JIT系统教材(3)---Cellular Manufacturing
JIT 系统介绍英文版
Zero Parts Handling
JIT considers all part handling to be a waste, since it does not add value Part handling includes
– Toyota Production System – Just In Time – Lean production – Flow production
Lean Production Benefits
Double labour productivity 90% reduction in throughput times 90% reduction in inventory Improved quality Reduced time to market
1993-94, from Womack and Jones, Lean Thinking
Porsche’s Lean Transition
1991 1993 1995 1997 Time Inventories
Days on hand Concept to launch Welding to finished car 6 weeks -
Supplied parts (PPM) Finished cars (index)
10,000 4,000 1,000 100 100 60 45 25 3,102 +17 1,913 2,607 -239 +2 -
Sales Profits
Hours to assemble
Source: Womack and Jones, Lean Thinking
– Traditional Economic Order Quantity and Economic Production Lot formulas find a tradeoff between setup cost and inventory cost
精益生产基础知识
全 员 生 产维护 Tot a l
Productive Maintenance
拉 系 统 Pull Syst ems
ECRS Elimin ate Co mb in e Rearran g e Simp lify
三、精益屋
改善四原则: ECRS
该作业可以取消吗?
( Eliminate )
该作业可以合并吗?
按双手能同时动作布置现在不妨碍动作的前提下作 采用最舒适的作业位置高
场
业区域应尽量窄
度
3.治具和设备
①.使用便于抓取零件的 物料容器; ②.将两个以上的工具合 并为一个; ③.采用动作数少的联动 快速夹紧机构; ④.用一个动作操作设备 的装置。
①.利用专用夹持机构长 时间拿住目的物; ②.使用设备或者治具完 成简单或者需要力量的作 业; ③.设计双手能同时动作 的夹具;
Lean Production 精益生产
目录
一、精益生产简介 二、精益生产五原则 三、精益屋
一、精益生产简介
精益生产(Lean Production):简称“精益”,是衍生自丰田生产方式(Toyota
Production System)的一种管理哲学。是美国麻省理工学院数位国际汽车计划组
织(IMVP)的专家对日本丰田准时化生产JIT(Just In Time)生产方式的赞誉称
三、精益屋
“取消”具体操作
对程序图上的每一项工序都加以审查,确认其保留的必要性,凡可以取消者一律取消: 取消所有多余的步骤或动作(包括身体、四肢、手和眼的动作); 减少工作中的不规则性,比如将工具存放地点固定,形成习惯性机械动作等; 尽量取消或减少手的使用,如抓握、搬运等; 取消笨拙的或不自然、不流畅的动作; 尽量减少一切肌肉力量的使用; 减少对惯性、动量的克服; 杜绝危险动作和隐患; 除必要的休息外,取消工作中的一切人员和设备的闲置时间。
物流工程第五章
21
产品原则布置的优缺点
优点: 产品产出率高,单位产品
成本低,专用设备投资也 因产量大而摊薄; 每一产品都按自己的工艺 流程布置设备,因此加工 件经过的路程最直接、最 短,无用的停滞时间也最 少; 由于操作人员只做一种产 品的一个工序,效率高且 所需培训少; 生产管理和采购、库存控 制等工作也因变化少而相 对简单。
工艺原则布置在服务业中也很常见,此时称为过 程原则布置。
例如综合医院的布置一般是将功能相似的检查设 备,如牙齿的X射线检查仪、内脏的X射线检查仪 等及相应的医护人员组成放射科,或将服务功能 相似的医生,如外科医生、精神科医生等分别组 成外科、精神科。
此外,汽车修理间、航空公司和公共图书馆都属 于这一类。
7
作业单位的层次
设施
部门 部门 部门
工厂总平 面布置图
块 状 布 置
部门 图
工作中心 工作中心 工作中心
车间布 宏观
置图
详 细 布 置 图
工作地 工作地 工作地
宏观--微观的多次轮回
工作地布置 微观 设备布置图
9
5.1.2 设施布置的原则
设施布置的好坏直接影响整个系统的物流、信息 流、生产经营能力、工艺过程、灵活性、效率、 成本和安全等方面,并反映一个组织的工作质量、 顾客印象和企业形象等内涵。
缺点: 主要在于但它要求较多的
专用设备; 对产品种类及产量变化、
设备故障等情况的响应较 差; 线上工作重复单调乏味, 缺乏提升机会,可能会导 致工人的心理问题或职业 伤害; 为了避免停产,设备备用 件的库存可能比较大。
名词解释91828
ERP专业词汇集合1 ABM Activity-based Management 基于作业活动管理2 AO Application Outsourcing 应用程序外包3 APICS American Production and Inventory Control Society,Inc美国生产与库存管理协会4 APICS Applied Manufacturing Education Series 实用制造管理系列培训教材5 APO Advanced Planning and Optimization 先进计划及优化技术6 APS Advanced Planning and Scheduling 高级计划与排程技术7 ASP Application Service/Software Provider 应用服务/软件供应商8 ATO Assemble To Order 定货组装\9 ATP Available To Promise 可供销售量(可签约量)10 B2B Business to Business 企业对企业(电子商务)11 B2C Business to Consumer 企业对消费者(电子商务)12 B2G Business to Government 企业对政府(电子商务)13 B2R Business to Retailer 企业对经销商(电子商务)14 BIS Business Intelligence System 商业智能系统15 BOM Bill Of Materials 物料清单16 BOR Bill Of Resource 资源清单17 BPR Business Process Reengineering 业务/企业流程重组18 BPM Business Process Management 业务/企业流程管理#19 BPS Business Process Standard 业务/企业流程标准20 C/S Client/Server(C/S)\Browser/Server(B/S) 客户机/服务器\浏览器/服务器21 CAD Computer-Aided Design 计算机辅助设计22 CAID Computer-Aided Industrial Design 计算机辅助工艺设计23 CAM Computer-Aided Manufacturing 计算机辅助制造24 CAPP Computer-Aided Process Planning 计算机辅助工艺设计25 CASE Computer-Aided Software Engineering 计算机辅助软件工程26 CC Collaborative Commerce 协同商务27 CIMS Computer Integrated Manufacturing System 计算机集成制造系统28 CMM Capability Maturity Model 能力成熟度模型/29 COMMS Customer Oriented Manufacturing Management System面向客户制造管理系统30 CORBA Common Object Request Broker Architecture 通用对象请求代理结构31 CPC Collaborative Product Commerce 协同产品商务32 CPIM Certified Production and Inventory Management生产与库存管理认证资格33 CPM Critical Path Method 关键线路法34 CRM Customer Relationship Management 客户关系管理35 CRP capacity requirements planning 能力需求计划36 CTI Computer Telephony Integration 电脑电话集成(呼叫中心)&37 CTP Capable to Promise 可承诺的能力38 DCOM Distributed Component Object Model 分布式组件对象模型39 DCS Distributed Control System 分布式控制系统40 DMRP Distributed MRP 分布式MRP41 DRP Distribution Resource Planning 分销资源计划42 DSS Decision Support System 决策支持系统43 DTF Demand Time Fence 需求时界44 DTP Delivery to Promise 可承诺的交货时间45 EAI Enterprise Application Integration 企业应用集成46 EAM Enterprise Assets Management 企业资源管理!47 ECM Enterprise Commerce Management 企业商务管理48 ECO Engineering Change Order 工程变更订单49 EDI Electronic Data Interchange 电子数据交换50 EDP Electronic Data Processing 电子数据处理51 EEA Extended Enterprise Applications 扩展企业应用系统52 EIP Enterprise Information Portal 企业信息门户53 EIS Executive Information System 高层领导信息系统54 EOI Economic Order Interval 经济定货周期55 EOQ Economic Order Quantity 经济订货批量(经济批量法)56 EPA Enterprise Proficiency Analysis 企业绩效分析》57 ERP Enterprise Resource Planning 企业资源计划58 ERM Enterprise Resource Management 企业资源管理59 ETO Engineer To Order 专项设计,按订单设计60 FAS Final Assembly Schedule 最终装配计划61 FCS Finite Capacity Scheduling 有限能力计划62 FMS Flexible Manufacturing System 柔性制造系统63 FOQ Fixed Order Quantity 固定定货批量法64 GL General Ledger 总账65 GUI Graphical User Interface 图形用户界面66 HRM Human Resource Management 人力资源管理-67 HRP Human Resource Planning 人力资源计划68 IE Industry Engineering/Internet Exploration 工业工程/浏览器69 ISO International Standard Organization 国际标准化组织70 ISP Internet Service Provider 互联网服务提供商71 ISPE International Society for Productivity Enhancement国际生产力促进会72 IT/GT Information/Group Technology 信息/成组技术73 JIT Just In Time 准时制造/准时制生产74 KPA Key Process Areas 关键过程域75 KPI Key Performance Indicators 关键业绩指标,76 LP Lean Production 精益生产77 MES Manufacturing Executive System 制造执行系统78 MIS Management Information System 管理信息系统79 MPS Master Production Schedule 主生产计划80 MRP Material Requirements Planning 物料需求计划81 MRPII Manufacturing Resource Planning 制造资源计划82 MTO Make To Order 定货(订货)生产83 MTS Make To Stock 现货(备货)生产84 OA Office Automation 办公自动化85 OEM Original Equipment Manufacturing 原始设备制造商、86 OPT Optimized Production Technology 最优生产技术87 OPT Optimized Production Timetable 最优生产时刻表88 PADIS Production And Decision Information System生产和决策管理信息系统89 PDM Product Data Management 产品数据管理90 PERT Program Evaluation Research Technology 计划评审技术91 PLM Production Lifecycle Management 产品生命周期管理92 PM Project Management 项目管理93 POQ Period Order Quantity 周期定量法94 PRM Partner Relationship Management 合作伙伴关系管理、95 PTF Planned Time Fence 计划时界96 PTX Private Trade Exchange 自用交易网站97 RCCP Rough-Cut Capacity Planning 粗能力计划98 RDBM Relational Data Base Management 关系数据库管理99 RPM Rapid Prototype Manufacturing 快速原形制造100 RRP Resource Requirements Planning 资源需求计划101 SCM Supply Chain Management 供应链管理102 SCP Supply Chain Partnership 供应链合作伙伴关系103 SFA Sales Force Automation 销售自动化104 SMED Single-Minute Exchange Of Dies 快速换模法$105 SOP Sales And Operation Planning 销售与运作规划106 SQL Structure Query Language 结构化查询语言107 TCO Total Cost Ownership 总体运营成本108 TEI Total Enterprise Integration 全面企业集成109 TOC Theory Of Constraints/Constraints managemant 约束理论/约束管理110 TPM Total Productive Maintenance 全员生产力维护111 TQC Total Quality Control 全面质量控制112 TQM Total Quality Management 全面质量管理113 WBS Work Breakdown System 工作分解系统114 XML eXtensible Markup Language 可扩展标记语言]115 ABC Classification(Activity Based Classification) ABC分类法116 ABC costing 作业成本法117 ABC inventory control ABC 库存控制118 abnormal demand 反常需求119 acquisition cost ,ordering cost 定货费120 action message 行为/活动(措施)信息121 action report flag 活动报告标志122 activity cost pool 作业成本集123 activity-based costing(ABC) 作业基准成本法/业务成本法'124 actual capacity 实际能力125 adjust on hand 调整现有库存量126 advanced manufacturing technology 先进制造技术127 advanced pricing 高级定价系统128 AM Agile Manufacturing 敏捷制造129 alternative routing 替代工序(工艺路线)130 Anticipated Delay Report 拖期预报131 anticipation inventory 预期储备132 apportionment code 分摊码133 assembly parts list 装配零件表。
细胞式生产方式的起源及其在日本的普及条件
细胞式生产方式的起源及其在日本的普及条件[摘要]细胞式生产方式起源于瑞典、美国和日本相关企业的创造性活动。
市场条件的变化,经济的全球化,以及企业作为一个开放系统在输入和输出两个方面不确定性因素的增加等,使得日本企业外部环境条件发生了较大变化。
在一定的市场和社会条件下,细胞式生产方式必然取代流水线生产方式。
[关键词]细胞式生产方式;流水线生产方式;工业经济时代;信息经济时代;市场条件;不确定性因素[中图分类号]F279.11[文献标识码]A[文章编号]1005-2674(2010)07-0023-05在20世纪最后的10年里,日本的众多企业开始淘汰象征着现代化大工业的传送带式流水线生产方式(以下简称流水线生产方式),应用和推广细胞式生产方式。
在短短的十几年中,这种新型的生产方式就像雨后春笋一样在日本全国得到迅速普及,在手机、电脑、复印机、印刷机、录像机、显微镜、医疗机械、汽车零部件、机械零部件、机车、木工、缝纫等行业中得到广泛应用。
就企业来看,索尼、佳能、NEC、卡西欧、三洋、松下、日立、三菱、东芝、富士等日本著名大公司均名列其中。
这种新型生产方式的产生和在企业界的迅速普及,引起了日本学界和媒体的广泛重视,一大批学术刊物纷纷发表论文,从不同的专业角度对细胞式生产方式进行了理论性探讨。
在中国加入WTO前后,甚至还有一些日本学者发表文章,将发展细胞式生产方式作为增强日本制造业的国际竞争力,以对抗中国这个正在崛起的世界工厂的对策加以积极推举。
细胞式生产方式与需要机械化和自动化设备的传统的流水线生产方式不同,它以手工作业为主,分工不细,机械化和自动化水平不高(虽然根据需要也使用少量简单的机械和自动化工具),也不需要与传送带配套的大规模的厂房和专用设备,因此可以说有些复古的味道。
但是,同时它又的的确确产生于步入信息经济时代的发达国家,是新时代的产物。
这种既复古又新颖的生产方式能够短期内在日本迅速普及,并且得到了理论界的广泛关注,并非偶然。
JIT(经典讲义)
Single-Card Kanban System
Receiving post
Kanban card for product 1
Kanban card for product 2
Storage area
O2
Fabrication
cell
O1
O3
O2
Empty containers
Full containers
15
A Sample Kanban
及時化生產系統
16
The Origin of Kanban
a) Two-bin inventory system Bin 1
Reorder card
Q-R
Bin 2 R
b) Kanban inventory system Kanban
R
Q = order quantity R = reorder point - demand during lead time
✓ Triangular kanban used to signal production at the previous workstation
✓ Material Kanban
✓ Used to order material in advance of a process
✓ Supplier Kanbans
及時化生產系統
17
Types of Kanbans —
Dual kanbans
及時化生產系統
18
Single-Card Kanban System
Receiving post
Kanban card for product 1
Kanban card for product 2
JIT课件
JIT
(三ቤተ መጻሕፍቲ ባይዱ 看板控制
JIT要求将传统生产过程中前道工序向后道工序送货,改为后 道工序根据“看板”向前道工序取货,因而看板系统是准时制生 产现场控制技术的核心,整个看板系统的内外过程好像是一些无 形的传送带(看板)连在一起的信息流(看板流),把各个部门 联系在一起。在实际生产运作过程中,以双看板系统最为常用, 其具体实现过程如图4-8所示。
JIT
2. “多面手”的培养
从作业人员的角度来看,实现“少人化”意味着生产节 拍,作业内容、范围,作业组合及作业顺序等须变更。为使作 业人员能够适应这种变更,必须根据可能变更的作业内容使他 们接受培训,最理想的状态是大家都成为“多面手”,即作业 人员能对各个工序都熟悉,这样的作业人员的职务扩大也被称 为“作业人员多能化”。
JIT
1. 生产同步化
生产同步化是实现适时适量生产要解决的首要问题。所谓 生产同步化,就是工序间不设置仓库,前一工序加工结束后, 立即转到下一工序,装配线与机械加工几乎平行进行,产品被 一件一件连续地生产出来。
JIT
2. 流程均衡化
流程均衡化是实现适时适量生产的前提条件,具体是指总 装配线在向前工序领取零部件时应均衡地使用各种零部件,生 产各种产品。为此,在制订生产计划时就必须加以考虑,然后 将其体现于产品生产顺序计划之中。
三、 JIT的实现方式
JIT
(一) 适时适量生产
适时适量生产就是在需要的时候,按需要的量生产所 需要的产品或提供所需要的服务。它强调的是“准时”和“ 准量”,这是由当前顾客至上的市场环境决定的。现在是基 于时间竞争的时代,企业生产的产品数量必须能够对市场做 出灵活反应;否则,生产过剩将会导致库存积压,造成人、 财、物的浪费。而要实现适时适量生产,常采用生产同步化 和流程均衡化等生产方式。
生产经营管理培训10. 弹性制造系统
資料管理, 製造技術 生產管理
FMS FMS
FMS
作業管理, 資源分配 單元統合, 品管
單元 作業階層
個別機器 控制階層
單元
單元
單元
作業分析, 通信傳送 製程控制, 副系統整合 故障監測, 工作順序
倉儲
機器 控制器
工具機
機器人
機器和製程監控
機能階層
以上各項機器正常作業 所需要的感測合回饋裝置
製程運輸, 檢驗
Computer Integrated Manufacturing System
23
一、计算机集成控制系统的产生
为了提高市场竞争能力 , 企业一方面继续 寻求更好的生产局运作 管理方法 , 如准时 生产制、最优生产技术等 , 另一方面积极 探索采用新的制造技术和生产组 织方式 , 其中 , 最具代表性的是计算机集成制造系 统 (CIMS)
經營技術(business techniques)
製造需求規劃 (MRPⅡ)、剛好即時系統 (JIT)、看 板技術和 全面品質管理 (TQM
20
製造技術之層次
層次Ⅰ─單機(stand-alone)
如機器人和數值控制工具機 使用群組技術和電腦輔助製造, 而由機器和原 物料所組成, 負責生產零組件的一個群組 此層次整合的最高表現, 就是FMS的單元
24
1974 年 , 美国的约瑟夫· 哈林顿博士在 Computer Integrated Manufacturing 一书中首次提出了计 算机集成制造的概念 , 其中有两个基本观点 : 1) 企业生产的各个环节 , 即从市场分析、产品设 计、加工制造、经营管理到售后服务的全部生产活动 是一个不可分割的整体 , 要紧密连接 , 统一考虑。 2) 整个生产过程实质上是一个数据的采集、传递 和加工处理的过程。最终形成的产品可以看作是数据 的物资表现。
JIT看板系统的文献回顾【外文翻译】
外文文献翻译译文一、外文原文原文:Literature review of JIT-KANBAN systemAbstract In this paper, JIT (Just-In-Time) -KANBAN literature survey was carried out and presented.The introductory section deals with the philosophy of JIT,and the concept involved in the push and pull system. The blocking mechanisms in the kanban system are also discussed elaborately. Besides these sections, the importance of measure of performance (MOP) and the application of the same with respect to JIT-KANBAN are presented. The recent trends in the JIT-KANBAN are discussed under the headi ng “Special cases”. In this review, 100 state-of-art research papers have been surveyed. The directions for the future works are also presented.1 IntroductionJust -In-Time (JIT) manufacturing system was developed by Taiichi Ohno which is called Japanese “Toyota production system”JIT manufacturing system has the primary goal of continuously reducing and ultimately eliminating all forms of wastes (Brown et al. [5],Ohno [54], Sugimori et al. [82]). Based on this principle,Japanese companies are operating with very low level of inventory and realizing exceptionally high level of quality and productivity (Richard J. Tersine [62], James H. Greene [30]). JIT emphasizes “zero concept” which means achievement of the goals of zero defects, zero queues,zero inventories, zero breakdown and so on. It ensures the supply of right parts in right quantity in the right place and at the right time. Hence, the old system of material acquisition and, buyer and seller relationships are changed to new revolutionary concepts (Womack et al. [91], Womack and Jones [92], Markey et al. [45]). Similarly, JIT becomes an inevitable system at plant level, which integrates the cellular manufacturing, flexible manufacturing, computer integrated manufacturing and Robotics (Schonberger [63], Golhar [12]).Due to the technological advancement, the conventional method of pushproduction system linked with Material Requirement Planning (MRP) was changed to pull type JIT production system to meet out the global competition, where the work-in-process (WIP) can be managed and controlled more accurately than the push- production system (Mason Paul [46]).KANBAN system is a new philosophy, which plays a significant role in the JIT production system. Kanban is basically a plastic card containing all the information required for production assembly of a product at each stage and details of its path of completion. The kanban system is a multistage production scheduling and inventory control ystem. These cards are used to control production flow sand inventory. This system facilitates high production volume and high capacity utilization with reduced production time and work-in-process.The objectives of this paper are as listed below1) Critical review of JIT literature.2) Segregating the different research articles of JIT.3) Exploring the recent trends in JIT-Kanban system and deriving directions for future research.In this paper, the articles are reviewed and an appropriate classification is presented.The kanban study was made elaborately, since it acts as a basic communicator and feedback agent to the JIT system. Push and pull system, principle of operation of kanban cards, Blocking mechanism, Toyota’s formula, and the measures of performances (MOP) are also discussed in this paper. The latest trends in JIT-Kanban system are also addressed separately under the heading “Special cases”. Finally, the directions for future researches are presented.6.1.1 Flow shopKanban system is widely implemented in repetitive manufacturing environment. For a single card operational system, Sharadhapriyadarishini et al. [77] have developed two heuristics and proved that these are more efficient. Saradhapriyadarishini et al. [78] have proposed a recursive equation for scheduling the single card kanban system with dual blocking. They proposed a heuristic with twin objectives of minimizing the sum of total weighted time of containers andweighted flow time of part-types. Rajendran [61] has done a work on two card flow shop scheduling with n part-types. In this paper, mathematical models for time tabling of containers for different problems have been formulated. Then, a heuristic was developed to minimize the sumof weighted flow time, weighted earliness, and weighted tardiness of containers. Hemamalini et al. [22] have done similar work. In this work, the heuristic developed is simulated annealing algorithm. This is compared with randomsearchmethod. In these papers, the comparisons are done only based on mean relative percentage increase. Instead of this approach, comparisons based on complete ANOVA experiments would provide reliable inference.Peter Brucker et al. [58] have carried out research on flow shop problem with a buffer of limited capacity between two adjacent machines. After finishing the processing of a job on a machine, either the job is to be processed on the following machine or it is to be stored in the buffer between these machines. If the buffer is completely occupied, the job has to wait on its current machine but blocks this machine for other jobs. In this paper, they determined a feasible schedule to minimize the makespan using tabu search. The results of the problem using tabu search were compared with that of benchmark instances. The comparisons are done only based on relative improvements. Instead of this approach, comparisons based on complete ANOV A experiments would provide reliable inference.6.1.2 Assembly lineAssembly lines are similar to the flow shops in which assembly of parts are carried out in a line sequence. In a multi product assembly line, the sequencing of the jobs is a challenging task. Drexl et al. [16] considered an assembly line sequencing mixed model problem. It is a combinatorial problem. They formulated this combinational problem as integer programming model. This model can be used only for small size problems due to the limitations of operations research software with respect to handling the number of variables and constraints, which are present in the integerprogramming model. Xiaobo et al. [94] have considered similar work on mixed model assembly line sequencing problem with conveyor stoppages. They proposed branch and bound algorithm, and simulated annealing algorithm for finding theoptimal solution and sub-optimal solution of the mixed-model sequencing problem, respectively to minimize the total conveyor stoppage time. The branchand- bound method was devoted to find the optimal solution of small-sized problems, whereas the simulated annealing method was used to cope with large-scale problems to obtain a good sub-optimal solution. Future, research on simulated annealing applied to this problem can be directed to establish a better seed generation algorithm. However, the practitioner should spend considerable time in fixing the parameter called temperature (T) in the simulated annealing algorithm by trail and error method before actually solving the problem.6.1.3 Batch production systemIn a batch production system, the switching over from one product to other product depends on many factors such as stock reaching to the threshold level, different priority schemes, economical setups, etc. Tafur Altiok et al. [86] have dealt this issue differently for the pull type manufacturing system with multi product types. In this paper, they developed an iterative procedure to approximately compute the average inventory level of each product as finished goods using different priority schemes. In this paper, the demand arrival process is assumed to be a poisson distribution and processing times and the set-up times are arbitrarily distributed. But, in practice, the processing times may follow other distributions, viz., normal, uniform, exponential, etc. which are not experimented in this paper. Khan et al. [35] addressed the problem of manufacturing system that procures raw materials from vendors in lot and convert them into finished products. They estimated production batch sizes for JIT delivery system and designed a JIT raw material supply system. A simple algorithm was developed to compute the batch sizes for both manufacturing and raw material purchasing policies.7 JIT integration, implementation and benefitsJust-in-time is a manufacturing philosophy by which an organization seeks continuous improvements. For ensuring continuous improvements, it is necessary for any organization to implement and integrate the JIT and JIT related areas. If it is practiced in its true sense, the manufacturing performance and the financialperformance of the system will definitely improve.Swanson et al. [83] have reiterated that proper planning is essential for implementation of a JIT manufacturing system and a commitment from top management is a prerequisite. Cost benefit analysis is to be studied initially with the knowledge of key items such as the cost of conversion to a JIT system and time period of conversion. Cook et al. [11], in their case study for applying JIT in the continuous process industry, show improvements in demand forecast and decrease in lead-time variability.The relationship between implementation of TQM, TPM and JIT will lead to improvement in the manufacturing performance (Kribty et al. [37]). Further Huang [23] discusses the importance of considering the integration of TPM, JIT, Quality control and FA (Factory Automization). Imai [27] believes that TQM and TPM are the two pillars supporting the JIT production system. Kakuro Amasaka [32] proposes a new JIT management system, which helps to transfer the management technology into management strategy.Fullerton et al. [65] have conducted a study in 253 firms in USA to evaluate empirically whether the degree with which a firm implements the JIT practices affects the firms financial performance. From their study, JIT manufacturing system will reap sustainable rewards as measured by improved financial performance. Also, they studied the benefits of JIT implementation in 95 firms in USA. They have concluded that JIT implementation improves the performance of the system, because of resultant quality benefits, time based benefits, employees flexibility, accounting simplification, firms profitability and reduced inventory level.8 ConclusionThe growing global competition forces many companies to reduce the costs of their inputs so that the companies can have greater profit margin. There are considerable advancements in technology and solution procedures in reality, to achieve the goal of minimizing the costs of inputs. JIT-KANBAN is an important system, which is used in production lines of many industries to minimize work-in-process and throughput time, and maximize line efficiency. In this paper, theauthors have made an attempt to review the state-of-art of the research articles in the area “JIT-KANBAN system”. After a brief introduction to push and pull systems, different types of kanban and their operating principles, blocking mechanisms, the authors have classified the research articles under JIT-KANBAN system into five major headings, viz., empirical theory, modeling approach, variability and its effect, CONWIP and JIT-SCM. Also, the authors have provided a section for special cases under JIT-KANBAN. This paper would help the researchers to update themselves about the current directions and different issues under JIT-KANBAN system, which would further guide them for their future researches.The directions for future researches are presented below.The flow shop as well as mixed model assembly line problems come under combinatorial category. Hence, meta-heuristics viz., simulated annealing, genetic algorithm and tabu search may be used to find solution to determine the minimum number of kanbans and other measures. In simulated annealing algorithm, researchers can aim to device a better seed generation algorithm which will ensures better starting solution. In most of the papers, comparisons are done only based on relative improvements. Instead of this approach, comparisons based on complete ANOV A experiments would provide reliable inferences.This algorithm developed by Elizabeth Vergara et al. [18] uses only two-point crossover genetic operators. A third genetic operator may be introduced to further improve the performance of the evolutionary algorithm. The evolutionary algorithm may be modified to handle complex supply chain problem. In JIT-SCM related research works, effort should be directed to develop simulation as well as meta-heuristics to derive results under probabilistic conditions.In the work of Sarah M. Rayan et al. [69], the application of single chain analysis for multiple chain operation raises an open question whether a single WIP level should be maintained for all products or individual levels for each product. Further, most of the studies use simulation. Hence, future research shall be directed to develop improved search procedures for finding WIP levels in kanban systems. As an extension to the work of Krieg et al. [38], a decomposition algorithm can bedeveloped for multiproduct kanban systems with state dependent setups. The adaptive approach suggested by Tardif et al. [85] may be extended for multi-stage, multi-product kanban system. The work of Lai et al. [41] can be extended by including more variables and elements and conducting experiments to investigate the stability of the system under various conditions such as the sudden increase in demand and random demand, experimenting on the system behaviour of different types of customer and modes of manufacturing. The nested partitioned method provided by Leyuan Shi and Shuli Men [43] can be enhanced by incorporating any one or a combination of the many other heuristics viz., elaborate partitioning, sampling, backtracking scheme, simulation, etc. Then, they can be applied to combinatorial problems of this typeAnts colony optimization algorithm is a recent inclusion to the existing meta-heuristics viz., simulated annealing algorithm, genetic algorithm and tabu search. So, a researcher can study the solution accuracy as well as required computational time of this algorithm for his/her JIT problem of interest, which falls under combinatorial category and compare its results with the results of the other three heuristics (meta-heuristics).Source:C.Sendil Kumar, R.Panneerselvam, 2007.“Literature review of JIT-KANBAN system”.The International Journal of Advanced Manufacturing Technology, vol.32,no.5,August.pp.393-408.二、翻译文章译文:JIT看板系统的文献回顾摘要:在本文中,通过对JIT(实时)看板文献的调查提交相关的报告。
MRP、JIT、精益生产等
物料需求计划MaterialRequirementsPlanning(MRP)库存管理独立性需求问题独立性需求库存是指将被消费者消费或使用的最终产品或服务的库存。
从属性需求问题从属性需求库存是指将被用来制造最终产品的原材料或零部件的库存。
物料需求计划(MRP)MRP是一个计算机信息系统,用来辅助对从属性需求的库存进行管理,是用来计算物料需求和制定生产计划的有效方法。
什么情况下使用MRP?从属性和离散性的物料需求复杂的产品结构中小批量生产订货组装的生产环境需求计划的计算需要什么部件?需要多少?什么时候需要?什么时候需要订货或生产?MRP的基本思想按所需要的时间,在所需要的地点,按所需数量提供所需要的物料。
MRP围绕物料转化过程来组织生产资源,实现按需准时生产。
MRP的好处增加产品的销售降低成本减少库存(40%)改进用户服务水平对市场需求作出较快的反应具有改变主生产进度计划的能力减少非生产时间停工损失减少空闲时间MRP的好处(续)给管理人员在订货和发出生产指令之前能事先看到生产进度计划的情况可推延或取消订单更改订货数量辅助生产能力计划MRP的原理与构成MRP的基本部分是一个记录有关原材料、装配件、制成品、在制品、其它必需品、提前期和各组装件之间关系的数据库。
该系统经过计算得到满足总生产计划的生产方案。
MRP定期运行,通常每周一次,以使最近的生产需求计划、有关当前的库存状态和最新物料的到货趋于平衡。
总生产进度计划(MPS)产品结构清单(BillofMaterial,BOM)BOM是产品结构的明细单,表示产品是如何组成的。
所需零部件数目制造提前期库存状态文件(InventoryFile) 当前库存量计划入库量(在途量)提前期订购(生产)批量安全库存量几者之间的关系It=It-1+SRt+PRt-GRtNRt=GRt-SRt-It-1报告主要内容通知发出订单计划的订单更改通知新计划通知取消或暂停订单通知MRP的实施管理决策人员的作用使用者的参与教育和培训软件的选择数据的准确性比较现实的MPS产能需求计划CapacityRequirementsPlanning(CRP) 由物料需求计划对生产负荷进行计划的计算机系统生成负荷分布识别负荷不足和负荷过多初始负荷分布调整后的负荷分布负荷不足的补救措施1.获取更多的工作2.将工作提前进行3.降低正常生产能力负荷超载的补救措施1.消除多余的需求2.重新安排工作以便重新选择设备或工作中心3.在两台或多台设备之间分离批量进行加工4.增加正常生产能力5.转包6.提高作业的生产效率7.将工作滞后进行8.修改主生产进度计划制造资源计划ManufacturingResourcePlanning(MRPII)MRP的延伸对经营一个企业的所有资源进行计划MRPII的不同形式:ServiceRequirementsPlanning(SRP)BusinessRequirementsPlanning(BRP)DistributionRequirementsPlanning(DRP)配送需求计划(DRP)DRP是使用MRP的原理对不同地点的仓库或零售店进行补充的计划。
Manufacturing System
夾具的組成元件
• • • • • • 在夾具中的作用、地位及結構特點,組成夾只的元件可 分為以下各類 (1) 定位元件及定位裝置 (2) 夾緊元件及夾緊裝置 (3) 夾具體 (4) 對刀及導引元件裝置(包括刀具導引元件,對刀裝置 及靠模裝置) • (5) 動力裝置 • (6) 分度、對定裝置 • (7) 其他元件及裝置(包括夾具各部份相互連接用的以及夾 具與機器相連接用的鎖緊螺釘、銷、鍵和各Manufacturing systems
• Types of operations performed作業種類 • Number of workstations and system layout 工作站數目與系統佈置# • Level of automation自動化程度# • Part or product variety工件或產品的多樣性#
Production machines
• Manually operated machines例傳統機床 • Semi-automated machines(needs worker to load/unload and setup workpart)例CNC 機具 • Fully automated machines(no human attention)例射出成型機 • Workstation工作站to refer to a location in the factory where some well-defined task or operation is accomplished.#
• Human resources are required either full-time or periodically to keep the system running全時段或 週期性的人力資源需求,以確保系統運轉
精益生产管理培训课件(1)
监 MONITORING
环 ENVIRONMENT
6M1E
输入/输出 生产步骤
生产输出 一项产品
或 一项服务
10
1.1 精益生产方式概论
生产是把输入变为输出的过程. 制造则包括
➢ 生产过程 ➢ 准备生产过程 ➢ 设计/开发并改良生产过程 ➢ 物流过程
11
1.1 精益生产方式概论
思考题(2) 生产输入的6M1E之外,尚有其他需要的
1. 制造过多的浪费
2. 库存的浪费
3. 搬运的浪费
4. 不良品的浪费
5. 加工的浪费
6. 动作的浪费
7. 等待的浪费
8. 管理的浪费
44
1.2 认识浪费
管理工作的8大浪费
1. 管理的浪费
2. 作业的浪费
3. 停滞的浪费
4. 物流的浪费
5. 动作的浪费
6. 熟练度的浪费
7. 协调的浪费
8. 不良的浪费
输入吗?
12
1.1 精益生产方式概论
各项输入的细则 人MAN包括
➢ 直接生产人员(操作者) ➢ 间接生产人员(检查员/物料处理员等) ➢ 技术人员(调教/保养/修理员等) ➢ 管理人员(带领及指挥者)
13
1.1 精益生产方式概论
料MATERIAL包括 ➢ 直接生产用物料 ➢ 辅料(如粘贴剂等) ➢ 资料(生产用的文件及信息) ➢ 其他支持生产过程,各项活动所需要的物 料(如办公用品)
22
1.1 精益生产方式概论
一个人如果“肥胖”就是所摄取的食物(输入) 比 较所需要(产生输出)过多引至身体变为臃肿.
一个制造系统中的输入如果有浪费,企业便要 付出更高“成本”而影响
➢ 利润 ➢ 竞争力
精益生产 英文词汇
精益生产英文词汇
以下是关于精益生产(Lean Production)的一些英文词汇:
1.Lean Production: 精益生产
2.Kaizen: 改善,不断改进
3.Just-In-Time (JIT): 准时生产,即时生产
4.Continuous Improvement: 持续改进
5.Waste Elimination: 消除浪费
6.Value Stream Mapping (VSM): 价值流程图
7.5S Methodology: 5S方法(整理、整顿、清扫、清洁、素养)
8.Kanban: 看板
9.Andon: 安灯
10.Poka-Yoke: 防错
11.Single-Minute Exchange of Die (SMED): 单分模换模
12.Total Productive Maintenance (TPM): 全员生产维护
13.Batch Production: 分批生产
14.Cellular Manufacturing: 单元化生产
15.Pull System: 拉动系统
16.Flow Production: 流水生产
17.Visual Management: 视觉管理
18.Standard Work: 标准作业
19.Gemba: 现场(实地)
20.Muda: 浪费
21.Mura: 不稳定
22.Muri: 过度负荷
这些术语涵盖了精益生产的核心概念和工具。
请注意,根据上下文,可能会有不同的翻译和表达方式。
生产类专业名词中英文对照
生产类专有名词组织机构及职位XX电子有限公司XX Electronics CO., Ltd总经理办公室General manager’s office企管部Enterprise management department (EM)行政部Administration department (AD)销售部Sales department (SD)财务部Financial department (FD)技术部Technology department (TD)物控部Production material control department (PMC)生产部Production department(PD)模具部Mold manufacturing department, Tooling manufacturing department (TM) 品管部Quality Assurance department (QA)冲压车间Stamp workshop, press workshop注塑车间injection workshop装配车间Assembly workshop模具装配车间Mold and die Assembly workshop金属加工车间Metal machine workshop电脉冲车间Electric discharge process workshop线切割车间wire cutting process workshop工磨车间Grinding workshop总经理General manager (GM)副总经理Vice-general manager经理manager董事长president副董事长Vice-presidentXX部门经理Manager of XX department主任、主管supervisor拉长Line leader组长Foreman, forelady秘书secretary文员clerk操作员operator助理assistant职员staff连接器connector端子terminal条型连接器bar connector阴连接器Housing阳连接器wafer线束wire harness间距space额定电压rated voltage额定电流rated current接触电阻contact resistance绝缘电阻insulation resistance超声波焊接ultrasonic welding耐压withstand voltage针pin物料编号part number导线wire基体金属Base metal电缆夹cable clamp倒角chamfer接触面积contact area接触件安装孔contact cavity接触长度contact length接触件电镀层contact plating接触压力contact pressure接触件中心距contact space接触簧片contact spring插孔socket contact法兰、凸缘Flange界面间隙interfacial gap键Key键槽keyway过渡段ramp屏蔽套shielding定位基准Datum reference扁平电缆flat cable ,Ribbon cable柔性印刷电线Flexible printed wiring 多层印制电路Multilayer printed circuit 焊盘pad图形pattern间距pitch负极Negative pole正极positive pole原理图Schematic diagram单面板single sided board双面板Two-sided board,Double-sided board表面安装surface Mounting翘曲warp,bow波峰焊wave soldering编织层braid同轴电缆coaxial cable电介质dielectric电缆中导线的头数ends外部干扰external interference填充物filler护套jacket比重specific gravity电阻的温度系数Temperature coefficient of resistance 三、模具塑料模具mould of plastics注塑模具injection mould冲压模具die模架mould base定模座板Top clamping plateTop plateFixed clamp plate水口推板stripper plateA板A plateB板B plate支承板support plate方铁spacer plate底针板ejector plate面针板ejector retainer plate回针Return pin导柱Guide pin有托导套Shoulder Guide bush直导套Straight Guide bush动模座板Bottom clamp plateMoving clamp plate基准线datum line基准面datum plan型芯固定板core-retainer plate凸模固定板punch-retainer plate顶针ejector pin单腔模具single cavity mould多腔模具multi-cavity mould多浇口multi-gating浇口gate缺料starving排气breathing光泽gloss合模力mould clamping force锁模力mould locking force挤出extrusion开裂crack循环时间cycle time老化aging螺杆screw麻点pit嵌件insert活动镶件movable insert起垩chalking浇注系统feed system主流道sprue分流道runner浇口gate直浇口direct gate , sprue gate轮辐浇口spoke gate , spider gate点浇口pin-point gate测浇口edge gate潜伏浇口submarine gate , tunnel gate 料穴cold-slug well浇口套sprue bush流道板runner plate排飞槽vent分型线(面)parting line定模stationary mould,Fixed mould动模movable mould, movable half上模upper mould,upper half下模lower mould,lower half型腔cavity凹模cavity plate,cavity block拼块split定位销dowel定位销孔dowel hole型芯core斜销angle pin, finger cam滑块slide滑块导板slide guide strip楔紧块heel block, wedge lock拉料杆sprue puller定位环locating ring冷却通cooling channel脱模斜度draft滑动型芯slide core螺纹型芯threaded core热流道模具hot-runner mould绝热流道模insulated runner mould熔合纹weld line (flow line)三板式模具three plate mould脱模ejection换模腔模具interchangeable cavity mould脱模剂release agent注射能力shot capacity注射速率injection rate注射压力injection pressure差色剂colorant保压时间holdup time闭模时间closing time定型装置sizing system阴模female mould,cavity block阳模male mould电加工设备Electron Discharge Machining数控加工中心CNC machine center万能铁床Universal milling machine卧式刨床Horizontal planer车床Engine lathe平面磨床Surface grinding machine去磁机Demagnetization machine万能摇臂钻床Universal radial movable driller 立式钻床Vertical driller超声波清洗机Ultrasonic clearing machine 四、品管SPC statistic process control品管保证Quality Assurance品管控制Quality control来料检验IQC Incoming quality control巡检IPQC In-process quality control校对calibration动态试验dynamic test环境试验Environmental test非破坏性试验non-destructive test光泽gloss击穿电压(dielectric) breakdown voltage拉伸强度tensile strength冷热骤变试验thermal shock test环境试验炉Environmental chamber盐雾实验salt spray test绝缘电阻测试验仪Insulating resistance meter 内应力internal stress疲劳fatigue蠕变creep试样specimen撕裂强度tear strength缩痕shrink mark, sink mark耐久性durability抽样sampling样品数量sample sizeAQL Acceptable Quality level批量lot size抽样计划sampling planOC曲线operation curve试验顺序sequence of tests环境温度ambient temperature可焊性solderability阻燃性flame resistance五、生产注塑机injection machine冲床Punch machine混料机blender mixer尼龙nylon黄铜brass青铜bronze紫(纯)铜copper料斗hopper麻点pit配料compounding涂层coating飞边flash预热preheating再生料reworked material再生塑料reworked plastics工艺设计process design紧急停止emergency stop延时time delay六.物控保质期shelf lifeABC分类法ABC Classification反常需求Abnormal Demand措施信息Action Message活动报告标志Action-report-flag基于活动的成本核算Activity-based Costing (ABC) 实际能力Actual Capacity实际成本Actual Costs调整现有库存量Adjust-on-hand已分配量Allocation替代工序Alternative Routine装配订单Assembly Order装配零件表Assembly Parts List装配Assembly计划自动重排Automatic Rescheduling可达到库存Available Inventory可用材料Available Material达到库存Available Stock可利用工时Available Work可签约量Available-to-promise平均库存Average Inventory欠交订单Back Order倒序计划Back Scheduling倒冲法Back flush未完成订单Backlog现有库存余额Balance-on-hand Inventory批号Batch Number批量生产Batch Production标杆瞄准Benchmarking工时清单Bill of Labor提货单Bill of Lading物料清单Bill of Material分库Branch Warehouse经营规划Business Plan采购员Buyer能力管理Capacity Management能力需求计划Capacity Requirements Planning (CRP) 保管费率Carrying Cost Rate保管费Carrying Cost单元式制造Cellular Manufacturing修改批量日期Change Lot Date修改工序Change Route修改产品结构Change Structure检查点Check Point闭环物料需求计划Closed Loop MRP通用工序标识Common Route ID计算机集成制造Computer-integrated Manufacturing (CIM)配置代码Configuration Code约束管理/约束理论Constraints Management/Theory of Constraints (TOC) 依成本的材料清单Costed Bill of Material急需零件Critical Part累计提前期Cumulative Lead Time现有运转时间Current Run Hour现有运转数量Current Run Quantity周期盘点Cycle Counting调整日期Date Adjust有效日期Date Available修改日期Date Changed结束日期Date Closed截止日期Date Due生产日期Date in Produced库存调整日期Date Inventory Adjust作废日期D ate Obsolete收到日期Date Received交付日期Date Released需求日期Date Required发货日期Date to Pull空负荷Dead Load需求管理Demand Management需求Demand实际能力Demonstrated Capacity非独立需求Dependent Demand直接增减库存处理法Direct-deduct Inventory Transaction Processing发料单Disbursement List派工单Dispatch List分销资源计划Distribution Resource Planning (DRP)鼓-缓冲-绳子Drum-buffer-rope经济订货批量Economic Order Quantity (EOQ)工程变更生效日期Engineering Change Effect Date工程变更生效单Engineering Change Effect Work Order工程停止日期Engineering Stop Date例外控制Exception Control呆滞材料分析Excess Material Analysis急送代码Expedite Code加工订单Fabrication Order补足欠交Fill Backorder总装提前期Final Assembly Lead Time确认的计划订单Firm Planned Order固定订货批量F ixed Order Quantity集中预测Focus Forecasting完全跟踪Full Pegging通用生产管理原则Generally Accepted Manufacturing Practices 毛需求Gross Requirements在制品库存In Process Inventory独立需求Independent Demand投入/产出控制Input/ Output Control检验标识Inspection ID厂际需求Interplant Demand库存周转率Inventory Carry Rate仓库库位类型Inventory Location Type库存周转次数Inventory Turnover发送订单Issue Order项目记录Item Record物料项目Item加工车间Job Shop准时制生产Just-in-time (JIT)看板Kanban人工工时Labor Hour最后运输日期Last Shipment Date提前期Lead Time层Level负荷量Load Leveling负荷报告Load Report负荷Load仓位代码Location Code仓位备注Location Remarks仓位状况Location Status按需订货Lot for Lot批量标识Lot ID批量编号Lot Number批量Lot Size低位码Low Level Code机器能力Machine Capacity机器加载Machine Loading外购或自制决策Make or Buy Decision面向订单生产的产品Make-to-order Product面向库存生产的产品Make-to-stock Product制造周期时间Manufacturing Cycle Time制造资源计划Manufacturing Resource Planning (MRP II)主生产计划Master Production Schedule (MPS)物料成本Material Cost物料发送和接收Material Issues and Receipts物料需求计划Material Requirements Planning (MRP)登陆标志MPS Book Flag MPS多重仓位Multiple Location净改变式MRP N et Change MRP净需求Net Requirements新仓位New Location新组件New Parent新仓库New Warehouse不活动报告No Action Report现有库存量On-hand Balance未结订单Open Order订单输入Order Entry订货点Order Point订货方针Order Policy订货承诺Order Promising订货备注Order Remarks双亲Parent零件清单Part Bills零件批次Part Lot零件编号Part Number零件Part反查Pegging领料单Picking List领料/提货Picking计划订单Planned Order后减库存处理法Post-deduct Inventory Transaction Processing 前减库存处理法Pre-deduct Inventory Transaction Processing 发票价格Price Invoice采购订单价格Price Purchase Order优先计划Priority Planning产品控制Product Control产品线Production Line生产规划编制Production Planning产品率Production Rate产品结构树Production Tree预计可用库存Projected Available Balance采购订单跟踪Purchase Order Tracking已分配量Quantity Allocation仓位数量Quantity At Location欠交数量Quantity Backorder完成数量Quantity Completion需求量Quantity Demand毛需求量Quantity Gross进货数量Quantity In排队时间Queue Time队列Queue重生成式MRP Regenerated MRP重排假设Rescheduling Assumption资源需求计划Resource Requirements Planning粗能力计划Rough-cut Capacity Planning工艺路线Routing安全库存量Safety Stock保险期Safety Time预计入库量Scheduled Receipt残料率Scrap Factor发送零件Send Part维修件Service Parts发货地址Ship Address发货单联系人Ship Contact发货零件Ship Date发货单Ship Order工厂日历Shop Calendar车间作业管理Shop Floor Control损耗系数Shrinkage Factor标准产品成本Standard Product Cost标准机器设置工时Standard Set Up Hour标准单位运转工时Standard Unit Run Hour标准工资率Standard Wage Rate状况代码Status Code库存控制Stores Control建议工作单Suggested Work Order约束理论Theory of Constraints (TOC)时间段Time Bucket时界Time Fence单位成本Unit Cost采购计划员Vendor Scheduler采购计划法Vendor Scheduling工作中心能力Work Center Capacity工作中心Work Center在制品Work in Process工作令跟踪Work Order Tracking工作令Work Order工作进度安排Work Scheduling零库存Zero Inventories经济订货批量=Squat(2*年订货量*平均一次订货准备所发生成本/每件存货的年储存成本) 美国生产和库存控制协会APICS,American Production & Inventory Control Society 七.QS-9000中的术语APQP Advanced Product Quality Planning and Control Plan,产品质量先期策划和控制计划PPAP Production Part Approval Process,生产件批准程序FMEA Potential Failure Mode and Effects Analysis,潜在失效模式及后果分析MSA Measure System Analysis,测量系统分析SPC Statistical Process Control,统计过程控制审核Audit能力Capability能力指数Capability Indices控制计划Control Plans纠正措施Corrective Action文件Documentation作业指导书Job Instruction, work instruction不合格品Nonconformance不合格Nonconformity每百万零件不合格数Defective Parts Per Million, DPPM 预防措施Preventive Action程序Procedures过程流程图Process Flow Diagram, Process Flow Chart 质量手册Quality Manual质量计划Quality Plan质量策划Quality Planning质量记录Quality Records原始数据Raw Data反应计划Reaction Plan返修Repair。
JIT课件
懂设计、搞工艺
技能单一
多技能
• 库存及在制品
高
高
低
• 制造成本
高
低
更低
• 产品质量
低
高
更低
• 权利及责任
分散
集中
分散
4
二、 JIT生产系统的目标及组成
1、JIT的目标 JIT的中心思想即是消除一切无效劳动和浪费。 • 1.零废品。 • 2.零库存。 • 3.准结时间最少。准结时间长短与批量选择相联系。如果准结时间接近于零,就意味
着批量生产的优越性不复存在。我们知道,确定经济批量的目的是使库存总费用最小, 而库存总费用是由仓库保管费与准结(订货)费所决定,批量大意味着库存量高,仓 库保管费高;而批量小则库存量低,仓库保管费也低。但批量小必然增多准结次数, 在一般情况下,准结费用也随之增加。如果准结时间趋于零,则准结成本也趋于零, 就有可能采用极小批量。此时,选择批量为1是最经济的。
18
丰田生产方式在美国
• 美国人用了15年才发现TPS并不仅仅是一套技术和工具,它是一种系统的思维方式,
•
美国政府1991年赞助了200多万美元,成立了日本科技管理项目,其主要任务就是研究
TPS;
• 在政府和密歇根大学校方的资助下成立了专门研究TPS的密歇根大学精益生产项目(TPS 的美国版);至今美欧有关学者、专家每年还要举办关于精益生产的年会;
24
我国企业推行TPS的途径与策略
在全公司范围内培训TPS哲理和工业工程的理论与方法。同 时要注意研究国内外推行过TPS企业的成功经验与失败教训。
坚持从规划入手,试点与系统开发的并行工程。 加快体制改革的步伐。TPS工程不是单纯的管理和技术问题,
它是市场经济的产物。
弹性生产知识与应用技术
透过广泛信息网络的链接,全面整合所有的制造功能和 界面。
在此层次当中,被广为熟知的就是计算机整合制造 (CIM)。
弹性增加
• 因应设计变更 • 缩小批量 • 因应需求增加
响应市场
• 缩小前置时间 • 反应需求变动 • 缩小生产管理
FMS之效益
短期响应工厂每日的问题
工程和制程变更 机器闲置 切割刀具毁损
长期调节, 并有效改变系统
改变产品数量 混合不同产品 增加新产品
降低劳力 增进机器使用率 改善作业控制 减少库存
组成要素: 数值控制机器, 物料搬运设备, 计算机控制 共通点: 整合性, 智慧性, 立即性
弹性制造系统分类
弹性制造模块 (Flexible Manufacturing Module, FMM)
弹性制造单元 (Flexible Manufacturing Cell, FMC)
弹性制造群 (Flexible Manufacturing Group, FMG)
刀具控制系统
刀具确认 刀具设置 刀具行程安排
维修控制系统
警报讯号 线上 (on-line) 解决办
法
运输控制系统
• 零件运输 • 刀具运输
管理控制系统
• 系统协调者 • 管理报告 • FMS时间表 • FMS模拟机
物料搬运系统
MHS功能
从原料储存到最后的检验, 有效地移动工件, 包括从 装卸区将工件传送到工具机, 检验站和清洗站, 及传 送检验完成的工件
FMS 作业阶层
单元 作业阶层
个别机器 控制阶层
公司
FMS
FMS
FMS
单元
单元
单元
机器 工具机 机器人 仓储 控制器
MRP、JIT、精益生产等
物料需求计划Material Requirements Planning (MRP)库存管理独立性需求问题独立性需求库存是指将被消费者消费或者使用的最终产品或者服务的库存。
从属性需求问题从属性需求库存是指将被用来创造最终产品的原材料或者零部件的库存。
物料需求计划(MRP)MRP 是一个计算机信息系统,用来辅助对从属性需求的库存进行管理,是用来计算物料需求和制定生产计划的有效方法。
什么情况下使用MRP?从属性和离散性的物料需求复杂的产品结构中小批量生产定货组装的生产环境需求计划的计算需要什么部件?需要多少?什么时候需要?什么时候需要定货或者生产?MRP 的基本思想按所需要的时间,在所需要的地点,按所需数量提供所需要的物料。
MRP 环绕物料转化过程来组织生产资源,实现按需准时生产。
MRP 的好处增加产品的销售降低成本减少库存(40%)改进用户服务水平对市场需求作出较快的反应具有改变主生产进度计划的能力减少非生产时间停工损失减少空暇时间MRP 的好处(续)给管理人员在定货和发出生产指令之前能事先看到生产进度计划的情况可推延或者取销定单更改定货数量辅助生产能力计划MRP 的原理与构成MRP 的基本部份是一个记录有关原材料、装配件、制成品、在制品、其它必需品、提前期和各组装件之间关系的数据库。
该系统经过计算得到满足总生产计划的生产方案。
MRP 定期运行,通常每周一次, 以使最近的生产需求计划、有关当前的库存状态和最新物料的到货趋于平衡.总生产进度计划(MPS)产品结构清单 (Bill of Material,BOM)BOM 是产品结构的明细单,表示产品是如何组成的.所需零部件数目创造提前期库存状态文件(Inventory File)当前库存量计划入库量(在途量)提前期订购(生产)批量安全库存量几者之间的关系It = It- 1 + SRt + PRt - GRtNRt = GRt - SRt —It—1报告主要内容通知发出定单计划的定单更改通知新计划通知取销或者暂停定单通知MRP 的实施管理决策人员的作用使用者的参预教育和培训软件的选择数据的准确性比较现实的MPS产能需求计划Capacity Requirements Planning (CRP)由物料需求计划对生产负荷进行计划的计算机系统生成负荷分布识别负荷不足和负荷过多初始负荷分布调整后的负荷分布负荷不足的补救措施1 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cellular Manufacturing
Tiffany Dundon
Boise State University
What will be Covered
•Definition
•Brainstorming
•Nuts and Bolts
•Reported Benefits of Cellular Manufacturing
•How It Works
•Examples of Cellular Manufacturing
•An Exercise
•Conclusion
Cellular Manufacturing (CM)
Defined
“Cellular Manufacturing organizes the
entire process for similar products into
a group of team members, includes all
the necessary equipment and is known
as a "Cell".
Merryman, Wes. Cellular Manufacturing.Online. Internet.
Available at
/CIRASnews/cellular.html
Cellular Manufacturing
Defined
“…The cells are arranged to easily
facilitate all operations.Parts are
handed off from operation to operation
eliminating setups and unnecessary
costs between operations.”
Merryman, Wes. Cellular Manufacturing.Online. Internet.
Available at
/CIRASnews/cellular.html
Brainstorming
•Brainstorm some ideas about cellular
manufacturing
•How can this tool be used in your
organization?
Nuts and Bolts
•Elimination of wastes by linking steps
–Waste is any resource not adding value to
the product being manufactured
•In a cell, most work stations are close
together so that little or no time is
required to move parts
Nuts and Bolts
•Cell teams are cross trained in cell
operations
–Continuous improvement
–Reduce lead times
–Remove waste
–Improve quality
•Product flow is more visible
–Easier control
Nuts and Bolts
•Primary purpose:
–Reduce cycle time
–Reduce inventories
•Other benefits include:
–Space reduction
–Quality improvement
–Labor cost reduction
–Improved machine utilization
Nuts and Bolts
•Human resource issues:
–Proper training for operators
–Cross functional training
–Team building training for operators
Nuts and Bolts
•Human Resource issues:
–Supervisors become coaches
–Compensation (incentives)
–Initial resistance of CM
–Cells need support
•Production and Quality Control Cost
•Raw Materials Inventory 42%
How it Works
•Members of the plant team need to be
involved in the changes
•Other functions need to be changed:
–Production planning and control
–Purchasing
–Cost accounting
How it works
•Where do you begin?
•First, define the “cells”by the following
criteria:
–Processes required
–Part numbers and attributes
–Market segments / customers
–Degree of automation
How it Works
•Team selection is crucial
–Identify important skills needed such as
teamwork and leadership skills
–Create a process map
–Develop a checklist for selecting members
How it Works
•Match skills to tasks
–Create a matrix to define who is best
qualified for each task
•Develop team trust and motivation
–Manage team morale
–Encourage teamwork
Real World Example
John Deere
•Integrated welding work cells
•Utilizes robotic welding processes
–Faster weld times
–Consistent welds
–Endurance
Real World Example
John Deere
•Major benefits of CM:
–Switching of welds is simple
–Factory has maximum flexibility
–Delivers higher quality
–Faster delivery
Real World Example
Inscape
•Production divided into highly
specialized “cells”
–Each cell contains equipment, technology
and people
–Each cell can make a wide variety of family
products
Real World Example
Inscape
•Major benefits of CM:
–Consistently high quality
–Flexibility for customers
–Quick changes in size and style
–Mass customization
A Short Exercise
•How is implementing CM useful in
your organization?
•How will you define cells? Form teams?
Motivate and develop trust? Change
functions? Change the plant layout?
Summary
•CM: based on a group of different
processes located in close proximity to
manufacture similar products
•You must first define the “cells”and
then develop a team
Summary
•Training and support are key elements
•Many reported benefits to switching
your organization to cellular
manufacturing
–Reduce inventories, and more。