新考试说明 中等题 数学

合集下载

000230000高等数学(工本)课程考试说明

000230000高等数学(工本)课程考试说明

000230000 高等数学(工本)课程考试说明一、本课程使用的教材、大纲高等数学(工本)课程指定使用的教材为:(1)《高等数学(工专)》(附大纲),全国高等教育自学考试指导委员会组编,吴纪桃、漆毅主编,北京大学出版社,2006版(2)《高等数学(工本)》(附大纲),全国高等教育自学考试指导委员会组编,陈兆斗、高瑞主编,北京大学出版社,2006版二、本课程的试卷题型及试题难易程度1.试卷题型结构表2.试卷分别针对识记、领会、简单应用、综合应用四个认知及能力层次命制试题,四个层次在试卷中所占的比例大致为识记占20%,领会占30%,简单应用占30%,综合应用占20%。

3.试卷难易度大致可分为容易、中等偏易、中等偏难、难四个等级,根据课程的特点,试卷中不同难易度试题所占的分数比例,大致依次为容易占30分,中等偏易占30分,中等偏难占20分,难占20分。

三、各章内容分数的大致分布根据自学考试大纲的要求,试卷在命题内容的分布上,兼顾考核的覆盖面和课程重点,力求点面结合。

教材具体各章所占分值情况如下:四、考核重点及难点1.高等数学(工专)教材部分第一章函数重点:基本初等函数、函数的特性。

难点:函数的复合。

第二章极限与连续重点:极限概念、极限运算、两个重要极限、连续性及间断点分类。

难点:两个重要极限及相应的各种变形形式。

第三章导数与微分重点:导数定义、微分概念、导数的几何意义、导数的物理意义、各种求导法则。

难点:复合函数求导、几类特殊函数的求导方法。

第四章微分中值定理与导数的应用重点:三个中值定理的内容、洛必达法则、函数的单调性、凹凸性、极值、最值之判定和实际应用。

难点:综合运用中值定理、函数的特征证明一些不等式或等式。

第五章一元函数积分学重点:不定积分、定积分概念及运算、定积分应用。

难点:不定积分的综合运算和变上限积分的求导数。

2. 高等数学(工本)教材部分第一章空间解析几何与向量代数重点:向量的运算、平面、直线、柱面、椭球面、圆锥面、旋转抛物面的标准方程及其图形。

哈尔滨中考指南:数学明确考点 吃透教材

哈尔滨中考指南:数学明确考点 吃透教材

哈尔滨中考指南:数学明确考点吃透教材根据哈尔滨中考《考试说明》,数学试题中容易题、中等题、较难题的分值比约为5:3:2,总共127个知识点,数与代数约占43%,空间与图形约占41%,统计与概率约占11%,课题学习约占5%。

中考试题的基础题多源于教材中例题、习题的变式,因此,考生一定要吃透教材,熟记书中的概念、定理、公理、公式、图形等。

逐一分析《考试说明》中的考点考生应认真阅读《考试说明》中的考点,并逐一进行分析。

考点将知识点分成了解、理解、掌握、灵活应用四个层次,考生应明确每个知识点考查的能力层次,做到心中有数,抓住重点内容进行强化训练。

对于《考试说明》中的题型示例要仔细揣摩,对于一些偏题、怪题要坚决舍弃。

中考试题的基础题多源于教材中例题、习题的变式,因此,大家一定要吃透教材,熟记书中的概念、定理、公理、公式、图形等,并将典型的例题、习题再认真地做一遍。

及时反思出错原因考生对于自己在学习过程中遇到的问题要及时反思,对于做错的题要追究错因,不要以马虎为借口一带而过或把正确的答案写上就完事大吉了。

考生在做题过程中容易出现以下错误:概念不清;漏读条件;计算不准;单位没统一;图形画错;分类讨论不全面;写答案时抄写错误;过程不全等。

考生可以参照这些查找错因,并及时反思。

通过对试卷中错题的分析,考生能够及时发现自己在哪种题型上存在问题,并在短时间内通过补习达到提分效果。

对于做对的题,考生也要总结方法,积累成功经验。

另外,在此提醒考生,由于复习时间有限,强项科目很难有大的提升空间,而弱项科目相对来讲提升空间较大,但前提条件是保证强项科目的分数不下滑。

做题时最好画图做题时有时需要画图,一道难题,有时候图画出来了,思路也就来了。

考生应合理应用手中的工具画图,铅笔、碳素笔、格尺、三角板搭配使用。

画图要有顺序性,因此,要正确理解条件。

图形的摆放要合理,要画出最适合自己思考角度的图形。

图形中线段、角度大小、位置要恰当,只有这样才能给猜测结论提供一定的思考方向。

高考天津卷命题说明数学学科解读

高考天津卷命题说明数学学科解读

2019年高考天津卷命题说明数学学科解读《2019年一般高等学校招生全国统一考试天津卷说明》数学学科(以下简称“数学考试说明”)的编写依据《一般中学数学课程标准(试验)》和教化部考试中心制定的《2019年一般高等学校招生全国统一考试大纲(课程标准试验版)》,并充分考虑天津市中学数学教学实际。

“数学考试说明”符合课程标准及素养教化的理念,体现适应时代特点及对人才培育的要求,着力于稳定,坚持“以实力立意命题”的指导思想,对实力要求、考试要求、考试形式与试卷结构等予以全面、详细的说明与说明。

“数学考试说明”既是高考数学(天津卷)命题的重要依据,也是学生复习和老师指导学生复习的重要参考。

体现“以实力立意命题”的指导思想“数学考试说明”中指出:数学学科的命题将根据“考查基础学问的同时,留意考查实力”的原则,确立以实力立意命题的指导思想,将学问、实力和素养融为一体,全面检测考生的数学素养。

以实力立意命题首先要确定试题的实力考查目标,并由此选择相宜的学科内容,进而选定试题的表述形式。

以实力立意命题还包括:在命题理念上体现以学科学习实力测试评价学生;在试卷框架结构上突出全面的实力因素、多元化的实力层次结构和合理的难度分布;在命题构思上强化实力点的设计,强调用数学基本方法解决数学问题;在试卷设计上有适度的创新型试题,开发、拓展已有题型的功能。

留意对数学实力的考查“数学考试说明”坚持对五种实力和两个意识的考查,将数学实力考查置于命题的核心位置,以实力立意为中心,把握学科的整体意义,着眼于用统一的数学观点组织材料,通过对数学实力的考查检测出学生接着学习的潜能。

“数学考试说明”中对实力的考查要求具有如下特点:全面性高考中考查的数学实力和数学意识包括空间想象实力、抽象概括实力、推理论证实力、运算求解实力、数据处理实力以及应用意识和创新意识。

推理论证实力和抽象概括实力是考查的重点。

高考数学试题是以数学学科实力为基础,以思维实力为核心,全面考查学生应具备的实力。

2025届湖北省华师大附中高三统一测试(一)数学试题

2025届湖北省华师大附中高三统一测试(一)数学试题

2025届湖北省华师大附中高三统一测试(一)数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .2.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A .3372-- B .3372-+ C .4- D .23.已知函数()()sin f x A x =+ωϕ(π0,0,2A >><ωϕ)的部分图象如图所示,且()()0f a x f a x ++-=,则a 的最小值为( )A .π12B .π6 C .π3D .5π124.622x x ⎛⎫- ⎪⎝⎭的展开式中,含3x 项的系数为( ) A .60-B .12-C .12D .605.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 6.已知直四棱柱1111ABCD A B C D -的所有棱长相等,60ABC ︒∠=,则直线1BC 与平面11ACC A 所成角的正切值等于( ) A .64B .104C .55D .1557.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递增,则( ) A .()()0.63(3)log 132f f f -<-<B .()()0.63(3)2log 13f f f -<<-C .()()0.632log 13(3)ff f <-<- D .()()0.632(3)log 13ff f <-<-8.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( )A .54B .5C .5D .529.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π10.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π-C .23π D .23π-11.已知复数z 满足i z11=-,则z =( ) A .1122i + B .1122i - C .1122-+iD .1122i --12.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱 AB ,BC ,1CC 的中点,M 为棱AD 的中点,设P ,Q 为底面ABCD 内的两个动点,满足1//D P 平面EFG ,117DQ =,则PM PQ +的最小值为( )A .321B .322C .251D .252二、填空题:本题共4小题,每小题5分,共20分。

四年级下册数学考试考的83分写试卷分析不少于30字

四年级下册数学考试考的83分写试卷分析不少于30字

四年级下册数学考试考的83分写试卷分析不少于30字一、卷面分析:(一)本次试卷共分八大题题型有:第一题口算、第二题、竖式计算及验算、第三题、简算、第四题填空,第五题判断题,第六题选择,第七题、操作实践,第八题应用知识、解决实际问题。

让学生置身在一个充满趣味的数学活动中,激励学生用自己的智慧去解决问题。

(二)学生答卷分析:1、计算方面:口算完成得较好,有24名学生全对,笔算方面有22名学生全对。

脱式计算(能简便计算的要简便)有21人全对。

大部分部分学生都能运用正确的方法进行计算。

但少部分学生由于粗心造成错误。

2、大部分学生有良好的书写习惯。

个别学生还是书写乱。

本次试卷中,除了极个别学生外,大多数学生能做到了书写工整,卷面整洁,这与我平时的指导和要求及学生的努力是密不可分。

3、学生对读数、写数、三角形和统计这部分知识掌握较好,出现错误少,个别是因为不认真审题造成的。

4、在单位换算、数的改写及求近似值方面,能较好地完成,个别学生出现数错的情况。

从中看出对小数点的移动、数的改写的意义、求近似值的方法等方面,没有把所学的知识充分应用到实际中去,如学生知道单位换算的方法,但到作题时就不懂得用,说明学生学的知识较死。

二、改进措施:(1)、加强学生对基础知识的掌握,利用课堂教学及课上练习巩固学生对基础知识的扎实程度。

(2)、加强对学生的能力培养,尤其是动手操作认真分析和实际应用的能力培养。

(3)、培养学生良好的学习习惯,包括认真审题,及时检查,仔细观察,具体问题具体今分析等良好的学习习惯。

三、教学反思:2、重视过程,培养能力。

结果重要,但过程更重要。

能力就是在学习过程中形成、发展的。

在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。

针对学习弱势群体制定切实可行的方案,多做多练,提高成绩。

3、加强基础,强化习惯。

重视数学基础,加强数学基本功训练是学好数学的法宝。

如:口算、速算、计算中的巧算,常用数值的强记等。

河北省石家庄二中2021-2022学年高一上学期期中数学试题(含解析)

河北省石家庄二中2021-2022学年高一上学期期中数学试题(含解析)

石家庄二中教育集团2021-2022学年度高一年级上学期期中考试数学试卷(时间:120分钟分值:150分一、单项选择题:共8小题,每小题5分,共40分.1.已知集合{}24A x x =-<<,{}2B x x =≥,则()A B =R ð()A.()2,2- B.()2,4- C.()2,4 D.(]2,2-2.命题“x R ∀∈,都有210x x -+>”的否定是()A.x R ∃∈,使得210x x -+>B.x R ∀∈,都有210x x -+≤C.x R ∃∈,使得210x x -+< D.x R ∃∈,使得210x x -+≤3.已知a R ∈,则“2a >”是“2a a >”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件4.下列说法中正确的是()A.若a b >,则22a b > B.若a b >,则b a a b<C.若0a b <<,则22a ab b << D.若22ac bc >,则a b>5.若不等式210ax bx ++≥的解集为[1,2]-,则a b +=()A.0B.2C.2- D.46.已知0x >,0y >,且28x y xy +=,则x y +的最小值是()A.10B.15C.18D.237.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a 的值为()A.34-B.34C.35-D.358.已知定义在R 上的函数()f x 满足()()2f x f x =-,其图象经过点()2,0,且对任意1x 、()21,x ∈+∞,且12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则不等式()()10x f x -≥的解集为A.(],1-∞ B.[)1,+∞ C.(][],01,2-∞ D.[][)0,12,+∞ 二、多项选择题:共4小题,每小题5分,共20分(全部选对得5分,选对但不全的得2分,有错选的得0分).9.对于任意的,a b ∈R ,下列不等式一定成立的是()A.222a b ab+≥ B.22a b ab +⎛⎫≤ ⎪⎝⎭C.2b a a b+≥ D.2a b +≤10.已知定义在R 上的偶函数()f x 是[)0,+∞上的减函数,若()()321f a f a ≥-,则实数a 的可能取值为()A.2- B.1- C.2D.1511.关于函数()11f x x =--的性质描述,正确的是()A.()f x 的定义域为)](1,00,1⎡-⋃⎣B.()f x 的值域为()1,1-C.()f x 在定义域上是增函数D.()f x 的图象关于y 轴对称12.设函数{}2()min |2|,,|2|f x x x x =-+,其中min{,,}x y z 表示,,x y z 中的最小者,下列说法正确的有()A.函数()f x 为偶函数B.不等式()1f x <的解集为()3,3-C.当[1,)x ∈+∞时,(2)()f x f x -≤ D.当[4,4]x ∈-时,|()2|()f x f x -≥三、填空题:共4小题,每小题5分,共20分.13.若函数()2212f x x x +=-,则()3f =______________.14.若34,23x y <<<<,则xy的取值范围是___________.15.若关于x 的不等式210x mx ++≤在区间(0,2]上有解,则实数m 的取值范围是__________.16.已知函数24()||,()6f x x a g x x ax x=-+=-+,若对于任意的实数1x 和2x ,当1[1,4]x ∈,21,22x ⎡⎤∈⎢⎥⎣⎦时,都有()()12f x g x ≤成立,则实数a 的取值范围是__________.四、解答题:共70分.(解答应写出必要的文字说明、证明过程或演算步骤)17.设全集U =R ,集合{}{03},2A x x B x a x a =<<=≤≤+.(1)当2a =时,求(),U A B A B ⋃⋂ð;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.18.已知函数2()1f x mx mx =--.(1)若12m =,解不等式:()0f x <;(2)若m R ∈,解关于x 的不等式:2()(1)221f x m x x m <-+--.19.已知函数()f x 是定义在[]3,3-上的奇函数,当0x >时,()()1f x x x =-+.(l )求函数()f x 的解析式;(2)求关于m 的不等式()()2110f m f m-+-≥的解集.20.受新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产厂为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前n 年()n N *∈的材料费、维修费、人工工资等共为2552n n ⎛⎫+⎪⎝⎭万元,每年的销售收入为55万元,设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:方案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理.请问:使用哪种方案能在更短的时间内达到相应的最值目标?并比较分别使用两种方案处理设备后的总利润大小.21.已知关于x 不等式2220()x mx m m R -++≤∈的解集为M .(1)当M 为空集时,求225()1m m f m m ++=+的最小值;(2)当M 不为空集,且[1,4]M ⊆时,求实数m 的取值范围.22.已知函数()24ax bf x x +=+为定义在[]22-,的奇函数,且满足1(1)5f =.(1)求函数()f x 的解析式;(2)判断()f x 的单调性,并利用定义加以证明;(3)若对[]2,2x ∀∈-,都有()2124f x m am ≤-+对[]1,1a ∀∈-恒成立,求实数m 的取值范围.石家庄二中教育集团2021-2022学年度高一年级上学期期中考试数学试卷(时间:120分钟分值:150分一、单项选择题:共8小题,每小题5分,共40分.1.已知集合{}24A x x =-<<,{}2B x x =≥,则()A B =R ð()A.()2,2- B.()2,4- C.()2,4 D.(]2,2-【答案】A 【解析】【分析】利用集合的交集、补集运算,即可求解.【详解】解:{}2R B x x =<ð,(){}22R A B x x ⋂=-<<ð,故选:A2.命题“x R ∀∈,都有210x x -+>”的否定是()A.x R ∃∈,使得210x x -+>B.x R ∀∈,都有210x x -+≤C.x R ∃∈,使得210x x -+<D.x R ∃∈,使得210x x -+≤【答案】D 【解析】【分析】根据全称命题的否定是特称命题求解.【详解】因为命题“2,10x R x x ∀∈-+>”是全称命题,所以其否定为特称命题“2,10x R x x ∃∈-+≤”.故选:D3.已知a R ∈,则“2a >”是“2a a >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式得出a 的范围,再由充分必要条件的定义得出结论即可.【详解】由2a a >,得1a >或0a <,所以“2a >”是“1a >或0a <”的子集,所以“2a >”能推出“1a >或0a <”,“1a >或0a <”不能推出“2a >”,所以“2a >”是2a a >的充分不必要条件,故选:A.4.下列说法中正确的是()A.若a b >,则22a b > B.若a b >,则b a a b<C.若0a b <<,则22a ab b << D.若22ac bc >,则a b>【答案】D 【解析】【分析】取特殊值可判断ABC 不正确,由不等式性质可知D 正确.【详解】若1,2a b ==-,则22a b >不正确,故A 错误;若1,2a b =-=-,则12,2b a a b ==,故B 不正确;若2,1a b =-=-,则24a =,21b =,故C 不正确;若22ac bc >,则20c >,由不等式性质知a b >成立,故D 正确.故选:D5.若不等式210ax bx ++≥的解集为[1,2]-,则a b +=()A.0B.2C.2- D.4【答案】A 【解析】【分析】根据一元二次不等式的解集与一元二次方程的解的关系求得,a b .【详解】由题意0a <,210ax bx ++=的解是1,2-,所以12112b a a⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩.0a b +=.故选:A .6.已知0x >,0y >,且28x y xy +=,则x y +的最小值是()A.10B.15C.18D.23【答案】C 【解析】【分析】把已知式变形为821x y+=,然后由基本不等式求得最小值.【详解】由x >0,y >0,且280x y xy +-=,得821x y+=,所以8282()(101018y x x y x y x y x y +=++=++≥+=,当且仅当82y xx y=,即12,6x y ==时等号成立,所以x y +的最小值是18.故选:C .7.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨--≥⎩,若()()11f a f a -=+,则a 的值为()A.34-B.34C.35-D.35【答案】A 【解析】【分析】分别讨论0a >和0a <时,1a -,1a +与1的大小关系,进而可得()1f a -与()1f a +的表达式,解方程即可求解.【详解】因为0a ≠,当0a >时,111a a -<<+,此时()()11f a f a -=+等价于()()2112a a a a -+=-+-,所以213a a -=--,解得:32a =-,不满足0a >,舍去;当0a <时,111a a +<<-,此时()()11f a f a -=+等价于()()2112a a a a ++=---,所以231a a +=--,解得:34a =-,符合题意,综上可得:34a =-,故选:A .8.已知定义在R 上的函数()f x 满足()()2f x f x =-,其图象经过点()2,0,且对任意1x 、()21,x ∈+∞,且12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则不等式()()10x f x -≥的解集为A.(],1-∞ B.[)1,+∞ C.(][],01,2-∞ D.[][)0,12,+∞ 【答案】D 【解析】【分析】由题意得知,函数()y f x =的图象关于直线1x =对称,且函数()y f x =在()1,+∞上单调递增,由此可得出该函数在(),1-∞上单调递减,()()20f f =,由()()10x f x -≥可得出()100x f x -≤⎧⎨≤⎩或()100x f x ->⎧⎨≥⎩,解出即可.【详解】()()2f x f x =- ,所以,函数()y f x =的图象关于直线1x =对称,该函数图象经过点()2,0,则()20f =,且有()00f =,对任意1x 、()21,x ∈+∞,且12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,可设12x x >,则120x x ->,()()120f x f x ∴->,即()()12f x f x >,所以,函数()y f x =在()1,+∞上单调递增,由此可得出该函数在(),1-∞上单调递减,当10x -≤时,即1x ≤时,则有()()00f x f ≤=,由于函数()y f x =在(],1-∞上单调递减,由()()0f x f ≤,得0x ≥,此时01x ≤≤;当10x ->时,即1x >时,则有()()02f x f ≥=,由于函数()y f x =在()1,+∞上单调递增,由()()2f x f ≥,得2x ≥,此时2x ≥.综上所述,不等式()()10x f x -≥的解集为[][)0,12,+∞ .故选:D.【点睛】本题考查函数不等式的解法,同时也涉及了单调性与对称性的应用,本题的关键就是要对1x -的符号进行分类讨论,考查分析问题和解决问题的能力,属于中等题.二、多项选择题:共4小题,每小题5分,共20分(全部选对得5分,选对但不全的得2分,有错选的得0分).9.对于任意的,a b ∈R ,下列不等式一定成立的是()A.222a b ab+≥ B.22a b ab +⎛⎫≤ ⎪⎝⎭C.2b a a b+≥ D.2a b +≤【答案】ABD【解析】【分析】根据做差比较法可判断AB ,取特殊值可判断C ,根据不等式的性质可判断D.【详解】因为2222()0a b ab a b +-=-≥,所以222a b ab +≥成立,故A 正确;因为22()4()0a b ab a b +-=-≥,所以24()ab a b +≤,即22a b ab +⎛⎫≤ ⎪⎝⎭,故B 正确;当1,1a b =-=时,22b aa b+=-<,故C 不正确;因为222a b ab +≥,所以222()()2a b a b +≥+,即222((22a b a b ++≥,所以||2a b +≤2a b +≤,故D 正确.故选:ABD10.已知定义在R 上的偶函数()f x 是[)0,+∞上的减函数,若()()321f a f a ≥-,则实数a 的可能取值为()A.2- B.1- C.2D.15【答案】BD 【解析】【分析】利用函数()f x 为偶函数,可得()()321fa f a ≥-,且()f x 在[)0,+∞上的减函数,可得321a a ≤-解不等式即可求解.【详解】因为函数()f x 为定义在R 上的偶函数,所以()()f x f x =,所以不等式()()321f a f a ≥-等价于()()321fa f a ≥-因为()f x 是[)0,+∞上的减函数,故321a a ≤-,即229(21)a a ≤-,可得25410a a +-≤,即(51)(1)0a a -+≤解得:115a -≤≤,结合选项可得实数a 的可能取值为:1-或15,故选:BD.11.关于函数()11f x x =--的性质描述,正确的是()A.()f x 的定义域为)](1,00,1⎡-⋃⎣B.()f x 的值域为()1,1-C.()f x 在定义域上是增函数D.()f x 的图象关于y 轴对称【答案】AB【解析】【分析】先求出函数的定义域,再求值域,然后利用函数单调性以及奇偶性定义即可求解.【详解】对于A 中,由240110x x x ⎧-≥⎪⎨--≠⎪⎩,解得[)(]1,00,1x ∈- 即为函数的定义域,故A 正确;对于B 中,由定义域可化简函数得()101x f x x -≤<=<≤⎪⎩,当[)1,0x ∈-时,()[)0,1f x ∈;当(]0,1x ∈时,()(]1,0f z ∈﹣,所以()()1,1f x ∈-,故B 正确;对于C 中,因为13132222f f ⎛⎫⎛⎫-=>=- ⎪ ⎪⎝⎭⎝⎭,所以函数不是增函数,故C 错误;对于D 中,因为定义域关于原点对称,且对任意(]0,1x ∈,()()f x f x ==--,所以函数是奇函数,故D 错误,故选:AB .12.设函数{}2()min |2|,,|2|f x x x x =-+,其中min{,,}x y z 表示,,x y z 中的最小者,下列说法正确的有()A.函数()f x 为偶函数 B.不等式()1f x <的解集为()3,3-C.当[1,)x ∈+∞时,(2)()f x f x -≤ D.当[4,4]x ∈-时,|()2|()f x f x -≥【答案】AC【解析】【分析】作出函数()f x 的图象,易判断AB ,然后分类讨论确定(2)f x -、()f x 和()2f x -的表达式,判断CD .【详解】作出函数()f x 的图象,如图实线部分.由图可知其图象关于y 轴对称,函数为偶函数,A 正确;(1)(1)1f f -==,再计算得(3)(3)1f f -==,()1f x <解集为(3,1)(1,1)(1,3)--- ,B 错;12x ≤≤时,(2)()f x f x -≤即为2(2)2x x -≤-,即(1)(2)0x x --≤,成立23x <≤时,(2)()f x f x -≤即为2(2)2x x -≤-,即(2)(3)0x x --≤,成立,34x <≤时,(2)()f x f x -≤即为42x x -≤-,即3x ≥,成立,4x >时,22x ->,2x x -<,由()f x 在[1,)+∞上递增,得(2)()f x f x -≤成立.C 正确;由B 选项知33x -≤≤时,0()1f x ≤≤,()2()f x f x -≥成立,34x <≤时,()2224f x x x -=--=-,()2f x x =-,不等式|()2|()f x f x -≥为42x x -≥-,3x ≤,不成立.D 错误.故选:AC .三、填空题:共4小题,每小题5分,共20分.13.若函数()2212f x x x +=-,则()3f =______________.【答案】-1【解析】【分析】令213x +=再代入()2212f x x x +=-求解即可.【详解】当213x +=时1x =,故()3f =()2211121f ⨯+=-=-.故答案为:1-【点睛】本题主要考查了抽象函数求值的问题,属于基础题.14.若34,23x y <<<<,则x y的取值范围是___________.【答案】(1,2)【解析】【分析】作出不等式组3423x y <<⎧⎨<<⎩所表示的平面区域,设x k y =,即100y k x -=-,结合斜率公式,即可求解.【详解】作出不等式组3423x y <<⎧⎨<<⎩所表示的平面区域,如图所示,可得(3,3),(4,2)A B ,设x k y =,即100y k x -=-,表示可行域内点(,)P x y 与原点(0,0)O 连线的斜率,当取点A 时,可得1OA k =,即k 的最小值为1;当取点B 时,可得12OB k =,即k 的最大值为2,即x y的取值范围是(1,2).故答案为:(1,2).15.若关于x 的不等式210x mx ++≤在区间(0,2]上有解,则实数m 的取值范围是__________.【答案】(,2]-∞-【解析】【分析】根据题中条件,由分离参数的方法得到21x m x ≤-+,求出21x x+-在给定区间的最大值,进而可求出结果.【详解】因为(]0,2x ∈,所以,由210x mx ++≤得21x m x ≤-+,因为关于x 的不等式210x mx ++≤在区间(0,2]上有解,所以只需m 小于等于21x x+-的最大值,又2212x x x x-≤-=-+,当且仅当1x =时,等号成立,所以2m ≤-,即实数m 的取值范围是(,2]-∞-.故答案为:(,2]-∞-.16.已知函数24()||,()6f x x a g x x ax x=-+=-+,若对于任意的实数1x 和2x ,当1[1,4]x ∈,21,22x ⎡⎤∈⎢⎥⎣⎦时,都有()()12f x g x ≤成立,则实数a 的取值范围是__________.【答案】5[,2]2-【解析】【分析】原问题可转化为()()max min f x g x ≤,再根据a 与区间[1,4]分类讨论,求出对应范围内min ()g x ,()max f x ,建立不等式求解即可.【详解】因为1[1,4]x ∈,21,22x ⎡⎤∈⎢⎥⎣⎦时,都有()()12f x g x ≤成立,所以()()max min f x g x ≤,当(1,4)a ∈,则1(,2)22a ∈,所以2min ()()624a a g x g ==-,此时4,44()4,1x a a x x f x x a x a x x a x ⎧+-≤≤⎪⎪=-+=⎨⎪-+≤<⎪⎩,当4a x ≤≤时,最大值必为5a -与4a中较大者,当1x a <≤时,最大值为3a +因为35a a +≥-,所以()max 4max{3,}f x a a =+,而当(1,4)a ∈时,243430a a a a a+-+-=>,所以()max 3f x a =+所以只需2364a a +≤-,解得62a -≤≤,而(1,4)a ∈,故(1,2]a ∈当1a ≤时,122a ≤,所以min 125()()242a g x g ==-,此时44()||f x x a x a x x =-+=+-,当1x =或4x =时,()max 5f x a =-,所以只需25542a a -≤-,解得52a ≥-,由1a ≤,故5[,1]2a ∈-当4a ≥时,22a ≥,所以min ()(2)102g x g a ==-,此时44()||f x x a a x x x=-+=-+,函数在[1,4]上递减,当1x =时,()max 3f x a =+,所以只需3102a a +≤-,解得73a ≤,又4a ≥,故无解.综上,5[,2]2a ∈-故答案为:5,22⎡⎤-⎢⎥⎣⎦四、解答题:共70分.(解答应写出必要的文字说明、证明过程或演算步骤)17.设全集U =R ,集合{}{03},2A x x B x a x a =<<=≤≤+.(1)当2a =时,求(),U A B A B ⋃⋂ð;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】(1){}|04A B x x =<≤ ,(){}|02U A B x x ⋂=<<ð(2)01a <<【解析】【分析】(1)先求出B ,进而根据交并补的定义即可解得答案;(2)根据“x A ∈”是“x B ∈”的必要条件,进而确定出两个集合的端点位置,最后解得答案.【小问1详解】2a =时,{}24B x x =≤≤,则{}|04A B x x =<≤ ,{|2U B x x =<ð或4}x >,所以(){}|02U A B x x ⋂=<<ð.【小问2详解】因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆,所以00123a a a >⎧⇒<<⎨+<⎩.18.已知函数2()1f x mx mx =--.(1)若12m =,解不等式:()0f x <;(2)若m R ∈,解关于x 的不等式:2()(1)221f x m x x m <-+--.【答案】(1)()12-,(2)答案见解析【解析】【分析】(1)当12m =时,不等式化为()()2+10x x -<,由此可求得不等式的解集;(2)原不等式等价于()()20x m x --<,分2m <,2m =,>2m 讨论求解可得不等式的解集.【小问1详解】解:当12m =时,211()122f x x x =--,不等式()0f x <化为2111022x x --<,即220x x --<,即()()2+10x x -<,解得12x -<<,所以不等式的解集为:()12-,.【小问2详解】解:因为2()1f x mx mx =--,所以不等式化为221(1)221mx mx m x x m --<-+--,即()2+2+20x m x m -<,即()()20x m x --<,所以,当2m <时,不等式的解集为()2m ,;当2m =时,不等式的解集为∅;当>2m 时,不等式的解集为()2m ,;19.已知函数()f x 是定义在[]3,3-上的奇函数,当0x >时,()()1f x x x =-+.(l )求函数()f x 的解析式;(2)求关于m 的不等式()()2110f m f m -+-≥的解集.【答案】(1)()()()1,301,03x x x f x x x x ⎧--≤<⎪=⎨-+≤≤⎪⎩;(2){}[]21,2- .【解析】【分析】(1)利用奇函数的性质得出()00f =,设[)3,0x ∈-,可得出(]0,3x -∈,求出()f x -的表达式,利用奇函数的性质可得出函数()y f x =在区间[)3,0-上的解析式,综合可得出函数()y f x =的解析式;(2)作出函数()y f x =的图象,可知函数()y f x =是定义在区间[]3,3-上的减函数,由()()2110f m f m -+-≥可得出()()211f m f m -≤-,然后利用函数()y f x =的单调性和定义域列出关于实数m 的不等式组,解出即可.【详解】(1) 函数()y f x =是定义在[]3,3-上的奇函数,则()00f =,满足()()1f x x x =-+.设[)3,0x ∈-,则(]0,3x -∈,所以,()()()()11f x x x x x -=--⋅-+=--,此时,()()()1f x f x x x =--=-.综上所述,()()()1,301,03x x x f x x x x ⎧--≤<⎪=⎨-+≤≤⎪⎩;(2)作出函数()y f x =的图象如下图所示:由图象可知,函数()y f x =在定义域[]3,3-上既为奇函数,又为减函数,由()()2110f m f m -+-≥可得()()()22111f m f m f m -≥--=-,所以2211313313m m m m ⎧-≥-⎪-≤-≤⎨⎪-≤-≤⎩,解得2m =-或12m ≤≤,因此,关于m 的不等式()()2110f m f m -+-≥的解集为{}[]21,2- .【点睛】本题考查利用函数的奇偶性求函数解析式,同时也考查了利用函数的奇偶性与单调性解不等式,考查运算求解能力,属于中等题.20.受新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产厂为了提高产品的产量,投入90万元安装了一台新设备,并立即进行生产,预计使用该设备前n 年()n N*∈的材料费、维修费、人工工资等共为2552n n ⎛⎫+ ⎪⎝⎭万元,每年的销售收入为55万元,设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:方案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理.请问:使用哪种方案能在更短的时间内达到相应的最值目标?并比较分别使用两种方案处理设备后的总利润大小.【答案】(1)25()50902f n n n =-+-,从第3年开始盈利.(2)答案见解析【解析】【分析】(1)由题意写出()f n 关于n 的函数式,由()0f n >求得n 的范围,再由n ∈+N ,即可得答案;(2)利用配方法求最值得到方案一的总盈利额;利用基本不等式求最值求出()f n n的最大值,得到方案二的总利润,可得两种方案获利都是170万元,再结合获得最大利润的年限得结论.【小问1详解】由题意得:2255()5590(5)509022f n n n n n n =--+=-+-.由()0f n >,得25509002n n -+->,即220360n n -+<,解得218n <<.由于n ∈+N ,故设备企业从第3年开始盈利;【小问2详解】方案一:总盈利额25()(10)1602f n n =--+,当10n =时()160max f n =.故方案一总利润16010170+=,此时10n =;方案二:每年平均利润()536550()502022f n n n n =-+-⨯= ,当且仅当6n =时等号成立.故方案二总利润62050170⨯+=,此时6n =.比较两种方案,获利都是170万元,但由于第一种方案需要10年,而第二种方案需要6年,故选择第二种方案更合适.21.已知关于x 不等式2220()x mx m m R -++≤∈的解集为M .(1)当M 为空集时,求225()1m m f m m ++=+的最小值;(2)当M 不为空集,且[1,4]M ⊆时,求实数m 的取值范围.【答案】(1)4(2)182,7⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据M 为空集,利用判别式法求得m 的范围,然后由2254()111m m f m m m m ++==++++,利用基本不等式求解;(2)根据M 不为空集,由[1,4]M ⊆,利用根的分布求解.【小问1详解】解:因为M 为空集,所以()24420m m ∆=-+<,即220m m --<,解得12m -<<,所以实数m 的取值范围是()1,2-,则2254()1411m m f m m m m ++==++≥++,当且仅当411m m +=+,即1m =时,等号成立,所以225()1m m f m m ++=+的最小值是4;【小问2详解】当M 不为空集,由[1,4]M ⊆,得:()()0104014f f m ∆≥⎧⎪≥⎪⎨≥⎪⎪≤≤⎩,即()2442012201682014m m m m m m m ⎧-+≥⎪-++≥⎪⎨-++≥⎪⎪≤≤⎩,解得1827m ≤≤,所以实数m 的取值范围是182,7⎡⎤⎢⎥⎣⎦.22.已知函数()24ax b f x x +=+为定义在[]22-,的奇函数,且满足1(1)5f =.(1)求函数()f x 的解析式;(2)判断()f x 的单调性,并利用定义加以证明;(3)若对[]2,2x ∀∈-,都有()2124f x m am ≤-+对[]1,1a ∀∈-恒成立,求实数m 的取值范围.【答案】(1)()24xf x x =+(2)增函数,证明见解析(3)(]{}[),202,-∞-+∞U U .【解析】【分析】(1)根据()00f =,()115f =求出1a =,0b =,再检验是否满足奇函数的定义即得解;(2)函数()f x 在[]22-,为单调递增函数,再利用函数的单调性定义证明;(3)分析得到220m am -≥对任意的[]1,1a ∈-恒成立,解不等式组222020m m m m ⎧+≥⎨-≥⎩即得解.【小问1详解】因为函数2()4ax b f x x +=+是定义在[]22-,上的奇函数,可得()00f =,即04b =,解得:0b =,又因为()114551a a f ===+,所以1a =,综上所述1a =,0b =,所以()24x f x x =+,因为定义域[]22-,关于原点对称,所以()()2244x x f x f x x x --==-=-++,所以()24x f x x =+为定义在[2,2]-的奇函数,所以()24x f x x =+.【小问2详解】函数()f x 在[]22-,为单调递增函数,证明如下:任取1222x x -≤<≤,则()()()()22121212121222221212444444x x x x x x x x f x f x x x x x +---=-=++++()()()()()()()()122121211222221212444444x x x x x x x x x x x x x x -----==++++因为1222x x -≤<≤,所以210x x ->,1240x x -<,可得()()()()211222124044x x x x x x --<++,即()()12f x f x <,故()24x f x x =+在[]22-,上为增函数.【小问3详解】由(2)可知,函数()y f x =在区间[]22-,上单调递增,则()()max 124f x f ==,由于()2124f x m am ≤-+对[]2,2x ∀∈-恒成立,则211244m am -+≥,即220m am -≥对任意的[]1,1a ∈-恒成立,构造函数()22g a am m =-+,其中[]1,1a ∈-,所以()()1010g g ⎧-≥⎪⎨≥⎪⎩,即222020m m m m ⎧+≥⎨-≥⎩,解得:2m ≤-或0m =或2m ≥,所以实数m 的取值范围是(]{}[),202,-∞-+∞U U .。

2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)

2020年全国统一高考数学试卷(新课标Ⅰ)(解析版)

2020年普通高等学校招生全国统一考试数学+答案一、选择题:(本题共10小题,每小题6分,共60分)1.若z=1+i ,则|z 2–2z |=( )A. 0B. 1C.D. 2 【答案】D【解析】【分析】由题意首先求得22z z -的值,然后计算其模即可.【详解】由题意可得:()2212z i i =+=,则()222212z z i i -=-+=-. 故2222z z -=-=.故选:D.【点睛】本题主要考查复数的运算法则和复数的模的求解等知识,属于基础题.2.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A. –4B. –2C. 2D. 4 【答案】B【解析】【分析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值.【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-. 故选:B.【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力. 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 514-B. 512-C. 514+D. 512+【答案】C【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则22224aPO PE OE b =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b ba a -⋅-=,解得15b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( )A. 2B. 3C. 6D. 9【答案】C【解析】【分析】 利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p =+,解得6p .故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y a bx =+B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D【解析】【分析】根据散点图的分布可选择合适的函数模型.【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D.【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =--B. 21y x =-+C. 23y x =-D. 21y x =+ 【答案】B【解析】【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可.【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B.【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9B. 7π6C. 4π3D. 3π2 【答案】C【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解. 【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭ 又4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω= 所以函数()f x 的最小正周期为224332T πππω=== 故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.25()()x x y xy ++的展开式中x 3y 3的系数为( ) A. 5B. 10C. 15D. 20 【答案】C【解析】【分析】求得5()x y +展开式的通项公式为515rr rr T C x y -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r r r C x y -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【详解】5()x y +展开式的通项公式为515r r r r T C x y -+=(r N ∈且5r ≤) 所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为: 56155r r r r r r r xT xC xy C x y --+==和22542155r r r r r r r T C x y x C y y y x x --++== 在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5 所以33x y 的系数为10515+=故选:C【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属于中档题.9.已知 π()0,α∈,且3cos28cos 5αα-=,则sin α=( )A. 3B. 23C. 13D.9 【答案】A【解析】【分析】用二倍角的余弦公式,将已知方程转化为关于cos α的一元二次方程,求解得出cos α,再用同角间的三角函数关系,即可得出结论.【详解】3cos28cos 5αα-=,得26cos 8cos 80αα--=,即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去), 又(0,),sin απα∈∴==故选:A.【点睛】本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.10.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形, 由正弦定理可得2sin 6023AB r=︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2010-2023历年高级中等学校招生全国统一考试数学卷(海南)

2010-2023历年高级中等学校招生全国统一考试数学卷(海南)

2010-2023历年高级中等学校招生全国统一考试数学卷(海南)第1卷一.参考题库(共20题)1.A,B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车行驶过程中y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶7了小时时,两车相遇,求乙车速度.2.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB大小为(▲)A.25°B.30°D.50°3.如图1所示几何体的主视图是图1 A B C D4.-22的绝对值等于A.-22B.-C.D.225.如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB 的中点D旋转, DE,DF分别交线段AC于点M,K.(1)观察:①如图2、图3,当∠CDF="0°"或60°时,AM+CK_______MK(填“>”,“<”或“=”).②如图4,当∠CDF="30°" 时,AM+CK___MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK_______MK,证明你所得到的结论.(3)如果,请直接写出∠CDF的度数和的值.在梯形ABCD中,AD//BC,AC与BD相交于点O,则下列三角形中,与△BOC一定相似的是A.△ABDB.△DOAC.△ACDD.△ABO7.下列说法中正确的是(▲)A.“打开电视,正在播放《新闻联播》”是必然事件;B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖;C.数据1,1,2,2,3的众数是3;D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查.8.如图5,在△ABC中,AB=AC,AD⊥BC于点D,则下列结论不一定成立的是A.B.BD = CDC. 1 = 2D. B = C9.在反比例函数的图象的任一支上,都随的增大而增大,则的值可以是A.-1B.0C.1D.210.梯形ABCD中,AD∥BC,AB=CD=AD=2,∠B=60°,则下底BC的长是(▲) A.3B.4C.2D.2+211.同一平面内,半径分别是2cm和3cm的两圆的圆心距为5cm,则这两圆的位置关系是A.相离B.相交C.外切D.内切12.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为,可列方程为▲.13.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是(▲)A.2.5B.3C.4D.514.下列立体图形中,侧面展开图是扇形的是(▲)15.一道选择题共有四个备选答案,其中只有一个是正确的,若有一位同学随意选了其中一个答案,那么他选中正确答案的概率是_________.16.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为 3+()=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为.解决问题:(1)计算:{3,1}+{1,2};{1,2}+{3,1}.(2)①动点P从坐标原点O出发,先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把动点P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置还是点B吗? 在图1中画出四边形OABC.②证明四边形OABC是平行四边形.(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.17.如图2,、、分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是A B C D18.在平面直角坐标系中,点P(2,3)在A.第一象限B.第二象限C.第三象限D.第四象限19.反比例函数图象上有三个点,,,其中,则,,的大小关系是(▲)A.B.C.D.20.某工厂计划天生产60件产品,则平均每天生产该产品__________件.第1卷参考答案一.参考题库1.参考答案:(1)(2)(千米/小时)2.参考答案:A3.参考答案:A4.参考答案:D5.参考答案:(1)① =" " ②>(2)略(3)6.参考答案:B解:∵AD//BC∴∠DAO=∠OCB,∠ADO=∠OBC∴△BOC∽△DOA7.参考答案:D8.参考答案:A解:∵AB=AC∴ B = C (等边对等角)BD = CD 1 =2(三线合一)只有△ABC是直角三角形时,AD = BD。

2012小学数学考试说明题型示例

2012小学数学考试说明题型示例

题 型 示 例一、填空题(1-50题)。

[较易题]1.在我国四川省发现的恐龙化石距现在已有一亿三千万年,写成以“亿”为单位的数是( )亿年。

2.一个数,它的十万位和千位都是8,其它各位都是0,这个数写作( ),用四舍五入法省略“万”后面的尾数约是( )万。

3.305厘米 =( )米0.5吨 =( )千克。

4.李丽不小心抄丢了小数点,请在适当的位置写上小数点,使这个式子成立。

5.3600÷500,余数是( )。

6.54=) (16=75) (。

7.同时是2、3、5的倍数的最小两位数是( )。

8.6和9的最大公因数是( ),4、6、12的最小公倍数是( )。

9.把1米长的线段平均分成4份,每份是这条线段的( )。

10.0.8里面有( )个0.143里面有( )个41。

11.分母是5的所有真分数的和等于( )。

12.把43:32化成最简单的整数比是( ),比值是( )。

13.如果甲:乙=5:8,那么甲是乙的( )%。

14.一幅地图,图上10厘米表示实际距离30千米。

这幅地图的比例尺是( )。

15.如果8x=3y(x 和y 都不等于0),那么x y =)()(。

16.比a 的5倍少1.7的数,用含有字母的式子表示是( )。

17.方程3x-1.6=0.8的解是( )。

[中等题]18.在85、6.25、65%、0.625和0.62这五个数中,最大的数是( ),最小的数是( ),相等的数是( )和( )。

19. 六年级男生“立定跳远”的合格标准是165厘米。

超过165厘米的部分用正数表示,不足165厘米的部分用负数表示。

下表是一组男生的成绩:这六人的平均成绩是( )厘米。

20.行同一段路,甲车用52小时,乙车用83小时,两车相比,( )车速度快。

21.在直角三角形中,两个锐角的度数比是2:3,其中较小的角是( )度。

22.假如a+43=b+54=c+65=d+76,那么在a 、b 、c 、d 中最大的数是( )。

普通高等院校招生考试数学考试说明

普通高等院校招生考试数学考试说明

B.附加题部分 1.随机抽取某厂的某种产品 200 件,经质检,其中有一等品 126 件、二等品 50 件、三等品 20 件、次品 4 件。已知生产 1 件一、二、三等品获得的利润分别为 6 万元、2 万元、1 万元,而生产 1 件次品亏损 2 万元。 设 1 件产品获得的利润为 (单位:万元)。 ⑴求的分布列; ⑵求 1 件产品的平均利润(即的数学期望); ⑶经技术革新后,仍有四个等级的产品,但次品率降为 1%,一等品率提高为 70%。如果此时要求生产 1 件产品获得的平均利润不小于 4.73 万元,则三等品率最多是多少? 【解析】本题主要考查概率的基础知识,如概率分布、数学期望等。本题属于中等题。 【参考答案】 D1 C1 2.如图,设动点 P 在棱长为 1 的正方体 ABCD-A1B1C1D1 的 对 角 线 BD1 D1P 上,记 =λ。当APC 为钝角时,求 λ 的取值范围。 D1B 【解析】 【参考答案】 3.选修 4-1:几何证明选讲 4.选修 4-2:矩阵与变换 5.选修 4-4:坐标系与参数方程 6.选修 4-5:不等式选讲
A1 B1
P D C
A
B
(白林老师 2011 年 2 月 23 日星期三)
编辑时间:2015 年 9 月 16 日星期三 页码: 6
编辑时间:2015 年 9 月 16 日星期三
页码:
7
编辑时间:2015 年 9 月 16 日星期三
页码:
8
编辑时间:2015 年 9 月 16 日星期三
页码:
9
13.概率、统计
14.空间几何体
15.点、线、面之间的位置关系
16.平面解析几何初步
17.圆锥曲线与方程
中心在坐标原点的双曲线的标准方程与几何性质 顶点在坐标原点的抛物线的标准方程与几何性质 73 项

2022 — 2023 学年第二学期数学试卷分析——贾飞

2022 — 2023 学年第二学期数学试卷分析——贾飞

八年级数学期末试卷分析(2022-2023学年第二学期)贾飞唐县迷城乡中学八年级数学期末试卷分析--2022—2023学年第二学期迷城中学贾飞一、试卷分析(一)总体评价本套试题考查人教版八年级下册数学知识点。

题型及分值分布为:选择题16小题共42分,填空题3小题共11分,解答题7题共67分。

试题结构稳定,分值分配合理。

试卷的总体难度适宜,符合学生的认知水平,在加强基础知识考察的同时,还加强对学生能力的考察来设置考题;同时也注重数学与实际生活的联系,体现应用价值。

能较全面的检查学生对本学期所学基础知识的掌握情况。

命题也向“双减”政策靠拢,注重基础,加大知识点的覆盖面,控制题目难度,题目力求简洁明快,适当设置创新考题。

注重知识的拓展与应用,适应国家对教育方面的各项政策。

符合《新课标》的核心素养内涵,即会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的语言表达现实世界。

课程目标的确定,立足学生核心素养发展,集中体现数学课程育人价值。

(二)分值占比内容涵盖了初二下学期数学的所有知识点二次根式、勾股定理、平行四边形、一次函数、数据的分析。

试题按难易程度可分容易题、中等题、较难题。

今年试卷相比前两年,变化较大,表现为:选择题中出现了更加灵活的“黄金分割”与之前所学的平面直角坐标系,更加注重知识点的灵活运用以及知识之间的联系;最后一道大题更考察学生的能力,定义了一种新的等腰三角形,需要学生通过前两问的解题过程才能把第三问求出来。

通过各章节知识点在期末考试中所占分值可以看出一次函数占40%以上,可见本章节的重要性。

章节题号分值第十六章二次根式1、6、10、17、20、21分第十七章勾股定理4、9、11、13、19、13分第十八章平行四边形7、13、15、24、17分第十九章一次函数3、5、12、14、16、21、22、25、26、51分第二十章数据分析8、23、13分近三年期末试卷题型如下表所示:21-23年八下期末试卷分析题号分值20-21学年分值21-22学年分值22-23学年13最简二次根式3最简二次根式3二次根式计算23自变量取值范围3三角形的组成3黄金分割33三角形的组成3数据分析3一次函数的图像与性质43平行四边形的性质3一次函数的图像与性质3勾股定理53二次根式计算3平行四边形的判定3一次函数的图像与性质63数据分析3一次函数的图像3二次根式有意义73一次函数的增减性3二次根式计算3平行四边形的性质83一次函数的图像3勾股定理3数据分析93二次根式去绝对值3二次根式求范围3勾股定理103勾股定理3矩形的性质与全等3二次根式计算112一次函数交点2一次函数求范围2勾股定理通过对比近三年的期末考试分值以及试题考点,发现:填空题第17、18题发生变化,填空题变成了两个小问,分值由3分变为4分,试题更加灵活,对学生来说难度是一步一步增加的;其次发生变化的是第21、22题,分值由最初的10分变为现在的8分和9分,试题也不再是简单的直接给出题目,而是更加灵活,试题难度较小,能让学生更好地得分,增加信心;在本次考试的最后一道大题,依然是学生们的难点,从题型上来看不仅仅是和动点相结合,还融入了新定义,更考查学生获取信息的能力,抓住小问之间的关联是做出本题的关键。

2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)

2020年全国统一高考数学试卷2(新课标Ⅲ)(解析版) (1)

2020年全国统一考试数学一、选择题:(本题共10小题,每小题6分,共60分)1.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 5【答案】B 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.若()11+=-z i i ,则z =( ) A. 1–i B. 1+iC. –iD. i【答案】D 【解析】 【分析】先利用除法运算求得z ,再利用共轭复数的概念得到z 即可.【详解】因为21(1)21(1)(1)2i i iz i i i i ---====-++-,所以z i . 故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A. 0.01 B. 0.1C. 1D. 10【答案】C 【解析】 【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=,的方差是数据(1,2,,)i x i n =,的方差的2a 倍,所以所求数据方差为2100.01=1⨯ 故选:C【点睛】本题考查方差,考查基本分析求解能力,属基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题. 5.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭( )A.12B.C.23D.【答案】B 【解析】 【分析】将所给的三角函数式展开变形,然后再逆用两角和的正弦公式即可求得三角函数式的值.详解】由题意可得:1sin sin cos 122θθθ++=,则:3sin 12θθ+=1cos 2θθ+=从而有:3sin coscos sin663ππθθ+=, 即3sin 63πθ⎛⎫+= ⎪⎝⎭. 故选:B.【点睛】本题主要考查两角和与差的正余弦公式及其应用,属于中等题.6.在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为( ) A. 圆 B. 椭圆C. 抛物线D. 直线【答案】A 【解析】 【分析】首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.【详解】设()20AB a a =>,以AB 中点为坐标原点建立如图所示的平面直角坐标系,则:()(),0,,0A a B a -,设(),C x y ,可得:()(),,,AC x a y BC x a y →→=+=-,从而:()()2AC BC x a x a y →→⋅=+-+,结合题意可得:()()21x a x a y +-+=, 整理可得:2221x y a +=+,即点C 的轨迹是以AB 21a +为半径的圆. 故选:A.【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.7.设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 8.点(0,﹣1)到直线()1y k x =+距离的最大值为( )A. 1B.C.D. 2【答案】B 【解析】 【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果.【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.9.下图为某几何体的三视图,则该几何体的表面积是( )A. 6+42B. 4+42C. 6+23D. 4+23【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△ 根据勾股定理可得:22AB AD DB ===∴ADB △是边长为22根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△∴该几何体的表面积是:2362332=⨯++故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.10.设3log 2a =,5log 3b =,23c =,则( ) A. a c b << B. a b c <<C. b c a <<D. c a b <<【答案】A 【解析】 【分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可. 【详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A .【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.二、填空题:本题共4小题,每小题5分,共20分.11.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩, ,则z =3x +2y 的最大值为_________.【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图 因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯=. 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.12.设双曲线C :22221x y a b-= (a >0,b >0)的一条渐近线为y 2x ,则C 的离心率为_________.3 【解析】 【分析】 根据已知可得2ba=,,a b c 的关系,即可求解. 【详解】由双曲线方程22221x y a b-=可得其焦点在x 轴上,因为其一条渐近线为2y x =,所以2b a =2213c b e a a==+=3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.【答案】1 【解析】 【分析】由题意首先求得导函数的解析式,然后得到关于实数a 的方程,解方程即可确定实数a 的值【详解】由函数的解析式可得:()()()()()221x xx e x a e e x a f x x a x a +-+-'==++,则:()()()()12211111e a aef a a ⨯+-'==++,据此可得:()241aee a =+, 整理可得:2210a a -+=,解得:1a =. 故答案为:1.【点睛】本题主要考查导数的运算法则,导数的计算,方程的数学思想等知识,属于中等题. 14.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 【答案】2π 【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于223122AM =-=1222222S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()1332222r =⨯++⨯= 解得:22r,其体积:34233V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第15~19题为必考题,每个试题考生都必须作答.第20、21题为选考题,考生根据要求作答. (一)必考题:共60分.15.设等比数列{a n }满足124a a +=,318a a -=. (1)求{a n }的通项公式;(2)记n S 为数列{log 3a n }的前n 项和.若13m m m S S S +++=,求m . 【答案】(1)13-=n n a ;(2)6m =. 【解析】 【分析】(1)设等比数列{}n a 的公比为q ,根据题意,列出方程组,求得首项和公比,进而求得通项公式; (2)由(1)求出3{log }n a 的通项公式,利用等差数列求和公式求得n S ,根据已知列出关于m 的等量关系式,求得结果.【详解】(1)设等比数列{}n a 的公比为q , 根据题意,有1121148a a q a q a +=⎧⎨-=⎩,解得113a q =⎧⎨=⎩, 所以13-=n n a ;(2)令313log log 31n n n b a n -===-,所以(01)(1)22n n n n n S +--==,根据13m m m S S S +++=,可得(1)(1)(2)(3)222m m m m m m -++++=, 整理得2560m m --=,因为0m >,所以6m =,【点睛】本题考查等比数列通项公式基本量的计算,以及等差数列求和公式的应用,考查计算求解能力,属于基础题目.16.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bcKa b c d a c b d-=++++,.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:人次400≤人次400>空气质量不好 33 37空气质量好 228()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.17.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内.【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果; (2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可.【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥,因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形,1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 18.已知函数32()f x x kx k =-+.(1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围. 【答案】(1)详见解析;(2)4(0,)27. 【解析】 【分析】(1)'2()3f x x k =-,对k 分0k ≤和0k >两种情况讨论即可;(2)()f x 有三个零点,由(1)知0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩,解不等式组得到k 的范围,再利用零点存在性定理加以说明即可.【详解】(1)由题,'2()3f x x k =-,当0k ≤时,'()0f x ≥恒成立,所以()f x 在(,)-∞+∞上单调递增;当0k >时,令'()0f x =,得x ='()0f x <,得x << 令'()0f x >,得x <x >()f x在(上单调递减,在(,-∞,)+∞上单调递增. (2)由(1)知,()f x 有三个零点,则0k >,且(00f f ⎧>⎪⎪⎨⎪<⎪⎩即22203203k k ⎧+>⎪⎪⎨⎪-<⎪⎩,解得4027k <<, 当4027k <<>20f k =>, 所以()f x在上有唯一一个零点,同理1k --<32(1)(1)0f k k k --=--+<,所以()f x 在(1,k --上有唯一一个零点,又()f x 在(上有唯一一个零点,所以()f x 有三个零点, 综上可知k 的取值范围为4(0,)27. 【点晴】本题主要考查利用导数研究函数的单调性以及已知零点个数求参数的范围问题,考查学生逻辑推理能力、数学运算能力,是一道中档题.19.已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<< ∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C的方程为:22214255x y⎛⎫⎪⎝⎭+=,即221612525xy+=;(2)不妨设P,Q在x轴上方点P在C上,点Q在直线6x=上,且||||BP BQ=,BP BQ⊥,过点P作x轴垂线,交点为M,设6x=与x轴交点为N根据题意画出图形,如图||||BP BQ=,BP BQ⊥,90PMB QNB∠=∠=︒,又90PBM QBN∠+∠=︒,90BQN QBN∠+∠=︒,∴PBM BQN∠=∠,根据三角形全等条件“AAS”,可得:PMB BNQ≅△△,221612525x y+=,∴(5,0)B,∴651PM BN==-=,设P点为(,)P Px y,可得P点纵坐标为1Py=,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:22231111055125211d ⨯-⨯+===+, 根据两点间距离公式可得:()()22652055AQ =++-=,∴APQ 面积为:1555252⨯=;②当P 点为(3,1)-时, 故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8), 画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:()2283111405185185811d ⨯--⨯+===+, 根据两点间距离公式可得:()()226580185AQ =++-=∴APQ 面积为:1518522185=, 综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.(二)选考题:共10分.请考生在第20、21题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]20.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t⎧=--⎨=-+⎩,(t 为参数且t ≠1),C 与坐标轴交于A ,B 两点. (1)求|AB |:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)4102)3cos sin 120ρθρθ-+= 【解析】【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A . 令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4-5:不等式选讲]21.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.。

上海浦东新区2024届高三下学期第二次阶段(期中)考试数学试题

上海浦东新区2024届高三下学期第二次阶段(期中)考试数学试题

上海浦东新区2024届高三下学期第二次阶段(期中)考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设点A ,B ,C 不共线,则“()AB AC BC +⊥”是“AB AC =”( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件2.已知定义在R 上函数()f x 的图象关于原点对称,且()()120f x f x ++-=,若()11f =,则()1(2)(3)(2020)f f f f ++++=( )A .0B .1C .673D .6743.某市政府决定派遣8名干部(5男3女)分成两个小组,到该市甲、乙两个县去检查扶贫工作,若要求每组至少3人,且女干部不能单独成组,则不同的派遣方案共有( )种 A .240B .320C .180D .1204.在ABC ∆中,2AB =,3AC =,60A ∠=︒,O 为ABC ∆的外心,若AO x AB y AC =+,x ,y R ∈,则23x y +=( ) A .2B .53C .43D .325.已知某几何体的三视图如图所示,则该几何体的体积是( )A .643B .64C .323D .326.a 为正实数,i 为虚数单位,2a ii+=,则a=( ) A .2B .3C .2D .17.圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( ) A .253B .453C .3D .48.执行如图所示的程序框图,如果输入2[2]t e ∈-,,则输出S 属于( )A .[32]-, B .[42]-,C .[0]2,D .2[3]e -,9.若点位于由曲线与围成的封闭区域内(包括边界),则的取值范围是( )A .B .C .D .10.若i 为虚数单位,则复数22sin cos 33z i ππ=-+,则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限11.已知z 的共轭复数是z ,且12z z i =+-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限12.设双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点()()0,0E t t >.已知动点P 在双曲线C 的右支上,且点2,,P E F 不共线.若2PEF ∆的周长的最小值为4b ,则双曲线C 的离心率e 的取值范围是( ) A .3,3⎛⎫+∞ ⎪⎪⎝⎭B .231,3⎛ ⎝⎦ C .)3,⎡+∞⎣D .(3二、填空题:本题共4小题,每小题5分,共20分。

试卷分析数学300字

试卷分析数学300字

试卷分析数学300字试卷分析数学300字篇一:数学试卷分析范文期中测试阅卷结束后,我们对数学试卷作了调查。

通过调查结果,我们看到了我校初中数学教学令人鼓舞的一面,同时也暴露出一些存在问题。

以下是我们对调查结果所作的一些分析,并据此提出几点教学想法。

一、基本状况全卷共30道题,总分100分,考试时间90分钟。

我校这次期中考试的考生有527人,其中100分的考生有8人,85分以上的397人,优秀率为75.3%,及格人数为517人,及格率98.1%,平均分为87.6分。

本次试卷分析接受了抽样调查,样本容量为250。

下表是各分数段人数汇总:分数段20~2930~39 40~4950~5960~6970~7980~8990~99100人数11431941 17 327 78由上表可见,今年期中数学成果的峰值一段是在90~99分之间,另一段在80~89分之间,低于70分者占总人数的5.3%,90分以上者占54%。

这一结果说明我校数学教学两极分化的现象不容忽视。

二、学生学习状况〔答题〕评价1.填空题考生答题状况分析填空题(1-7) 〔9-10〕均为基础题,主要考查学生数学中的基本概念〔相反数、肯定值、系数、同类项、科学记数法〕的理解,以及对基本技能〔求代数式的值〕的应用,得分率很高。

填空题〔8〕主要是借助于数轴来处理点与点距离的问题,需要分类商量,有一小部分学生只考虑了一种状况,在调查的250份试卷中,有56位同学答错了,错误率为22%。

这类试题涉及学问虽然基础,但需要考生具备肯定的“学习〞能力。

考试结果说明,对于这样的试题,有相当一小部分学生存在能力上的欠缺。

填空题〔11〕是信息题,学生需要依据表格提供的数据完成两小题,考查的是肯定值在生活中的意义以及应用,其中第1问求“最接近标准的是哪个〞,没有学生做错,而求“最重的足球比最轻的足球重克时〞,错误率将近45%,得到的答案是“26〞,在肯定的程度上还是没有真正的理解+12,-9,+18,-10,-8这些数在此题中所表示的意义。

六年级数学考试题试卷分析及反思

六年级数学考试题试卷分析及反思

六年级数学考试试题年级---------班级----------姓名------------------一、认真思考,仔细填空。

(每空1分,共20分)1. 一个数由三个6和四个0组成,若一个零都不读出来,这个七位数是(),用万作单位()万。

2. 某厂今年产量比去年增长25%,去年产量比今年少()%。

3. 在一道减法算式里,被减数、减数与差相加的和是420,被减数是()。

7. 一项工作,甲乙合作10天能够完成,若甲单独做30天能完成,若乙单独做,乙比甲少用()天。

8.用一张长12.56米,宽5米的长方纸做一个圆柱,圆柱的表面积()平方米,体积()立方米。

9.某班有学生60人,今天出勤率是95%,有()人出勤。

10.图上距离5厘米表示实际距离30千米,这幅地图的比例图是().11. 一个箱子里有同样大小相同的红球8个,黄球10个,至少摸()个球,才能保证一定有1个红球和1个黄球,至少摸出()个球,才能保证一定有2个红球。

12.假如李明向南行走50m,表示+50m,向北行走100m,表示为()m.13. 在比例里已知两个内项分别是0.6和9,那么两个外项的积是()。

二、我来辨一辨。

(对的打“√”,错的打“×”,每空1分,共8分。

)1. 圆的直径扩大10倍,面积也扩大10倍。

()2. 一个正方体的棱长是6m,体积和表面积相等。

()3. 2012年第一季度是90天。

()4. 圆锥的底面积一定,它的高与体积成正比。

()5. 40克水中加入10克糖,糖占糖水的20%。

()6. 一根绳子长20米,第一次剪去2/5,第二次剪去2/5米,两次剪去的长度是一样长。

()7. 用长5cm,6cm,13cm的三根小棒能摆一个三角形。

()8. 学校栽110棵树,成活100棵,成活率是100%.()三、反复比较,慎重选择。

(将准确的答案的序号填在括号内,共10分。

)1. 一根绳子剪去1/5,还剩下()A 4米B 4/5米C 4/5D 无法确定2. 小正方形的边长为a,大正方形的边长为2a,则小正方形与大正方形的面积的比是()A 2 : 1B 1 : 2C 1 : 4D 4 :13. 甲数的等于乙数的60%,那么()A 甲数> 乙数B 乙数> 甲数C 甲数= 乙数D 无法确定4. 等底等高的圆柱体,正方体,长方体的体积相比较()A.正方体体积大B.长方体体积大C.圆柱体体积大D.体积一样大5. 小红有2件不同的衣服和3条颜色不同的裤子,能够配成()套不同的服装。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[中等题]
一、填空题
18.在85、6.25、65%、0.625和0.62这五个数中,最大的数是( ),最小的数是( ),
相等的数是( )和( )。

19. 六年级男生“立定跳远”的合格标准是165厘米。

超过165厘米的部分用正数表示,不足165厘
这六人的平均成绩是( )厘米。

20.行同一段路,甲车用52小时,乙车用83
小时,两车相比,( )车速度快。

21.在直角三角形中,两个锐角的度数比是2:3,其中较小的角是( )度。

22.假如a+43=b+54=c+65=d+7
6
,那么在a 、b 、c 、d 中最大的数是( )。

23. 12 公顷的13 ,也就是1公顷的( )( )。

24.有一个小数,先缩小
10倍后,小数点再向右移动两位,得3.05。

原来的小数是( )。

25.下面两个学生游泳池中,(
乙池
26.一个正方体,棱长之和是48厘米。

它的体积是( )立方厘米。

27.
24
)
( =0.5: ( )=0.625=10:( )。

28.一个圆锥,体积是6.8立方分米,底面积是3.4平方分米,高是( )分米。

29.如果画一个周长是15.7厘米的圆,那么圆规两脚之间的距离是( )厘米。

30. 一张长方形纸片长与宽的比是5∶2,用它正好裁成10个完全相同的正方形,若正方形的边长是a
厘米,那么原来长方形的周长是( )厘米。

31.下图中阴影部分的面积占整个图形面积的( )。

32.李明家距离学校300米,刘亮家距离学校700米,两家都和学校在同一条笔直的马路上。

李明家与
刘亮家最近( )米,最远( )米。

二、选择题,把正确答案的序号填在括号里。

65.正方形的边长与面积( )。

① 成正比例 ② 成反比例 ③ 不成比例
66.与4
3
相等的分数( )。

① 只有一个 ② 只有两个 ③ 有无数个
67.ɑ和b 是相邻的两个非零的自然数,它们的最小公倍数是( )① ɑ ② b ③ ɑb 68.王奶奶家今年养鸡210只,比去年养鸡只数的3倍还多21只,去年养鸡多少只? 设去年养鸡χ只。

列方程正确的是( )
① 3χ-21=210 ②3χ+ 21=210 ③ (210+ 21)÷χ=3 69.在1千克水中加入20克盐,这时,盐占盐水的( )。

① 501 ② 511 ③ 51
50 ④ 201
70.用一张长方形的纸围成一个圆柱体(不能有重合部分),有两种围法,这两种围法所得到圆柱体的
( )相等。

① 底面积 ② 侧面积 ③ 体积
71.A 点在0和1之间(如图),A 点大约是( )。

① 21 ② 10
9 ③ 31 ④ 75
72.一辆汽车第一小时行了82.7千米,第二小时行了90千米,第三小时行了92.4千米,估算平均每
小时行多少千米?正确的取值范围应( )。

① 在80-82.7之间 ② 在82.7-90之间 ③ 在90-92.4之间 ④ 在92.4-100之间
(四)图形题
125.如下图所示,把这个等腰梯形沿虚线剪开,拼成一个长方形,拼成长方形的周长是多少厘米? (图中单位:厘米)
126.先测量,再计算下图的面积是多少平方厘米。

127.图中的三个小圆分别以三角形的 三个顶点A 、B 、C 的面积之和是多少平方厘米?
128.如图:直角△ABC 的两条直角边BC 与AB 的比是1∶2,如果分别以BC 边、AB 边为轴旋转一周,
那么所形成的圆锥的体积比是多少?
129. 如图:光明假日酒店在海边用绳子围起了一处酒店专用海滩。

已知绳子全长是460米,其中一条边的长度是160米。

这块专用海滩的面积是多少平方米?
130.右图的长方形是由大小相同的小正方形组成的。

请你在图中画一个三角形(用阴影表示), 使三角形的面积占整个长方形面积的1
3。

131. 下图是一个长方体的表面展开图,每个面都标有字母,如果F 在前面,从左面看到B ,那么向上的面标的字母是什么?请计算这个面的面积和这个长方体的表面积?
132.(1)下面的图形都是由两个几何图形组合成的,请分别画出每一个组合图形的全部对称轴。

(2)请你再画出一个用两个几何图形组成的图形,使新图形能正好画出4条对称轴,并画出这4条
对称轴。

156.小红和小明去超市购物,算一算,每块巧克力多少元?
157. 朱叔叔的冷饮店昨天卖出的雪糕和蛋卷共收款864元,昨天卖出雪糕126根,卖出蛋卷多少个?
1.5元/根
4.5元/个
158.小红到“灰姑娘城堡”游玩,她需要登66级台阶才能到城堡里面。

她一鼓作气登了台阶总数的1
3才休息片刻,再登多少级台阶就能到达城堡里面?
159.某小学计划为希望工程捐款3500元,实际捐款4200元。

超过计划百分之几?
160.新侨小学六一班第三小组两次从一批黄豆中取出种子,进行发芽对比实验。

下面是实验结果统计
如果把1000粒这种黄豆种在地里,大约
有()粒黄豆可以发芽。

161.甲、乙两人共同粉刷一段围墙,甲刷了全长的30%,乙刷了80米,
,这段围墙长多少米?
请从下面三个条件中,任选一个填在横线上,并解答出来。

(1)二人共刷了全长的11
20

(2)剩下45%没完成;
(3)完成的与剩下的比是11∶9
162.在商场打八五折时,妈妈买了一件外衣和一个书包,共花了323元,已知外衣原价220元,书包原价多少元?
163.爸爸今年的年龄是小红年龄的3倍,爸爸比小红大28岁,爸爸今年多少岁?(列方程解答)
164.12周岁的儿童,身体中血液与体重的比大约是1﹕13。

按照这个比,小明的体重是52千克,那么他的血液含量大约是多少千克?
165.某建筑公司所盖的住宅楼每层高都是3米。

其中一栋有16层,地基深为8米,按照这样的比例盖一栋22层高的住宅楼,需打多深的地基?(用比例解答)
166
列式计算出平均每户订阅报纸的份数,并填在表内。

167.春蕾小学“地球村”的同学们回收废品活动成绩显著。

(1)请你帮助地球村的同学们把统计表填写完整。

春蕾小学“地球村”的同学们回收废品统计表
(2)把统计表中的数据用条形统计图表示出来。

168. 为迎接奥运,北京自2008年7月1日起禁止全市30万辆高污染排放的黄标车上路行驶,并从7
月20日至9月20日,实施机动车“单双号”限行措施。

小明为了更直观的看出北京市这几天空气质量情况,将2008年7月20日至28日北京市空气污染指数制成了如下统计图:
⑴ 城市空气质量通常用污染指数来衡量,如下表:
这几天中( )日的空气质量最差,空气质量属于上表中的( )。

⑵ 北京2008奥运会的主题之一是“绿色奥运”,“绿色”的一个重要方面是空气质量达到优或良的天数必须占62%以上。

这几天的空气质量是否达到了“绿色”的标准?(列式解答)
169.小明买了4本书,其中两本书的价钱分别是21元、27元,另外两本书的价钱都超过了23元,但
比26元少。

小明付给售货员100元,请你估算一下够不够?说说你是怎样估算的?
200 160 120 80 40
0 一 二 三 四 春蕾小学“地球村”的同学收集废品情况统计图
年。

相关文档
最新文档