七年级数学上册-代数式的值同步练习-华东师大版

合集下载

华东师大版数学七年级上册 第3章 整式的加减 3.2 代数式的值 同步练习 含答案

华东师大版数学七年级上册 第3章 整式的加减  3.2 代数式的值  同步练习 含答案

华东师大版数学七年级上册第3章整式的加减 3.2 代数式的值同步练习含答案
华东师大版数学七年级上册第3章整式的加减 3.2 代数式的值同步练习1.当x=1时,代数式4-3x的值是( )
A.1 B.2 C.3 D.4
2.若a=2,b=-1,则a+2b+3的值为( )
A.-1 B.3 C.6 D.5
3.如果|a+2|和(b-1)2互为相反数,那么(a+b)2019的值是( ) A.-2019 B.2019 C.-1 D.1
4. 如果|5-a|+|b+3|=0,则代数式
b
a+b
的值( )
A.3
2
B.
2
3
C.-
3
2
D.-
2
3
5. 甲、乙两家超市为了促销同一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,那么顾客购买哪家超市的商品更合算一些( )
A.甲 B.乙 C.同样 D.无法确定
6. 在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )
A.4,2,1 B.2,1,4 C.1,4,2 D.2,4,1
7. x=-1时,下列代数式①1-x;②1-x2;③-2x;④1+x3中值为0的是____.(填序号)
8. 重量为a千克的食盐,售价为b元,则单价d=____元/千克;若a=2.4,b =3.6,则d=____元/千克.
9. 若a-3b=4,则8+a-3b的值为____;
10. 若x2+2x的值是3,则2-x2-2x的值是____;
11. 若a,b互为倒数,c,d互为相反数,则2c+2d-3ab的值为____.。

七年级数学上册《第三章 列代数式》同步练习题及答案-华东师大版

七年级数学上册《第三章 列代数式》同步练习题及答案-华东师大版

七年级数学上册《第三章列代数式》同步练习题及答案-华东师大版一、选择题1.用代数式表示“a与b的平方和”,正确的是( )A.a+b2B.a2+bC.(a+b)2D.a2+b22.苹果原价是每斤a元,现在按8折出售,假如现在要买一斤,那么需要付费()A.0.8a元 B.0.2a元 C.1.8a元 D.(a+0.8)元3.一个两位数,个位数字为a,十位数字比个位数字大1,则这个两位数可表示为( )A.11a-1B.11a-10C.11a+1D.11a+104.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a-10%)(a+15%)万元B.a(1-90%)(1+85%)万元C.a(1-10%)(1+15%)万元D.a(1-10%+15%)万元5.某报亭老板以每份0.5元的价格从报社购进某种报纸500份,以每份0.8元的价格销售x份(x<500),未销售完的报纸又以每份0.1元的价格由报社收回,这次买卖中该老板赚钱( )A.(0.7x﹣200)元B.(0.8x﹣200)元C.(0.7x﹣180)元D.(0.8x﹣250)元6.我们知道,用字母表示的代数式是具有一般意义的,请仔细分析下列赋予3a实际意义的例子中不正确的是()A.若葡萄的价格是3元/千克,则3a表示买a千克葡萄的金额B.若a表示一个等边三角形的边长,则3a表示这个等边三角形的周长C.将一个小木块放在水平桌面上,若3表示小木块与桌面的接触面积,a表示桌面受到的压强,则3a表示小木块对桌面的压力D.若3和a分别表示一个两位数中的十位数字和个位数字,则3a表示这个两位数7.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的长方形,则这个窗户的外框总长为( )A.6a+πaB.12aC.15a+πaD.6a8.如图所示,图①中的多边形(边数为12)是由等边三角形“扩展”而来的,图②中的多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为( )A.n(n﹣1)B.n(n+1)C.(n+1)(n﹣1)D.n2+2二、填空题9.与3x-y的和是8的代数式是________.10.某厂今年的产值a万元,若年平均增长率为x,则两年后的产值是万元。

华东师范大学出版社七年级上册数学同步练习册3.2代数式的值详细答案

华东师范大学出版社七年级上册数学同步练习册3.2代数式的值详细答案
第 3 次操作后纸片数=第二次操作后纸张数-2 片+2×4 张 =10-2+2×4=16 张
(2)第一次操作后纸片数=4 片 第二次操作后纸片数=10 张=第一次操作后纸片数+6 第三次操作后纸片数=第二次操作后纸片数+6 =第一次操作后纸片数+6+6 =第一次操作后纸片数+2×6
第 n 次操作后纸片数=第一次操作后纸片数+(n-1)6 =4+6(n-1) =6n-2
=1364 年。 10.解:(1)出厂价=2x+0.3x
=2.3x 重量为 x 千克时,产品的出厂价为 2.3x。 (2) 2.3x=2.3×6000——代入已知 =13800 元 故重量为 6000 的出厂价是 13800 元。
11.解:(1)第 2 次操作后纸张数=第一次操作后纸张数-2 片+2×4 张 =4-2+2×4=10 张
3.2 代数式的值 1.解: (a+b)2-(a2+b2) =a2+2ab+b2-a2-b2 ——平方和公式
= (a2-a2)+ 2ab+( b2-b2) ——合并同类项
=2ab
=2×2×(-3)——代入已知
=-12 2.解: x4-2x2+5=24-2×22+5 ——代入已知
=13
3a-4b 3×2-4×1
2
2
=-2
3������−1=3×2−1——代入已知
2
2
=5
2
所以表格中从左向右依次是-2,5
2
7.解:阴影部分的面积=正方形的面积-圆的面积 =x2-π(������)2 ——正方形的面积=边长×边长

华师大新版七年级(上) 中考题同步试卷:3.2 代数式的值(01)

华师大新版七年级(上) 中考题同步试卷:3.2 代数式的值(01)

6.当 x=1 时,代数式 4﹣3x 的值是( )
A.1
B.2
C.3
D.4
7.已知 x2﹣2x﹣3=0,则 2x2﹣4x 的值为( )
A.﹣6
B.6
C.﹣2 或 6
D.﹣2 或 30
8.按如图的运算程序,能使输出结果为 3 的 x,y 的值是( )
A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2

16.已知 3a﹣2b=2,则 9a﹣6b=

17.若 2m﹣n2=4,则代数式 10+4m﹣2n2 的值为

18 . 按 照 如 图 所 示 的 操 作 步 骤 , 若 输 入 的 值 为 3 , 则 输 出 的 值


19.若 a﹣2b=3,则 2a﹣4b﹣5=

20.已知 m2﹣m=6,则 1﹣2m2+2m=
进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到 32+
(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数 m,再将实数对(m,1)放
入其中后,得到实数是

26.如果 x=1 时,代数式 2ax3+3bx+4 的值是 5,那么 x=﹣1 时,代数式 2ax3+3bx+4 的值
参考答案
一、选择题(共 12 小题) 1.B; 2.B; 3.B; 4.B; 5.D; 6.A; 7.B; 8.D; 9.A; 10.A; 11.C; 12.D; 二、填空题(共 18 小题) 13.2π; 14.3; 15.2005; 16.6; 17.18; 18.55; 19.1; 20.﹣11; 21.2; 22.1; 23.﹣3; 24.20; 25.9; 26.3; 27.9; 28.5; 29.﹣3; 30.9;

七年级数学上册《第三章 代数式的值》同步练习题及答案-华东师大版

七年级数学上册《第三章 代数式的值》同步练习题及答案-华东师大版

七年级数学上册《第三章代数式的值》同步练习题及答案-华东师大版一、选择题1.当a=﹣2时,代数式1﹣3a2的值是( )A.﹣2B.11C.﹣11D.22.圆柱底面半径为3 cm,高为2 cm,则它的体积为( )A.97π cm2B.18π cm2C.3π cm2D.18π2 cm23.若代数式x+2的值为1,则x等于()A.1B.﹣1C.3D.﹣34.已知a-b=2,则代数式2a-2b-3的值是()A.1B.2C.5D.75.若x2-3y-5=0,则6y-2x2-6的值为()A.4B.﹣4C.16D.﹣166.若m+n=-1,则(m+n)2-2m-2n的值是( )A.3B.0C.1D.27.如果ab=52,那么代数式ab-ba的值为( )A.25B.52C.2910D.21108.当x=1时,代数式12ax3-3bx+4的值是7.则当x=-1时,这个代数式的值是( )A.7B.3C.1D.-7二、填空题9.若x的相反数是3,|y|=5,则x-y=____________.10.已知代数式x﹣2y的值是3,则代数式1﹣2x+4y的值是.11.若2a-b=2,则6-8a+4b = .12.已知y=2-x,则4x+4y-3的值为.13.若x=3时,代数式ax3+bx的值为12,则当x=﹣3时,代数式ax3+bx+5的值为.14.按图所示的程序计算,若开始输入的值为x=5,则最后输出的结果是 .三、解答题15.已知当x=-3时,代数式ax 5-bx 3+cx -6的值等于17,求当x=3时,这个代数式的值.16.已知a=12,b=-3,求代数式4a 2+6ab -b 2的值;17.为节约能源,某市按如下规定收取电费:如果每月用电不超过140度,按每度0.53元收费;如果超过140度,则超过部分按每度0.67元收费.(1)若某住户4月的用电量为a 度,求该住户4月应缴的电费;(2)若该住户5月的用电量是200度,则5月应缴电费多少元?18.如图,一块正方形的铁皮,边长为x cm(x>4),如果一边截去宽4 cm 的一块,相邻一边截去宽3 cm 的一块.(1)求剩余部分(阴影)的面积;(2)若x =8,则阴影部分的面积是多少?19.当a=3,b=﹣1时(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2026,b=2025时,a2﹣b2的值吗?20.用火柴棒按下列方式搭建三角形:…(1)填表:三角形个数 1 2 3 4 …火柴棒根数…(2)当三角形的个数为n时,火柴棒的根数是多少?(3)求当n=1 000时,火柴棒的根数是多少.参考答案1.C2.B3.B4.A5.D6.A7.D8.C.9.答案为:-8或210.答案为:﹣5.11.答案为:-2.12.答案为:513.答案为:﹣7.14.答案为:120.15.解:当x=-3时,ax5-bx3+cx=17+6=23∴当x=3时,ax5-bx3+cx=-23∴原式=-23-6=-29.16.解:当a=12,b=-3时,4a2+6ab-b2=4×(12)2+6×12×(-3)-(-3)2=-1717.解:(1)当a≤140时,则应缴的电费为0.53a元;当a>140时,则应缴的电费为140×0.53+0.67(a-140)=(0.67a-19.6)元.(2)当a=200时,应缴电费0.67×200-19.6=114.4(元).18.解:(1)阴影部分的面积=(x-3)(x-4)=x2-7x+12;(2)x=8时,阴影部分的面积=(8-3)×(8-4)=20厘米2.19.解:(1)当a=3,b=﹣1时a2﹣b2=32﹣(﹣1)2=9﹣1=8(a+b)(a﹣b)=(3﹣1)×(3+1)=2×4=8(2)根据(1)中求出的两个算式的结果,猜想这两个代数式的值相等.(3)a=2026,b=2025时a2﹣b2=(a+b)(a﹣b)=4031×1=403120.解:(1)3 5 7 9;(2)2n+1.(3)2 001.。

数学:《代数式的值》同步练习 (华东师大版七年级上)

数学:《代数式的值》同步练习 (华东师大版七年级上)

3.2代数式的值◆随堂检测1、当a=2,b=1,c=3时, ba b c +-22的值是 。

2、当a=21, b=31时,代数式(a-b)2的值为 。

3、如果代数式2a+5的值为5,则代数式a 2+2的值为 。

4、如果代数式3a 2+2a-5的值为10,那么3a 2+2a= 。

5、某电视机厂接到一批订货,每天生产m 台,计划需a 天完成任务,现在为了适应市场需求,要提前3天交货,用代数式表示实际每天应多生产多少台电视机。

并求当m=1000,a=28时,每天多生产的台数。

◆典例分析例:(1)a 、b 互为倒数,x 、y 互为相反数,且y ≠0,则(a+b)(x+y)-ab-yx的值为 。

(2)若522=+-n m n m ,求3222)2(3+-+-+-nm nm n m n m 的值。

(3)如图:正方形的边长为 a 。

①用代数式表示阴影的面积; ②若 a =2cm 时,求阴影的面积(结果保留π)。

解:(1)0 (2)3222)2(3+-+-+-n m n m n m n m =3⨯5—15+3=4175(3)①2222ππ4228a a a a -=-21π28a ⎛⎫=- ⎪⎝⎭;②当a =2时,上式=2-π2。

答:阴影部分的面积为(2-π2)cm 2。

评析:(1)解决本例的关键是:由a 、b 互为倒数得ab=1,由x 、y 互为相反数得x+y=0和 1-=yx(2)本例采用的是整体代入的数学思想;(3)本例主要是用规则图形的面积去解决不规则图形面积的求解问题。

◆课下作业 ●拓展提高 1、填表x -4-3-2-10 1 2 3 4 2x+5 2(x+5)(1)随着x 值的逐渐增大,两个代数式的值怎样变化?(2)当代数式2x+5的值为25时,代数式2(x+5)的值是多少?2、已知代数式12++x x 的值是8,那么代数式9442++x x 的值是( ) A 、37 B 、25 C 、32 D 、03、已知3,4a b c a ==,代数式49336a b ca b c-+-+的值为( )A 、6B 、325C 、13D 、2274、小明在计算41+N 时,误将“+”看成“-”,结果得12,则41+N= 。

华东师大版七年级数学上册第三章同步测试题及答案

华东师大版七年级数学上册第三章同步测试题及答案

华东师大版七年级数学上册第三章同步测试题及答案3.1列代数式一.选择题1.以下是代数式的是()A.m=ab B.(a+b)(a﹣b)=a2﹣b2C.a+1 D. S=πR22.某商场举办促销活动,将原价x元的衣服改为(+1)元出售.下列叙述可作为此商场的促销标语的是()A.原价打三四折再加一元B.原价打四三折再加一元C.原价加一元再打三四折D.原价打七五折再加一元3.代数式a+b2读作()A.a与b的平方B.a与b的和的平方C.a的平方与b的平方的和D.a与b的平方的和4.用﹣a表示的一定是()A.正数B.负数 C.正数或负数D.以上都不对5.下列代数式中符合书写要求的是()A.B.n2C.a÷b D.6.在2x2,1﹣2x=0,ab,a>0,0,,π中,是代数式的有()A.5个B.4个C.3个D. 2个7.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b元,则原收费标准每分钟是()A.(a+b)元B.(a﹣b)元C.(a+5b)元D.(a﹣5b)元8.黄石市2011年6月份某日一天的温差为11℃,最高气温为t℃,则最低气温可表示为()A.(11+t)℃B.(11﹣t)℃C.(t﹣11)℃D.(﹣t﹣11)℃二.填空题9.学校购买了一批图书,共a箱,每箱有b册,将这批图书的一半捐给社区,则捐给社区的图书为_________ 10.体育委员带了500元钱去买体育用品,已知一个足球a元,一个篮球b元.则代数式500﹣3a﹣2b表示的数为11.实验中学初三年级12个班中共有团员a人,则表示的实际意义是_________ .12.若x=﹣1,则代数式x3﹣x2+4的值为_________ .13.今年五月份,由于H7N9禽流感的影响,我市鸡肉的价格下降了10%,设鸡肉原来的价格为a元/千克,则五月份的价格为_________ 元/千克.14.对单项式“5x”,我们可以这样理解:香蕉每千克5元,某人买了x千克,共付款“5x”元.请你结合生活实际,再给出“5x”的另一个合理解释为:_________ .三.解答题15.说出下列代数式的意义:(1)2(a+3);(2)a2+b2;(3).16.用字母表示图中阴影部分的面积.17.某镇有A、B两家纯净水销售站,它们所提供的纯净水的价格、质量都相同.为了促销,A站的纯净水每桶降价20%销售;B站规定:每个用户购买B站的纯净水,第1桶按照原价销售,若用户继续购买,则从第2桶开始每桶降价25%销售,促销活动都是三个月.若小明家预计三个月要购买12桶纯净水,请你帮他判断购买哪家的纯净水较省钱,并说明理由.18.如果某三角形第一条边长为(2a﹣b)cm,第二条边比第一条边长(a+b)cm,第三条边比第一条边的2倍少b(cm),求这个三角形的周长(用a、b的代数式表示).19.用如图正方形纸板制作一个无盖的长方体盒子,可在正方体的四角减去相同的正方形,剩余部分即可做成一个无盖的长方体形盒子.(1)设正方形纸的边长为a,减去的小正方形的边长为x,请用a与x表示这个无盖长方体形盒子的容积;(2)把正方形的纸板换成长为a,宽为b的长方形纸板,怎样做一个无盖长方体形盒子?画图说明你的做法;(3)把(2)中做的长方体形盒子的容积用代数式表示出来;(4)比较(1)和(3)的结果,说说它们的区别和联系.20.小明将连续的奇数1,3,5,7,9,…,排成如图所示的数阵,用一个矩形框框住其中的9个数,如图所示.(1)矩形阴影框中的9个数的和与中间一个数存在怎样的关系?(直接写出笞案)(2)若将矩形框上下左右移动,这个关系还成立吗?为什么?答案一、1. C 2.D 3.D4.D 分析:﹣a表示的有可能是A中说的正数,有可能B中说的负数,有可能C中说的正数或负数.故选D.5.D6.A 分析:因为1﹣2x=0,a>0,含有=和>,所以不是代数式,所以代数式的有2x2,ab,0,,π,共5个.故选A.7.A 分析:b÷(1﹣20%)+a=a+b.故选A.8.C 分析:设最低气温为x℃,则t﹣x=11,x=t﹣11.故选C.二、 9.分析:由题意得这批图书共有ab册,则图书的一半是:册.10.体育委员买了3个足球、2个篮球,剩余的经费11.平均每班团员数12.2分析:x3﹣x2+4=(﹣1)3﹣(﹣1)2+4=﹣1﹣1+4=﹣2+4,=2.13.0.9a 分析:因为原来鸡肉价格为a元/千克,现在下降了10%,所以五月份的价格为a﹣10%a=(1﹣10%)a=0.9a.14.某人的行走速度是x米/分,5分钟行走的路程三.15.解:(1)2(a+3)的意义是2与(a+3)的积;(2)a2+b2的意义是a,b的平方的和;(3)的意义是(n+1)除以(n﹣1)的商.16.解:(1)阴影部分的面积=ab﹣bx;(2)阴影部分的面积=R2﹣πR2.17.解:设每桶纯净水的原价为a元,则购买12桶纯净水,在A站需花费的金额为(1﹣20%)a•12=9.6a(元);在B站需花费的金额为a+(1﹣25%)a•11=9.25a(元);因为9.6a>9.25a,所以小明家应选择到B家纯净水销售站购买纯净水,这样较省钱.18.解:周长=(2a﹣b)+[(2a﹣b)+(a+b)]+[2(2a﹣b)﹣b]=2a﹣b+2a﹣b+a+b+4a﹣2b﹣b=9a﹣4b.19.解:(1)依题意,长方体盒子容积为:(a﹣2x)2•x;(2)画图如下:(3)设减去的正方形边长为x,根据题意得:(a﹣2x)(b﹣2x)•x;(4)(1)中底面积为正方形面积为(a﹣2x)2,(3)中底面积为长方形,面积为(a﹣2x)(b﹣2x),高都为x,(3)中当a=b时即得到(1)中的结果.20.解:(1)计算阴影框中9个数的和为,3+5+7+17+19+21+31+33+35=171,171÷19=9,所以,矩形阴影框中的9个数的和是中间一个数的9倍;(2)假设将矩形框向下移动一个格,则中间的数为33.则9个数的和为,17+19+21+31+32+33+35+45+47+49=297,297÷33=9,再假设将矩形框向左移动一个格,则中间的数为17,则9个数的和为:1+3+5+15+17+19+29+31+33=153,153÷17=9.所以这个关系还成立.3.2 代数式的值一、选择题1.当a=1,b=2时,a2+b2的值是( )A.5B.6C.7D.82.若a=-,b=2,c,d互为倒数,则代数式2(a+b)-3cd的值为 ( )A.2B.-1C.-3D.03.根据如图的程序计算y的值,若输入的x的值为,则输出的y值为( )A. B. C. D.二、填空题4.若m,n互为倒数,则mn2-(n-1)的值为______.5.在高中时我们将学到:叫做二阶行列式,它的算法是:ad-bc,那么=______.6.定义新运算“⊗”,a⊗b=a-4b,则12⊗(-1)=______.三、解答题7.求代数式的值:4x2+3xy-x2-9,其中x=2,y=-3.8.公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高.如果用a表示脚印长度,b表示身高.关系类似于:b=7a-3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,一个身高为 1.87m,另一个身高 1.75m,现场测量的脚印长度为26.3cm,请你帮助侦察一下,哪个可疑人员的可能性更大?9.第22届冬奥会将于2014年2月7日在索契拉开帷幕,激起了人们参与体育运动的热情,我们知道,人在运动时的心跳速率通常和人的年龄有关,如果用a表示一个人的年龄,b表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么有b=0.8(220-a).(1)正常情况下,在运动时一个14岁的少年所能承受的每分钟心跳的最高次数是多少?(2)一个45岁的人运动时,10秒钟的心跳次数为22次,他有危险吗?答案1.A 分析:当a=1,b=2时,a2+b2=12+22=1+4=5.2. D 分析:c,d互为倒数,所以cd=1.当a=-,b=2时,2(a+b)-3cd=2×(-+2)-3×1=2×-3=3-3=0.3. B 分析:因为2<<4,所以当x=时,输出的y值为.4.1 分析:因为m,n互为倒数,所以mn=1,所以mn2-(n-1)=mn·n-n+1=n-n+1=1.5.-2 分析:根据题意可知,本题求当a=1,b=2,c=3,d=4时,ad-bc的值,所以ad-bc=1×4-2×3=4-6=-2.6.8 分析:12⊗(-1)=×12-4×(-1)=8.7.解:原式=3x2+3xy-9,当x=2,y=-3时,原式=3×4+3×2×(-3)-9=-15.8.解:(1)当a=24.5时,b=7×24.5-3.07=168.43(cm).即身高约为168.43cm.(2)当a=26.3时,b=7×26.3-3.07=181.03(cm).187-181.03=5.97.181.03-175=6.03.因为5.97<6.03,所以身高为1.87m的可疑人员的可能性更大.9.解:(1)当a=14时,b=0.8(220-a)=0.8×(220-14)=0.8×206=164.8≈165(次).(2)因为10秒钟心跳次数为22次,所以1分钟心跳次数为22×6=132(次).当a=45时,b=0.8(220-a)=0.8×(220-45)= 140>132,所以这个人没有危险.3.3 整式一、选择题1.单项式-的系数和次数依次是( )A.-2,2B.-,4C.,5D.-,52.代数式x,-,-,,中共有整式( )A.2个B.3个C.4个D.5个3.代数式(a-1)x3+(b-1)x是关于x的一次式,则a,b的值可以为( )A.0,3B.0,1C.1,2D.1,1二、填空题4.单项式-ab2c3的系数是________.5.(2012·泰州中考)根据排列规律,在横线上填上合适的代数式:x,3x2,5x3,______,9x5,….6.把多项式2x2-3x+x3按x的降幂排列是______.三、解答题7.把下列代数式按单项式、多项式、整式进行归类.x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1,.8.已知多项式-3x2y m+1+x3y-3x4-1是五次四项式,单项式3x3n y3-m z与多项式的次数相同.(1)求m,n的值.(2)把这个多项式按x降幂排列.9.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案1.D 分析:-=-xy2z2,即单项式的系数为-,次数为1+2+2=5.故选项D正确.2.B 分析:整式包括单项式和多项式,有x,-,,共有3个.3. C 分析:因为是关于x的一次式,所以不含有x3的项,即a-1=0,所以a=1;代数式是关于x的一次式,故b-1≠0,即b≠1.综上满足条件的只有C.4. -分析:因为单项式-ab2c3中的数字因数是-,所以单项式-ab2c3的系数是-.5. 7x4分析:系数分别为1,3,5,所以所填系数应为7,再看字母以及字母的指数,发现分别为x,x2,x3,所以所填部分的字母及字母的指数应为x4.答案: 6. x3+2x2-3x 分析:2x2,-3x,x3中的x的次数依次为2,1,3,所以按x的降幂排列是x3+2x2-3x.7.解:单项式有x2y,-,-29,600xz,axy.多项式有a-b,x+y2-5, 2ax+9b-5,xyz-1.整式有x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1.8.解:(1)根据题意知:m+1=3,m=2,因为单项式3x3n y3-m z是五次单项式,所以3n+3-m+1=5,n=1.(2)原多项式是-3x 2y 3+x 3y-3x 4-1,按x 的降幂排列为:-3x 4+x 3y-3x 2y 3-1.9.解:由于代数式是关于x,y 的五次单项式,所以b+2=0,b=-2,2+|a|=5,所以a=±3.当a=3时,a-3=0,该式就不再是关于x,y 的单项式了,故a=-3.所以a 2-3ab+b 2=(-3)2-3× (-3)×(-2)+(-2)2=9-18+4=-5.3.4 整式的加减一、选择题1.如果代数式4252y y -+的值为7,那么代数式212y y -+的值等于( ) A.2B.3C.-2D.42.下面的式子,正确的是( )A.3a 2+5a 2=8a 4B.5a 2b-6ab 2=-ab 2C.6xy-9yx=-3xyD.2x+3y=5xy3.一个多项式加上x 2y-3xy 2得2x 2y-xy 2,则这个多项式是( ) A.3x 2y-4xy 2B.x 2y-4xy 2C.x 2y+2xy 2D.-x 2y-2xy 24.若A=x 2-5x +2,B=x 2-5x-6,则A 与B 的大小关系是( ) A.A>B B.A=B C.A<B D.无法确定5.若A = 5a 2-4a +3,B =3a 2-4a +2,则A 与B 的大小关系是( ) A .A =B B .A>B C .A<B D .以上都可能成立6.当x =-1时,2ax 3-3bx +8的值为18,则12b -8a +2的值为( ) A .40 B .42 C .46 D .567.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1 B .5x +1 C .-13x -1 D .13x +18.三个连续奇数,中间的一个是2n +1(n 是整数),则这三个连续奇数的和为( ) A .2n -1 B .2n +3 C .6n +3 D .6n -3 9.若A 和B 都是五次多项式,则A -B 一定是( ) A .十次多项式 B .五次多项式C .次数不高于5的整式D .次数不高于5的多项式 二、填空题10.如果x =1时,代数式2ax 3+3bx +4的值是5,那么x =-1时,代数式2ax 3+3bx +4的值是__________. 11.定义a b c d 为二阶行列式,规定它的运算法则为abad bc c d =-,那么二阶行列式23____________11x x =-+.三、解答题 12.化简:(1) 7-3x-4x 2+4x-8x 2-15; (2) 2(2a 2-9b)-3(-4a 2+b) ; (3) 8x 2-[-3x-(2x 2-7x-5)+3]+4x.13.先化简,后求值:(1)(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y ;(2)若()0322=++-b a ,求3a 2b -[2ab 2-2(ab -1.5a 2b )+ab]+3ab 2的值.14.有这样一道题目:“当a =0.35,b =-0.28时,求多项式7a 3-3(2a 3b -a 2b -a 3)+ (6a 3b -3a 2b )-(10a 3-3)的值”.小敏在计算时把a =0.35,b =-0.28抄成了a =-0.35,b =0.28,结果她的结果也是正确的,你知道这是为什么吗?15.某工厂第一车间有m 人,第二车间的人数比第一车间的人数的2倍少5人,第三车间的人数比第一车间的人数的3倍还多7人,则第三车间的人数比第一、第二车间的人数的和多还是少?请说明理由.16.已知A=2x2-9x-11,B=3x2-6x+4,求:(1)A-B;(2)122A B+.17.图中的数阵是由全体奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016,2 018或2 025吗?若能,请写出这九个数中最小的一个;若不能,请说出理由.18.一辆出租车从A地出发,在一条东西走向的街道上营运,每次行驶的路程(向东记为正)记录如下(9<x<26,单位:km):(1(2)这辆出租车一共行驶了多少路程?答案一、1.A 2.C 3.C 4.A5.B 分析:可用作差法:A -B =5a 2-4a +3-(3a 2-4a +2)=5a 2-4a +3-3a 2+4a -2=2a 2+1.因为a 2≥0,所以2a 1+1≥1,所以A -B>0,即A>B.6.B 分析:把x =-1代入2ax 3-3bx +8得2a ×(-1)3—36×(-1)+8=-2a +3b +8.因为此式的值为18,所以-2a +3b +8=18,所以3b -2a =10,所以12b -8a = 40,所以12b -8a +2=40+2=42.7.A 分析:设这个多项式为M ,则M =3x 2+4x -1-(3x 2+9x )=3x 2+4x -1-3x 2-9x =-5x -1.8.C 分析:已知三个连续奇数中的中间一个为2n +1(n 为整数),那么,较小的一个为2n -1,较大的一个为2n +3,所以这三个奇数的和为(2n -1)+(2n +1)+(2n +3)=6n +3.9.C 分析:当A ,B 中含字母的项不都相同时,A -B 是次数不高于5的多项式;当A ,B 中含字母的项都相同时,A -B 为常数,此时是单项式,属于整式,故选C .二、10.3 分析:把x =1代入2ax 3+3bx +4=5,进行变形,然后利用整体代入法求值.因为当x =1时,代数式2ax 3 +3bx +4的值是5,所以2a + 3b +4=5,即2a +3b =1.当x =-1时,2ax 3+3bx +4=-2a -3b +4=-(2a +3b )+4=-1+4=3.11.-x +5 分析:由题意得2(x +1)-3(x -1)=2x +2-3x +3=-x +5.三、12、(1) -12x 2+x-8 ;(2) 16a 2-21b ; (3) 10x 2-8.13.(1)-x-8y=13;(2)ab 2+ab=12.14.解:7a 3-3(2a 3b -a 2b -a 3)+(6a 3b -3a 2b )-(10a 3-3)=7a 3-6a 3 b +3a 2 b +3a 3 +6a 3 b -3a 2b -10a 3+3=(7a 3+3a 3-10a 3)-6a 3b +6a 3b +3a 2b -3a 2b +3=3.因为3是常数,不含字母a 和b ,所以无论a ,b 是何值,结果都不变.故小敏将a ,b 抄错时,结果也是正确的.15.解:第三车间的人数比第一、第二车间的人数的和多12人,理由如下:由题意得,第二车间的人数为2m -5,第三车间的人数为3m +7,所以3m +7-(2m -5+m )=3m +7-(3m -5)=3m +7-3m +5=12>0,故第三车间的人数比第一、第二车间的人数的和多12人.16.解:(1)A -B = (2x 2-9x -11)-(3x 2-6x +4)=2x 2-9x -11-3x 2+6x -4=-x 2-3x -15;(2)22112(2911)2(364)22A B x x x x +=--+-+ 222911335612872222x x x x x x =--+-+=-+. 17.解:(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立,理由:不妨设平行四边形框中间的数为n ,则这九个数按大小顺序依次为(n -18),(n -16),(n -14), (n -2) ,n ,(n +2),(n +14),(n +16),(n +18).显然,其和为9n ,是n 的9倍.这九个数之和不能等于2 016.若和为2 016,则9n =2 016,n =224,是偶数,显然不在数阵中, 这九个数之和也不能等于2 018,因为2 018不能被9整除.这九个数之和能等于2 025,中间数为225,最小的数为225-18=207.题后总结:方框形题要从横行和竖列两个方面找数字间的规律.18.解:(1)因为9<x<26,所以x>0,102x -<,x -5>0,2(9-x )<0. 又因为向东为正,所以这辆出租车第一次向东行驶,第二次向西行驶,第三次向东行驶,第四次向西行驶.(2)因为1|||5||2(9)|2x x x x +-+-+-152(9)2x x x x =++---151822x x x x =++--+9232x =-,所以这辆出租车一共行驶了923km 2x ⎛⎫- ⎪⎝⎭.。

华东师大版七年级数学列代数式代数的值练习试卷及答案

华东师大版七年级数学列代数式代数的值练习试卷及答案

华东师大版七年级数学练习卷(六)班级______姓名_______座号____(列代数式、代数式的值)一、填空题:(每题 2 分,共24 分)1、一支圆珠笔 a 元,5 支圆珠笔共_____元。

2、“a 的 3 倍与 b 的的和”用代数式表示为__________。

3、比 a 的 2 倍小 3 的数是_____。

4、某商品原价为 a 元,打7 折后的价格为______元。

5、一个圆的半径为r,则这个圆的面积为_______。

6、当x=-2 时,代数式x2+1 的值是_______。

7、代数式x2-y 的意义是_______________。

811、被3 除商为n 余1 的数是_____。

12、校园里刚栽下一棵1.8m 的高的小树苗,以后每年长0.3m。

则n 年后的树高是____m。

二、选择题:(每题 3 分,共18分)1、在式子x-2,2a2b,a,c=πd,,a+1>b中,代数式有()A、6个B、5个C、4个D、3个2、下列代数式中符合书写要求的是()A、B、1a C、a÷b D、a×23、用代数式表示“x 与y 的 2 倍的和”是()A、2(x+y)B、x+2yC、2x+yD、2x+2y4、代数式a2-的正确解释是()A、a 与 b 的倒数的差的平方B、a 与 b 的差的平方的倒数C、a 的平方与b 的差的倒数D、a 的平方与b 的倒数的差5、代数式5x+y 的值是由()确定的。

A、x 的值B、y 的值C、x 和y 的值D、x 或y 的值6、一个矩形的长是8m,宽是acm,则矩形的周长是()A、(8+a)mB、2 (8+a) mC、8acmD、8acm2三、说出下列代数式的意义:(每题 4 分,共8 分)1、3a-b2、a-b2四、用代数式表示:(每题 5 分,共20 分)1、x 和y 两数的和的平方。

2、一张贺卡的价格为 2 元,元旦前,小明用自已的零花钱买了m 张贺卡送给同学,则小明一共花了多少钱?3、一个长方形的周长是30cm,若长方形的一边长为acm,则该长方形的面积是多少?4、某工厂第一个月的生产量是a,以后平均每月增长10%,问第三个月的产量是多少?五、求代数式的值:(每题 6 分,共18分)1、已知:a=12,b=3,求的值。

七年级数学上册 3.2 代数式的值专题训练 (新版)华东师大版

七年级数学上册 3.2 代数式的值专题训练 (新版)华东师大版

专题一代数式的值的意义与求值1. a为有理数.下列说法中正确的是( )A.(a+1) 2的值是正数 B.a2+1的值是正数C.-(a+1)2的值是负数 D.-a2+1的值小于12. 如果1<x<2,则代数式2121x x xx x x---+--的值是( )A. 1 B.-1 C.2 D.3 专题二与代数式的值有关的探究题3. 已知代数式25342()x ax bx cxx dx+++,当x=1时,值为1,那么该代数式当x=1-时的值是()A. 1B. 1- C. 0 D.24. 已知y=ax7+bx5+cx3+dx+e,其中a,b,c,d,e为常数,当x=2时,y=23;当x =-2时,y=-35,那么e的值是()A.6 B.-6 C.12 D.-125. QQ是一种流行的中文网络即时通讯软件.注册用户通过累积“活跃天数”就可获得相应的等级,如果用户当天(0:00~24:00)使用QQ在2小时以上(包括2小时),其“活跃天数”累积为1天.一个新用户等级升到1级需要5天的“活跃天数”,这样可以得到1个星星,此后每升1级需要的“活跃天数”都比前一次多2天,每升1级可以得到1个星星,每4个星星可以换成一个月亮,每4个月亮可以换成1个太阳.网名是“未来”的某用户今天刚升到2个月亮1个星星的等级,那么他可以升到1个太阳最少还需经过的天数是多少天?状元笔记【知识要点】1. 代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫代数式的值.2. 求代数式的值的步骤:一代入,二求值.【温馨提示(针对易错)】求代数式的值时,要注意书写格式;代入负数或分数时,要注意适时添加括号.【方法技巧】求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.答案1. B 【解析】不论a为何值,总有(a+1)2≥0,a2+1≥1>0,-(a+1)2≤0,-a2+1≤1. 故只有B正确.2. B3. B 【解析】代数式25342()x ax bx cxx dx+++当x=1和当x=1-时的值互为相反数.4. B 【解析】由题设知,当x=2时,23=a·27+b·25+c·23+d·2+e ; ①当x=-2时,-35=a·(-2)7+b·(-2)5+c·(-2)3+d·(-2)+e,即-35=-a·27-b·25-c·23-d·2+e ②①+②,则得2e=-12,所以e=-6.故选B.5.解:1级需要5天,2级需要12天;3级需要21天;四级需要32天…所以若级数为N,天数为M,则M=N(N+4),所以升到1个太阳即到16级,则天数M=16(16+4)=320(天);升到2个月亮1个星星即到第9级,所用天数为:9(9+4)=117(天),所以320﹣117=203(天).即至少还需要203天.。

七年级数学上册(华师大版)同步练习:3.1.3列 代 数 式

七年级数学上册(华师大版)同步练习:3.1.3列 代 数 式

列代数式一、选择题(每小题4分,共12分)1.“比a大1的数”用代数式表示是( )A.a+1B.-a+1C.aD.a-12.一件衣服原价为a 元,降价10%后的价格为( )A.0.9a元B.110a元C.元D.元3.(2012·青海中考)通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是( )A.(a+b)元B.(a-b)元C.(a+5b)元D.(a-5b)元二、填空题(每小题4分,共12分)4.某班a名同学参加植树活动,其中男生b名(b<a).若只由男生完成,每人需植树15棵;若只由女生完成,则每人需植树________棵.5.有一棵树苗,若栽下去时,树高2.1米,以后每年长0.3米,则n年后该树高为________米.6.有a名男生和b名女生在社区做义工,他们为建花坛搬砖,男生每人搬了40块,女生每人搬了30块.这a名男生和b名女生一共搬了________块砖(用含a,b 的代数式表示).三、解答题(共26分)7.(6分)一项工程,甲单独做a 天完成,乙单独做b天完成,用代数式表示:(1)甲、乙合做m天,能完成这项工程的多少?(2)甲、乙共同完成这项工程,共需要多少天?8.(12分)用代数式表示:(1)比a与b的和小3的数.(2)比a与b的差的一半大1的数.(3)比a除以b的商的3倍大8的数.(4)比a除b的商的3倍大8的数.【拓展延伸】9.(8分)用a米长的篱笆材料在空地上围成一个绿化场地,现有两种设计方案:一种是围成正方形的场地;另一种是围成圆形的场地.试问选用哪一种方案,围成的场地面积较大?请说明理由.。

华东师大版七年级上数学代数式的乘除》同步练习题

华东师大版七年级上数学代数式的乘除》同步练习题

华东师大版七年级上数学代数式的乘除》同步练习题一、选择题1. 以下哪个是代数式的值?- A. 2x^2 + 5x - 3, 当 x = 1- B. 3x^2 + 4x + 1, 当 x = 0- C. 4x^2 + 6x - 2, 当 x = 2- D. 5x^2 + 3x + 2, 当 x = -12. 将2x(3x + 4)简化得到的结果是:- A. 2x - 4x- B. 3x^2 - 4x- C. 6x^2 + 8x- D. 6x^2 - 8x3. 以下哪个代数式是乘法项?- A. 2x- B. 3x + 4- C. 5x - 3- D. 6x^2 - 2x4. 以下哪个代数式是除法项?- A. x- B. 2x^2 + 3x - 1- C. 3x^2 + 4x - 2- D. 4x^2 + 5x - 3二、计算题1. 计算:5x + 3 - (2x + 1)2. 计算:(x + 3)(x - 2)3. 计算:2(x - 3) - 4(2x + 1)4. 计算:(3x^2 - 5x + 2) ÷ x三、简答题1. 解释乘法项和除法项在代数式中的作用和意义。

2. 举例说明如何化简一个包含乘法和加法的代数式。

3. 举例说明如何将代数式除以一个变量。

4. 简述如何计算含有括号的代数式。

四、解答题1. 计算:(5 - 2x)(2x + 3)。

2. 计算:(7x^2 - 3x + 1) ÷ (x - 1) 。

3. 计算:(-2x^2 - 5x + 3) ÷ (x + 2) 。

4. 计算:(4x - 3)(2x + 1) - (2x - 1)(3x + 2)。

以上是《华东师大版七年级上数学代数式的乘除》的同步练习题。

请同学们按照题目要求完成练习,勤加练习,加深对代数式的理解和掌握。

3.2代数式的值 (原卷版)-2020-2021学年七年级数学上册课时同步练(华师大版)

3.2代数式的值 (原卷版)-2020-2021学年七年级数学上册课时同步练(华师大版)

第3章 整式的加减3.2 代数式的值一、选择题:1.已知a 是最小的正整数,b 的绝对值是2,c 和d 互为相反数,则a+b+c+d =( )A .3B .8,﹣3C .﹣1D .3或﹣12.已知|x|=4,|y|=5,且xy <0,则x+y 的值等于( )A .9或﹣9B .9或﹣1C .1或﹣1D .﹣9或﹣13.已知代数式2x y +值是4,则代数式361x y ++的值是( )A .5B .6C .12D .134.已知236x x +=,则2623x x --+的值为( )A .9-B .15C .16D .175.当x =1时,代数式31px qx ++的值是2010,当1x =-时,代数式31px qx ++的值为( ) A .-2010 B .-2009 C .-2008 D .2008二、填空题:6.若,x y 互为相反数,,a b 互为倒数,c 的绝对值等于2,则201620153()2x y ab c +⎛⎫--+= ⎪⎝⎭________.7.若223x x -=,则代数式2243x x -+的值为_________.8.已知28x x +=,则2226x x +-的值是________.9.已知238x y -+=,则24x y -=__________. 10.若式子2x 2+3y+7的值为8,那么式子6x 2+9y+2的值为_________.三、解答题:11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.12.请根据图示的对话解答下列问题.求:(1)a,b的值:(2)8a b c-+-的值.13.已知代数式533ax bx x c+++,当x=0时,该代数式的值为-1(1)求c的值;(2)已知当x=1时,该代数式的值为5,求a+b的值14.如图,数轴上点A表示的数为6,点B位于A点的左侧,AB=10,动点P从点A出发,以每秒3个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右运动.(1)点B表示的数是;(2)若点P,Q同时出发,求:①当点P与Q相遇时,它们运动了多少秒?相遇点对应的数是多少?②当PQ=5个单位长度时,它们运动了多少秒?15.如图,公共汽车行驶在笔直的公路上,这条路上有,,,A B C D四个站点,每相邻两站之间的距离为5千米,从A站开往D站的车称为上行车,从D站开往A站的车称为下行车.第一班上行车、下行车分别从A 站、D站同时发车,相向而行,且以后上行车、下行车每隔10分钟分别在,A D站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、下行车的速度均为30千米/小时.()1第一班上行车到B 站、第一班下行车到C 站分别用时多少?()2第一班上行车与第一班下行车发车后多少小时相距9千米?()3一乘客在,B C 两站之间的P 处,刚好遇到上行车,BP x =千米,他从P 处以5千米/小时的速度步行到B 站乘下行车前往A 站办事.①若0.5x =千米,乘客从P 处到达A 站的时间最少要几分钟?②若1x =千米,乘客从P 处到达A 站的时间最少要几分钟?16.某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m 3时,按2元/m 3计算;月用水量超过20m 3时,其中的20m 3仍按2元/m 3计算,超过部分按2.6元/m 3计算.设某户家庭月用水量xm 3.(1)用含x 的式子表示:当0≤x≤20时,水费为______元;当x >20时,水费为______元.(2)小花家第二季度用水情况如上表,小花家这个季度共缴纳水费多少元?17.若231a b -=-,则代数式2463a ab b -+的值为( )A .-1B .1C .2D .318.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.。

华东师大版初一数学上册同步练习:代数式的值

华东师大版初一数学上册同步练习:代数式的值

华东师大版初一数学上册同步练习:3 知识点 代数式的值1.已知a =-2,则代数式a +1的值为( )A .-3B .-2C .-1D .12.若x =-3,y =1,则代数式2x -3y +1的值为( )A .-10B .-8C .4D .103.求下列代数式的值时,代入过程正确的是( ) A .当a =73时,2a2-1=2×723-1B .当a =23时,3a +2=323+2C .当a =512时,12a2-2=12×⎝ ⎛⎭⎪⎫1122-2D .当a =3时,23a2+a -1=⎝ ⎛⎭⎪⎫23×32+3-1 4.当a =-5时,下列代数式的值最大的是( ) A .2a +3 B.a 2-1 C.15a2-2a -10 D.7a2-10055.在1,2,3,4,5这五个数中,使代数式(x +1)(x -2)(x -4)的值为零的有( )A .1个B .2个C .3个D .4个 6.当x =2时,代数式12x2-x +1的值是________.7.每支钢笔10元,n 支钢笔________元,当n =10时,n 支钢笔________元. 8.当a =-6,b =8时,求代数式a2-12b2+ab 的值.9.当x 分别等于2和-2时,代数式6x2+5x4-x6+3对应的两个值( )A .互为相反数B .互为倒数C .相等D .异号10.若x2-3x -6=0,则2x2-6x -6的值为( )A .-8B .14C .6D .-211.人在运动时的心跳速率通常和人的年龄有关,假如用a 表示一个人的年龄,b 表示正常情形下那个人在运动时所能承担的每分钟心跳的最高次数,那么有b =0.8(220-a).(1)正常情形下,一个20岁的青年在运动时所能承担的每分钟心跳的最高次数是多少?(2)一个45岁的人在运动时,10秒内心跳的次数为22次,他有危险吗?12.如图3-2-1所示,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)运算当a =3,b =4时,阴影部分的面积.图3-2-113.(1)当a =12,b =2时,代数式a2+2ab +b2=________,(a +b)2=________; (2)当a =-12,b =2时,代数式a2+2ab +b2=________,(a +b)2=________; (3)当a =-12,b =-2时,代数式a2+2ab +b2=________,(a +b)2=________.由以上运算结果,你能推测出什么结论?请用字母a ,b 表示出来:________________________________________________________________________.1.C2.B3.C4.D [解析] 当a =-5时,2a +3=-7;a 2-1=-72;15a2-2a -10=5;7a2-1005=15.因此7a2-1005的值最大. 5.B [解析] 能使(x +1)(x -2)(x -4)的值为零的x 的值为-1或2或4,题中满足条件的x 值为2,4.6.1 7.10n 1008.解:当a =-6,b =8时,a2-12b2+ab =(-6)2-12×82+(-6)×8=36-32-48=-44.9.C [解析] 因为互为相反数的两个数的偶次方相等,因此当x =2与x =-2时,代数式6x2+5x4-x6+3对应的两个值相等.10.C11.解:(1)当a =20时,b =0.8×(220-20)=160,即正常情形下,一个20岁的青年在运动时所能承担的每分钟心跳的最高次数是160.(2)当a =45时,b =0.8×(220-45)=140.因为10秒内心跳22次,因此每分钟心跳次数为6×22=132<140,因此此人没有危险.12.解:(1)阴影部分的面积为12b2+12a(a +b). (2)当a =3,b =4时,12b2+12a(a +b)=12×16+12×3×(3+4)=372,则阴影部分的面积为372. 13.(1)254 254 (2)94 94 (3)254 254 a2+2ab +b2=(a +b)2。

华师大版-数学-七年级上册-3.2 代数式的值 课时训练题

华师大版-数学-七年级上册-3.2 代数式的值 课时训练题

代数式的值1.下列说法正确的是()A.代数式的值与代数式中的字母无关B.代数式的值是随着代数式中的字母的取值变化而变化的C.代数式中的字母可以取任意的值D.含有x的代数式的值等于x的值2.已知ba=15,则ba b+的值是()A.13 B.45 C.16 D.353.已知代数式x2+xy=8,y2+xy=9,则x2+y2+2xy的值是()A.16 B.17 C.18 D.194.若x2+x-1=0,则2x3+3x2-x的值是()A.0 B.1 C.2 D.无法确定5.如果代数式4y2-2y+5的值为7,那么代数式2y2-y+1的值为()A.2 B.3 C.-2 D.46.当x=-1时,代数式│3x-1│与-(5x+2)的值分别为M,N,那么M,N之间的关系为()A.M>N B.M=N C.M<N D.都不对7.当x=-3时,代数式3x2-1的值是_______.8.当a=-1,b=2时,代数式a2-2b2-3a的值是______.9.某书价是x•元,•邮购的邮资是书价的10%,•则用代数式表示邮购该书应付款______;当x=8时,应付款_______.10.日常生活中,“老人”是一个模糊概念,•有人想用“老人系数”来表示一个人的老年化程度,他设想“老人系数”的计算方法如下表:按照这样的规定,一个70岁的人的“老人系数”为______.11.当x=1时,代数式px3+qx+1的值是2020,则当x=-1时,代数式px3+qx+1的值为___.12.根据如图,所示的程序计算,若输入x 值为2,则输出的结果为___.13.已知a -b=3,a -c=-4,求2a -b -c 的值.14.当a -2b=3时,求代数式(a -2b )2-3(2b -a )-6的值.15.如图所示,四边形ABCD 与四边形ECGF 是两个边长分别为a ,b•的正方形,写出用a ,b 表示阴影部分面积的代数式,并计算当a=4cm ,b=6cm 时,阴影部分的面积.16. 当41z ,3y ,21x ===时,求下列各代数式的值:(1)22y x y 2x +-.(2)y x z 24)z x (22+-.17.超市进了一批花布,出地要在进价的基础上加一定的利润,其售出数量x (米)与售价y (元)的关系如下表:数量x (米) 1 2 3 …售价y (元) 7+0.25 14+0.50 21+0.75 …(1)写出售价y 与售出数量x 之间的关系表达式;(2)计算当x=100米时售价为多少元?18.某中学决定派三名教师带a 名学生到某风景区举行夏令营活动,•甲旅行社收费标准为教输入xx +2(-2<x <-1) x 2(-1<x <1) -x +2(1<x <2)输出值师全票,学生半价优惠;乙旅行社收费标准为教师和学生全部按全票价的6折优惠.已知甲、乙两旅行社的全票价均为240元.(1)用代数式表示甲、乙两旅行社的收费各是多少元?(2)当a=50时,如果你是校长,你选择哪一家旅行社?参考答案:1.B ;2.C.点拨:由b a =15,得a=5b ,所以156b b a b b b ==++;3.B.点拨:x2+xy=8①,y2+xy=9②,①+②得x2+xy+y2+xy=x2+y2+2xy=17;4.B.点拨:由x2+x -1=0得2x·(x2+x -1)=0,2x3+2x2-2x=0,所以2x3=2x -2x2,•将其代入原式,得2x -2x2+3x2-x=x2+x ,由x2+x -1=0可得x2+x=1,所以原式=1;5.A.点拨:由4y2-2y+5=7可得4y2-2y=2,所以2y2-y=1,把2y2-y=1代入2y2-y+1可得;6.A.7.26;8.-4.点拨:(-1)2-2×22-3×(-1)=1-8+3=-4;9.x+10%x 元,8.8元;10.0.5.点拨:将x=70代入607060120202x --===0.5;11.-2018.点拨:当x=1时,px3+qx+1=p+q+1=2020,所以p+q=2019;当x=-1时,px3+qx+1=-p -q+1=-2019+1=-2018;12.12. 点拨:把x=32代入-x+2计算.13.2a -b -c=a+a -b -c=(a -b )+(a -c )=3+(-4)=-1.14.由a -2b=3可知2b -a=-(a -2b )=-3,原式=3-3×(-3)-6=9+9-6=12.15.阴影部分面积用代数式表示为:12a2+b2-12(a+b )b .当a=4,b=6时,12a2+b2-12(a+b )b=12×42+62-12×(4+6)×6=8+36-30=14(cm2).点拨:这是一道综合题,要利用代数式来求代数式的值,应先根据图形列出表示阴影面积的代数式,再把所给字母的值代入代数式中求出对应的值.阴影部分的面积可用“三角形BCD 的面积+正方形ECGF 的面积-三角形BGF 的面积”求得.16. 解(1)当21x =,3y =时,22y x y 2x +-=2)21(-3212⨯⨯+23=1394-+=416.(2)当41z ,3y ,21x ===时,y x z 24)z x (22+-=3412124)4121(22⨯⨯+-=33.17.(1)y=(7+0.25)x ,即y=7.25x.(2)y=725元. 18.(1)甲:720+120a 乙:144(a+3).(2)甲:6720元 乙:7632元 所以甲合算.。

华东师大版七年级数学上册同步练习:3.2 代数式的值

华东师大版七年级数学上册同步练习:3.2 代数式的值

3.2 代数式的值一、选择题1.当x =12时,代数式15(x 2+1)的值为( ) A.15 B.14 C .1 D.352.若x =1,y =12,则x 2+4xy +4y 2的值是( ) A .2 B .4 C.32 D.123.已知a ,b 互为相反数,c ,d 互为倒数,则代数式2(a +b )-3cd 的值为( )A .2B .-1C .-3D .04.代数式2x 2+3x +7的值是8,则代数式4x 2+6x -9的值是( )A .2B .-17C .-7D .75.当x =-2时,ax 3+bx -7的值为9,则当x =2时,ax 3+bx -7的值是( )A .-23B .-17C .23D .17二、填空题6.小英付给售货员y 元钱,买了a 支单价为15元/支的某种笔,找回b 元,则y =________,当a =3,b =5时,y 的值是________.7.按照如图K -27-1所示的操作步骤,若输入x 的值为-3,则输出的值为________.8.已知|x -5|+|y +4|=0,则代数式(x +y )2018的值是________.三、解答题9.当a =12,b =-2时,求下列各式的值: (1)(a -b )2-(a +b )2; (2)a 2-2ab +b 2.10.定义一种新运算“※”,规定a ※b =a +ab .(1)求6※(-5)的值;(2)求(-2)※(4※7)的值.11.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款________元(用含x的代数式表示);若该客户按方案②购买,需付款________元(用含x的代数式表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案.1.B 2.B 3.C4.C .5. A6.15a +b 507. 228.1 .9.解:(1)原式=⎝ ⎛⎭⎪⎫12+22-⎝ ⎛⎭⎪⎫12-22=4. (2)原式=⎝ ⎛⎭⎪⎫122-2×12×(-2)+(-2)2=254. 10.解:(1)∵a※b=a +ab ,∴6※(-5)=6+6×(-5)=-24.(2)∵a※b=a +ab ,∴(-2)※(4※7)=(-2)※(4+4×7)=(-2)※32=-2+(-2)×32=-66.11.解:(1)(40x +3200) (36x +3600)(2)当x =30时,方案①需4400元,方案②需4680元,所以按方案①购买合算.(3)先按方案①购买20套西装,送20条领带;剩余10条领带按方案②购买,需360元,共需4360元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2代数式的值
基础巩固训练
一、
选择题: 1.当12x =时,代数式21(1)5x +的值为 ( ) A. 15 B.14 C. 1 D.35
2.当a =5时,下列代数式中值最大的是 ( )
A.2a +3
B.12a -
C.212105
a a -+ D.271005a - 3.已知
3a b =,a b a
-的值是 ( ) A.43 B.1 C.23
D.0 4.如果代数式22m n m n
-+的值为0,那么m 与n 应该满足 ( ) A.m +n =0 B.mn =0 C.m =n ≠0 D.m n ≠1 5.某市的出租车的起步价为5元(行驶不超过7千米),以后每增加1千米,加价1.5元,现在某人乘出租车行驶P 千米的路程(P >7)所需费用是 ( )
A.5+1.5P
B.5+1.5
C.5-1.5P
D.5+1.5(P -7)
6.求下列代数式的值,计算正确的是 ( )
A. 当x =0时,3x +7=0
B. 当x =1时,3x 2-4x +1=0
C. 当x =3,y =2时,x 2-y 2=1
D. 当x =0.1,y =0.01时,3x 2+y =0.31
二、 填空题
1. 当a =4,b =12时,代数式a 2-b a
的值是___________。

2. 小张在计算31+a 的值时,误将“+”号看成“-”号,结果得12,那么31+a
的值应为_____________。

3. 当x =_______时,代数式53
x -的值为0。

4. 三角形的底边为a ,底边上的高为h ,则它的面积s =_______,若s =6cm 2,h =5cm ,
则a =_______cm 。

5.当x y
x y
-
+
=2时,代数式
x y
x y
-
+

22
x y
x y
+
-
的值是___________。

6.邮购一种图书,每册书定价为a元,另加书价的10%作为邮费,购书n册,总计金额为y元,则y为___________;当a=1.2,n=36时,y值为___________。

三、解答题
1.根据下面所给a的值,求代数式a2-2a+1的值。

(1)a=1 (2)a=-1 (3)a=0 (4)a=-0.5
2.当x=1,y=-6时,求下列代数式的值。

(1)x2+y2(2)(x+y)2(3)x2-2xy+y2
四、解答题
1.有一个两位数,十位上的数字为a,个位上的数字比十位上的数字大5,用代数式表示这个两位数,并求当a=3时,这个两位数是多少?
2.已知y=ax2+bx+3,当x=-3时,y=-7,试求x=-3时,y的值。

能力达标测试
[时间60分钟满分100分]
一、选择题(每小题4分,共20分)
1.当a=1
2
,b=
1
3
,c=
1
6
时,代数式(a-b)(a-c)(b-c)的值是()
A.1
9
B.
1
36
C.
1
54
D.
1
108
2.已知a,b互为相反数,c、d互为倒数,则代数式2(a+b)-3cd的值为()A.2 B.-1 C.-3 D.0
3.当x=3时,代数式px2+qx+1的值为2002,则当x=-3时,代数式px2+qx+1的值为()A.2000 B.-2002 C.-2000 D.2001
4.关于代数式21
3
a
a
-
+
的值,下列说法错误的是()
A.当a=1
2
时,其值为0 B.当a=-3时,其值不存在
C.当a≠-3时,其值存在
D.当a=5时,其值为5
5.某人以每小时3千米的速度登山,下山时以每小时6千米的速度返回原地,则来回的平均速度为
()
A.4千米/小时
B.4.5千米/小时
C.5千米/小时
D.5.5千米/小时
二、填空题(每空4分,共24分)
1.当a=2,b=1,c=-3时,代数式
2
c b
a b
-
+
的值为___________。

2.若x=4时,代数式x2-2x+a的值为0,则a的值为________。

3.当a=
1
1
2
时,
2
2
1
1
a a
a a
++
-+
=____________。

4.如图3-3所示,四边形ABCD和EBGF都是
正方形,则阴影部分面积为_______cm2
5.如果某船行驶第1千米的运费是25元,以后
每增加1千米,运费增加5元,现在某人租船
要行驶s千米(s为整数,s≥1),所需运费表
示为_________,当s=6千米时,运费为________________。

三、综合应用(每小题10分,共30分)
1.已知a2+5ab=76,3b2+2ab=51,求代数式a2+11ab+9b2的值。

2.已知x
y
=2,
x
z
=4,z=1,求代数式
x y z
x y z
++
-+
的值。

3.一个堤坝的截面是等腰梯形,最上面一层铺石块a块,往下每层多铺一块,最下面一层铺了b块,共铺了n层,共铺石块多少块?当a=20,b=40,n=17时,堤坝的这个截面铺石块多少块?
四、探索创新(共12分)
从2开始,连续的偶数相加,和的情况如下表:
加数的个数(n)和(S)
1 2=1×2
2 2+4=6=2×3
3 2+4+6=12=3×4
4 2+4+6+8=20=4×5
5 2+4+6+8+10=30=5×6
……
N个最小的连续偶数相加时,它们的和S与n之间有什么样的关系?用公式表示出来,并由此计算下列各题。

(1)2+4+6+8+…+202
(2)126+128+130+…+300
五、活动实践(共10分)
保险公司赔偿损失的计算公式为:保险赔款=保险金额×损失程度;
损失程度=×100%;若某人参加保险时的财产价值200000元,受损时,按当时市场价计算总值150000元,受损后残值30000元,请你计算一下,该投保户能获得多少保险赔偿?
六、中考题(共4分)
(2002.四川)某种商品进价为a元,商店将价格提高30%作零售价销售,在销售旺季过后,商店又以八折的价格开展促销活动,这时该商品一件的售价为()A.a元 B.0.8a元 C.1.04a元 D.0.92a元
答案
基础巩固训练
一、1.B 2.D 3.C 4.C 5.D 6.B
二、1. 13 2.50 3. 5 4.1
2
ah
12
5
5. 1
6.an(1+10%) 4
7.52

三、1.(1)0 (2)4 (3)1 (4)2.25
2.(1)37 (2)25 (3)49
四、1.10a+(a+5),38 2. 13
能力达标测试
一、1.D 2.C 3.C 4.D 5.A
二、1.
4

3
2.-8
3.
19
7
4. 450
5. 20+5s 50元
三、1.提示:a2+11a+9b2=(a2+5ab)+3(3b2+2ab)=76+3×51=229 3.提示:∵z=1 ,∴x=4,y=2
∴x+y+z
x-y+z

7
3
3.1
2
(a+b)n,510块。

四、S=n(n+1)。

(1)101×(101+1)=10302 (3)150×(150+1)-62(62+1)=18744。

五、 150000-30000
200000
150000
=160000(元)六、C。

相关文档
最新文档