人教版七年级上册数学 代数式(基础篇)(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学代数式解答题压轴题精选(难)

1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.

(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:

方法①:________ 方法②:________

请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________

(2)根据(1)中的等式,解决如下问题:

①已知:,求的值;

②己知:,求的值.

【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2

(2)解:①把代入

∴,

②原式可化为:

【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .

方法②:草坪的面积= ;

等式为:

故答案为:,;

【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和

的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.

2.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.

我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.

(1)求a,c的值;

(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;

(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.

①若点A向右运动,点C向左运动,AB=BC,求t的值;

②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.

【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30

(2)-70或

(3)解:①如下图所示:

当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,

点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果

AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,

点A,C之间

每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,

点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.

【解析】【解答】解:(2)分三种情况讨论,

•当点D在点A的左侧,

∵CD=2AD,

∴AD=AC=50,

点C点表示的数为-20-50=-70,

‚当点D在点A,C之间时,

∵CD=2AD,

∴AD= AC= ,

点C点表示的数为-20+ =- ,

ƒ当点D在点C的右侧时,

AD>CD与条件CD=2AD相矛盾,不符合题意,

综上所述,D点表示的数为-70或 ;

【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。(2)分三种情况:当点D在点A的左侧;当点D在点A,C之间时;当点D在点C的右侧时,根据CD=2AD,及点A、C表示的数,就可求出点D表示的数。

(3)① 根据题意画出图形,当t=0时,AB=21,BC=29 ,分情况讨论:a.点A,C在相遇前时; b.点A,C在相遇时,AB=BC ,分别求出符合题意的t的值即可;②当时间为t 时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,建立方程求出m的值即可。

3.先阅读下面文字,然后按要求解题.

例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.

因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.

解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.

(1)补全例题解题过程;

(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).

【答案】(1)解:101×50

(2)解:原式=50×(2a+99b)=100a+4950b.

【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.

(2)仿照(1)利用加法的交换律和结合律进行计算即可.

4.用正方形硬纸板做三棱柱盒子,每个盒子的侧面为长方形,底面为等边三角形.

(1)每个盒子需________个长方形,________个等边三角形;

(2)硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).

现有相同规格的 19 张正方形硬纸板,其中的 x 张按方法一裁剪,剩余的按方法二裁剪.

①用含 x 的代数式分别表示裁剪出的侧面个数,底面个数;

②若裁剪出的侧面和底面恰好全部用完,求能做多少个盒子.

【答案】(1)3;2

(2)解:①∵裁剪x张时用方法一,

∴裁剪(19−x)张时用方法二,

∴侧面的个数为:6x+4(19−x)=(2x+76)个,

底面的个数为:5(19−x)=(95−5x)个;

②由题意,得

解得:x=7,

经检验,x=7是原分式方程的解,

∴盒子的个数为:

答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.

【解析】【解答】(1)由图可知每个三棱柱盒子需3个长方形,2个等边三角形;

故答案为3,2.

【分析】(1)由图可知两个底面是等边三角形,侧面是长方形,所以需要2个等边三角形和3个长方形。

(2)①由题意知裁剪x张用方法一,则(19-x)张用方法二,再根据方法一二所得的侧面数与底面数列代数式。②根据每个三棱柱的底面数目与侧面数目的比列方程,求解x,由此计算出侧面总个数,即可求得盒子的个数。

5.亚萍做一道数学题,“已知两个多项式,,试求.”其中多项式的二次项系数印刷不清楚

(1)乔亚萍看了答案以后知道,请你替乔亚萍求出多项式的二

相关文档
最新文档