大学物理课件 (7)
大学物理第7章恒定磁场(总结)
磁场对物质的影响实验
总结词
磁场对物质的影响实验是研究磁场对物质性 质和行为影响的实验,通过观察物质在磁场 中的变化,可以深入了解物质的磁学性质和 磁场的作用机制。
详细描述
在磁场对物质的影响实验中,常见的实验对 象包括铁磁性材料、抗磁性材料和顺磁性材 料等。通过观察这些材料在磁场中的磁化、 磁致伸缩等现象,可以研究磁场对物质内部 微观结构和宏观性质的影响。此外,还可以 通过测量物质的磁化曲线和磁滞回线等参数 ,进一步探究物质的磁学性质和磁畴结构。
毕奥-萨伐尔定律
02
描述了电流在空间中产生的磁场分布,即电流元在其周围空间
产生的磁场与电流元、距离有关。
磁场的高斯定理
03
表明磁场是无源场,即穿过任意闭合曲面的磁通量恒等于零。
磁场中的电流和磁动势
安培环路定律
描述了电流在磁场中所受的力与 电流、磁动势之间的关系,即磁 场中的电流所受的力与电流、磁 动势沿闭合回路的线积分成正比。
磁流体动力学
研究磁场对流体运动的影响,如磁场对流体流动的导向、加速和 减速作用。
磁力
磁场可以产生磁力,对物体进行吸引或排斥,可以用于物体的悬 浮、分离和搬运等。
磁电阻
某些材料的电阻会受到磁场的影响,这种现象称为磁电阻效应, 可以用于电子器件的设计。
磁场的工程应用
1 2
磁悬浮技术
利用磁场对物体的排斥力,实现物体的无接触悬 浮,广泛应用于高速交通、悬浮列车等领域。
磁动势
描述了产生磁场的电流的量,即 磁动势等于产生磁场的电流与线 圈匝数的乘积。
磁阻
描述了磁通通过不同材料的难易 程度,即磁阻等于材料磁导率与 材料厚度的乘积。
磁场中的力
安培力
大学物理 第7章 机械波
(1)以点A为坐标原点,写出波动方程. (2)以距点A为5m处的点B为坐 标原点,写出波动方程; (3)写出传播方向上点C、点D的简谐运动方 程; (4)分别求出BC和CD两点间的相位差.
u • C 8m • B 5m • A 9m
u
解:已知 u=20m/s
频率与周期的关系为:
波速(u) : 振动状态在媒质中的传播速度.
波速与波长、周期和频率的关系为:
1 T
u
T
7.1.4、球面波和平面波
波场--波传播到的空间。
波线(波射线)--代表波的传播方向的射线。
波面--波场中同一时刻振动位相相同的点的轨迹。
波前(波阵面)--某时刻波源最初的振动状态 传到的波面。 各向同性均匀介质中,波线恒与波面垂直.
x ut y( x x , t t ) A cos[ ( t t ) 0 ] u x A cos[ ( t ) 0 ] u
t时刻的波形方程
u
y( x x , t t ) y( x , t )
例题1: 一平面简谐波以速率u = 20m/s沿直线传播. 已知在传播路径
机械振动在介质中的传播称为机械波。 声波、水波 波动是一切微观粒子的属性,
与微观粒子对应的波称为物质波。
各种类型的波有其特殊性,但也有普遍的共性, 有类似的波动方程。
7.1.1 机械波的产生
(1)有作机械振动的物体,即波源
(2)有连续的媒质 y
v x 如果波动中使介质各部分振动的回复力是弹性力, 则称为弹性波。
p I wu S
1 2 2 I A u 2
大学物理课件-第7章 波动
2.波源是否一定在原点?
如下图已知一沿X 轴正向传播,波速为u的波,p点振动方程为 yp=Acos(ωt+φ),求波函数
Yl
O
P
X
yAco s(txl)
u
yy A A cco o sst( t l)2 x l)
u 鞍山科技大学 姜丽娜
14
四、 波函数的意义
波线和波面是为形象描述波的传播而引入的假想的线和面。
⑴波线: 沿波的传播方向所画出的有向线段称波线。
⑵波面: 波在传播过程中,每一时刻,振动位相相同点的轨 迹的统称。波线垂直于波面。
波前:某一时刻振动位相所到达的各点连成的面。
平面波:波阵面为平面的波动称平面波。见(图a)
波面
波线
图(a) 鞍山科技大学 姜丽娜
3.问题: 波动传播的是什么?
波动是振动状态的传播,既{x、v}或 (ωt+φ) 的传播;也是 振动能量的传播。振动传播时,振动的质点并不沿振动的传播 方向移动,而是在各自的平衡位置附近作振动(如死水潭中漂 浮的树叶)。
鞍山科技大学 姜丽娜
5
二、波动的概念
1.行波:扰动的传播。
2.脉冲:抖动一次的扰动。
意义:当波沿X轴正向传播时x>0的点位相落后于原点;x<0的 点位相超前于原点。
当波沿X 轴负向传播时
y y A A ccoo s (stt (u x) 鞍山2 科 技大 学 x姜A )丽c娜 o2 s(T t x)13
问题:
1. 2πx /λ 的物理意义是什么? x点与原点的位相差。
4
6
0.0c 2o3st (x1)
3 12
鞍山科技大学 姜丽娜
大学物理学第7章气体动理论(Temperature)
4
研究对象:大量无规则热运动气体分子构成的系统 研究内容:物质与冷热有关的性质及这些性质的变化
对象特点:单个分子 无序性、偶然性、遵循力学规律 整体(大量分子):服从统计规律
mvx
l2
立直角坐标系。
a
O
-mvx
X
(2)选任意一个分子a作为研
究对象,求其对A1面的压力 Z
l1
分子“a” 的速度:
分子“ a”碰撞器壁A1面一次所受的冲量:
由牛顿第三定律可知,器壁A1面受分子碰撞一次所受的冲量:
23
分子“ a”相继碰撞器壁A1面两次所用的时间为: 单位时间内,分子“ a”与器壁A1面碰撞的次数为: 单位时间内,分子“ a”对器壁A1面的冲量即冲力为:
如压强 p、体积 V、温度 T等 .
平衡态:一定量的气体,在不受外界的影响下, 经过一 定的时间, 系统达到一个稳定的, 宏观性质不随时间变 化的状态称为平衡态 .(理想状态)
平衡态的特点
( p,V ,T )
p
*( p,V ,T )
o
V
1)单一性(
处处相等);
2)物态的稳定性---与时间无关;
3)自发过程的终点;
(2)在平衡态下,分子按位置的分布是均匀的 n dN N
则各处分子数密度是相同的。
dV V
(3) 分子速度指向任何方向的机会是一样, 或分子速度按方向的分布是均匀的。
vx2 vy2 vz2
各个方向的速度分量的平均值相等。
vx 2
v1 x 2
大学物理ppt课件完整版
03
计算机模拟和仿真
利用计算机进行数值模拟和仿真 实验,验证理论预测和实验结果 。
2024/1/25
5
物理学的发展历史
01
02
03
古代物理学
以自然哲学为主要形式, 探讨自然现象的本质和规 律,如古希腊的自然哲学 。
2024/1/25
经典物理学
以牛顿力学、电磁学等为 代表,建立了完整的经典 物理理论体系。
固体的电子论
介绍了能带理论、金属电子论、半导体电子 论等。
30
核物理和粒子物理基础
原子核的基本性质
包括核力、核子、同位素等基本概念。
放射性衰变
阐述了α衰变、β衰变、γ衰变等放射性衰变过程及 其规律。
粒子物理简介
介绍了基本粒子、相互作用、粒子加速器等基本 概念。
2024/1/25
31
THANKS
感谢观看
19
恒定电流的电场和磁场
恒定电流:电流大小和方 向均不随时间变化的电流 。
2024/1/25
毕奥-萨伐尔定律:计算 电流元在空间任一点产生 的磁场。
奥斯特-马可尼定律:描 述电流产生磁场的规律。
磁场的高斯定理和安培环 路定理:揭示磁场的基本 性质。
20
电磁感应
法拉第电磁感应定律
描述变化的磁场产生感应电动势的规律。
01
又称惯性定律,表明物体在不受外力作用时,将保持静止状态
或匀速直线运动状态。
牛顿第二定律
02
又称动量定律,表明物体加速度与作用力成正比,与物体质量
成反比。
牛顿第三定律
03
又称作用与反作用定律,表明两个物体间的作用力和反作用力
总是大小相等、方向相反、作用在同一直线上。
大学物理PPT完整全套教学课件pptx(2024)
匀速圆周运动的实例分析
3
2024/1/29
13
圆周运动
2024/1/29
01
变速圆周运动
02
变速圆周运动的特点和性质
03
变速圆周运动的实例分析
14
相对运动
2024/1/29
01 02 03
参考系与坐标系 参考系的选择和建立 坐标系的种类和应用
15
相对运动
2024/1/29
相对速度与牵连速度 相对速度的定义和计算
2024/1/29
简谐振动的动力学特征
分析简谐振动的动力学特征,包括回复力、加速度 、速度、位移等物理量的变化规律。
简谐振动的能量特征
讨论简谐振动的能量特征,包括动能、势能 、总能量等的变化规律,以及能量转换的过 程。
32
振动的合成与分解
2024/1/29
同方向同频率简谐振动的合成
分析两个同方向同频率简谐振动的合成规律,介绍合振动振幅、合 振动相位等概念。
5
大学物理的研究方法
03
观察和实验
建立理想模型
数学方法
物理学是一门以实验为基础的自然科学, 观察和实验是物理学的基本研究方法,通 过实验可以验证物理假说和理论,发现新 的物理现象和规律。
理想模型是物理学中经常采用的一种研究 方法,它忽略了次要因素,突出了主要因 素,使物理问题得到简化。
数学是物理学的重要工具,通过数学方法 可以精确地描述物理现象和规律,推导物 理公式和定理。
2024/1/29
适用范围
适用于一切自然现象,包括力学、热学、电磁学 、光学等各个领域。
应用举例
热力学第一定律、机械能守恒定律、爱因斯坦的 质能方程等。
大学物理ppt课件
在静电场中,电势是一个相对量,它的大小与参考点的选择有关。在同一个静电场中,不 同位置的电势不同,但任意两点间的电势差是一定的。
磁场与电流
01 02 03
磁场
磁场是由磁体或电流所产生的物理场,可以用磁感应强度 和磁场强度来描述。磁感应强度是矢量,其方向与小磁针 静止时北极所指的方向相同,其大小可以用磁通密度来衡 量。磁场强度也是一个矢量,其方向与磁感应强度的方向 垂直。
几何光学的历史
几何光学的发展可以追溯到古代,当 时人们已经开始利用光的直线传播和 反射性质。
光速与相对论
光速的定义
光速是光在真空中传播的速度,约为每秒299,792,458米。
光速的测量
光速的测量可以追溯到17世纪,当时科学家们开始尝试测量光速 。
光速与相对论的关系
相对论是由爱因斯坦提出的,它解释了光速在不同介质中的变化以 及光速对时间的影响。
大学物理ppt课件
目录
CONTENTS
• 力学部分 • 电磁学部分 • 光学部分 • 量子物理部分 • 实验物理部分
01
力学部分
牛顿运动定律
牛顿第一定律
物体总保持匀速直线运动或静止状态,除非作用在它 上面的力迫使它改变这种状态。
牛顿第二定律
物体的加速度与作用力成正比,与物体质量成反比。
牛顿第三定律
经典实验重现及解析
经典实验选择
选择一些经典的物理实验进行重现及解析, 例如牛顿第二定律、胡克定律等,需要了解 这些实验的背景和意义。
实验装置与操作
根据选择的经典实验,准备相应的实验装置和器材 ,掌握实验操作流程和数据采集方法。
结果分析与讨论
对实验结果进行分析和讨论,理解实验原理 和结论,并与理论进行比较和验证。
大学物理与实验(I)7恒定磁场-
大小反映场点磁场的强弱, 方向为场点的磁场方向
r
Idl
I
L
§7-3 产生磁场的规律
一、电流的磁场
电流元的磁感应强度: 0 0 Idl r dB 2 4 r ---毕奥-萨伐尔定律
dB
任意载流导线的磁感应强度: 来自0 0 Idl r B dB l r 2 l 4
r
载流导线环L对电流元的作用
Idl
I
L
0 0 Idl r dF0 I 0 dl0 2 L 4 r
0 0 Idl r 定义 B L r 2 4
0 0 Idl r dF0 I 0 dl0 L 4 r2
----载流导线环L在P处的磁感应强度 P 单位:特斯拉(T) dF0 I 0 dl0 B I 0 dl0
P r Idl
I
[例1]有一长为L的载流直导线,通有电 流为I,求与导线相距为a的P点处的 B
解:取电流元,它在P点的磁感应强度
I
l
r
0 0 Idl r dB 2 4 r
a
P
方向垂直于黑板向内,
0 Idl sin 大小 dB 2 4 r
L
bc da
B
0 j
2
B
a
b
两侧是均匀磁场, 大 小相等,方向相反
d l c
B
[例8]半径为R的无限长直导体,内部有 一与导体轴平行、半径为a的圆柱形孔洞 ,两轴相距为b。设导体横截面上均匀通 有电流I,求P点处的磁感应强度。 解:设体电流密度方向垂 直于纸面向外 P R
中国矿业大学(北京)《大学物理》课件-第七章 机械波
y
Acos
t1
2
x
0
以y为纵坐标、x 为 横坐标,
y
u
波形方程
x
给出 t1 时刻空间各
点的位移分布。
给出:t1时刻 波线上各个质点偏离各自平衡位置 的位移所构成的波形曲线(波形图)。
y
u
y
Acos
t1
2
x
0
x
A,波形曲线为余弦曲线,其 “周期” 为 。
B,沿波线(x轴)方向,两个距离相隔的质点的 振动的相位差为:2。
Physics
第7章 机械波
Physics
§7-1 机械波的产生和 传播
§7-1 机械波的产生和传播
波动是振动的传播过程。
机械波:机械振动在介质中的传播过程。
eg,声波、水波、地震波
1、机械波产生的条件
波源 弹性介质
产生机械振动的振源 传播机械振动的介质
注:波动是波源的振动状态或振动能量在介质中 的传播,介质的质点并不随波前进。eg,裙摆
求:1)振幅,2)波长,3)波的周期,4)弦上任一质点的 最大速率,5)图中a、b两点的相位差,6) 3T/4时的波 形曲线。
y / cm
0.5 0.4 0.2 0 0.2 0.4 0.5
中国矿业大学(北京)
M1
a
10 20
M2
b
30 40
50 60
70 x / cm t =0
18/23
补充例题2
波前:在任何时刻,波面有无数多个,最前方的波 面即是波前。波前只有一个。
平面波:波阵面为平面的波动
球面波:波阵面为球面的波动
柱面波:波阵面为柱面的波动
中国矿业大学(北京)
上海交通大学大学物理课件-机械振动
y A
y
F [(V0 yS)]g mg
A
O
(V0g mg) ySg
m
ySg
m
m
d2 y dt 2
ySg
d2 dt
y
2
Sg
m
y
0
Sg
m
[例7-4]质量为m的刚体可绕固定水平轴o摆动。设刚体重心
C到轴o的距离为b,刚体对轴o的转动惯量为J。试证刚体
T 2π
T 2π 2π m
k
T 2π
-由振子性质确定-固有周期
= 1/T (Hz) -谐振动的频率
T 2π 2π m
k
T 2π
-由振子性质确定-固有周期
= 1/T (Hz) -谐振动的频率
而 2π k
Tm
-谐振动的角频率
—2秒内的振动次数
t =1s时x =-2cm且向x正向运动, 写出振动表达式。
A t=0
解:由题意,T = 2 s
t=1s 时的振动矢量如图所示。
t=0s 时的振动矢量方向应为
x
A1 矢量前1s时的旋转矢量。
(即半个周期前)
t = 1s
A1
与 A1 矢量夹角为 ,如图。 时矢量位置
由图, = /3
x
=
4cos(t
第 7 章 机械振动
物理系统受到外界扰动时,系统状态在平衡态附 近往复变化-周期运动或称振动。
物理量(如位移、电流等) 在某一数值附近反复变化。
振动有各种不同的形式:
•机械振动
L
•电磁振动
•微观振动(如晶格点阵
2024版《大学物理》全套教学课件(共11章完整版)
01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。
02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。
法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。
介绍互感的概念、计算方法以及变压器的工作原理和应用。
分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。
电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。
大学物理普通物理学chapter-7
e r 12
k
q1q2 r3
r12
k 1 9109 N m2/C2 4πε0
0 = 8.8510-12 C2 ·N-1·m-2
真空介电常量
F1 2
F21
1
4π 0
q1q 2 r2
er12
1
4π 0
q1q 2 r3
r1 2
返回 退出
F1 2
F21
1
4π 0
q1q 2 r2
er12
• 电场中各处的力学性质不同。
2. 在电场中的同一点上放不同的
试验 电荷。
•
F q0
与q0无关。
电场强度(intensity
of electric field):
F
E
q0
返回 退出
F
E
q0
场强的大小: F/q0 场强的方向:正电荷在该处所受 电场力的方向。
讨论
1.
矢量场
E
E
r
E
x,y ,z
返回 退出
使用Matlab求解得到的两个 超越方程 F=0的位置x =0.94m 排斥力最大的位置x =1.25m
返回 退出
补充例7-1 设原子核中的两个质子相距4.0×10-15 m, 求此两个质子之间的静电力。
解:两个质子之间的静电力是斥力:
Fe
1
4π 0
q1q 2 r2
9.0 109
按库仑定律,电子和质子之间的静电力为
Fe
1 4πε 0
e2 r2
8.89
109
(1.60 1019 )2 (0.529 1010 )2
8.22108 (N)
返回 退出
2024版大学物理学课件完整ppt全套课件
04
03
01
2024/1/29
9
牛顿运动定律
1 2
牛顿第一定律 惯性定律、力的概念、力的性质。
牛顿第二定律 动量定理的推导、质点系的牛顿第二定律。
3
牛顿第三定律 作用力和反作用力、平衡力系、非平衡力系。
2024/1/29
10
动量定理与动量守恒定律
动量与冲量
动量的定义、冲量的定义、动量定理的推导。
03
通过逻辑推理和演绎,对物理现象进行深入分析,揭示其内在
规律。
5
物理学的发展历史
古代物理学
以自然哲学为主要形式,探讨宇宙的 本质和构成。
现代物理学
以相对论和量子力学为代表,揭示了 微观世界和高速运动物体的规律。
经典物理学
以牛顿力学、热力学和电磁学为代表, 建立了完整的经典物理理论体系。
2024/1/29
2024/1/29
31
测不准关系与量子力学基本原理
测不准关系
测不准关系是指微观粒子的某些物理量(如位置和动量)不能 同时具有确定的数值,其中一个量越确定,另一个量的不确定 程度就越大。
2024/1/29
量子力学基本原理
量子力学基本原理包括波粒二象性、测不准关系、量子态和概 率诠释等。这些原理揭示了微观世界的奇特性和规律性,是理 解量子现象的基础。
15
热力学第二定律
热力学第二定律的表述
热力学第二定律指出,不可能从 单一热源吸取热量,使之完全变 为有用功而不产生其他影响。
熵的概念与性质
熵是热力学系统的一个状态函数, 表示系统的无序程度。自然过程 中,熵总是增加的。
热力学第二定律的应用
热力学第二定律揭示了自然界中 许多不可逆过程的方向性,如热 传导、扩散等。
《大学物理》第七章 磁力S
磁(场)力
一、磁感应强度的定义 洛伦兹力
Fm
Fm qv B
洛伦兹力的大小
F qvB sin
q
B v
M
'
Fm 1、磁感应强度的大小 B qv sin 2、磁感应强度的方向 Fm 0
——零力线的方向 3、磁感应强度的单位
M
SI:特斯拉(T), Gauss: 1T=104G
2 m v/ / mv R h qB qB
h 常量
B↑
B
h↓
F
F
磁镜 磁瓶
——磁约束现象 应用: 可控轻核聚变
17
动画
地磁场: 中间弱、两极强
18
地磁场:中间弱、两极强,是天然的磁捕获器。
Charged Particle Approaching Earth
范.阿仑辐射带
S S S底
B dS
S
BdS cos
S
BS 底 ( BS底 ) 0
12
§ 7 、3
带电粒子在电磁场中的运动
—匀变速运动
B
F
一、匀强电场中的运动
二、匀强磁场中的运动
mv R qvB = m v2/R 得: qB
2 R 2 m 周期 T v qB 1 qB 频率 f T 2 m
UH B kI
25
§7.5 载流导体在磁场中受的力 一、安培力的公式 设导线所通电流强度为:I B 考虑一小段长为dl 的载流导线在磁场中的受力。 S 为方便,定义电流元: Idl (与电流同向) q 设:电流元中每个载流子 q的平均定向 v 运动速度为 v 则每个载流子所受磁力: f qv B I d l 电流元中的载流子数量: dN nSdl dF fdN 则电流元 Idl 所受的总磁场 力:
大学物理-第七章 光的衍射
A2
a
B
三个半波带,呈亮纹, I I0
R
A
L
A1
C
B /2
R
A
L
A1
A2 C
B /2
P Q
o
P Q
o
asin 0
中央明纹中心
a sin 2k k 干涉相消(暗纹)2k个半波带
a sin
2 (2k 1)
2
干涉加强(明纹)
物 偏 离 直 线 传 播 ,*
进入几何阴影区, 形成光强不均匀
S 分 布的 现 象。
*
HP
G
二 惠更斯 — 菲涅尔原理
波传到的任何一点都是子波
的波源,各子波在空间某点的相
干叠加,就决定了该点波的强度。
惠更斯 菲涅耳
dS
en
r
Q
P
*
t S : 时刻波阵面
dS :波阵面上面元
S
(子波波源)
dE
-2
-1
多光束干涉光强曲线
0
1
sin2N/sin2
N2
2 sin (a /)
-8
-4
光栅衍射 光强曲线
-8
-4
0
4
I N2I0单
单缝衍射 轮廓线
0
4
8 sin (d /) 8 sin (d /)
单缝和多缝的夫琅禾费衍射图样
N=1
N 1
N=2
N 3
N=3
N 5
N=4
N 8
N=5
例:一光栅透光部分a 0.06mm,用波长为600 nm的单色 光垂直照射到光栅上,透镜焦距f 2m,测得屏幕上相邻 条纹间距x 0.4cm.求:(1)在单缝衍射的中央明纹宽度内, 最多可以看到几级明纹?(2)光栅不透光部分宽度b ?
大学物理:第七章 热力学定律
功
做功可以改变系统的状态
做功是系统与外界交换能量的一种方式 在热学中,它是外界有序运动能量与系
统无序运动能量间的转换。过程量
摩擦升温(机械功) 电加热(电功)
上海交通大学 物理系
准静态过程的功
dA PSdl PdV 若A>0系统对外界作功.
A dA v2 PdV v1
若A<0外界对系统作功
上海交通大学 物理系
准静态过程
可以用P-V图描述准静态的变化过程,这P-V图上的每 上点都可表示系统的一个平衡态。
准静态做功:气体膨胀过程
P
P1
P
P2
12
V1 V2 V
上海交通大学 物理系
准静态过程
作功是系统与外界交换能量的一种方式,是力 学相互作用下的能量转移。作功是通过宏观的 有规则运动来完成的。
上海交通大学 物理系
理想气体
严格满足玻意耳定律 pV = vRT
压强趋向于零极限状态下的气体
满足道尔顿分压定律 满足阿伏伽德罗定律 满足焦耳定律 U=U(T) 内能由系统的状态唯一地确定,并随状态变化而变化, 是状态的单值函数
E E(2) E(1)
上海交通大学 物理系
理想气体的内能 焦耳实验
上海交通大学 物理系
气体实验定律
关于气体热学行为的5个基本实验定律, 也是建立理想气体概念的实验依据。
玻意耳定律
盖·吕萨克定律 查理定律。 阿伏伽德罗定律 道耳顿定律
上海交通大学 物理系
§9.1 热力学第一定律
包括热现象在内的能量守恒和 转换定律
热力学第一定律
Q U2 U1 W
系统从外界吸热 Q
处于平衡态系统的内能是确定的;
大学物理课件-第7章 波动(wave)66页PPT
2 0.1 2 3
0.3(m)
鞍山科技大学 姜丽娜
17
例2:已知一平面简谐波沿X轴负向传播,波速u=9m/s ,距原点
1m处的A点振动方程为
yA0.02 co3s t(1 4)yO 1m A
X
求:波函数。
例2 解: 3,2 3, u6(m )
y0 .0c 2o 3 ts (12 x 1 )
yq=Acos(ω(t+△t -(xp +u△t )/u)+φ) =Acos(ω(t-xp /u)+φ) =yp
Y
q
O
p
X
鞍山科技大学 姜丽娜
15
Y
q
O
p
X
上式说明:t时刻p点的运动状态经△t时间传到了q点,所以 波函数表示波形的传播过程。当t连续变化时,波形连续不断前 进,故波动过程可以表示为波形随时间不断向前移动的过程,波 形不断前进的波称行波。
。
鞍山科技大学 姜丽娜
21
解 : u / 1/0 5 0 0 2 (m )
波 1 t 0 源 时 ,y 0 振 : y A 2 0, v 0 2 动 0 c 4 o 1 方 s 2 3 0 t( 0 3 2 程 )m ( )m
⑵波函数: y2c 4o 1s0 (t 03 22 x)m ( )m
第7章 波 动(wave)
§7.1 行波
§7.6 惠更斯原理
§7.2 简谐波
§7.7 波的叠加 驻波
§7.3 物体的弹性形变 §7.8 声波
§7.4 弹性介质中的波速§7.9 多普勒效应
§7.5 波的能量
鞍山科技大学 姜丽娜
1
第7章 波 动(wave)
大学物理学(第二版)全套PPT课件
万有引力定律
任意两个质点通过连心线方向上的力相互吸引。 该引力大小与它们质量的乘积成正比与它们距离 的平方成反比。
机械能守恒定律
在只有重力或弹力做功的物体系统内(或者不受 其他外力的作用下),物体系统的动能和势能( 包括重力势能和弹性势能)发生相互转化,但机 械能的总能量保持不变。
04
动量守恒与能量守恒
热力学第二定律
热力学第二定律的表述
不可能从单一热源取热,使之完全转换为有用的功而不产生其他影响。
热力学第二定律的数学表达式
对于可逆过程,有dS=(dQ)/T;对于不可逆过程,有dS>(dQ)/T,其中S表示熵,T表 示热力学温度。
热力学第二定律的应用
热力学第二定律揭示了自然界中宏观过程的方向性,指出了与热现象有关的实际宏观过 程都是不可逆的。同时,它也提供了判断这些过程进行方向的原则。
刚体的定轴转动中的功与能
转动功
力矩在转动过程中所做的功叫做“转动功”,它等于力矩与角位 移的乘积。
转动动能
刚体定轴转动的动能叫做“转动动能”,它等于刚体的转动惯量与 角速度平方的一半的乘积。
机械能守恒
在只有重力或弹力做功的情况下,刚体的机械能守恒,即动能和势 能之和保持不变。
06
热学基础
温度与热量
磁场的基本概念
01
磁场的定义
磁场是一种物理场,由运动电荷或电流产生,对放入其中的磁体或电流
有力的作用。
02
磁感线
用来形象地表示磁场方向和强弱的曲线,磁感线上某点的切线方向表示
该点的磁场方向。
03
磁场的性质
磁场具有方向性、强弱性和空间分布性。
安培环路定理与毕奥-萨伐尔定律
01
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥斯特实验表明
• 对长直载流导线,与之平行放置的磁针受力偏 转——电流的磁效应 • 磁针是在水平面内偏转的——横向力 • 突破了非接触物体之间只存在有心力的观念—— 拓宽了作用力的类型
磁铁对电流的作用
Ampere 通电导线受马蹄 形磁铁作用而运 动 螺线管与磁铁相互 作用时显示出N极 和S极
确定载流螺线管极性 实验表明载流 螺线管相当于磁 棒,螺线管的极 性与电流成右手 螺旋关系 一系列实验表明 磁铁 ———— 磁铁 电流 ———— 电流 都存在相互作用
dI j dS
I j cos dS j dS
s s
电流密度矢量j的分布构成一个矢量场——电流场
电流密度 j 电子数密度 n 的关系 • 自由电子数密度:n; • 电子电量的绝对值:e; • 设所有电子均以同一定向运动速 度 u 运动 • 则t时间内,通过导体内任一 面元迁移的电量为q
§7-1 恒定电流
• 电流:电荷的定向运动形成电流。正电荷流动的 方向为电流的方向。 • 电流强度:单位时间内通过导体任一横截面的电 量
单位:
q dq I lim t 0 t dt
安培,简称安,用A表示 较小的电流强度单位即毫安 (mA )、微安
(μA),它们与安培的换算关系是
j neu
考虑方向
q (u t S )ne
q (u t S ) ne j lim lim neu S 0 S 0 t S t S
二 电流的连续性方程 恒定电流条件
单位时间内通过闭合曲面向外流出的电荷,等于此 时间内闭合曲面内电荷的减少量 .
dI j dS jdS cos
dQi j dS s dt
I dS j
s
S
dS j
j dS 0 若对任意闭合曲面,
s
若闭合曲面 S 内的电荷不随时间而变化,则
dQi 0 dt
则此电流为恒定电流
I
S
I1
I I1 I2 0
3 1mA 10 A; 6 1 A 10 A
dI jdS
• 电流密度矢量 j
– 单位时间内通过垂直于电流方 向的单位面积的电量
q I dI j lim lim S 0 S 0 t S S dS
通过导体中任意截面 S的电流
强度与电流密度矢量的关系为
电动势的定义:单位正电荷绕闭合回路运动 一周,非静电力所做的功.
qEk dl W l Ek dl 电动势: l q q
Ek dl Ek dl Ek dl 0 in out
out
电源电动势
I2Βιβλιοθήκη j dS 0 恒定电流 s
dS
恒定电场
S
j
(1)在恒定电流情况下,导体中电荷分布不随时 间变化形成恒定电场; j E. (2)恒定电场与静电场具有相似性质(高斯定理 和环路定理),恒定电场可引入电势的概念; (3)恒定电场的存在伴随能量的转换.
例题
设铜导线中的电流密度为2.4 A/mm2 ,铜的自由电 28 3 n 8 . 4 10 / m 子数密度 ,求自由电子的漂移速度
j 2.4 A / mm 2 2.4 10 6 A / m 2
j 2. 4 10 6 4 u 1. 8 10 m / s 28 19 ne 8.4 10 1.6 10
按此速度,如果开关到灯泡之间用一米长的导线
相连,电流从开关传到用电器需要1、2个小时。 但实际上当开关一打开,灯立刻就亮了。为什么?
基本磁现象:
磁性:磁体可吸引铁、镍、钴等物质的性质。 磁极:磁体上磁性最强处(N极、S极)。 磁极不可分,总是成对出现。 同名磁极相斥,异名磁极相吸。
N S N N S S
地磁:
地磁北极在地理南极附近; 地磁南极在地理北极附近。
以小磁针北极(N极)的指向定义为磁场的方向。
奥斯特实验及其意义
• 19世纪20年代前,磁和电是独 立发展的 • 奥斯特,丹麦物理学家 Hans Christian Oersted深受康德 哲学关于“自然力”统一观点 的影响,试图找出电、磁之间 的关系 • 1820年7月
§7-2 电源 电动势
非静电力: 能不断分离正负电荷使正电荷逆静电场 力方向运动. 电源:提供非静电力的装置.
非静电电场强度 E k :
I
R +E k
为单位正电荷所受的非静电力.
W q ( E k E ) d l qE k dl
l l
+ ++E -
安培的研究课题
• 几乎在同样的背景下,安培提出的问题更深入 • 安培认为: – 磁现象的本质是电流 – 物质的磁性来源于“分子”电流 • 这是安培根据实验的种种表现作出的重要的抽象
“分子”电流
• 所谓“分子”,是指构成物质的基元,当时对物质结 构和分子、原子的认识还很肤浅 • 每个分子都有电流环绕着,当分子排列整齐时,它们 的电流合起来就可以满足磁棒的磁性所需要的电流 • 磁化可视为使物质中的分子电流排列整齐显示出总体 效果 • 以“分子电流”取代磁荷 ——能解释磁棒与载流螺线管的等效性 • 可将种种磁相互作用归结为电流之间的相互作用 • 提出寻找任意两个电流元之间作用力的定量规 律——即可解决磁相互作用的问题
qv
2.磁感应强度 B 的定义 ⑴ 正电荷 q 以速度 v 经过磁
⑵规定磁场中某点磁感强度 的大小。 F
场中某点,若 F 0 ,规定 此时 v 的方向为 B 的方向。
矢量关系式:F q v B
大小: F qvB sin
B
max
qv
Fmax
q
+ v v // B F 0 ; v B F qvB max 方向:正电荷 v B 的方向 ; 负电荷反向 1N/A m 单位:特斯拉 1(T )
被Maxwell誉为“科学中最光辉的成就之一”. Ampere本人则被誉为“电学中的Newton”.
启示
• 安培从错综复杂的现象与联系中,提炼出磁现象 的本质 ——独具慧眼; • 提出寻找电流、电流之间的相互作用的定量规律 问题——问题的深度、广度和重要性高于其他同 代人提出的问题,反映了正确抽象、洞察本质的 重要性; • 在解决问题上,面对难以测量的困难,巧妙地设 计示零实验,设计与理论猜测相结合,揭示出电 流元相互作用应具有的特点,采用矢量点乘、叉 乘来表示dl1、dl2、r12之间的关系;
B
y
⑴ 带电粒子在磁场中沿某 一特定直线方向运动时不受 力,此直线方向与电荷无关. ⑵ 带电粒子在磁场中沿其 他方向运动时F 垂直于 v 与特定直线所组成的平面.
v o v
z
F 0
+
v v
x
F 的大小与 q 和 v 的 q 反号, 乘积成正比, 则 F 反向。
⑶ 当带电粒子在磁场中垂 直于此特定直线运动时受 力最大. F Fmax F 且 Fmax 与q,v无关。
Ek dl Ek dl
l in
电源电动势的大小,等于将单位正电荷从负极 经电源内部移至正极时非静电力所作的功. – 标量 – 方向:电源内部 负——正 – 与外电路是否接通无关
§7-3 磁场 磁感强度
一 磁 场 静止电荷 运动电荷 二 磁感强度 1.实验结果 实验发现带电粒子在磁场中运动所受的力 与运动方向有关. 电场 磁场 静止电荷 运动电荷
困难
• 同样是无孤立的电流元 • 两电流元及两者连线三者不共面 • 涉及的几何因素更多,难度增大 • 安培精心设计了四个示零实验来 解决这些困难
• 经过后人对安培的公式修 ˆ) I1I 2 d l 2 ( d l1 r 12 k , 正、加工,得到现在的安 d F12 2 r 12 培定律形式
毕奥-萨筏尔的研究课题
• 寻找电流元对磁极作用力的定量规律 • 认为电流对磁极的作用力是自然界的基本力 • 受Oester横向力的影响,认为每一个电流元对磁 极的作用力也垂直于导线与磁极构成的平面 • 困难是无孤立的电流元 把电流分割成许多电流元
df Idl
关键是找到几何关系 还和几何因素如
r , 有关