2020【浙教版】九年级数学下册第3章投影与三视图《直棱柱的三视图》同步练习(含答案)

合集下载

2019-2020浙教版九年级数学下册第三章投影与三视图单元测试卷解析版

2019-2020浙教版九年级数学下册第三章投影与三视图单元测试卷解析版

2019-2020浙教版九年级数学下册第三章投影与三视图单元测试卷一.选择题(共12小题)1.下列图形不是正方体展开图的是()A.B.C.D.2.一个正方体的侧面展开图有几个全等的正方形()A.2个B.3个C.4个D.6个3.下列平面图形中不能围成正方体的是()A.B.C.D.4.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.5.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习6.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色7.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.8.某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.9.一个几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是()A.πcm2B.πcm2C.2πcm2D.4πcm210.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②11.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”12.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长二.填空题(共8小题)13.将一个正方体的表面沿某些棱剪开,展开成一个平面图,至少需要剪条棱.14.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为.15.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是.16.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是.17.一个几何体的三视图完全相同,该几何体可以是.(写出一个即可).18.课桌上按照下图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是:,,,.19.某几何体从三个方向看到的图形分别如图,则该几何体的体积为.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三.解答题(共8小题)21.我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)23.右面是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.24.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().25.在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?26.已知一个直三棱柱的三视图的有关尺寸如图所示,请计算这个几何体的表面积(侧面积+底面积).27.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)28.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)参考答案与试题解析一.选择题(共12小题)1.下列图形不是正方体展开图的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、C、D经过折叠均能围成正方体,B•折叠后上边没有面,不能折成正方体.故选:B.【点评】解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.一个正方体的侧面展开图有几个全等的正方形()A.2个B.3个C.4个D.6个【分析】可把一个正方体展开,观察侧面全等的正方形的个数即可.【解答】解:因为一个正方体的侧面展开会产生4个完全相等的正方形,所以有4个全等的正方形.故选:C.【点评】本题考查的是全等形的识别,属于较容易的基础题.3.下列平面图形中不能围成正方体的是()A.B.C.D.【分析】根据常见的正方体展开图的11种形式以及不能围成正方体的展开图解答即可.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有A选项不能围成正方体.故选:A.【点评】本题考查了正方体展开图,熟记展开图常见的11种形式与不能围成正方体的常见形式“一线不过四,田凹应弃之”是解题的关键.4.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A,B,C经过折叠均能围成正方体;D、折叠后有重叠的面.故选:D.【点评】本题考查了展开图折叠成几何体,只要有“田”字格的展开图都不是正方体的表面展开图.5.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.【点评】本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.6.如图,下面三个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么涂黄色、白色、红色的对面分别是()A.蓝色、绿色、黑色B.绿色、蓝色、黑色C.绿色、黑色、蓝色D.蓝色、黑色、绿色【分析】从图中可以看出涂有黄的邻面颜色是黑、白、蓝、红,所以黄的对面应是绿,涂有红的邻面颜色是绿、白、黄、蓝,所以红的对面应是黑,那么只剩下了白色和蓝色,涂有白色的对面只能是蓝色,可知黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.【解答】解:由图可得,涂有黄的邻面颜色是黑、白、蓝、红,所以黄的对面应是绿,涂有红的邻面颜色是绿、白、黄、蓝,所以红的对面应是黑,则只剩下了白色和蓝色,即涂有白色的对面只能是蓝色,故黄色的对面是绿色,白色的对面是蓝色,红色的对面是黑色.故选:B.【点评】考查了正方体相对两个面上的文字,注意正方体的空间图形,此题关键是抓住图中出现了2次的颜色红和黄的邻面颜色的特点,推理得出它们的对面颜色分别是黑和绿.7.下面四个几何体中,其主视图不是中心对称图形的是()A.B.C.D.【分析】首先得出各几何体的主视图的形状,进而结合中心对称图形的定义得出答案.【解答】解:A、圆锥的主视图是等腰三角形,不是中心对称图形,此选项符合题意;B、正方体的主视图是正方形,是中心对称图形,此选项不符合题意;C、圆柱体的主视图是矩形,是中心对称图形,此选项不符合题意;D、球的主视图是中心对称图形,此选项不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图以及中心对称图形的定义,正确得出各几何体的主视图是解题关键.8.某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.9.一个几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是()A.πcm2B.πcm2C.2πcm2D.4πcm2【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积.【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为1,母线长为2,因此侧面面积为2×π×1×2÷2=2πcm2.故选:C.【点评】本题中要先确定出几何体的面积,然后根据其侧面积的计算公式进行计算.本题要注意圆锥的侧面积的计算方法是圆锥的底面半径乘以圆周率再乘以母线长.10.某同学画出了如图所示的几何体的三种视图,其中正确的是()A.①②B.①③C.②③D.②【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.依此即可解题.【解答】解:根据几何体的摆放位置,主视图和俯视图正确.左视图中间有一条横线,故左视图不正确.故选:B.【点评】本题考查了三种视图及它的画法,看得到的棱画实线,看不到的棱画虚线.11.如图是王老师展示的他昨天画的一幅写生画,他让四个学生猜测他画这幅画的时间.根据王老师标出的方向,下列给出的时间比较接近的是()A.小丽说:“早上8点”B.小强说:“中午12点”C.小刚说:“下午3点”D.小明说:“哪个时间段都行”【分析】可根据平行投影的特点分析求解,或根据常识直接确定答案.【解答】解:根据题意:影子在物体的东方,根据北半球,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,可得应该是下午.故选C.【点评】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长.12.如图,小明夜晚从路灯下A处走到B处这一过程中,他在路上的影子()A.逐渐变长B.逐渐变短C.长度不变D.先变短后变长【分析】因为人和路灯间的位置发生了变化,光线与地面的夹角发生变化,所以影子的长度也会发生变化,进而得出答案.【解答】解:当他远离路灯走向B处时,光线与地面的夹角越来越小,小明在地面上留下的影子越来越长,所以他在走过一盏路灯的过程中,其影子的长度逐渐变长,故选:A.【点评】此题考查了中心投影的性质,解题关键是了解人从路灯下走过的过程中,人与灯间位置变化,光线与地面的夹角发生变化,从而导致影子的长度发生变化.二.填空题(共8小题)13.将一个正方体的表面沿某些棱剪开,展开成一个平面图,至少需要剪7条棱.【分析】本题考查了立方体的平面展开图,考查学生对立体图形展开图的认识.【解答】解:如果把一个正方体剪开展平的图画出来,发现有5条棱没剪(没剪的棱为两个正方形的公共边),正方体总共12条棱,∴12﹣5=7条即为所剪的棱.故答案为:7.【点评】本题通过考查正方体的侧面展开图,展示了这样一个教学导向,教学中要让学生确实经历活动过程,而不要将活动层次停留于记忆水平.我们有些老师在教学“展开与折叠”时,不是去引导学生动手操作,而是给出几种结论,这样教出的学生肯定遇到动手操作题型时就束手无策了.14.用一个宽2 cm,长3 cm的矩形卷成一个圆柱,则此圆柱的侧面积为6cm2.【分析】根据立体图形的展开图即可解.【解答】解:圆柱的侧面展开图是矩形,根据题意知,此圆柱的侧面积为2×3=6cm2故答案为6cm2【点评】圆柱的侧面展开图是矩形,底面是圆,侧面积即圆柱的底面周长与高的积.15.如图所示的是一个正方体的表面展开图,则与“奋”字所代表的面相对的面上的汉字是活.【分析】利用正方体及其表面展开图的特点求解即可.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“生”与面“是”相对,面“活”与面“奋”相对,面“就”与面“斗”相对.故答案为:活.【点评】本题考查了正方体相对两个面上的文字,解答本题的关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.16.用一个平面去截长方体,三棱柱,圆柱,和圆锥,其中不能截出三角形的几何体是圆柱.【分析】当截面的角度和方向不同时,圆柱体的截面不相同,无论什么方向截取圆柱都不会截得三角形.【解答】解:长方体沿体面对角线截几何体可以截出三角形,三棱柱沿顶点截几何体可以截得三角形,圆柱不能截出三角形,圆锥沿顶点可以截出三角形,故不能截出三角形的几何体是圆柱.【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.17.一个几何体的三视图完全相同,该几何体可以是球、正方体等(写一个即可).(写出一个即可).【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:球的三视图都是圆,正方体的三视图都是正方形,∴几何体可以是球、正方体等.【点评】本题考查了三视图的知识,常见的三视图相同的几何体的名称要掌握.18.课桌上按照下图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是:乙,甲,丙,丁.【分析】选定一个物体,再按所经过的路径进行分析即可.【解答】解:根据给出的俯视图可以确定暖水瓶,水杯和乒乓球的位置,所以最早看到的是比较接近左视图的乙,然后到接近主视图的甲,再到接近右视图的丙,最后是丁,故填乙甲丙丁.故答案为:乙甲丙丁.【点评】本题考查了几何体的多种视图和学生的识图以及空间想象能力.19.某几何体从三个方向看到的图形分别如图,则该几何体的体积为3π.【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆及圆心可判断出此几何体为圆柱.【解答】解:由三视图可得,此几何体为圆柱,所以圆柱的体积为,故答案为:3π【点评】本题主要考查了由三视图判断几何体,由主视图和左视图可得几何体是柱体,锥体还是球体,由俯视图可确定几何体的具体形状.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体略.【分析】由左视图可以知道,左边应该为三个小立方体,且在正前方,添加即可.【解答】解:【点评】此题主要考查三视图的画图、学生的观察能力和空间想象能力.三.解答题(共8小题)21.我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【分析】结合圆柱和圆锥的侧面展开图的特征解题.【解答】解:(1)如右图.(2)OA=OB,(1分)CB=ED=,(2分)BE=CD,(3分)∠B=∠C=∠D=∠E=90°.【点评】对于此类问题,注意多动手操作,培养自己的空间想象能力.22.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)【分析】结合正方体的平面展开图的特征,只要折叠后能围成正方体即可,答案不唯一.【解答】解:答案不惟一,如图.【点评】正方体的平面展开图共有11种,应灵活掌握,不能死记硬背.23.右面是一个正方体纸盒的展开图,请把﹣10,7,10,﹣2,﹣7,2分别填入六个正方形,使得按虚线折成正方体后,相对面上的两数互为相反数.【分析】根据题意,找到相对的面,把数字填入即可.【解答】解:根据相反数的定义将﹣10,7,﹣2分别填到10,﹣7,2的对面(答案不唯一),如:【点评】本题考查灵活运用正方体的相对面解答问题,立意新颖,是一道不错的题.24.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B(1,3,4);C(1,2,3,4);D(5);E(3,5,6).【分析】分别分析其余四种图形的所有的截面情况,再写出答案.【解答】解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).【点评】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.25.在平整的地面上,有若干个完全相同棱长的小正方体堆成一个几何体,如图所示.(1)请画出这个几何体的三视图.(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有1个正方体只有一个面是黄色,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加几个小正方体?【分析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个;(3)保持俯视图和左视图不变,可往第二列前面的几何体上放一个小正方体,后面的几何体上放3个小正方体.【解答】解:(1)如图所示:(2)只有一个面是黄色的应该是第一列正方体中最底层中间那个,共1个;有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个;(3)最多可以再添加4个小正方体.【点评】本题考查简单组合体的三视图的画法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.注意涂色面积指组成几何体的外表面积.26.已知一个直三棱柱的三视图的有关尺寸如图所示,请计算这个几何体的表面积(侧面积+底面积).【分析】三棱柱的表面是有三个矩形和两个三角形组成的,分别计算相加即可.【解答】解:主视图为直角三角形,由直角边为4cm和3cm,根据勾股定理得:斜边为5cm,S=3×2+4×2+5×2=24cm2(3分)侧S=2××3×4+24=36cm2(6分)表【点评】此题的关键是熟悉三棱柱的组成,以及会正确读出图中的数据,再根据矩形、三角形的面积公式求解.27.如图,由几个相同的小正方体搭成一个几何体,请画出这个几何体的三种视图.(在所提供的方格内涂上相应的阴影即可)【分析】几何体的主视图有3列,每列小正方形数目分别为2,1,1;左视图有2列,每列小正方形数目分别为2,1;俯视图有,3列,每行小正方形数目分别为2,1,1【解答】解:如图所示:【点评】此题考查了三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.28.某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【分析】(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【解答】解:(1)AB=AC tan30°=12×=4(米).答:树高约为4米.(2)如图(2),B1N=AN=AB1sin45°=4×=2(米).NC1=NB1tan60°=2×=6(米).AC1=AN+NC1=2+6.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB 的⊙A相切时影长最大)AC2=2AB2=;【点评】此题考查了平行投影;通过作高线转化为直角三角形的问题,当太阳光线与圆弧相切时树影最长,是解题的关键.。

浙教版九年级下册第3章《投影与三视图》测试卷(含答案)

浙教版九年级下册第3章《投影与三视图》测试卷(含答案)

九年级下册第3章《投影与三视图》(3.4-综合)测试卷满分100分,考试时间90分钟一、选择题(每小题3分,共30分)1.下面四个图形中,是三棱柱的平面展开图的是()A B C D2.如图是一个不完整的正方体平面展开图,需再添上一个面,折叠后才能围成一个正方体.下面是四位同学补画的情况(图中阴影部分),其中正确的是()第2题图 A B C D3.已知圆柱的底面半径为2 cm,高为5 cm,则圆柱的侧面积是()A.20 cm2B.20π cm2C.10π cm2D.5π cm2A.15π cm2B.30π cm2C.60π cm2D.391 cm25.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3 C.66πcm3 D.68πcm3第5题图6.与如图所示的三视图对应的几何体是()第6题图7.如图,从左面看圆柱,则图中圆柱的投影是( ) A .圆 B .矩形 C .梯形D .圆柱第7题图8.将一个圆心角是90°的扇形围成圆锥的侧面,则该圆锥的侧面积侧S 和底面积底S 的关系为( )A .侧S =底SB .侧S =2底SC .侧S =3底SD .侧S =4底S 9.如图,如果从半径为9 cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A .6 cm B .3 5 cm C .8 cm D .5 3 cm第9题图10.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点且PC =23B C .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .⎝⎛⎭⎫4+6π cm B .5 cm C .3 5 cm D .7 cm第10题图二、填空题(每小题3分,共30分)11.如图,该图形经过折叠可以围成一个正方体形,折好以后,与“静”字相对的字是 .第11题图12.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为.第12题图13.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是cm2.4 43 2第13题图14.若圆柱的底面半径2cm,侧面积为12πcm2,则它的高是cm.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.16.已知圆锥底面圆的半径为6cm,它的侧面积为60πcm,则这个圆锥的高是cm.17.圆锥底面圆的半径为3 cm,母线长为9 cm,则这个圆锥的全面积为cm2.18.如图,把一个半径为12 cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.第18题图19.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是.第19题图20.四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1-S2|= .第20题图三、解答题(共40分)21.(6分)如图,画出该物体的三视图.22.(6分)下图是一个食品包装盒的表面展开图.(1)请写出包装盒的几何体名称;(2)根据图中所标尺寸,用a、b表示这个几何体的全面积S(侧面积与底面积之和),并计算当a=1,b=4时,S的值.23.(6分)已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长;(2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少?24.(6分)要在如图所示的一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.25.(6分)一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.(1)请画出此零件的左视图;(2)若此零件底面圆的半径r=2cm,高h=3cm,求此零件的表面积.26.(10分)下面给出的正多边形的边长都是20 cm.请分别按下列要求设计一种剪拼方法(用虚线表示你的设计方案,把剪拼线段用粗黑实线,在图中标注出必要的符号和数据,并作简要说明.(1)将图1中的正方形纸片剪拼成一个底面是正方形的直四棱柱模型,使它的表面积与原正方形面积相等;(2)将图2中的正三角形纸片剪拼成一个底面是正三角形的直三棱柱模型,使它的表面积与原正三角形的面积相等;(3)将图3中的正五边形纸片剪拼成一个底面是正五边形的直五棱柱模型,使它的表面积与原正五边形的面积相等.九年级下册第3章《投影与三视图》(3.4-综合)测试卷1.A2.B3.B4.B5.B6.B7.B8.D9.B10.B11.着12.613.614.315.180°16.817.36π18.419.620.4π21.如图所示.22.(1)长方体;(2)S=2ab×2+2×2a×a+2×a×b=4ab+4a2+2ab=6ab+4a2.当a=1,b=4时,S=6×1×4+4×12=28.(2)将图2中三个角上的3个四边形剪下,拼成一个正三角形,作为直三棱柱的一个底面.(3)将图3中五个角上的5个四边形剪下,拼成一个正五边形,作为直五棱柱的一个底面.。

浙教版 九年级数学下册 第3章 投影与三视图 单元同步练习习题合集(含单元测试+章末总结提升+专题提升)

浙教版 九年级数学下册 第3章 投影与三视图 单元同步练习习题合集(含单元测试+章末总结提升+专题提升)

第3章三视图与表面展开图3.1 投影(1)(见A本67页)A 练就好基础基础达标1.下列现象中不属于投影的是( D)A.皮影B.树影C.手影D.画素描2.墨墨在操场上练习双杠的过程中发现双杠的两横杠在地上的影子( C)A.相交B.互相垂直C.互相平行D.无法确定3.如图是胡老师画的一幅写生画,四位同学对这幅画的作画时间做了猜测.根据胡老师给出的方向坐标,猜测比较合理的是( C)第3题图A.小明:早上8点B.小亮:中午12点C.小刚:下午5点D.小红:什么时间都行4.某同学利用影子长度测量操场上旗杆的高度,在同一时刻,他测得自己影子长为0.8 m,旗杆的影子长为7 m.已知他的身高为1.6 m,则旗杆的高度为__14__m.5.如图所示,当太阳光与地面成55°角时,直立于地面的玲玲测得自己的影长为1.16 m,则玲玲的身高约为__1.66__m.(结果精确到0.01 m,tan 55°≈1.43)第5题图6.阳光将一块与地面平行的矩形木块投射到地面,形成一块投影.当阳光照射角度不断变化时,这块投影的面积__变化__.(填“不变”或“变化”)7.如图所示,小鼠明明在迷宫中寻找奶酪,当它分别在A,B位置时未发现奶酪,等它走到C处,终于发现了,请指出奶酪可能所在的位置.(用阴影表示)第7题图解:第7题答图8.如图所示,BE是小木棒AB在太阳光下的影子,CD是离墙MN不远的电线杆,请画出电线杆在太阳光下的影子.如果小木棒高AB=1.2 m,它的影子BE=1.5 m,电线杆高CD=4 m,电线杆离墙DN=2 m,那么电线杆在墙上的影子有多高?8题图8题答图解:电线杆CD在太阳光下的影子交墙MN于点G.GN为电线杆在墙上的影子,DN为电线杆在地上的影子.由题意易证知△ABE∽△CFG,∴ABBE=CFGF,∴1.21.5=CF2,∴CF=1.6 m.∴GN=CD-CF=4-1.6=2.4 (m).即电线杆在墙上的影子高为2.4 m.B 更上一层楼能力提升9.下列命题中,真命题有( A)①正方形的平行投影一定是菱形.②平行四边形的平行投影一定是平行四边形.③三角形的平行投影一定是三角形.A.0个B.1个C.2个D.3个10.如图所示,学校进行撑竿跳高比赛,要看横杆AB的两端和地面的高度AC,BD是否相同,小明发现这时AC,DB在地面上的影子的长度CE,FD相等,于是他就断定木杆两端和地面的高度相同.他说的对吗?为什么?第10题图解:对.∵AC,BD均与地面垂直,AC,DB在地面上的影子的长度CE=FD,且AE∥BF,∴易证△AEC≌△BFD,∴AC=BD,即木杆两端和地面的高度相同.11.如图所示,某学校旗杆AB旁边有一个半圆的时钟模型,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径为2 m,旗杆的底端A到钟面9点刻度C的距离为11 m.一天小明观察到阳光下旗杆顶端B的影子刚好投到时钟的11点的刻度上,同时测得1 m长的标杆的影长为1.2 m,求旗杆AB的高度.11题图11题答图解:如图,过点D作DE⊥AC于点E,作DF⊥AB于点F,∴四边形AEDF是矩形,AF=DE,DF =AE,设半圆圆心为O,连结OD,∵点D在11点的刻度上,∴∠COD=60°,∴DE=OD·sin 60°=2×32=3,OE=OD cos 60°=1,∴CE=2-1=1(m),∴DF=AE=11+1=12(m),∵同时测得一米长的标杆的影长为1.2 m,∴DFBF=1.21,∴BF=10,∴AB=AF+BF=DE+BF=()10+3 m.即旗杆AB的高度为(10+3) m.C 开拓新思路拓展创新12.2017·碑林一模在一个阳光明媚的上午,数学陈老师组织学生测量小山坡的一颗大树CD的高度,山坡OM与地面ON的夹角为30°(∠MON=30°),站立在水平地面上身高1.7米的小明AB在地面的影长BP为1.2米,此刻大树CD在斜坡的影长DQ为5米.求大树的高度.第12题图解:过点Q 作QE⊥DC 于点E ,第12题答图由题意可得△ABP∽△CEQ, 则AB BP =EC EQ ,故1.71.2=EC EQ, 可得EQ∥NO, 则∠1=∠2=30°, ∵QD =5米,∴DE =52米,EQ =532米,故1.71.2=EC EQ =EC 532, 解得EC =85324, 故CE +DE =52+85324=60+85324米,即大树的高度为68+85324米.3.1 投影(2)(见B 本67页)A 练就好基础 基础达标1.教室内电子白板的投影是( B )A.平行投影B.中心投影C.平行投影或中心投影D.以上均不是2.如图所示,灯光与物体的影子的位置最合理的是( B)A.B.C. D.3.如图所示,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子( C)A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短3题图4题图4.如图所示,四边形木框ABCD在灯泡发出的光照射下形成的影子是四边形A′B′C′D′.若AB∶A′B′=1∶2,则四边形ABCD的面积∶四边形A′B′C′D′的面积为( D)A. 4∶1B. 2∶1C. 1∶ 2D. 1∶45.同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( D)A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长6.太阳光在地面上的投影是__平行__投影,白炽灯在地面上的投影是__中心__投影.7.如图所示,一块直角三角板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1第7题图8.如图(a)(b)分别是两棵树及其在太阳光或路灯下影子的情形.(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?你是用什么方法进行判断的?(2)请画出图中表示小丽影长的线段.图(a) 图(b)第8题图解:(1)图(a)是太阳光形成的,图(b)是路灯灯光形成的. 太阳光是平行光线,物高与影长成正比. (2)所画图形如图所示:第8题答图9.如图所示,小华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1 m ,继续往前走3 m 到达E 处时,测得影子EF 的长为2 m .已知小华的身高是1.5 m ,求路灯A 的高度AB.第9题图解:设AB =h(m),BC =x(m).由题意可得△GCD∽△ABD,△HEF ∽△ABF ,∴GC AB =CD BD ,HE AB =EFBF. ∵HE =GC =1.5 m ,CD =1 m .BD =(x +1)m ,BF =(x +5)m , EF =2 m.∴⎩⎨⎧1.5h =1x +1,1.5h =2x +5,解得⎩⎪⎨⎪⎧x =3,h =6,∴路灯A 的高度AB 为6 m. B 更上一层楼 能力提升10.在阳光的照射下,一块三角板的投影不会是( D ) A .线段B .与原三角形全等的三角形C .变形的三角形D .点第11题图11.永州中考如图所示,圆桌面(桌面中间有一个直径为0.4 m 的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2 m ,桌面离地面1 m ,若灯泡离地面3 m ,则地面圆环形阴影的面积是( D )A .0.324 π m 2B .0.288 π m 2C .1.08 π m 2D .0.72 π m 212.要在宽为28 m 的海堤公路的路边安装路灯,路灯的灯臂长为3 m ,且与灯柱成120°角(如图),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中点时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果(精确到0.01 m ,3≈1.732)?第12题图解:灯柱高为⎝ ⎛⎭⎪⎫28÷2-3×32×3-3×12≈18.25(m). C 开拓新思路 拓展创新13.如图所示,灯在距地面3 m 的A 处,现有一木棒长2 m ,当B 处木棒绕其与地面的固定端点顺时针旋转到地面,其影子的变化规律是( A )第13题图A .先变长,后变短B .先变短,后变长C .不变D.先变长,再不变,后变短14.如图所示,电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC上,若CD与地面成45°,∠A=60°,CD m,则电线杆AB的长为多少米?第14题图解:延长AD交地面于E,作DF⊥BE于F.第14题答图∵∠DCF=45°.CD=4.∴CF=DF=2 2.由题意知AB⊥BC.∴∠EDF=∠A=60°.∴∠DEF=30°∴EF=2 6.∴BE=BC+CF+FE=6 6.在Rt△ABE中,∠E=30°.∴AB=BEtan 30°=66×33=62(m).答:电线杆AB的长为62米.3.2简单几何体的三视图(1)(见A本69页)A 练就好基础基础达标1.如图所示中几何体的俯视图是( B)第1题图A.B. C. D.2.小明的父亲生日,小明送给父亲一个礼盒(如图所示),该礼盒的主视图是( A)第2题图A. B.C. D.第3题图3.2017·丽水中考如图是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( B)A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同第4题图4.由6个大小相同的立方体搭成的几何体如图所示,则关于它的视图说法正确的是( C) A.主视图的面积最大B.左视图的面积最大C.俯视图的面积最大D.三个视图的面积一样大5.潍坊中考如图所示的几何体的左视图是( C)5题图A.B.C. D.6.一个几何体的三视图如图所示,则几何体是__圆柱体__.第6题图第7题图7.如图所示是由六个棱长为1的立方体组成的几何体,其俯视图的面积是__5__.8.画出图中由几个立方体组成的几何体的三视图.第8题图解:三视图如图:第8题答图第9题图9.如图所示是由相同的5个小立方体组成的几何体,请画出它的三种视图(比例为1∶1);若每个小立方体的棱长为a,试求出该几何体的表面积.解:主视图如图所示.表面积:4a2×2+3a2×4=20a2.第9题答图B 更上一层楼能力提升10.如图所示,该几何体的左视图是( C)第10题图A.B.C. D.第11题图11.菏泽中考如图所示是由6个同样大小的立方体摆成的几何体.将立方体①移走后,所得几何体( D)A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变12.一个几何体是由一些大小相同的小立方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小立方体最少有__5__个.第12题图13.有一个几何体的形状为直三棱柱,如图是它的主视图和左视图.(1)请补画出它的俯视图,并标出相关数据;(2)根据图中所标的尺寸(单位: cm),计算这个几何体的表面积.第13题图解:(1)如图:第13题答图(2)由勾股定理,得斜边长为10 cm,S底=12×8×6=24(cm2),S侧=(8+6+10)×3=72(cm2),S表=72+24×2=120(cm2).14.如图所示是由几个小立方体叠成的几何体的主视图和左视图,求组成几何体的小立方体个数的最大值与最小值.第14题图解:12个,7个C 开拓新思路拓展创新15.一个长方体主视图是边长为1 cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形,那么这个长方体的俯视图是( D)A.B.C. D.16.有一个立方体,在它的各个面上分别标有数字1,2,3,4,5,6.小明、小刚、小红三人从不同的角度去观察此立方体,观察结果如图所示.问这个正方体各个面上的数字对面各是什么数字?第16题图解:从前两个小立方体上的数字可知,与写有数字1的面相邻的面上的数字是2,3,4,6,所以数字1的对面是数字5,从后两个小立方体上的数字可知:数字3的对面数字是6,数字2的对面数字是4.3.2简单几何体的三视图(2)(见B本69页)A 练就好基础基础达标)1.如图所示,物体的主视图是( D)第1题图A.B.C. D.2.如图所示的几何体的主视图是( D)第2题图A.B.C. D.3.如图所示,1,2,3,4,T是五个完全相同的立方体,将两部分构成一个新的几何体得到其主视图,则应将几何体T放在( D)第3题图A.立方体1的上方B.立方体2的左方C.立方体3的上方D.立方体4的上方第4题图4.如图所示,由四个相同的小立方体搭建了一个积木,它的三视图如图所示,则这个积木可能是( A)A B C D5.如图所示是由五个相同的立方体堆成的几何体,则它的俯视图是__①____.(填序号)第5题图6.指出下列立体图形的对应的俯视图,在图下面的括号里填上对应的字母.A B C D第6题图7.如图所示,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是__①③__.(把所有符合条件的几何体的序号都写上)第7题图8.如图所示,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的周长是__18__cm.第8题图9.画出图所示中几何体的三视图.(比例为1∶1)第9题图解:主视图、左视图、俯视图依次为:第9题答图B 更上一层楼能力提升10.如图所示是由一些大小相同的小立方体组成的几何体的主视图和俯视图,则组成这个几何体的小立方体最多块数是( C)第10题图A.8 B.10 C.12 D.1411.如图所示是一个长方体的三视图(单位:cm),根据图中数据,这个长方体的体积是__24__cm3.第11题图12.若立方体的棱长为1 m,在地面上摆成如图所示的几何体.(1)写出它的俯视图的名称;(2)求第四层时几何图形的表面积.第12题图解:(1)它的俯视图是边长为4 m的正方形.(2)S=(1+2+3+4)×12×4+4×4=40+16=56(m2).13.如图所示的几何体为圆台,按比例1∶1作出该几何体的三视图.第13题图解:主视图、左视图、俯视图依次为:第13题答图C 开拓新思路拓展创新14.房地产开发商在宣传介绍它的房屋室内结构时,会发给客户有关的宣传单.下面的房间结构图是我们所说的( C)第14题图A.主视图B.左视图C.俯视图D.以上三种都不是15.如图1是一块带有圆形空洞和正方形空洞的小木板,从图2的四个物体中选出既可以堵住圆形空洞,又可以堵住正方形空洞的物体,并计算其体积(结果保留π)( B)第15题图A.①1000πB.②2000πC.③3000πD.④4000π【解析】圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的主视图以及左视图都为一个矩形,可以堵住方形的空洞,故选圆柱,π×102×20=2000π.故选B.3.2简单几何体的三视图(3)(见A本71页)A 练就好基础基础达标1.如图所示是一个螺母的示意图,它的俯视图是( B)第1题图A. B.C. D.2.2017·贵阳中考如图所示,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( D)第2题图A.B.C. D.3.如图所示物体的左视图为( A)第3题图A.B.C. D.第4题图4.如图是由相同小立方体搭的几何体的俯视图(小正方形中所标的数字表示在该位置上立方体的个数),则这个几何体的左视图是( C)A.B.C. D.5.2017·鞍山中考如图所示几何体的左视图是( C)第5题图A.B. C. D.第6题图6.潍坊中考如图所示,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是( C)A.B.C. D.7.按合适的位置放置,得到的主视图与左视图相同,而俯视图不同的两个几何体可能是答案不唯一,如圆锥和圆柱.第8题图8.在画如图所示的几何体的三视图时,我们可以把它看成__圆锥__和__圆柱__的组合体.9.如图所示是一个直四棱柱及其主视图和俯视图(等腰梯形).(1)根据图中所给数据,可得俯视图(等腰梯形)的高为__4__.(2)在虚线框内画出其左视图,并标出各边的长.第9题图解:(1)如图(1),作AE⊥BC于点E,则BE=(8-2)÷2=3,∴高AE=AB2-BE2=4.故答案为4.(2)如图(2)所示.图(1) 图(2)第9题答图10.按比例1∶1作出如图所示几何体的三种视图.第10题图解:主视图、左视图、俯视图依次为:第10题答图B 更上一层楼能力提升11.将一个长方体内部挖去一个圆柱(如图所示),它的主视图是( A)第11题图A.B.C. D.12.如图所示是某几何体的左视图和俯视图,根据图中所标的数据求得该几何体的体积为( B)第12题图A.236 πB.136 πC.132 πD.120 π13.如图所示是一个组合几何体和它的两种视图.(1)在横线上填写出两种视图名称;第13题图(2)根据两种视图中的尺寸(单位: cm),计算这个组合几何体的表面积.(π取3.14,精确到0.1 cm2)解:(1)主俯(2)表面积=2×(8×5+8×2+5×2)+4×3.14×6=207.36≈207.4(cm2).14.一张桌子上摆放若干个碟子,从三个方向上看,三种视图如图所示,则这张桌子上共有碟子__12__个.第14题图C 开拓新思路拓展创新15.课桌上按照图的位置放着一个暖水瓶、一只水杯和一个乒乓球.小明从课桌前走过(图中虚线箭头的方向),下图描绘的是他在不同时刻看到的情况,请对这些图片按照看到的先后顺序进行排序,正确的顺序是:__B_A_C_D__.第15题图 A B C D16.如图所示的上、下底面全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两个全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带的长度至少为多少厘米?(不计接缝,结果保留准确值)第16题图第16题答图解:如图所示,六边形ABCDEF为礼盒的俯视图,连结AD,BE交于点O,则点O为六边形ABCDEF 的中心.∴∠AOB=60°,又AO=BO,∴∠OAB=∠OBA=60°.即△AOB为等边三角形,过点A作AG⊥BO并延长AG交BE于点G,∴BG=12 BO,∵BE=60 cm,则BO=30 cm,BG=15 cm,AB=BO=30 cm.又∵AG平分∠BAO,∴∠BAG=∠OAG=30°,∴AG=AB·cos 30°=15 3 cm,∴AC=2AG=30 3 cm,胶带的长至少为:303×6+15×6=(1803+90)cm.3.3由三视图描述几何体(见B本71页)A 练就好基础基础达标1.某几何体的三种视图如图所示,则该几何体是( C)A.三棱柱B.长方体C.圆柱D.圆锥第1题图第2题图2.如图所示是由一些棱长为1 cm的立方体堆积在桌面形成的几何体的三视图,则该立方体的体积是( C)A.3 cm3B.4 cm3C.5 cm3D.6 cm33.如图所示是一个几何体的三视图,则该几何体是( B)A.三棱锥B.三棱柱C.正方体D.长方体第3题图4题图4.2017·绵阳中考如图所示的几何体的主视图正确的是( D)A.B.C. D.5.如图所示是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为( A)A.4π cm3B.8π cm3 C.16π cm3D.32π cm3第5题图第6题图6.如图所示是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是( D) A.圆锥B.三棱锥C.三棱柱D.四棱锥7.下面说法中错误的是( D)A.一个平面截一个球,得到的截面一定是圆B.一个平面截一个立方体,得到的截面可以是五边形C.棱柱的截面不可能是圆D.圆锥的左视图是等腰三角形8.由若干个同样大小的立方体堆积成一个实物,不同方向观察到如图所示的投影图,则构成该实物的小立方体个数为__7__.第8题图9.如图所示是某立体图形的三种视图,请填出它的名称:__正六棱柱__.第9题图10.已知某个几何体的主视图、左视图、俯视图分别为圆、等腰三角形、等腰三角形,则该几何体是__圆锥__.B 更上一层楼能力提升11.2017·黔南州中考我国古代数学家利用“牟合方盖”找到了球体体积的第11题图计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个立方体时两圆柱公共部分形成的几何体,如图所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( B)A.B.C. D.12.如图所示是一个正六棱柱的主视图和左视图,则图中的a=.第12题图13.一个底面为正六边形的直六棱柱的主视图和俯视图如图所示,求其左视图的面积.第13题图第13题答图解:直六棱柱的左视图和主视图的高相同,则高是4,如图,根据俯视图和正六边形的性质,可得AC=2,作CE⊥AB于点E,则∠CAE=60°,CE=AC×sin 60°=3,左视图的宽应该为23,则左视图的面积为4×23=8 3.14.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.第14题图解:x 为1或2,y 为3 C 开拓新思路 拓展创新15.2017·益阳中考如图所示,空心卷筒纸的高度为12 cm ,外径(直径)为10 cm ,内径为4 cm ,在比例尺为1∶4的三视图中,其主视图的面积是( D )第15题图A.21π4cm 2B.21π16cm 2C .30 cm 2D .7.5 cm 2【解析】 12×14=3(cm),10×14=2.5(cm),3×2.5=7.5(cm 2). 故选D.16.如图所示(1)是一个水平摆放的小立方体木块,图(2)(3)是由这样的小立方体木块按一定的规律叠放而成的.其中图(1)的主视图有1个正方形,图(2)的主视图有4个正方形,图(3)的主视图有9个正方形,按照这样的规律继续叠放下去,则图(10)的主视图有__100__个正方形.第16题图17.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( A )第17题图A .B .C . D.3.4简单几何体的表面展开图(1)(见A本73页)A 练就好基础基础达标1.如图所示是某个几何体的展开图,这个几何体是__三棱柱__.第1题图2题图2.如图所示是立方体的一种平面展开图,已知c在右面,a在上面,b在前面,则e在__下__面,d在后面,f在左面.第3题图3.如图所示,将7个正方形中的1个去掉,就能成为一个正方体的展开图,则去掉的是__6或7__.4.2017·齐齐哈尔中考一个几何体的主视图和俯视图如图所示,若这个几何体最多由a个小立方体组成,最少由b个小立方体组成,则a+b等于( C)第4题图A.10 B.11 C.12 D.135.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图所示的几何体,其展开图正确的为( B)第5题图A.B.C. D.第6题图6.如图所示是一个立方体的表面展开图,把展开图折叠成立方体后,“你”字一面相对面上的字是( D)A.我B.中C.国D.梦7.2017·常德中考如图是一个几何体的三视图,则这个几何体是( B)第7题图A.B.C. D.8.如图所示是一个立方体纸巾盒,它的平面展开图是( B)8题图A.B.C. D.9.一个几何体的展开图如图所示,则该几何体的顶点有( C)第9题图A.10个B.8个C.6个D.4个10.下列图形中可以折成立方体的是( B)A.B.C. D.B 更上一层楼能力提升11.如图所示是一立方体的平面展开图,若AB=4,则该立方体A,B两点间的距离为( B) A.1 B.2 C.3 D.411题图12题图12.如图所示,是三棱柱的表面展开示意图,则AB=__4__,BC=__5__,CD=__6____,BD =__4__,AE=__8__.13.在如图所示的立方体的平面展开图中,确定立方体上的点M,N的位置.第13题图解:如图所示.第13题答图14.如图是一个食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算此包装盒的表面积和体积.第14题图解:(1)此包装盒是一个长方体.(2)此包装盒的表面积为2×b2+4×ab=2b2+4ab;体积为ab2.15.如图所示是一个三级台阶,它的每一级台阶的长、宽和高分别等于5 cm、3 cm和1 cm,A和B是这个台阶的两个相对的端点.A点上有一只蚂蚁,想到B点去吃可口的食物.求这只蚂蚁从A点出发,沿着台阶面爬到B点的最短线路长.第15题图解:将台阶展开,如图,第15题答图∵AC=3×3+1×3=12 cm,BC=5 cm,∴AB2=AC2+BC2=169,∴AB=13 cm,即蚂蚁爬行的最短线路为13 cm.C 开拓新思路拓展创新16.如图所示,有一个长、宽、高分别为50 cm、40 cm、30 cm的木箱,将一根木棒放入木箱中,木棒最长为第16题图17.棱长为a的立方体摆放成如图所示的形状.依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.第17题图解:6×(1+2+3+…+20)·a2=1260a2.故该物体的表面积为1260a2.3.4简单几何体的表面展开图(2)(见B本73页)A 练就好基础基础达标1.如图所示是某几何体的三视图,其侧面积为__6π__.2.用一个边长为4 cm的正方形折叠围成一个四棱柱的侧面,若该四棱柱的底面是一个正方形,则此正方形边长为__1__ cm.第1题图第4题图3.用一个宽4 cm、长7cm的矩形卷成一个圆柱,则此圆柱的侧面积为__28_cm2__.4.如图所示是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度的取值范围为__12≤a≤13__.(罐壁的厚度和小圆孔的大小忽略不计)5.如图所示的展开图不可能拼成的立方体是( B)第5题图A.B.C. D.6.如图所示,从棱长为10的立方体的一顶点处挖去一个棱长为1的小立方体,则剩下图形的表面积为( A)第6题图A.600 B.599 C.598 D.5977.一个物体的三视图如图所示,则根据图中标注的尺寸,此物体的全面积为( B)第7题图A.(123+12) cm2B.(123+72) cm2C.(63+12) cm2D.(63+72) cm28.如图所示是一个正六棱柱的主视图和左视图,则正六棱柱的侧面积为( C)第8题图A.24 B. 3 C.36 D.19.如图所示是一个几何体的三视图,根据图中标注的数据可求得这个几何体的体积为__24_π__.第9题图第10题图10.如图所示,有一个圆柱,底面圆的直径AB=16πcm,高BC=12 cm,P为BC的中点,求蚂蚁从A点爬到P点的最短距离.第10题答图解:圆柱的侧面展开图如图,∵圆柱底面直径AB=16πcm,高BC=12 cm,P为BC的中点,∴圆柱底面圆的半径是8πcm,BP=6 cm,∴AB=π×8π=8 (cm),在Rt△ABP中,AP=AB2+BP2=10 (cm).即蚂蚁从A点爬到P点的最短距离为10 cm.B 更上一层楼能力提升11.如图所示,透明的圆柱形容器(容器厚度忽略不计)的高为12 cm,底面周长为10 cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是( A)A.13 cm B.261 cmC.61 cm D.234 cm第11题图第12题图12.如图所示,在一个棱长为10 cm的立方体中挖去一个底面半径为3 cm的圆柱形小孔,这个物体的表面积约为__732__cm2.(保留整数)13.如图所示,已知矩形ABCD,AB=2 cm,AD=6 cm,求分别以AB,AD所在的直线为轴旋转后所得圆柱的侧面积.第13题图解:依题意可知,分两种情况:(1)以AB所在的直线为轴旋转后所得圆柱的底面半径为BC,圆柱的底面周长为6×2π=12π(cm),侧面积为 12π×2=24π(cm2).(2)以AD所在的直线为轴旋转后所得圆柱的底面半径为AB,圆柱的底面周长为2×2π=4π(cm),侧面积为 4π×6=24π(cm2).所以以AB,AD所在直线为轴旋转后所得圆柱的侧面积都是24π cm2.第14题图14.如图所示是一个立方体的展开图,标注了字母A的面是立方体的正面,如果立方体的左面与右面所标注代数式的值相等,且标注的数字相同的不超过2个,求A的取值范围.解:由题意,得x2=4x-4,即x2-4x+4=0,(x-2)2=0,∴x=2,那么x2=4,4x-4=4;则4有两个了,∵标注的数字相同的不超过2个,∴A≠4.C 开拓新思路拓展创新15.如图所示,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P有一条。

浙教版九年级下册数学第三章 投影与三视图含答案(必考题)

浙教版九年级下册数学第三章 投影与三视图含答案(必考题)

浙教版九年级下册数学第三章投影与三视图含答案一、单选题(共15题,共计45分)1、如图,正方形的边长为4,以点A为圆心,为半径画圆弧得到扇形(阴影部分,点E在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A. B.1 C. D.2、如图,下列水平放置的几何体,从正面看外框不是长方形的是()A. B. C. D.3、如图1是由大小相同的小正方体搭成的几何体,将它左侧的小正方体移动后得到图2.关于移动前后的几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同4、如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是( )A. B. C. D.5、图中是一个少数名族手鼓的轮廓图,其主视图是()A. B. C. D.6、如图所示正三棱柱的主视图是()A. B. C. D.7、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于A.3B.C.2D.8、如图,⊙O中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是()A.1B.C.D.29、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是()A. B. C.D.10、一个空间几何体的主视图和左视图都是边长为4的正三角形,俯视图是一个半径为2的圆,那么这个几何体的全面积是( )A.8 πcm 2B.10 πcm 2C.12 πcm 2D.16 πcm 211、如图所示的直角三角形ABC绕直角边AC旋转一周,所得几何体从正面看是()A. B. C. D.12、如图所示放置的几何体,它的俯视图是(  )A. B.C. D.13、如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A. B. C. D.14、将一个正方体沿某些棱展开后,能够得到的平面图形是()A. B. C. D.15、在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为()A.逐渐变长B.逐渐变短C.影子长度不变D.影子长短变化无规律二、填空题(共10题,共计30分)16、已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是________.17、如图是某正方体的展开图,则原正方体相对两个面上的数字和的最大值是________.18、如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是________.19、已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为________ cm2. (结果保留π)20、将图中剪去一个正方形,使剩余的部分恰好能折成一个正方体,问应剪去几号小正方形?说出所有可能的情况.________.21、一个底面直径是80 cm,母线长为90 cm的圆锥的侧面展开图的圆心角的度数为________22、如图,①~④展开图中,能围成三棱柱的是________.23、已知圆锥的底面半径为6,母线长为8,圆锥的侧面积为________.24、某同学利用半径为40cm的扇形纸片制作成一个圆锥形纸帽(接缝忽略不计),若圆锥底面半径为10cm,那么这个圆锥的侧面积是________.25、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是________.三、解答题(共5题,共计25分)26、现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计)求该圆锥底面圆的半径.27、小明用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长6cm,长方形的长为8cm,宽为6cm,请求出修正后所折叠而成的长方体的表面积。

2020年浙教版九年级数学下册第三章_投影与三视图单元测试题及答案

2020年浙教版九年级数学下册第三章_投影与三视图单元测试题及答案

第三章投影与三视图单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.某几何体的三种视图分别如下图所示,那么这个几何体可能是()A.长方体B.圆台C.圆锥D.圆柱2.一个长方体的主视图和左视图如图所示(单位: ),则其俯视图的面积是 .A.B.C.D.3.在阳光下,小明和他爸爸在学校球场行走时,他们的影子一样长,晚上在该球场同一路灯下,关于他俩的影子以下说法正确的是() A.小明的影子比他爸爸的影子长B.小明的影子比他爸爸的影子短 C.小明的影子比他爸爸的影子一样长D.不能确定谁的影子长4.下列图形中,属于正方体平面展开图的是() A.B.C.D.5.某个长方体主视图是边长为 的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是()A.B.C.D.6.下面的图形都是由 个大小一样的正方形拼接而成的,这些图形中可折成正方体的是() A.B.C.D.7.一个圆锥和一个正方体摆放如图,其主视图是()A.B.C.D.8.如图是正方体的平面展开图,每个面上都标有一个汉字,与“涟”字对应的面上的字为()A.我B.爱C.中D.学9.如图,其左视图是矩形的几何体是() A.B.C.D.10.如图所示立体图形从上面看到的图形是()A.B.C.D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图是由若干个小立方块搭成的一个几何体的三视图,那么这个几何体中小立方块共有________个.12.一个几何体分别从上面看、从左面看、从正面看,得到的平面图形如图所示,则这个几何体是________.13.在圆柱的展开图中,圆柱的侧面展开图为________,棱柱的侧面展开图为________,圆锥的侧面展开图为________.14.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是 ,则该几何体俯视图的面积是________.15.一个几何体的表面能够展开成如图所示的平面图形,则这个几何体的名称是________.16.请将六棱柱的三视图名称依次填在横线上________.17.如图所示,这是一个正方体纸盒的展开图,在其中的三个正方形、、内分别填入适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则________,________.18.根据下列物体的三视图,填出几何体名称:该几何体是________.19.直棱柱中,底面为正方形,侧面展开图是边长为的正方形,则这个棱柱的表面积(底面面积与侧面面积的和)为________.20.如图,截去正方体一角变成的多面体有________条棱.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图是一个几何体,请画出它的三视图.22.从上面看由相同的小立方块搭成的几何体的形状图如图所示,小正方形中的数字表示在该位置的小立方块的个数,请分别画出从正面和左面看该几何体的形状图.23.如图是由若干个完全相同的小正方体堆成的几何体,画出该几何体的三视图;在该几何体的表面喷上红色的漆,则在所有的小正方体中,有几个正方体的三个面是红色?若现在你手头还有一个相同的小正方体.①在不考虑颜色的情况下,该正方体应放在何处才能使堆成的几何体的三视图不变?直接在图中添上该正方体;②若考虑颜色,要使三视图不变,则新添的正方体至少要在几个面上着色?24.如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;若图中的正方形边长为,长方形的长为,宽为,请直接写出修正后所折叠而成的长方体的体积:________.25.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后,小明看来看去觉得所拼图形似乎存在问题.请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;若图中的正方形边长为,长方形的长为,请计算修正后所折叠而成的长方形的表面积.26.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.设原大正方体的表面积为,图②中几何体的表面积为,那么与的大小关系是________....无法确定小明说:“设图①中大正方体各棱的长度之和为,图②中几何体各棱的长度之和为,那么比正好多出大正方体条棱的长度.”你认为这句话对吗?为什么?如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.答案1.D2.C3.D4.D5.D6.C7.A8.C9.B10.C11.12.圆柱13.长方形长方形扇形14.15.圆柱16.主视图,俯视图,左视图17.18.六棱柱19.20.21.解:22.解:如图所示:.23.解:作图如右图.有个;图如,要使三视图不变,则新添的正方体至少要在个面上着色.24..25..26.解:设原大正方体的表面积为,图②中几何体的表面积为,那么与的大小关系是相等;故选:;设大正方体棱长为,小正方体棱长为,那么.只有当时,才有,所以小明的话是不对的;如图所示:.。

2020年浙教版九年级数学下册《第3章投影与三视图》单元测试卷(解析版)(最新整理)

2020年浙教版九年级数学下册《第3章投影与三视图》单元测试卷(解析版)(最新整理)
关系如下表:
碟子的个数
碟子的高度(单位:cm)
1
2
2
2+1.5
3
2+3
4
2+4.5


(1)当桌子上放有 x(个)碟子时,请写出此时碟子的高度(用含 x 的式子表示); (2)分别从三个方向上看,其三视图如上图所示,厨房师傅想把它们整齐叠成一摞,求 叠成一摞后的高度. 26.已知一个几何体的三视图和有关的尺寸如图.
( )
A.
B.
C.
D.
12.如图,白炽灯下有一个乒乓球,当乒乓球越接近灯泡时,它在地面上的影子( )
A.越大
B.越小
C.不变
二.填空题(共 8 小题)
13.如图是由 6 个相同的正方形拼成的图形,
D.无法确定
请你将其中一个正方形移动到合适的位置,使它与另 5 个正方形能拼成一个正方体的表 面展开图(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形)
9.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )
A.圆柱
B.圆锥
C.棱锥
D.球
10. 某 同 学 画 出 了 如 图 所 示 的 几 何 体 的 三 种 视 图 , 其 中 正 确 的 是 ( )
A.①②
B.①③
C.②③
D.②
11.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是
A.1,﹣2,0
B.0,﹣2,1
C.﹣2,0,1
D.﹣2,1,0
6.如图是一个正方体的平面展开图,若把它折成一个正方体,则与空白面相对的面的字是
( )
A.祝
B.考
7.如图几何体的主视图是( )

【浙教版】九年级数学下册第3章投影与三视图3.1投影第1课时同步测试(含答案)

【浙教版】九年级数学下册第3章投影与三视图3.1投影第1课时同步测试(含答案)

第3章三视图与表面展开图3.1 投影(第1课时)1.平行光线所形成的投影叫做____________.2.线段的平行投影是点或线段;三角形的平行投影是线段或三角形.A组基础训练1.对同一建筑物,相同时刻在太阳光下的影子冬天比夏天( )A.短 B.长C.看具体时间 D.无法比较2.在同一时刻,将两根长度不等的竹竿置于阳光之下,但它们的影长相等,那么这两根竹竿的相对位置是( )A.两根竹竿都垂直于地面B.两根竹竿平行斜插在地上C.两根竹竿不平行D.无法确定3.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( )4.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )5.一组平行的栏杆,被太阳光照射到地面上后,它们的位置关系是____________.6.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为________m.第6题图1.在安装太阳能热水器时,主要考虑太阳光线与热水器斜面间的角度(垂直时最佳),当太阳光线与水平面成35°角照射时,热水器的斜面与水平面的夹角最好应为________.第7题图8.下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.第8题图9.如图,有两根木棒AB,CD在同一平面上直立着,其中木棒AB在太阳光下的影子BE 如图所示,请你在图中画出此时木棒CD的影子.第9题图10.我们知道,在同一时刻的物高与影长成比例.某兴趣小组利用这一知识进行实地测量,其中有一部分同学在某时刻测得竖立在地面上的一根长为1m的竹竿的影长是1.4m,另一部分同学在同一时刻对树影进行测量(如图),可惜树太靠近一幢建筑物(相距4.2m),树影不完全落在地面上,有一部分树影落在建筑物的墙壁上.(1)若设树高为y(m),树在墙壁上的影长为x(m),请你给出计算树高的表达式;(2)若树高5m,则此时留在墙壁上的树影有多高?第10题图B组自主提高11.直角坐标系内,一点光源位于A(0,4)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影子长为________,点C的影子坐标为________.第11题图12.某研究小组测量篮球的直径,通过实验发现下面的测量方法:如图,将篮球放在水平的桌面上,在阳光的斜射下,得到篮球的影子AB,设光线DA,CB分别与篮球相切于点E,F,则EF即为篮球的直径.若测得∠ABC=30°,AB的长为60cm.请计算出篮球的直径.第12题图13.如图,学校旗杆附近有一斜坡,小明准备测量学校旗杆AB的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC=16米,斜坡坡面上的影长CD=10米,太阳光线AD与水平地面成30°角,斜坡CD与水平地面BC成30°的角,求旗杆AB的高度.(3≈1.7,精确到1米)第13题图C组综合运用14.如图,在斜坡的顶部有一铁塔AB,点B是CD的中点,CD是水平的.在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12m,塔影长DE=18m,小明和小华的身高都是1.6m.同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子在平地上,两人的影长分别为2m和1m,求塔高AB.第14题图第3章 三视图与表面展开图3.1 投影(第1课时)【课堂笔记】 1.平行投影 【课时训练】 1-4.BCAA 5. 平行或重合 6. 1.5 7. 55° 8. DABC9. 连结AE ,过点C 作AE 的平行线,过点D 作BE 的平行线,相交于点F ,DF 即为所求.第9题图第10题图10. (1)如图:过B 作BE∥CD 交AD 于E ,∵四边形BCDE 为平行四边形,∴DE =BC =x ,∵EA AB =11.4,∴EA =3,∴y =x +3; (2)当y =5时,x =2,∴墙壁上树影高为2m . 11. 1 (4,0)第12题图12. 过点A 作AG⊥BC 于G ,∵光线DA 、CB 分别与球相切于点E 、F ,∴EF ⊥FG ,EF ⊥EA ,∴四边形AGFE 是矩形,∴AG =EF ,∵在Rt △ABG 中,AB =60cm ,∠ABC =30°,∴AG =AB·sin ∠ABC =60×sin 30°=30(cm ).∴篮球的直径为30cm .13. .延长AD ,BC 交于点F ,过点D 作DE⊥CF 于点E ,则DE =5米,CE =EF =53米,设AB =x 米,由DE∥AB 知△FDE∽△FAB,∴DE AB =FE FB ,即5x =5316+103,∴x ≈19.答:旗杆AB 的高度约为19米.第14题图14.如图,过点D 作DF∥AE,交AB 于点F.设AF =h 1,BF =h 2,则铁塔高为h 1+h 2.∴h 118=1.62,∴h 1=14.4.∵h 26=1.61,∴h 2=9.6.∴AB=h 1+h 2=14.4+9.6=24(m ).。

九年级数学下册第3章投影与三视图3.2简单几何体的三视图第1课时直棱柱的三视图同步练习新版浙教

九年级数学下册第3章投影与三视图3.2简单几何体的三视图第1课时直棱柱的三视图同步练习新版浙教

第 3 章三视图与表面张开图简单几何体的三视图第 1 课时直棱柱的三视图知识点 1正投影1.球的正投影是()A.圆 B .正方形C.点 D .圆环2.如图 3- 2-1,箭头表示投影线的方向,则图中圆柱体的正投影是()A.圆 B .圆柱C.梯形 D .矩形图 3-2- 1图 3-2-2知识点 2直棱柱的三视图3.2017·宁波如图3- 2- 2 所示的几何体的俯视图为()图 3- 2-34.以下选项中,不是如图 3- 2- 4 所示几何体的主视图、左视图、俯视图之一的是 ()..图 3-2- 4图 3-2-5知识点 3直棱柱的三视图画法5.画出如图3- 2- 6 所示的几何体的三视图.图 3- 2-6图 3- 2-76.2017·台州如图3- 2- 7 所示的工件是由两个长方体构成的组合体,则它的主视图是()图 3- 2-87.2016·金华从一个棱长为 3 cm 的大立方体中挖去一个棱长为 1 cm 的小立方体,得到的几何体如图3-2- 9 所示,则该几何体的左视图是()3-2-93- 2- 108.新学如 3- 2- 11,察由棱 1 的小立方体成的形,找律:①中共有 1个小立方体,此中 1 个看得, 0 个看不;②中共有 8 个小立方体,此中7 个看得, 1 个看不;③中共有27 个小立方体,此中 19 个看得, 8 个看不⋯⋯3- 2- 11(1)第⑥个形中,看得的小立方体有________个;(2) 猜想并写出第个形中看不的小立方体的个数.( n正整数 )解析1. A2. D[ 解析 ] 依据平行投影的特色,中柱体的正投影是矩形.故 D.3. D 4.A 5. 略6. A[ 解析 ] 主是从正面看获得的形,从正面可以看到的是两个矩形的合形,且中没有.7. C8.解: (1) 当n= 1 ,看不的小立方体有(1 -1) 3=0( 个) ;当 n=2,看不的小立方体有(2 - 1) 3=1(个) ;当 n=3,看不的小立方体有(3 - 1) 3=8(个) ;⋯⋯当 n=6,看不的小立方体有(6 -1) 3= 125( 个) ,故看得的小立方体有63- 125=216- 125=91( 个 ) .故填: 91.(2) 第个形中看不的小立方体的个数( n-1) 3.。

九年级数学下册第3章投影与三视图测试题(新版)浙教版

九年级数学下册第3章投影与三视图测试题(新版)浙教版

第3章一、选择题(每小题5分,共30分)1.下列立体图形中,侧面展开图是扇形的是( )图7-Z-12.下列各图不是正方体表面展开图的是( )图7-Z-23.如图7-Z-3是由3个相同的小正方体组合而成的几何体,它的俯视图是( )图7-Z-3图7-Z-44.如图7-Z-5所示的工件,其俯视图是( )图7-Z-5图7-Z-6图7-Z-75.如图7-Z-7是某几何体的三视图,该几何体是( )A.三棱柱B.长方体C.圆锥D.圆柱图7-Z-86.如图7-Z-8,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高.已知小颖的身高为1.5米,那么路灯A的高度AB为( )A.3米 B.4.5米C.6米 D.8米二、填空题(每小题5分,共30分)7.已知圆锥的底面半径为3 cm,母线长为5 cm,则它的侧面展开图的面积等于________cm2.图7-Z-98.如图7-Z-9,由三个棱长均为 1 cm的小立方体搭成的几何体的主视图的面积是________cm2.9.如图7-Z-10是一个几何体的三视图(图中尺寸单位: cm),根据图中所示数据计算这个几何体的表面积为________cm2.图7-Z-10图7-Z-1110.一个几何体的三视图如图7-Z-11所示,则该几何体的体积为__________.图7-Z-1211.有一个圆柱,它的高为12 cm,底面半径为3 cm,如图7-Z-12所示,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,则它沿圆柱侧面爬行的最短路程是________ cm(π取3).12.展览厅内要用相同的小正方体木块搭成一个三视图如图7-Z-13所示的展台,则此展台共需这样的小正方体________块.图7-Z-13三、解答题(共40分)13.(8分)如图7-Z-14为某几何体的示意图,请画出该几何体的三视图.图7-Z-1414.(10分)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图(如图7-Z-15),请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:mm)图7-Z-1515.(10分)如图7-Z-16,D是等边三角形ABC中BC边的延长线上一点,且AC=CD,以AB 为直径作⊙O,分别交边AC,BC于点E,F.(1)求证:AD 是⊙O 的切线;(2)连结OC ,交⊙O 于点G ,若AB =8,求线段CE ,CG 与GE ︵围成的阴影部分的面积S .图7-Z -1616.(12分)如图7-Z -17是一粮囤的示意图,其顶部是一圆锥,底部是一圆柱. (1)画出该粮囤的三视图;(2)若这个圆锥的底面周长为32 m ,母线长为7 m ,为防雨需要在粮囤顶部铺上油毡,则需要多少平方米油毡(油毡接缝重合部分不计)?(3)若这个圆柱的底面圆半径为8 m ,高为5 m ,粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?图7-Z -17详解详析1.B 2.C 3.C4.B [解析] 从上面看到的图形是B项中的图形.5.B 6.B 7.15π8.3 [解析] 从正面看第一层是两个小正方形,第二层左边是一个小正方形,则主视图的面积是3 cm2.9.4π10.12011.15 [解析] 展开圆柱的半个侧面是矩形,矩形的宽是圆柱的底面周长的一半,即3π=9(cm),矩形的长是圆柱的高12 cm.根据两点之间线段最短,得最短路程是矩形的对角线的长,即122+92=15(cm).12.1013.解:三视图如下:14.解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100 mm,高h为150 mm.∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴S表面=2πR2+2πRh=2π×502+2π×50×150=20000π(mm2).答:制作每个密封罐所需钢板的面积为20000π mm2.15.解:(1)证明:∵△ABC是等边三角形,∴∠BAC =∠ACB =60°. ∵CA =CD ,∴∠D =∠CAD . ∵∠ACB =∠D +∠CAD , ∴∠CAD =30°,∴∠BAD =60°+30°=90°, ∴AD ⊥AB ,∴AD 是⊙O 的切线. (2)如图,连结OE ,∵OA =OE ,∠OAE =60°, ∴△OAE 是等边三角形, ∴AE =AO =12AB =12AC ,∴AE =EC , ∴S △OEC =S △AOE =34×42=4 3. ∵CA =CB ,OA =OB ,∴CO ⊥AB , ∴∠AOC =90°,∴∠EOG =30°, ∴S 扇形OEG =30×π×42360=4π3,∴S 阴影=S △OEC -S 扇形OEG =4 3-4π3. 16.解:(1)略. (2)12×32×7=112(m 2). 故需要112 m 2油毡. (3)π×82×5=320π(m 3).故最多可以存放320π m3粮食.。

2020【浙教版】九年级数学下册第3章《由三视图描述几何体》同步测试(含答案)

2020【浙教版】九年级数学下册第3章《由三视图描述几何体》同步测试(含答案)

12 .如图是一个正六棱柱的主视图和左视图,则图中
a 的值为 ( )
第 12 题图
A.2 3
B.
3
C
.2
D
.1
13 .一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则
组成这个几何体的小正方体最少有 ________个.
第 13 题图 14.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根 据图中所给的数据求出它的侧面积.
D
.2
9.下列三视图所对应的直观图是 ( )
第 9 题图
10.一张桌子上摆放着若干碟子,从三个方向看,三种视图如图所示,这张桌子上共有 ________ 只碟子.
第 10 题图 1.如图是一个几何体的三视图, 若这个几何体的体积是 36,则它的表面积是 ________.
第 11 题图
B 组 自主提高
D . 一套衣服
第 6 题图
2. ( 贺州中考 ) 一个几何体的三视图如图所示,则这个几何体是
()
第 7 题图
A.三棱锥Bຫໍສະໝຸດ . 三棱柱C. 圆柱
D
.长方体
8. ( 凉山州中考 ) 如图,是由若干个大小相同的正方体搭成的几何体的三视图,该几何
体所用的正方体的个数是 ( )
第 8 题图
A.6
B
.4
C
.3
4cm,
15.(1)
第 15 题图
(2) ∵俯视图有 5 个正方形,∴最底层有 5 个正方体,由主视图可 得第 2 层最少有 2 个正方体,第 3 层最少有 1 个正方体;由主视图可
得第 2 层最多有 4 个正方体,第 3 层最多有 2 个正方体;∴该组合几 何体最少有 5+2+1=8 个正方体,最多有 5+4+2=11 个正方体,∴ n 可能为 8 或 9 或 10 或 11.

部编版2020九年级数学下册 第3章 投影与三视图检测卷同步测试 (新版)浙教版

部编版2020九年级数学下册 第3章 投影与三视图检测卷同步测试 (新版)浙教版

第3章检测卷一、选择题(本大题共10小题,每小题4分,共40分)1.(台州中考)如图所示几何体的俯视图是( )第1题图2.(宁波中考)如图所示的几何体的主视图为( )第2题图3.一个几何体的三视图如图所示,则该几何体的形状可能是( )第3题图4.(广州中考)如图所示几何体的左视图是( )第4题图5.(德州中考)图中三视图对应的正三棱柱是( )第5题图6.(齐齐哈尔中考)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是( )A .5个B .6个C .7个D .8个第6题图7.一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是( ) A.3π B.4π C.3π或4π D.6π或8π 8.(泰安中考)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为( )第8题图A .90°B .120°C .135°D .150° 9.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为( )第9题图A.236π B.136π C.132π D.120π10.如图是一个三棱柱的展开图,若AD=13,CD=3,则AB的长度不可能是( )第10题图A.4 B.5 C.6 D.7二、填空题(本大题共6小题,每小题5分,共30分)11.如图是一圆锥,在它的三视图中,既是中心对称图形,又是轴对称图形的是它的____视图(填“主”、“俯”或“左”).第11题图8.由一些完全相同的小正方体组成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是____.第12题图9.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1.2m,太阳光线与地面的夹角∠ACD=60°,则AB的长为________m.第13题图10.已知一个几何体的三视图和有关的尺寸如图所示,则这个几何体的表面积为____cm2.第14题图15.(南京中考)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,则该圆锥的母线长l为____cm.第15题图11.将一直径为17cm的圆形纸片(图1)剪成如图2所示形状的纸片,再将纸片沿虚线折叠得到正方体(图3)形状的纸盒,则这样的纸盒体积最大为____cm3.三、解答题(本大题共8小题,共80分)17.(8分) 已知:如图,AB和DE是直立在地面上的两根立柱,AB=5cm,某一时刻AB在阳光下的投影BC=2cm.第17题图(1)请你画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为4cm,请你计算DE的长.18.(8分)如图是一个圆柱体零件,削去了上底面圆的四分之一部分的柱体,现已画出了主视图与俯视图.第18题图(1)画出此零件的左视图;(2)若此零件高h=3cm,且其俯视图恰好可以卷成底面半径为1.5cm的圆锥,求此零件的表面积.19.(8分)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图,请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:毫米)第19题图20.(8分)如图,长方体的底面边长分别为2cm和4cm,高为5cm,若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为多少?第20题图21.(10分)如图,有一直径是2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC.第21题图(1)求AB的长;(2)求图中阴影部分的面积;(3)若用该扇形铁皮围成一个圆锥,求所得圆锥的底面圆的半径.22.(12分)晚上,小亮走在大街上.他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米.求路灯的高.第22题图23.(12分)为了加强视力保护意识,小明想在长为4.3米,宽为3.2米的书房里挂一张测试距离为5米的视力表.在一次课题学习课上,小明向全班同学征集“解决空间过小,如何放置视力表问题”的方案,其中甲、乙、丙三位同学设计的方案新颖,构思巧妙.(1)甲生的方案:如图1,将视力表挂在墙ABEF和墙ADGF的夹角处,被测试人站立在对角线AC上,问:甲生的设计方案是否可行?请说明理由;(2)乙生的方案:如图2,将视力表挂在墙CDGH上,在墙ABEF上挂一面足够大的平面镜,根据平面镜成像原理可计算得到:测试线应画在距离墙ABEF________米处;(3)丙生的方案:如图3,根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.图中的△ADF∽△ABC,如果大视力表中“E”的长是3.5cm,那么小视力表中相应的“E”的长是多少cm?第23题图24.(14分)如图是用矩形厚纸片(厚度不计)做长方体包装盒的示意图,阴影部分是裁剪掉的部分.沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处矩形形状的“舌头”用来折叠后粘贴或封盖.第24题图(1)若用长31cm,宽26cm的矩形厚纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的2.5倍,三处“舌头”的宽度相等.求“舌头”的宽度和纸盒的高度;(2)现有一张40cm×35cm的矩形厚纸片,按如图所示的方法设计包装盒,用来包装一个圆柱形工艺笔筒,已知该种笔筒的高是底面直径的 2.5倍,要求包装盒“舌头”的宽度为2cm(如有多余可裁剪),问这样的笔筒底面直径最大可以为多少?第3章 三视图与表面展开图检测卷1.D 2.B 3.D 4.A 5.A 6.A 7.C 8.B 9.B 10.D 11. 俯 12. 4或5个 13.63514.36 15.6 16.1717第17题图17.(1)如图,EF 为此时DE 在阳光下的投影; (2)由平行投影的性质可知:AC∥DF,∴∠ACB =∠DFE,又∵∠ABC =∠DEF=90°,∴△ACB ∽△DFE ,∴AB DE =BC EF ,即5DE =24,解得:DE =10(cm ),答:DE 的长为10cm .18.(1)左视图与主视图形状相同,图略; (2)由2π×1.5=270π×r180,解得:r =2,两个底面积=2πr 2×34=6π(cm 2),侧面积=(2πr ×34+2r)×h=(9π+12)cm 2,表面积=(15π+12)cm 2,答:此零件的表面积为(15π+12)cm 2.19.由三视图可知:茶叶罐的形状为圆柱体,且茶叶罐的底面半径R 为50毫米,高h 为150毫米,∵每个密封罐所需钢板的面积即为圆柱体的表面积,∴S 表面积=2πR 2+2πRh =2π×502+2π×50×150=20000π(平方毫米),答:制作每个密封罐所需钢板的面积为20000π平方毫米.20.如图所示,∵长方体的底面边长分别为2cm 和4cm ,高为5cm .∴PA =4+2+4+2=12cm ,QA =5cm ,∴PQ =PA 2+AQ 2=13cm .第20题图第21题图21.(1)连结BC ,如图.∵∠BAC=90°,∴BC 为⊙O 的直径,即BC =2米,∴AB =22BC =1米. (2)扇形ABC 的面积为90°360°×π×AB 2=π4(平方米),⊙O 的面积为π×⎝ ⎛⎭⎪⎫222=π2(平方米),所以阴影部分的面积为:π2-π4=π4(平方米). (3)设所得圆锥的底面圆的半径为r 米,根据题意得2πr =90·π·1180,解得r =14,即所得圆锥的底面圆的半径为14米. 22.设路灯的高为x 米,∵GH ⊥BD ,AB ⊥BD ,∴GH ∥AB ,∴△EGH ∽△EAB ,∴GH x =EHEB ①,同理△FGH∽△FCD,GH x =FH FD ②,∴EH EB =FH FD =EH +FH EB +FD ,∴3EB = 4.512+4.5,解得EB =11,代入①得1.8x =311,解得x =6.6,即路灯的高为6.6米. 23.(1)甲生的方案可行.理由如下:根据勾股定理得AC 2=AD 2+CD 2=3.22+4.32,∵3.22+4.32>52,∴AC 2>52,即AC>5,∴甲生的方案可行; (2)设测试线应画在距离墙ABEFx 米处,根据平面镜成像可得x +3.2=5,解得x =1.8,∴测试线应画在距离墙ABEF1.8米处; (3)∵△ADF∽△ABC,∴FD BC =AD AB ,即FD 3.5=35,∴FD =2.1(cm ).答:小视力表中相应“E”的长是2.1cm .24.(1)设纸盒底面边长为a cm ,“舌头”的宽为b cm .由题意可得:⎩⎪⎨⎪⎧4a +b =26,a +b +2.5a +a +b =31,解得:⎩⎪⎨⎪⎧a =6,b =2,2.5×6=15cm ,答:“舌头”的宽度为2cm ,纸盒的高度为15cm; (2)直径最大可以是8cm .。

2020九年级数学下册 第3章 投影与三视图测试题 (新版)浙教版

2020九年级数学下册 第3章 投影与三视图测试题 (新版)浙教版

第3章一、选择题(每小题5分,共30分)1.下列立体图形中,侧面展开图是扇形的是( )图7-Z-12.下列各图不是正方体表面展开图的是( )图7-Z-23.如图7-Z-3是由3个相同的小正方体组合而成的几何体,它的俯视图是( )图7-Z-3图7-Z-44.如图7-Z-5所示的工件,其俯视图是( )图7-Z-5图7-Z-6图7-Z-75.如图7-Z-7是某几何体的三视图,该几何体是( )A.三棱柱B.长方体C.圆锥D.圆柱图7-Z-86.如图7-Z-8,一天晚上,小颖由路灯A下的B处走到C处时,测得影子CD的长为1米,当她继续往前走到D处时,测得此时影子DE的长刚好是自己的身高.已知小颖的身高为1.5米,那么路灯A的高度AB为( )A.3米 B.4.5米C.6米 D.8米二、填空题(每小题5分,共30分)7.已知圆锥的底面半径为3 cm,母线长为5 cm,则它的侧面展开图的面积等于________cm2.图7-Z-98.如图7-Z-9,由三个棱长均为1 cm的小立方体搭成的几何体的主视图的面积是________cm2.9.如图7-Z-10是一个几何体的三视图(图中尺寸单位: cm),根据图中所示数据计算这个几何体的表面积为________cm2.7-Z-10图7-Z-1110.一个几何体的三视图如图7-Z-11所示,则该几何体的体积为__________.图7-Z-1211.有一个圆柱,它的高为12 cm,底面半径为3 cm,如图7-Z-12所示,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,则它沿圆柱侧面爬行的最短路程是________ cm(π取3).12.展览厅内要用相同的小正方体木块搭成一个三视图如图7-Z-13所示的展台,则此展台共需这样的小正方体________块.图7-Z-13三、解答题(共40分)13.(8分)如图7-Z-14为某几何体的示意图,请画出该几何体的三视图.图7-Z -1414.(10分)某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图(如图7-Z -15),请你按照三视图确定制作每个密封罐所需钢板的面积.(单位:mm)图7-Z -1515.(10分)如图7-Z -16,D 是等边三角形ABC 中BC 边的延长线上一点,且AC =CD ,以AB 为直径作⊙O ,分别交边AC ,BC 于点E ,F .(1)求证:AD 是⊙O 的切线;(2)连结OC ,交⊙O 于点G ,若AB =8,求线段CE ,CG 与GE ︵围成的阴影部分的面积S .图7-Z-1616.(12分)如图7-Z-17是一粮囤的示意图,其顶部是一圆锥,底部是一圆柱.(1)画出该粮囤的三视图;(2)若这个圆锥的底面周长为32 m,母线长为7 m,为防雨需要在粮囤顶部铺上油毡,则需要多少平方米油毡(油毡接缝重合部分不计)?(3)若这个圆柱的底面圆半径为8 m,高为5 m,粮食最多只能装至与圆柱同样高,则最多可以存放多少立方米粮食?图7-Z-17详解详析1.B 2.C 3.C4.B [解析] 从上面看到的图形是B项中的图形.5.B 6.B 7.15π8.3 [解析] 从正面看第一层是两个小正方形,第二层左边是一个小正方形,则主视图的面积是3 cm2.9.4π10.12011.15 [解析] 展开圆柱的半个侧面是矩形,矩形的宽是圆柱的底面周长的一半,即3π=9(cm),矩形的长是圆柱的高12 cm.根据两点之间线段最短,得最短路程是矩形的对角线的长,即122+92=15(cm).12.1013.解:三视图如下:14.解:由三视图可知茶叶罐的形状为圆柱体,并且茶叶罐的底面直径2R为100 mm,高h为150 mm.∵每个密封罐所需钢板的面积即为该圆柱体的表面积,∴S表面=2πR2+2πRh=2π×502+2π×50×150=20000π(mm2).答:制作每个密封罐所需钢板的面积为20000π mm2.15.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°.∵CA=CD,∴∠D=∠CAD.∵∠ACB=∠D+∠CAD,∴∠CAD =30°,∴∠BAD =60°+30°=90°, ∴AD ⊥AB ,∴AD 是⊙O 的切线. (2)如图,连结OE ,∵OA =OE ,∠OAE =60°, ∴△OAE 是等边三角形, ∴AE =AO =12AB =12AC ,∴AE =EC , ∴S △OEC =S △AOE =34×42=4 3. ∵CA =CB ,OA =OB ,∴CO ⊥AB , ∴∠AOC =90°,∴∠EOG =30°, ∴S 扇形OEG =30×π×42360=4π3,∴S 阴影=S △OEC -S 扇形OEG =4 3-4π3. 16.解:(1)略. (2)12×32×7=112(m 2). 故需要112 m 2油毡. (3)π×82×5=320π(m 3). 故最多可以存放320π m 3粮食.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章三视图与表面展开图
3.2 简单几何体的三视图
第1课时直棱柱的三视图
知识点1 正投影
1.球的正投影是( )
A.圆 B.正方形 C.点 D.圆环
2.如图3-2-1,箭头表示投影线的方向,则图中圆柱体的正投影是( )
A.圆 B.圆柱
C.梯形 D.矩形
图3-2-1
图3-2-2
知识点2 直棱柱的三视图
3.2017·宁波如图3-2-2所示的几何体的俯视图为( )
图3-2-3
4.下列选项中,不是
..如图3-2-4所示几何体的主视图、左视图、俯视图之一的是( )
图3-2-4
图3-2-5 知识点3 直棱柱的三视图画法
5.画出如图3-2-6所示的几何体的三视图.
图3-2-6
图3-2-7
6.2019·台州如图3-2-7所示的工件是由两个长方体构成的组合体,则它的主视图是( )
图3-2-8
7.2019·金华从一个棱长为3 cm的大立方体中挖去一个棱长为1 cm的小立方体,得到的几何体如图3-2-9所示,则该几何体的左视图是( )
图3-2-9
图3-2-10
8.创新学习如图3-2-11,观察由棱长为1的小立方体摆成的图形,寻找规律:图①中共有1个小立方体,其中1个看得见,0个看不见;图②中共有8个小立方体,其中7个看得见,1个看不见;图③中共有27个小立方体,其中19个看得见,8个看不见……
图3-2-11
(1)第⑥个图形中,看得见的小立方体有________个;
(2)(n为正
整数)
详解详析
1.A
2.D [解析] 根据平行投影的特点,图中圆柱体的正投影是矩形.故选D.
3.D4.A5.略
6.A[解析] 主视图是从正面看得到的图形,从正面可以看到的是两个矩形的组合图形,且中间没有实线.
7.C
8.解:(1)当n=1时,看不见的小立方体有(1-1)3=0(个);
当n=2时,看不见的小立方体有(2-1)3=1(个);
当n=3时,看不见的小立方体有(3-1)3=8(个);
……
当n=6时,看不见的小立方体有(6-1)3=125(个),故看得见的小立方体有63-125=216-125=91(个).故填:91.
(2)(n-1)3.。

相关文档
最新文档