=<v e v e E v V E V G ,则若.会用定义判定一个图是不是平面图.4.理解平面图与对偶图的关系、对偶图在图着色中的作用,掌握求对偶图的方法.给定平面图G =〈V ,E 〉,它有面F 1,F 2,…,F n ,若有图G*=〈V*,E*〉满足下述条件:⑴对于图G 的任一个面F i ,内部有且仅有一个结点v i *∈V *;⑵对于图G 的面F i ,F j 的公共边e k ,存在且仅存在一条边e k *∈E *,使e k *=(v i *,v j *),且e k *和e k 相交;⑶当且仅当e k 只是一个面F i 的边界时,v i *存在一个环e k *和e k 相交;则图G *是图G 的对偶图.若G *是G 的对偶图,则G 也是G *的对偶图.一个连通平面图的对偶图也必是平面图.5.掌握图论中常用的证明方法.重点:欧拉图和哈密顿图、平面图的基本概念及判别.第5章树及其应用复习要点1.了解树、树叶、分支点、平凡树、生成树和最小生成树等概念,掌握求最小生成树的方法.连通无回路的无向图是树.树的判别可以用图T是树的充要条件(等价定义).注意:(1) 树T是连通图;(2)树T满足m=n-1(即边数=顶点数-1).图G的生成子图是树,该树就是生成树.每边指定一正数,称为权,每边带权的图称为带权图.G的生成树T的所有边的权之和是生成树T的权,记作W(T).最小生成树是带权最小的生成树.2.了解有向树、根树、有序树、二叉树、二叉完全树、正则二叉树和最优二叉树等概念.了解带权二叉树、最优二叉树的概念,掌握用哈夫曼算法求最优二叉树的方法.有向图删去边的方向为树,该图为有向树.对非平凡有向树,恰有一个结点的入度为0(该结点为树根),其余结点的入度为1,该树为根树.每个结点的出度小于或等于2的根树为二叉树;每个结点的出度等于0或2的根树为二叉完全树;每个结点的出度等于2的根树称为正则二叉树.有关树的求法:(1)生成树的破圈法和避圈法求法;(2)最小生成树的克鲁斯克尔求法;(3) 最优二叉树的哈夫曼求法重点:树与根树的基本概念,最小生成树与最优二叉树的求法.第6章命题逻辑复习要点1.理解命题概念,会判别语句是不是命题.理解五个联结词:否定⌝P、析取∨、合取∧、条件→、和双条件↔及其真值表,会将简单命题符号化.具有确定真假意义的陈述句称为命题.命题必须具备:其一,语句是陈述句;其二,语句有唯一确定的真假意义.2.了解公式的概念(公式、赋值、成真指派和成假指派)和公式真值表的构造方法.能熟练地作公式真值表.理解永真式和永假式概念,掌握其判别方法.判定命题公式类型的方法:其一是真值表法,其二是等价演算法.3.了解公式等价概念,掌握公式的重要等价式和判断两个公式是否等价的有效方法:等价演算法、列真值表法和主范式方法.4.理解析取范式和合取范式、极大项和极小项、主析取范式和主合取范式的概念,熟练掌握它们的求法.命题公式的范式不惟一,但主范式是惟一的.命题公式A有n个命题变元,A的主析取范式有k个极小项,有m个极大项,则n=+mk2于是有(1) A是永真式⇔k=2n(m=0);(2) A是永假式⇔m=2n(k=0);求命题公式A的析取(合取)范式的步骤:见教材第174页.求命题公式A的主析取(合取)范式的步骤:见教材第177和178页.5.了解C是前提集合{A1,A2,…,A m}的有效结论或由A1, A2, …, A m逻辑地推出C的概念.要理解并掌握推理理论的规则、重言蕴含式和等价式,掌握命题公式的证明方法:真值表法、直接证法、间接证法.重点:命题与联结词,公式与解释,真值表,公式的类型及判定,主析取(合取)范式,命题演算的推理理论.第7章谓词逻辑复习要点1.理解谓词、量词、个体词、个体域,会将简单命题符号化.原子命题分成个体词和谓词,个体词可以是具体事物或抽象的概念,分个体常项和个体变项.谓词用来刻划个体词的性质或之间的关系.量词分全称量词∀,存在量词∃.命题符号化注意:使用全称量词∀,特性谓词后用→;使用存在量词∃,特性谓词后用∧.2.了解原子公式、谓词公式、变元(约束变元和自由变元)与辖域等概念.掌握在有限个体域下消去公式的量词和求公式在给定解释下真值的方法.由原子公式、联结词和量词构成谓词公式.谓词公式具有真值时,才是命题.在谓词公式∀xA 或∃xA 中,x 是指导变元,A 是量词的辖域.会区分约束变元和自由变元.在非空集合D (个体域)上谓词公式A 的一个解释或赋值有3个条件.在任何解释下,谓词公式A 取真值1,A 为逻辑有效式(永真式);公式A 取真值0,A 为永假式;至少有一个解释使公式A 取真值1,A 称为可满足式.在有限个体域下,消除量词的规则为:设D ={a 1, a 2, …, a n },则)(...)()()(21n a A a A a A x xA ∧∧∧⇔∀)(...)()()(21n a A a A a A x xA ∨∨∨⇔∃会求谓词公式的真值,量词的辖域,自由变元、约束变元,以及换名规则、代入规则等.掌握谓词演算的等价式和重言蕴含式.并进行谓词公式的等价演算.3.了解前束范式的概念,会求公式的前束范式的方法.若一个谓词公式F 等价地转化成 B x Q x Q x Q k k ...2211,那么B x Q x Q x Q k k ...2211就是F 的前束范式,其中Q 1,Q 2,…,Q k 只能是∀或∃,而x 1, x 2, …, x k 是个体变元,B 是不含量词的谓词公式.前束范式仍然是谓词公式.4.了解谓词逻辑推理的四个规则.会给出推理证明.谓词演算的推理是命题演算推理的推广和扩充,命题演算中基本等价式,重言蕴含式以及P ,T ,CP 规则在谓词演算中仍然使用.谓词逻辑的推理演算引入了US 规则(全称量词指定规则),UG 规则(全称量词推广规则),ES 规则(存在量词指定规则),EG 规则(存在量词推广规则)等.重点:谓词与量词,公式与解释,谓词演算.。