2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (文科)(解析版)

合集下载

2011年高考全国数学试卷(新课标)-文科(含详解答案)

2011年高考全国数学试卷(新课标)-文科(含详解答案)

绝密★启用前2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(MN )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【答案】D【命题意图】本题主要考查集合交并补运算. 【解析】{2,3},(){1,4}U MN MN =∴=(2)函数(0)y x x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥ 【答案】B【命题意图】本题主要考查反函数的求法.【解析】由原函数反解得24y x =,又原函数的值域为0y ≥,所以函数(0)y x x =≥的反函数为2(0)4x y x =≥.(3)设向量,a b 满足||||1a b ==,12a b ⋅=-,则2a b += (A 2 (B 3 (C 5(D 7【答案】B【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+=,所以23a b +=(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【答案】C【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5.(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b > 【答案】A【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k = (A )8 (B )7 (C )6 (D )5 【答案】D【命题意图】本题主要考查等差数列的基本公式的应用. 【解析】解法一2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =.解法二: 221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =.(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 【答案】C【命题意图】本题主要考查三角函数的周期性与三角函数图像变换的关系. 【解析】由题意将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,说明了3π是此函数周期的整数倍,得2()3k k Z ππω⨯=∈,解得6k ω=,又0ω>,令1k =,得min 6ω=.(8)已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD = (A ) 2 (B(C (D )1 【答案】C【命题意图】本题主要考查二面角的平面角及解三角形.【解析】因为l αβ--是直二面角, AC l ⊥,∴AC ⊥平面β,BC ∴=又BD l ⊥,CD ∴=(9) 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 (A) 12种 (B) 24种 (C) 30种 (D)36种 【答案】B【命题意图】本题主要考查两个原理与排列组合知识,考察考生分析问题的能力.【解析】第一步选出2人选修课程甲有246C =种方法,第二步安排剩余两人从乙、丙中各选1门课程有22⨯种选法,根据分步计数原理,有6424⨯=种选法.(10) 设()f x 是周期为2的奇函数,当01x ≤≤时,()f x =2(1)x x -,则5()2f -= (A) -12 (B)1 4- (C)14 (D)12【答案】A【命题意图】本题主要考查利用函数的周期性和奇偶性求函数值的方法. 关键是把通过周期性和奇偶性把自变量52-转化到区间[0,1]上进行求值. 【解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1)2222222f f f f -=-+=-=-=-⨯⨯-=-(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12CC = (A)4 (B)【答案】C【命题意图】本题主要考查圆的方程与两点间的距离公式.【解析】由题意知圆心在直线y=x 上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.(12)已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (C)11π (D)13π 【答案】D【命题意图】本题主要考查二面角的概念与球的性质.【解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离23OM =,在Rt OMN∆中,30OMN ︒∠=, ∴132ON OM ==,故圆N 的半径2213r R ON =-=,∴圆N的面积为213S r ππ==.第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。

[高三数学]2011年高考文科综合试题湖南卷解析版

[高三数学]2011年高考文科综合试题湖南卷解析版

2011年高考文科综合试题(湖南卷)解析版第Ⅰ卷(选择题共144分)巴西(Brazil)、俄罗斯(Russia)、印度(India)和中国(China)四个国家的英文名称首字母可以组合成"BRICs"一词,其发音与英文中的"砖块"(bricks)一词非常相似,故被称为"金砖四国"。

结合四国统计数据完1-3题。

国家代号人口密度(人/平方千米)城市人口比重(%)GDP增长率(%)2000年2007年2000年2007年2007年①8.938.6573.472.98.1②341.69377.8227.729.39.2③20.5922.6581.2385.15.4④135.37141.5235.842.211.41.对四个国家的描述与表中显示数据结果不相符的是()A.①国城市化进程减缓B.②国人口增长缓慢C.③国城市化水平最高D.④国经济发展最快2.表中①②③④分别代表的国家依次是()A.俄罗斯、印度、巴西、中国B.中国、俄罗斯、印度、巴西C.巴西、印度、中国、俄罗斯D.印度、巴西、俄罗斯、中国3.从经济上看,"金砖四国"的差别很大。

巴西被称为"世界原料基地",俄罗斯被称为"世界加油站",印度被称为"世界办公室",中国被称为"世界工厂"。

关于上述称谓理解错误的是()A.巴西是矿产资源、农业资源大国B.俄罗斯的石油和天然气出口为其经济增添了双翼C.印度是软件工业大国,班加罗尔是其软件业代表城市D.中国利用充足的原料能源驱动了经济繁荣图1中的左图是我国东南沿海"某岛屿城市扩展过程及海岸线变化图",图中阴影表示建成区范围,右图是"建成区占该岛各高程土地面积比例变化图"。

读图回答4 ~6题。

4. 该岛的地势特点是()A.东北高、西南低B.西北高、东南低C.西高东低D.南高北低5.该岛城市化过程中最有可能侵占()A.林地B.耕地C.滩涂D.草地6.根据图中信息可以判断下列说法正确的是()A.该岛海岸线的变化是全球变暖的反映B.该城市道路网密度东部大于西部C.该岛巳经出现逆城市化现象D.该岛北部填海造陆面积大于南部菊花是一种短日照花卉,其开花期对日照时长非常敏感。

2011年高考湖南卷文科数学试题和答案

2011年高考湖南卷文科数学试题和答案

正视图 侧视图俯视图2011年普通高等学校招生全国统一考试文科数学(湖南卷)参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=M ∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N= A .{1,2,3} B . {1,3,5} C . {1,4,5} D . {2,3,4} 2.若,a b R ∈,i为虚数单位,且()a i i b i +=+则 A .1a =,1b =B .1,1a b =-=C .1,1a b ==-D .1,1a b =-=-3.“1x >”是“1x >” 的A .充分不必要条件B .必要不充分条件C . 充分必要条件D .既不充分又不必要条件 4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B .3618π+C .9122π+ D .9182π+ 5 由22()()()()()n ad bc K a d c d a c b d -=++++ 算得,22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 附表:参照附表,得到的正确结论是A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”6.设双曲线2221(0)9x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .17.曲线sin 1sin cos 2x y x x =-+在点M (4π,0)处的切线的斜路为A . 12-B .12C .2-D .28.已知函数2()1,()43xf x eg x x x =-=-+-,若有()()f a g b =,则b 的取值范围为A .22⎡⎣ B .22⎡-+⎣C . []1,3D . ()1,3二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题..卡.中对应题号后的横线上. (一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy 中,曲线C 1的参数方程为2cos ,x y αα=⎧⎪⎨=⎪⎩(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为()cos sin 10ρθθ-+=,则C 1与C 2的交点个数为10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是(二)必做题(11~16题)11.若执行如图2所示的框图,输入11x =,2342,4,8x x x ===则输出的数等于 12.已知f (x )为奇函数,g (x )=f (x )+9,g (-2)=3,则f (2)=_________. 13.设向量a ,b 满足b=(2,1),且a 与b 的方向相反,则a 的坐标为________.14.设1,m >在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .15.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2)圆C 上任意一点A 到直线l 的距离小于2的概率为 .16.给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =-(1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在△ABC 中,角A,B,C 所对的边分别为a ,b ,c ,且满足c sinA=acosC . (I )求角C 的大小;(II (B+4π)的最大值,并求取得最大值时角A 、B 的大小. 18.(本小题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份是我降雨量X (单位:毫米)有关,据统计,当X=70时,Y=460;X 每增加10,Y 增加5.已知近20年X 的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160. (Ⅰ)完成如下的频率分布表概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19.(本小题满分12分)如图3,在圆锥PO 中,已知PO O =的直径2,,AB C AB D AC =∠点在上,且CAB=30为的中点.(Ⅰ)证明:AC ⊥平面POD ;(Ⅱ)求直线 OC 和平面PAC 所成角的正弦值.20.(本小题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%. (Ⅰ)求第n 年初M 的价值n a 的表达式; (Ⅱ)设12...nn a a a A n+++=,若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新.21.(本小题满分13分)已知平面内一动点P 到点(1,0)F 的距离与点P 到y 轴的距离的差等于1. (Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,D E ,求,AD EB 的最小值.22.(本小题满分13分)设函数1()ln ()f x x a x a R x=--∈. (Ⅰ)讨论函数()f x 的单调性.(Ⅱ)若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k .问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.2011年普通高等学校招生全国统一考试(湖南卷)数学试题卷(文史类)参考答案一、选择题(共8小题,每小题5分,满分40分)1、(2011•湖南)设全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,则N=()A、{1,2,3}B、{1,3,5}C、{1,4,5}D、{2,3,4}考点:交、并、补集的混合运算。

2011年湖南省高考数学文科试题及答案

2011年湖南省高考数学文科试题及答案

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试题卷包括选择题、填空题、解答题三部分,共6页,时量120分钟,满分150分参考公式:(1)()(|)()P AB P B A P A =,其中,A B 为两个基本事件,且()0P A >. (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (3)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D . {2,3,4} 2. 若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B . 1,1a b =-=C . 1,1a b ==-D . 1,1a b =-=-3. “1x >”是“||1x >”的( )A .充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 4. 设图1是某几何体的三视图,则该几何体的体积为 ( )A .942π+B .3618π+C .9122π+ D .9182π+ 5. 通过询问110名性别不同的的大学生是否爱好某项运动,得到如下的列联表.由22()()()()()n ad bc K a b c d a c b d -=++++算得,22110(40302020)7.860506050K ⨯-⨯=≈⨯⨯⨯,附表如右下,参照附表,得到的正确结论( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6. 设双曲线2221(0)9x y a a -=>的渐近线方程为320x y =±,则a 的值为( ) A .4 B .3 C .2 D .1 7. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .-12B . 12C . -22D . 228. 已知函数2()1,()4 3.xf x eg x x x =-=-+-若有()()f a g b =,则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C . [1,3]D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10两题中任选一题作答,如果全做,则按前一题记分)9. 在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos s i n )10ρθθ-+=,则1C 与2C 的交点个数为 .10. 已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 (只写出其中一个也正确). (二)必做题(11~16题)11. 若执行如图2所示的框图,输入12341,2,4,8,x x x x ==== 则输出的数等于 .12. 已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f = .13. 设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为 .14. 设1m >,在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的大值为4,则m 的值为 。

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年湖南省高考数学文科试题及答案

2011年湖南省高考数学文科试题及答案

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)本试题卷包括选择题、填空题、解答题三部分,共6页,时量120分钟,满分150分参考公式:(1)()(|)()P AB P B A P A =,其中,A B 为两个基本事件,且()0P A >. (2)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (3)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5}C .{1,4,5}D . {2,3,4} 2. 若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A .1,1a b ==B . 1,1a b =-=C . 1,1a b ==-D . 1,1a b =-=-3. “1x >”是“||1x >”的( )A .充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件 4. 设图1是某几何体的三视图,则该几何体的体积为 ( )A .942π+B .3618π+C .9122π+ D .9182π+ 5. 通过询问110名性别不同的的大学生是否爱好某项运动,得到如下的列联表.由22()()()()()n ad bc K a b c d a c b d -=++++算得,22110(40302020)7.860506050K ⨯-⨯=≈⨯⨯⨯,附表如右下,参照附表,得到的正确结论( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”6. 设双曲线2221(0)9x y a a -=>的渐近线方程为320x y =±,则a 的值为( ) A .4 B .3 C .2 D .1 7. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .-12B . 12C . -22D . 228. 已知函数2()1,()4 3.x f x e g x x x =-=-+-若有()()f a g b =,则b 的取值范围为( )A .[2-2,2+2]B .(2-2,2+2)C . [1,3]D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10两题中任选一题作答,如果全做,则按前一题记分)9. 在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10ρθθ-+=,则1C 与2C 的交点个数为 .10. 已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 (只写出其中一个也正确). (二)必做题(11~16题)11. 若执行如图2所示的框图,输入12341,2,4,8,x x x x ==== 则输出的数等于 .12. 已知()f x 为奇函数,()()9g x f x =+,(2)3g -=,则(2)f = .13. 设向量a ,b 满足|a|=25,b =(2,1),且a 与b 的方向相反,则a 的坐标为 .14. 设1m >,在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的大值为4,则m 的值为 。

2011年全国高考文科数学试题及答案-湖南-推荐下载

2011年全国高考文科数学试题及答案-湖南-推荐下载

110 (40 30 20 30)2
60 50 60 50
0.010 ,故由独立性检验的意义可知选
x)

0, 则 a 的值为(
(sin
x
1 cos
x)2
,所以

7.8

二、填空题:本大题共 8 小题,考生作答 7 小题,每小题解分,共青团员 5 分,把答案填
在答题卡中对应题号后的横线上.
A.充分不必要条件 B.必要不充分条件
C.充分必要条件
答案:A
解析:因" x 1" " | x | 1",反之
" | x | 1" " x 1或x 1" ,不一定有" x 1" 。
4.设图1是某几何体的三视图,则该几何体的体积为
A. 9 42 B. 36 18

4

y'

(sin
sin x cos x 2
1
B.
2
cos
4
x(sin
1 cos )2
x
4
C. 2 2
cos (sin

x) sin x(cos x cos x)2
1

2
4
2
D.
2
8.已知函数 f (x) ex 1, g(x) x2 4x 3, 若有 f (a) g(b), 则 b 的取值范围为
B.有 99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过 0.1%的前提下,认为“爱好该项运动与性别无关”

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解湖南文

2011年普通高等学校招生全国统一考试高考数学教师精校版含详解湖南文

2011年湖南文一、选择题(共8小题;共40分)1. 设全集U=M∪N=1,2,3,4,5,M∩∁U N=2,4,则N= A. 1,2,3B. 1,3,5C. 1,4,5D. 2,3,42. 若a,b∈R,i为虚数单位,且a+i i=b+i,则 A. a=1,b=1B. a=−1,b=1C. a=−1,b=−1D. a=1,b=−13. “ x>1”是“ x >1”的 A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件4. 如图是某几何体的三视图,则该几何体的体积为 A. 9π+42B. 36π+18C. 92π+12 D. 92π+185. 通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2=n ad−bc2a+b c+d a+c b+d 算得K2=110×40×30−20×20260×50×60×50≈7.8附表:P K2≥k0.0500.0100.001k 3.841 6.63510.828参照附表,得到的正确结论是 A. 在犯错误的概率不超过0.1%的前提下,认为"爱好该项运动与性别有关"B. 在犯错误的概率不超过0.1%的前提下,认为"爱好该项运动与性别无关"C. 有99%以上的把握认为"爱好该项运动与性别有关"D. 有99%以上的把握认为"爱好该项运动与性别无关"6. 设双曲线x2a −y29=1a>0的渐近线方程为3x±2y=0,则a的值为 A. 4B. 3C. 2D. 17. 曲线y=sin xsin x+cos x −12在点Mπ4,0处的切线的斜率为 A. −12B. 12C. −22D. 228. 已知函数f x=e x−1,g x=−x2+4x−3,若有f a=g b,则b的取值范围为 A. 2−2,2+2B. 2−2,2+2C. 1,3D. 1,3二、填空题(共8小题;共40分)9. 在直角坐标系xOy中,曲线C1的参数方程为x=2cosαy=3sinα α为参数,在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρcosθ−sinθ+1=0,则C1与C2的交点个数为.10. 已知某试验范围为10,90,若用分数法进行4次优选试验,则第二次试点可以是.11. 若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8,则输出的数等于.12. 已知f x为奇函数,g x=f x+9,g−2=3,则f2=.13. 设向量a,b满足a=2b=2,1,且a与b的方向相反,则a的坐标为.14. 设m>1,在约束条件y≥xy≤mxx+y≤1下,目标函数z=x+5y的最大值为4,则m的值为.15. 已知圆C:x2+y2=12,直线l:4x+3y=25.①圆C的圆心到直线l的距离为;②圆C上任意一点A到直线l的距离小于2的概率为.16. 给定k∈N∗,设函数f:N∗→N∗满足:对于任意大于k的正整数n,f n=n−k.(1)设k=1,则其中一个函数f在n=1处的函数值为;(2)设k=4,且当n≤4时,2≤f n≤3,则不同的函数f的个数为.三、解答题(共6小题;共78分)17. 在△ABC中,角A,B,C所对的边分别为a,b,c,且满足c sin A=a cos C.(1)求角C的大小;(2)求3sin A−cos B+π4的最大值,并求取得最大值时角A,B的大小.18. 某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.19. 如图,在圆锥PO中,已知PO=⊙O的直径AB=2,点C在AB上,且∠CAB=30∘,D为AC的中点.(1)证明:AC⊥平面POD;(2)求直线OC和平面PAC所成角的正弦值.20. 某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(1)求第n年初M的价值a n的表达式;(2)设A n=a1+a2+⋯+a nn,若A n大于80万元,则M继续使用,否则须在第n年初对M更新.证明:须在第9年初对M更新.21. 已知平面内一动点P到点F1,0的距离与点P到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求AD⋅EB的最小值.−a ln x a∈R.22. 设函数f x=x−1x(1)讨论函数f x的单调性.(2)若f x有两个极值点x1和x2,记过点A x1,f x1,B x2,f x2的直线斜率为k.问:是否存在a,使得k=2−a ?若存在,求出a的值;若不存在,请说明理由.答案第一部分1. B2. D 【解析】因为a+i i=−1+a i=b+i,根据复数相等的条件可知a=1,b=−1.3. A 【解析】因“ x>1” ⇒“ x >1”,反之“ x >1” ⇒“ x>1或x<−1”,不一定有“ x>1”.4. D 【解析】由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π323+3×3 ×2=92π+18.5. C【解析】由题意K2=7.8>6.635,有0.01=1%的机会错误,即有99%以上的把握认为“爱好这项运动与性别有关”.同时,在犯错误的概率不超过1%的前提下,认为“爱好该项运动与性别有关”;6. C 【解析】由双曲线方程可知渐近线方程为y=±3ax,故可知a=2.7. B 【解析】yʹ=cos x sin x+cos x−sin x cos x−sin xsin x+cos x2=1sin x+cos x2,所以yʹx=π4=1sinπ+cosπ2=12.8. B 【解析】由题可知f x=e x−1>−1,g x=−x−22+1≤1.若有f a=g b,则−b2+4b−3>−1,解得2−2<b<2+2.第二部分9. 2【解析】曲线C1:x24+y23=1,曲线C2:x−y+1=0,联立方程消y得7x2+8x−8=0,易得Δ>0,故有2个交点.或者由直线C2上的点0,1在椭圆C1内部,所以直线与椭圆必有两个交点.10. 40或60【解析】由区间长度为80,可以将其等分8段,利用分数法选取试点:x1=10+5×90−10=60,x2=10+90−60=40.由对称性可知,第二次试点可以是40或60.11. 154【解析】输出的数等于x=x1+x2+x3+x44=154.12. 6g−2=f−2+9=3,则f−2=−6,又f x为奇函数,所以f2=−f−2=6.13. −4,−214. 3【解析】画出可行域,如图,可知z=x+5y在点A11+m ,m1+m处取最大值4,解得m=3.15. 5,16【解析】①由点到直线的距离公式可得d=42+32=5;②可求与直线4x+3y=25平行且距离为2,与圆相交的直线方程为4x+3y=15.由①可知圆心到直线的距离为5,所以圆心到直线4x+3y=15的距离为3,从而直线4x+3y=15与圆x2+y2=12相交所得的弦长为23,对应劣弧所对的圆心角为π3,故所求概率为P=π32π=16.16. m m∈N∗,16【解析】(1)由题可知f n∈N∗,而k=1时,n>1则f n=n−1∈N∗,故只须f1∈N∗,故f1=m,m∈N∗;(2)由题可知k=4,n>4,则f n=n−4∈N∗,而n≤4时,2≤f n≤3,即f n∈2,3,即n∈1,2,3,4,f n∈2,3,故不同的函数f的个数为24=16.17. (1)由正弦定理得sin C sin A=sin A cos C.因为0<A<π,所以sin A>0,从而sin C=cos C,又cos C≠0,所以tan C=1,则C=π4.(2)由(1)知B=3π4−A.于是3sin A−cos B+π=3sin A−cosπ−A=3sin A+cos A=2sin A+π6.因为0<A<3π4,所以π<A+π<11π,从而当A+π6=π2,即A=π3时,2sin A+π6取最大值2.综上所述,3sin A−cos B+π4的最大值为2,此时A=π3,B=5π12.18. (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率的分布表为:降雨量70110140160200220频率120320420720320220(2)P=P Y<490 或 Y>530=P X<130 或 X>210=120+320+220=3 10,故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.19. (1)因为OA=OC,D是AC的中点,所以AC⊥OD.又PO⊥底面⊙O,AC⊂底面⊙O,所以AC⊥PO.又因为OD,PO是平面POD内的两条相交直线,所以AC⊥平面POD.(2)由(1)知,AC⊥平面POD,又AC⊂平面PAC,所以平面POD⊥平面PAC,如图,在平面POD中,过O作OH⊥PD于H.则OH⊥平面PAC.连接CH,则CH是OC在平面PAC上的射影,所以∠OCH是直线OC和平面PAC所成的角.在Rt△POD中,OH=PO⋅OD PO2+OD2=2×122+4=2 3 ,在Rt△OHC中,sin∠OCH=OH=2.20. (1)当n≤6时,数列a n是首项为120,公差为−10的等差数列.a n=120−10n−1=130−10n;当n≥6时,数列a n是以a6为首项,公比为34的等比数列,又a6=70,所以a n=70×34n−6.因此,第n年初,M的价值a n的表达式为a n=130−10n,n≤6, 70×3n−6,n≥7.(2)设S n表示数列a n的前n项和,由等差及等比数列的求和公式得:当1≤n≤6时,S n=120n−5n n−1,A n=120−5n−1=125−5n;当n≥7时,S n=S6+a7+a8+⋯+a n=570+70×34×4×1−34n−6=780−210×3n−6,A n=780−210×34n−6 n.因为a n是递减数列,所以A n是递减数列,又A8=780−210×348−68=824764>80,A9=780−210×349−6=7679<80,所以须在第9年初对M更新.21. (1)设动点P的坐标为x,y,由题意有− x =1.化简得y2=2x+2 x ,当x≥0时,y2=4x;当x<0时,y=0.所以动点P的轨迹C的方程为:y2=4x x≥0 和 y=0x<0.(2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为y=k x−1.由y=k x−1,y2=4x,得k2x2−2k2+4x+k2=0.设A x1,y1,B x2,y2,则x1,x2是上述方程的两个实根,于是x1+x2=2+4k2,x1x2=1.因为l1⊥l2,所以l2的斜率为−1k.设D x3,y3,E x4,y4,则同理可得x3+x4=2+4k2,x3x4=1,所以AD⋅EB= AF+FD⋅ EF+FB=AF⋅EF+AF⋅FB+FD⋅EF+FD⋅FB=AF⋅FB+FD⋅EF=x1+1x2+1+x3+1x4+1=1+2+42+1+1+2+4k2+1=8+4 k2+1 k2≥8+4×2k2⋅1 2=16.当且仅当k2=1k,即k=±1时,AD⋅EB取最小值16.22. (1)f x的定义域为0,+∞,fʹx=1+1x2−ax=x2−ax+1x2.令g x=x2−ax+1,其判别式Δ=a2−4.①当a ≤2时,Δ≤0,fʹx≥0,故f x在0,+∞上单调递增.②当a<−2时,Δ>0,g x=0的两根都小于0,在0,+∞上,fʹx>0,故f x在0,+∞上单调递增.③当a>2时,Δ>0,g x=0的两根为x1=a− a2−42,x2=a+ a2−4,当0<x<x1时,fʹx>0;当x1<x<x2时,fʹx<0;当x>x2时,fʹx>0.故f x分别在0,x1,x2,+∞上单调递增,在x1,x2上单调递减.综上知,当a≤2时,f x在定义域0,+∞上单调递增;当a>2时,f x在区间0,a− a2−42与a+ a2−42,+∞ 上单调递增;在区间a− a2−42,a+ a2−42上单调递减.(2)由(1)知,a>2. x1,x2与(1)中相同.因为f x1−f x2=x1−x2+x1−x212−a ln x1−ln x2,所以普通高等学校招生全国统一考试高考数学教师精校版含详解完美版k=f x1−f x212=1+112−a⋅ln x1−ln x212.又由(1)知,x1x2=1.于是k=2−a⋅ln x1−ln x212.若存在a,使得k=2−a.则ln x1−ln x212=1,即ln x1−ln x2=x1−x2,亦即x2−1x2−2ln x2=0x2>1∗.再由(1)知,函数 t=t−1t−2ln t在0,+∞上单调递增,而x2>1,所以x2−12−2ln x2>1−1−2ln1=0,这与∗式矛盾.故不存在a,使得k=2−a.。

2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (文科)(解析版)

2011年普通高等学校招生全国统一考试(湖南卷)数学试题 (文科)(解析版)

2011年普通高等学校招生全国统一考试(湖南卷)数学(文)试题解析本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{1,2,3,4,5},{2,4},U U M N M C N ===U I 则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 答案:B解析:画出韦恩图,可知N ={1,3,5}。

2.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=- 答案:C解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

3."1""||1"x x >>是的( )A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 答案:A解析:因"1""||1"x x >⇒>,反之 "||1""11"x x x >⇒><-或,不一定有"1"x >。

4.设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。

由222()110(40302030)7.8()()()()60506050n ad bc K K ab c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得, 附表:正视图 侧视图俯视图图1参照附表,得到的正确结论是( )A. 有99%以上的把握认为“爱好该项运动与性别有关”B. 有99%以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案:A解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选A.6.设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

3.2011高考数学湖南卷

3.2011高考数学湖南卷

2011年普通高等学校招生全国统一考试(湖南卷)文史类本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集{1,2,3,4,5},{2,4},U U MN MC N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 2.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则 A.1,1a b ==B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-3."1""||1"x x >>是的A .充分不必要条件 B.必要不充分条件C .充分必要条件D .既不充分又不必要条件 4.设图1是某几何体的三视图,则该几何体的体积为 A .942π+ B.3618π+ C.9122π+ D.9182π+5.通过随机询问110名不同的大学生是否爱好某项运动,由2222()110(40302030)7.8()()()()60506050n ad bc K K a b cd a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得,附表:A . 有99%以上的把握认为“爱好该项运动与性别有关”B . 有99%以上的把握认为“爱好该项运动与性别无关”C . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D . 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”正视图侧视图俯视图 图16.设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1 7.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2- D.28.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为 A.[2 B.(2 C .[1,3] D .(1,3)二、填空题:本大题共8小题,考生作答7小题,每小题解分,共青团员5分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10两题中任选一题作答,如果全做,则按前一题记分) 9.在直角坐标系x O y 中,曲线1C 的参数方程为2c o s(s i n x y ααα=⎧⎪⎨=⎪⎩为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 .10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 . (二)必做题(11-16题)11.若执行如图2所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 . 12.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .13.设向量,a b 满足||25,(2,1),a b ==且a b 与的方向相反,则a 的坐标为 .14.设1,m >在约束条件1y xy mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .15.已知圆22:12,C x y +=直线:4325.l x y +=图2(1)圆C 的圆心到直线l 的距离为 .(2) 圆C 上任意一点A 到直线l 的距离小于2的概率为 .16、给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =- (1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为 。

2011年湖南高考数学文科试卷带详解

2011年湖南高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(湖南卷)数学(文史类)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,,则 ( )A. B. C. D.【测量目标】集合的表示、集合的基本运算,数形结合思想.【考查方式】考查了集合的表示法(描述法)、集合的补集、交集运算.给出全集与交集求.【参考答案】B【试题解析】画出韦恩图可知,2.若,为虚数单位,且则 ( )A. B. C. D.【测量目标】复数代数形式的四则运算.【考查方式】给出复数的等式,进行四则运算,根据实数只有实部没有虚部的特征,判断的的值.【参考答案】C【试题解析】因,根据复数相等的条件可知.3. “”是“” 的 ( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【测量目标】命题的基本关系,充分条件与必要条件.【考查方式】主要考查命题的基本关系以及充分必要条件.【参考答案】A【试题解析】因,反之或,不一定有.4.如图是某几何体的三视图,则该几何体的体积为 ( )A. B. C. D.【测量目标】空间几何体三视图的判断,柱、锥、台、及简单组合体的表面积、体积的求法.【考查方式】给出几何体的三视图,直接考查对其三视图的判断,画出立体图形求其体积.【参考答案】D【试题解析】有三视图可知该几何体是一个长方体和球组成的组合体,其体积5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,附表:0.0500.0100.0013.841 6.63510.828参照附表,得到的正确结论是 ( )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”【测量目标】变量间的相关关系,独立性检验.【考查方式】给出随机变量,根据卡方统计量计算出其观测值,并且的值越大,说明两者有关系成立的可能性越大,可根据表格判断.【参考答案】A【试题解析】由,而,故由独立性检验的意义可知选A.6.设双曲线的渐近线方程为,则的值为 ( )A.4 B.3 C.2 D.1【测量目标】双曲线标准方程,渐近线方程.【考查方式】给出双曲线渐近线方程,求双曲线标准方程的.【参考答案】C【试题解析】由双曲线方程可知渐近线方程为,故可知.7.曲线在点M(,0)处的切线的斜率为 ( )A. B. C. D.【测量目标】同角三角函数的基本关系式,导数的几何意义.【考查方式】给出曲线方程进行变换,根据在某点的切线的斜率即为在该点的导数值求出结果.【参考答案】B【试题解析】,.8.已知函数,若有,则b的取值范围( )A. B.C. D.【测量目标】指数函数、一元二次函数的值域、定义域,一元二次不等式.【考查方式】给出两个复合函数表达式,结合一元二次不等式求解.【参考答案】B【试题解析】由题意知,,,若有,则,即,解得.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应号后的横线上.(一)选做题(请考生在9、10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系中,曲线的参数方程为(为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为.【测量目标】参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化.【考查方式】给出曲线的参数方程与曲线的极坐标方程,将其转化为直角坐标系下的方程,判断两曲线的交点.【参考答案】2个【试题解析】曲线,曲线,联立方程消去得,易知,故有个交点.10.已知某试验范围为,若用分数法进行次优选试验,则第二次试点可以是.【测量目标】分数法.【考查方式】利用分数法解决实际的优选问题.【参考答案】40或60【试题解析】有区间长度为80,可以将其等分8段,利用分数法选取试点:,,由对称性可知,第二次试点可以是40或60。

2011年湖南省高考数学试卷(文科)答案与解析

2011年湖南省高考数学试卷(文科)答案与解析

2011年湖南省高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•湖南)设全集U=M∪N=﹛1,2,3,4,5﹜,M∩∁U N=﹛2,4﹜,则N=()A.{1,2,3} B.{1,3,5} C.{1,4,5} D.{2,3,4}【考点】交、并、补集的混合运算.【分析】利用集合间的关系,画出两个集合的韦恩图,结合韦恩图求出集合N.【解答】解:∵全集U=M∪N=﹛1,2,3,4,5﹜,M∩C u N=﹛2,4﹜,∴集合M,N对应的韦恩图为所以N={1,3,5}故选B【点评】本题考查在研究集合间的关系时,韦恩图是常借用的工具.考查数形结合的数学思想方法.2.(5分)(2011•湖南)若a,b∈R,i为虚数单位,且(a+i)i=b+i则()A.a=1,b=1 B.a=﹣1,b=1 C.a=1,b=﹣1 D.a=﹣1,b=﹣1【考点】复数相等的充要条件.【专题】计算题.【分析】根据所给的关于复数的等式,整理出等式左边的复数乘法运算,根据复数相等的充要条件,即实部和虚部分别相等,得到a,b的值.【解答】解:∵(a+i)i=b+i,∴ai﹣1=b+i,∴a=1,b=﹣1,故选C.【点评】本题考查复数的乘法运算,考查复数相等的条件,是一个基础题,这种题目一般出现在试卷的前几个题目中.3.(5分)(2011•湖南)“x>1”是“|x|>1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【考点】充要条件.【专题】简易逻辑.【分析】解绝对值不等式,进而判断“x>1”⇒“|x|>1”与“|x|>1”⇒“x>1”的真假,再根据充要条件的定义即可得到答案.【解答】解:当“x>1”时,“|x|>1”成立,即“x>1”⇒“|x|>1”为真命题,而当“|x|>1”时,x<﹣1或x>1,即“x>1”不一定成立,即“|x|>1”⇒“x>1”为假命题,∴“x>1”是“|x|>1”的充分不必要条件.故选A.【点评】本题考查的知识点是充要条件,其中根据绝对值的定义,判断“x>1”⇒“|x|>1”与“|x|>1”⇒“x>1”的真假,是解答本题的关键.4.(5分)(2011•湖南)设如图是某几何体的三视图,则该几何体的体积为()A.9π+42 B.36π+18 C.D.【考点】由三视图求面积、体积.【专题】计算题.【分析】由三视图可知,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,分别做出两个几何体的体积相加.【解答】解:由三视图可知,几何体是一个简单的组合体,下面是一个底面边长是3的正方形且高是2的一个四棱柱,上面是一个球,球的直径是3,该几何体的体积是两个体积之和,四棱柱的体积3×3×2=18,球的体积是,∴几何体的体积是18+,故选D.【点评】本题考查由三视图求面积和体积,考查球体的体积公式,考查四棱柱的体积公式,本题解题的关键是由三视图看出几何图形,是一个基础题.5.(5分)(2011•湖南)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好40 20 60不爱好20 30 50总计60 50 110由算得,附表:p(k2≥k)0.050 0.010 0.001k 3.841 6.635 10.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”【考点】独立性检验的应用.【专题】计算题.【分析】根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论有99%以上的把握认为“爱好该项运动与性别有关”.【解答】解:由题意知本题所给的观测值,∵7.8>6.635,∴这个结论有0.01=1%的机会说错,即有99%以上的把握认为“爱好该项运动与性别有关”故选A.【点评】本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力,本题有所创新,只要我们看出观测值对应的意义就可以,是一个基础题.6.(5分)(2011•湖南)设双曲线的渐近线方程为3x±2y=0,则a的值为()A.4 B.3 C.2 D.1【考点】双曲线的简单性质.【专题】计算题.【分析】先求出双曲线的渐近线方程,再求a的值.【解答】解:的渐近线为y=,∵y=与3x±2y=0重合,∴a=2.故选C.【点评】本题考查双曲线的性质和应用,解题时要注意公式的灵活运用.7.(5分)(2011•湖南)曲线在点M(,0)处的切线的斜率为()A. B.C.D.【考点】利用导数研究曲线上某点切线方程.【专题】计算题;压轴题.【分析】先求出导函数,然后根据导数的几何意义求出函数f(x)在x=处的导数,从而求出切线的斜率.【解答】解:∵∴y'==y'|x==|x==故选B.【点评】本题主要考查了导数的几何意义,以及导数的计算,同时考查了计算能力,属于基础题.8.(5分)(2011•湖南)已知函数f(x)=e x﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为()A.B.(2﹣,2+)C.[1,3]D.(1,3)【考点】函数的零点与方程根的关系.【专题】计算题;压轴题.【分析】利用f(a)=g(b),整理等式,利用指数函数的性质建立不等式求解即可.【解答】解:∵f(a)=g(b),∴e a﹣1=﹣b2+4b﹣3∴﹣b2+4b﹣2=e a>0即b2﹣4b+2<0,求得2﹣<b<2+故选B【点评】本题主要考查了函数的零点与方程根的关系.二、填空题(共8小题,每小题5分,满分35分)9.(5分)(2011•湖南)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为p(cosθ﹣sinθ)+1=0,则C1与C2的交点个数为2.【考点】简单曲线的极坐标方程;直线的参数方程;椭圆的参数方程.【专题】计算题.【分析】先根据同角三角函数的关系消去参数α可求出曲线C1的普通方程,然后利用极坐标公式ρ2=x2+y2,x=ρcosθ,y=ρsinθ进行化简即可求出曲线C2普通方程,最后利用直角坐标方程判断C1与C2的交点个数即可.【解答】解:由曲线C2的方程为p(cosθ﹣sinθ)+1=0,∴x﹣y+1=0.即y=x+1;将曲线C1的参数方程化为普通方程为.∴消去y整理得:7x2+8x﹣8=0.△>0,∴此方程有两个不同的实根,故C1与C2的交点个数为2.故答案为2.【点评】本题主要考查椭圆的参数方程、简单曲线的极坐标方程,求直线与椭圆的交点个数,考查运算求解能力及转化的思想,属于基础题.10.(2011•湖南)【选做】已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是40或60(只写出其中一个也正确).【考点】分数法的最优性.【分析】由题知试验范围为[10,90],区间长度为80,故可把该区间等分成8段,利用分数法选取试点进行计算.【解答】解:由已知试验范围为[10,90],可得区间长度为80,将其等分8段,利用分数法选取试点:x1=10+×(90﹣10)=60,x2=10+90﹣60=40,由对称性可知,第二次试点可以是40或60.故答案为:40或60.【点评】本题考查的是分数法的简单应用.一般地,用分数法安排试点时,可以分两种情况考虑:(1)可能的试点总数正好是某一个(F n﹣1).(2)所有可能的试点总数大于某一(Fn ﹣1),而小于(F n+1﹣1).11.(5分)(2011•湖南)若执行如图所示的框图,输入x1=1,x2=2,x3=4,x4=8则输出的数等于.【考点】循环结构.【专题】算法和程序框图.【分析】先根据流程图分析出该算法的功能,然后求出所求即可.【解答】解:该算法的功能是求出四个数的平均数故输出的数==故答案为:【点评】根据流程图计算运行结果是算法这一模块的重要题型,处理的步骤一般为:分析流程图(从流程图中既要分析出计算的类型,又要分析出参与计算的数据建立数学模型),根据第一步分析的结果,选择恰当的数学模型解模.12.(5分)(2011•湖南)已知f(x)为奇函数,g(x)=f(x)+9,g(﹣2)=3,则f(2)=6.【考点】函数奇偶性的性质.【专题】计算题.【分析】将等式中的x用2代替;利用奇函数的定义及g(﹣2)=3,求出f(2)的值.【解答】解:∵g(﹣2)=f(﹣2)+9∵f(x)为奇函数∴f(﹣2)=﹣f(2)∴g(﹣2)=﹣f(2)+9∵g(﹣2)=3所以f(2)=6故答案为6【点评】本题考查奇函数的定义:对于定义域中的任意x都有f(﹣x)=﹣f(x)13.(5分)(2011•湖南)设向量,满足||=2,=(2,1),且与的方向相反,则的坐标为(﹣4,﹣2).【考点】平面向量共线(平行)的坐标表示;平面向量数量积的坐标表示、模、夹角.【专题】计算题.【分析】要求向量的坐标,我们可以高设出向量的坐标,然后根据与的方向相反,及||=2,我们构造方程,解方程得到向量的坐标.【解答】解:设=(x,y),∵与的方向相反,故=λ=(2λ,λ)(λ<0)又∵||=2,∴5λ2=20解得λ=﹣2则=(﹣4,﹣2).故答案为(﹣4,﹣2).【点评】本题考查的知识点是平面向量共线(平行)的坐标表示,平面向量模的计算,其中根据与的方向相反,给出向量的横坐标与纵坐标之间的关系是解答本题的关键.14.(5分)(2011•湖南)设m>1,在约束条件下,目标函数z=x+5y的最大值为4,则m的值为3.【考点】简单线性规划的应用.【专题】计算题;压轴题;数形结合.【分析】根据m>1,我们可以判断直线y=mx的倾斜角位于区间(,)上,由此我们不难判断出满足约束条件的平面区域的形状,再根据目标函数z=x+5y在直线y=mx与直线x+y=1交点处取得最大值,由此构造出关于m的方程,解方程即可求出m 的取值范围.【解答】解:满足约束条件的平面区域如下图所示:目标函数z=x+5y可看做斜率为﹣的动直线,其纵截距越大z越大,由可得A点(,)当x=,y=时,目标函数z=x+5y取最大值为4,即;解得m=3.故答案为:3.【点评】本题考查的知识点是简单线性规划的应用,其中判断出目标函数z=x+my在点取得最大值,并由此构造出关于m的方程是解答本题的关键.15.(5分)(2011•湖南)已知圆C:x2+y2=12,直线l:4x+3y=25.(1)圆C的圆心到直线l的距离为5;(2)圆C上任意一点A到直线l的距离小于2的概率为.【考点】直线与圆的位置关系;几何概型;点到直线的距离公式.【专题】直线与圆.【分析】(1)根据所给的圆的标准方程,看出圆心,根据点到直线的距离公式,代入有关数据做出点到直线的距离.(2)本题是一个几何概型,试验发生包含的事件是从这个圆上随机的取一个点,对应的圆上整个圆周的弧长,根据题意做出符合条件的弧长对应的圆心角是60°,根据几何概型概率公式得到结果.【解答】解:(1)由题意知圆x2+y2=12的圆心是(0,0),圆心到直线的距离是d==5,(2)圆心C到直线l的距离是5,到直线l′的距离是3,则劣弧AB所对应的弧上的点到直线l的距离都小于2,优弧AB所对应的弧上的点到直线l的距离都大于2,∵AC=2,CD=3,∴AD==,AB=2,∴∠ACB=60°,根据几何概型的概率公式得到P==故答案为:5;.【点评】本题考查点到直线的距离,考查直线与圆的位置关系,考查几何概型的概率公式,本题是一个基础题,运算量不大.16.(5分)(2011•湖南)给定k∈N*,设函数f:N*→N*满足:对于任意大于k的正整数n:f(n)=n﹣k(1)设k=1,则其中一个函数f(x)在n=1处的函数值为a(a为正整数);(2)设k=4,且当n≤4时,2≤f(n)≤3,则不同的函数f的个数为16.【考点】函数的概念及其构成要素;分步乘法计数原理.【专题】计算题;压轴题;探究型.【分析】题中隐含了对于小于或等于K的正整数n,其函数值也应该是一个正整数,但是对应法则由题意而定(1)n=k=1,题中给出的条件“大于k的正整数n”不适合,但函数值必须是一个正整数,故f(1)的值是一个常数(正整数);(2)k=4,且n≤4,与条件“大于k的正整数n”不适合,故f(n)的值在2、3中任选其一,再由乘法原理可得不同函数的个数.【解答】解:(1)∵函数f:N*→N*满足:对于任意大于k的正整数n:f(n)=n﹣k,∴对应法则f是正整数到正整数的映射,∵k=1,∴从2开始都是一一对应的,而且可以和任何一个正整数对应,∴其中一个函数f(x)在n=1处的函数值为a(a为正整数),∴f(1)=a(a为正整数)即f(x)在n=1处的函数值为a(a为正整数)(2)∵n≤4,k=4,f(n)为正整数且2≤f(n)≤3∴f(1)=2或3且f(2)=2或3且f(3)=2或3且f(4)=2或3根据分步计数原理,可得共24=16个不同的函数故答案为:a(a为正整数);16.【点评】本题题意有点含蓄,发现题中的隐含条件,是解决本题的关键,掌握映射与函数的概念是本题的难点.三、解答题(共6小题,满分75分)17.(12分)(2011•湖南)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA﹣cos(B+)的最大值,并求取得最大值时角A、B的大小.【考点】三角函数的恒等变换及化简求值.【专题】三角函数的图像与性质.【分析】(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C=.(2)B=﹣A,化简sinA﹣cos (B+)=2sin(A+).因为0<A<,推出求出2sin(A+)取得最大值2.得到A=,B=【解答】解:(1)由正弦定理得sinCsinA=sinAcosC,因为0<A<π,所以sinA>0.从而sinC=cosC,又cosC≠0,所以tanC=1,C=.(2)有(1)知,B=﹣A,于是=sinA+cosA=2sin(A+).因为0<A<,所以从而当A+,即A=时2sin(A+)取得最大值2.综上所述,cos(B+)的最大值为2,此时A=,B=【点评】本题是中档题,考查三角形的有关知识,正弦定理的应用,三角函数的最值,常考题型.18.(12分)(2011•湖南)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(Ⅰ)完成如下的频率分布表近20年六月份降雨量频率分布表降雨量70 110 140 160 200 220频率(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【考点】频率分布表;互斥事件的概率加法公式.【专题】应用题;综合题.【分析】(Ⅰ)从所给的数据中数出降雨量为各个值时对应的频数,求出频率,完成频率分布图.(Ⅱ)将发电量转化为降雨量,利用频率分布表,求出发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.【解答】解:(Ⅰ)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为:降雨量70 110 140 160 200 220频率(Ⅱ)根据题意,当X=70时,Y=460;X每增加10,Y增加5;则Y=460+×5=X+425,解可得,X<130或X>210;故P=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=.故今年六月份该水利发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为:.【点评】本题考查频率公式:频率=;考查将问题等价转化的能力.19.(12分)(2011•湖南)如图,在圆锥PO中,已知PO=,⊙OD的直径AB=2,点C 在上,且∠CAB=30°,D为AC的中点.(Ⅰ)证明:AC⊥平面POD;(Ⅱ)求直线OC和平面PAC所成角的正弦值.【考点】直线与平面垂直的判定;二面角的平面角及求法.【专题】计算题;证明题.【分析】(I)由已知易得AC⊥OD,AC⊥PO,根据直线与平面垂直的判定定理可证(II)由(I)可证面POD⊥平面PAC,由平面垂直的性质考虑在平面POD中过O作OH⊥PD 于H,则OH⊥平面PAC,∠OCH是直线OC和平面PAC所成的角,在Rt△OHC中,求解即可【解答】解(I)因为OA=OC,D是AC的中点,所以AC⊥OD又PO⊥底面⊙O,AC⊂底面⊙O所以AC⊥PO,而OD,PO是平面内的两条相交直线所以AC⊥平面POD(II)由(I)知,AC⊥平面POD,又AC⊂平面PAC所以平面POD⊥平面PAC在平面POD中,过O作OH⊥PD于H,则OH⊥平面PAC连接CH,则CH是OC在平面上的射影,所以∠OCH是直线OC和平面PAC所成的角在Rt△ODA中,OD=DA.sin30°=在Rt△POD中,OH=在Rt△OHC中,故直线OC和平面PAC所成的角的正弦值为【点评】本题主要考查了直线与平面垂直的判定定理的应用,空间直线与平面所成角的求解,考查了运算推理的能力及空间想象的能力20.(13分)(2011•湖南)某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少.从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(Ⅰ)求第n年初M的价值a n的表达式;(Ⅱ)设,若An大于80万元,则M继续使用,否则须在第n年初对M 更新.证明:须在第9年初对M更新.【考点】分段函数的应用;数列与函数的综合.【专题】综合题.【分析】(I)通过对n的分段讨论,得到一个等差数列和一个等比数列,利用等差数列的通项公式及等比数列的通项公式求出第n年初M的价值a n的表达式;(II)利用等差数列、等比数列的前n项和公式求出A n,判断出其两段的单调性,求出两段的最小值,与80比较,判断出须在第9年初对M更新.【解答】解:(I)当n<6时,数列{a n}是首项为120,公差为﹣10的等差数列a n=120﹣10(n﹣1)=130﹣10n当n≥6时,数列{a n}是以a6为首项,公比为的等比数列,又a6=70所以因此,第n年初,M的价值a n的表达式为(II)设S n表示数列{a n}的前n项和,由等差、等比数列的求和公式得当1≤n≤6时,S n=120n﹣5n(n﹣1),A n=120﹣5(n﹣1)=125﹣5n当n≥7时,由于S6=570故S n=S6+(a7+a8+…+a n)==因为{a n}是递减数列,所以{A n}是递减数列,又所以须在第9年初对M更新.【点评】本题考查等差数列的通项公式,前n项和公式、考查等比数列的通项公式及前n 项和公式、考查分段函数的问题要分到研究.21.(13分)(2011•湖南)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值.【考点】直线与圆锥曲线的综合问题;向量在几何中的应用;抛物线的定义.【专题】计算题;综合题;压轴题;分类讨论;函数思想;方程思想.【分析】(Ⅰ)设动点P的坐标为(x,y),根据两点间距离公式和点到直线的距离公式,列方程,并化解即可求得动点P的轨迹C的方程;(Ⅱ)设出直线l1的方程,理想直线和抛物线的方程,消去y,得到关于x的一元二次方程,利用韦达定理,求出两根之和和两根之积,同理可求出直线l2的方程与抛物线的交点坐标,代入利用基本不等式求最值,即可求得其的最小值.【解答】解:(Ⅰ)设动点P的坐标为(x,y),由题意得,化简得y2=2x+2|x|.当x≥0时,y2=4x;当x<0时,y=0,所以动点P的轨迹C的方程为y2=4x(x≥0)和y=0(x<0).(Ⅱ)由题意知,直线l1的斜率存在且不为零,设为k,则l1的方程为y=k(x﹣1).由,得k2x2﹣(2k2+4)x+k2=0.设A,B的坐标分别为(x1,y1),(x2,y2),则x1+x2=2+,x1x2=1.∵l1⊥l2,∴直线l2的斜率为﹣.设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1.故====(x1+1)(x2+1)+(x3+1)(x4+1)=x1x2+(x1+x2)+1+x3x4+x3+x4+11+2++1+1+2+4k2+1=8+4(k2+)≥8+4×2=16,当且仅当k2=,即k=±1时,的最小值为16.【点评】此题是个难题.考查代入法求抛物线的方程,以及直线与抛物线的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.22.(13分)(2011•湖南)设函数f(x)=x﹣﹣alnx(a∈R).(Ⅰ)讨论函数f(x)的单调性.(Ⅱ)若f(x)有两个极值点x1,x2,记过点A(x1,f(x1)),B(x2,f(x2))的直线斜率为k.问:是否存在a,使得k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【考点】利用导数研究函数的单调性;函数在某点取得极值的条件.【专题】计算题;综合题;压轴题;分类讨论.【分析】(Ⅰ)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)假设存在a,使得k=2﹣a,根据(I)利用韦达定理求出直线斜率为k,根据(I)函数的单调性,推出矛盾,即可解决问题.【解答】解:(I)f(x)定义域为(0,+∞),f′(x)=1+,令g(x)=x2﹣ax+1,△=a2﹣4,①当﹣2≤a≤2时,△≤0,f′(x)≥0,故f(x)在(0,+∞)上单调递增,②当a<﹣2时,△>0,g(x)=0的两根都小于零,在(0,+∞)上,f′(x)>0,故f(x)在(0,+∞)上单调递增,③当a>2时,△>0,g(x)=0的两根为x1=,x2=,当0<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x>x2时,f′(x)>0;故f(x)分别在(0,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.(Ⅱ)由(I)知,a>2.因为f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),所以k==1+﹣a,又由(I)知,x1x2=1.于是k=2﹣a,若存在a,使得k=2﹣a,则=1,即lnx1﹣lnx2=x1﹣x2,亦即(*)再由(I)知,函数在(0,+∞)上单调递增,而x2>1,所以>1﹣1﹣2ln1=0,这与(*)式矛盾,故不存在a,使得k=2﹣a.【点评】此题是个难题.考查利用导数研究函数的单调性和极值问题,对方程f'(x)=0有无实根,有实根时,根是否在定义域内和根大小进行讨论,体现了分类讨论的思想方法,其中问题(II)是一个开放性问题,考查了同学们观察、推理以及创造性地分析问题、解决问题的能力.。

2011年全国统一高考数学试卷(文科)(新课标)(含解析版)

2011年全国统一高考数学试卷(文科)(新课标)(含解析版)

22.( 10 分)如图, D,E 分别为△ ABC的边 AB,AC 上的点,且不与△ ABC 的顶点重合.已知 AE
第 3 页(共 15 页)
的长为 m, AC的长为 n, AD, AB的长是关于 x 的方程 x2﹣ 14x+mn=0 的两个根. (Ⅰ)证明: C,B,D,E 四点共圆; (Ⅱ)若∠ A=90°,且 m=4, n=6,求 C, B, D, E 所在圆的半径.
A.120
B.720
C.1440
D.5040
6.(5 分)有 3 个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可
能性相同,则这两位同学参加同一个兴趣小组的概率为(

A.
B.
C.
D.
7.(5 分)已知角 θ的顶点与原点重合, 始边与 x 轴的正半轴重合, 终边在直线 y=2x上,则 cos2 θ= ()
【考点】 K4:椭圆的性质. 【专题】 11:计算题. 【分析】 根据椭圆的方程,可得 a、b 的值,结合椭圆的性质,可得 c 的值,有椭圆的离心率公式,
计算可得答案.
【解答】 解:根据椭圆的方程
=1,可得 a=4,b=2 ,
则 c=
=2 ;
第 5 页(共 15 页)
则椭圆的离心率为 e= = , 故选: D. 【点评】 本题考查椭圆的基本性质: a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质
A.18
B.24
C. 36
D. 48
10.( 5 分)在下列区间中,函数 f(x)=ex+4x﹣3 的零点所在的区间为(

A.( , )
B.(﹣ ,0)
C.(0, )

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x = B .||1y x =+ C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =. (Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD 。

2011年湖南高考数学答案(文科)

2011年湖南高考数学答案(文科)

1.各单位应当定期将会计账薄记录与其相应的会计凭证、记录逐项核对,检查是否一致,检查的内容包括()。

A.时间B.编号C.内容D.金额、记账方向等[答案]:ABCD[解析]:时间、编号、内容、金额、记账方向等均是账证核对应检查的内容。

2.根据《会计法》规定,账目核对要做到()。

A.账实相符B.账证相符C.账账相符D.账表相符[答案]:ABCD[解析]:《会计法》规定账目核对要做到账实相符、账证相符、账账相符、账表相符。

3.下列人员中,可能成为打击报复会计人员罪主体的有()。

A.国有企业会计机构负责人B.事业单位会计机构负责人C.行政机关负责人D.公司制企业负责人[答案]:CD[解析]:构成打击报复会计人员罪主体的只能是单位负责人,而国有企业会计机构负责人和事业单位会计机构负责人都不是单位负责人。

4.连续两年未参加继续教育或未完成规定学时的,则()。

A.其会计从业资格证书自行失效B.不予办理会计从业资格证书的年检C.不得参加上一档次会计专业技术资格考试D.不得参加高级会计师评审[答案]:BCD[解析]:连续三年未参加继续教育或未完成规定学时的,其会计从业资格证书自行失效。

5.纳税人未按规定报送有关税务资料的,由税务机关责令限期改正,逾期不改正的,则()。

A.情节不特别严重的,处以2000元以下罚款B.情节不特别严重的,处以5000元以下罚款C.情节严重的,处以2000元以上10000元以下的罚款D.情节严重的,处以5000元以上10000元以下的罚款[答案]:AC[解析]:根据《税收征收管理法》的有关规定,纳税人未按规定报送有关税务资料的,由税务机关责令限期改正,逾期不改正的,可以处以2000元以下的罚款。

情节严重的,处以2000元以上10000元以下的罚款。

6.证券发行人未按有关规定披露会计信息,或所披露的信息有虚假记载或误导陈述,未构成犯罪的,则应()。

A.对发行人处以20万元以上50万元以下的罚款B.对发行人处以30万元以上60万元以下的罚款C.对直接责任人员处以3万元以上30万元以下的罚款D.对直接责任人员处以30万元以上50万元以下的罚款[答案]:BC[解析]:根据《证券法》的规定,证券发行人未按有关规定披露会计信息,或所披露的信息有虚假记载或误导陈述的,由证券监督管理机构责令改正,对发行人处以30万元以上60万元以下的罚款。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年普通高等学校招生全国统一考试(湖南卷)数学(文)试题解析本试题包括选择题、填空题和解答题三部分,共6页.时量120分钟,满分150分. 参考公式(1)柱体体积公式V Sh =,其中S 为底面面积,h 为高. (2)球的体积公式343V R π=,其中R 为球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{1,2,3,4,5},{2,4},U U M N M C N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 答案:B解析:画出韦恩图,可知N ={1,3,5}。

2.若,,a b R i ∈为虚数单位,且()a i i b i +=+,则( )A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=- 答案:C解析:因()1a i i ai b i +=-+=+,根据复数相等的条件可知1,1a b ==-。

3."1""||1"x x >>是的( )A .充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 答案:A解析:因"1""||1"x x >⇒>,反之 "||1""11"x x x >⇒><-或,不一定有"1"x >。

4.设图1是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+ D.9182π+答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。

由222()110(40302030)7.8()()()()60506050n ad bc K K ab c d a c b d -⨯⨯-⨯==≈++++⨯⨯⨯算得,附表:正视图 侧视图俯视图图1参照附表,得到的正确结论是( )A. 有99%以上的把握认为“爱好该项运动与性别有关”B. 有99%以上的把握认为“爱好该项运动与性别无关”C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案:A解析:由27.8 6.635K ≈>,而2( 6.635)0.010P K ≥=,故由独立性检验的意义可知选A.6.设双曲线2221(0)9x y a a -=>的渐近线方程为320,x y ±=则a 的值为( ) A .4 B .3 C .2 D .1答案:C解析:由双曲线方程可知渐近线方程为3y x a=±,故可知2a =。

7.曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12 C.2- D.2答案:B 解析:22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以 2411'|2(sin cos )44x y πππ===+。

8.已知函数2()1,()43,x f x e g x x x =-=-+-若有()(),f a g b =则b 的取值范围为( ) A.[2 B.(2 C .[1,3] D .(1,3) 答案:B解析:由题可知()11x f x e =->-,22()43(2)11g x x x x =-+-=--+≤,若有()(),f a g b =则()(1,1]g b ∈-,即2431b b -+->-,解得22b <二、填空题:本大题共8小题,考生作答7小题,每小题解分,共青团员5分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9,10两题中任选一题作答,如果全做,则按前一题记分)9.在直角坐标系xOy 中,曲线1C的参数方程为2cos (x y ααα=⎧⎪⎨=⎪⎩为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线2C 的方程为(cos sin )10,ρθθ-+=则1C 与2C 的交点个数为 .答案:2解析:曲线221:143x y C +=,曲线2:10C x y -+=,联立方程消y 得27880x y +-=,易得0∆>,故有2个交点。

10.已知某试验范围为[10,90],若用分数法进行4次优选试验,则第二次试点可以是 . 答案:40或60(只填一个也正确)解析:有区间长度为80,可以将其等分8段,利用分数法选取试点:1510(9010)608x =+⨯-=,210906040x =+-=,由对称性可知,第二次试点可以是40或60。

(二)必做题(11-16题)11.若执行如图2所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .答案:154解析:由框图功能可知,输出的数等于12341544x x x x x +++==。

12.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .答案:6解析:(2)(2)93,(2)6g f f -=-+=-=-则, 又()f x 为奇函数,所以(2)(2)6f f =--=。

13.设向量,a b 满足||25,(2,1),a b ==且a b 与的方向相反,则a 的坐标为 . 答案:(4,2)--解析:由题2||21b =+=2(4,2).a b =-=--14.设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 .答案:3解析:画出可行域,可知5z x y =+在点1(,)11m m m++取最大值为4,解得3m =。

15.已知圆22:12,C x y +=直线:4325.l x y +=(1)圆C 的圆心到直线l 的距离为 .(2) 圆C 上任意一点A 到直线l 的距离小于2的概率为.答案:5,16是图2解析:(1)由点到直线的距离公式可得5d ==;(2)由(1)可知圆心到直线的距离为5,要使圆上点到直线的距离小于2,即1:4315l x y +=与圆相交所得劣弧上,由半径为圆心到直线的距离为3可知劣弧所对圆心角为3π,故所求概率为1326P ππ==.16、给定*k N ∈,设函数**:f N N →满足:对于任意大于k 的正整数n ,()f n n k =- (1)设1k =,则其中一个函数f 在1n =处的函数值为 ;(2)设4k =,且当4n ≤时,2()3f n ≤≤,则不同的函数f 的个数为 。

答案:(1)()a a 为正整数,(2)16解析:(1)由题可知*()f n N ∈,而1k =时,1n >则*()1f n n N =-∈,故只须*(1)f N ∈,故(1)()f a a =为正整数。

(2)由题可知4k =,4n >则*()4f n n N =-∈,而4n ≤时,2()3f n ≤≤即(){2,3}f n ∈,即{1,2,3,4}n ∈,(){2,3}f n ∈,由乘法原理可知,不同的函数f 的个数为4216=。

三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC 中,角,,A B C 所对的边分别为,,a b c 且满足sin cos .c A a C = (I )求角C 的大小; (IIcos()4A B π-+的最大值,并求取得最大值时角,A B 的大小.解析:(I )由正弦定理得sin sin sin cos .C A A C =因为0,A π<<所以sin 0.sin cos .cos 0,tan 1,4A C C C C C π>=≠==从而又所以则(II )由(I )知3.4B A π=-于是cos()cos()4cos 2sin().63110,,,,46612623A B A A A A A A A A A ππππππππππ-+=--=+=+<<∴<+<+==从而当即时2sin()6A π+取最大值2.cos()4A B π-+的最大值为2,此时5,.312A B ππ==18.(本题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X=70时,Y=460;X 每增加10,Y 增加5;已知近20年X 的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(I )完成如下的频率分布表:(II 今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率. 解:(I )在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20(II )("132320202010P ++==P(Y<490或Y>530)=P(X<130或X>210)=故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.19.(本题满分12分)如图3,在圆锥PO 中,已知PO O =的直径2,,AB C AB D AC =∠点在上,且CAB=30为的中点. (I )证明:;AC POD ⊥平面(II )求直线和平面PAC 所成角的正弦值. 解析:(I )因为,OAOC D AC =⊥是的中点,所以AC OD. 又,,.PO O AC OAC OD ⊥⊂⊥底面底面所以PO 是平面POD 内的两条相交直线,所以;AC POD ⊥平面(II )由(I )知,,AC POD ⊥平面又,AC PAC ⊂平面所以平面,POD PAC ⊥平面在平面POD 中,过O 作OH PD ⊥于H,则,OHPAC ⊥平面连结CH ,则CH 是OC PAC 在平面上的射影,所以OCH ∠是直线OC 和平面PAC 所成的角.在1,Rt POD OH ===中 在,sin 3OH Rt OHC OCH OC ∠==中20.(本题满分13分)某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少,从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(I )求第n 年初M 的价值n a 的表达式; (II )设12,nn a a a A n+++=若n A 大于80万元,则M 继续使用,否则须在第n 年初对M 更新,证明:须在第9年初对M 更新. 解析:(I )当6n ≤时,数列{}n a 是首项为120,公差为10-的等差数列. 12010(1)13010;n a n n =--=- 当6n ≥时,数列{}n a 是以6a 为首项,公比为34为等比数列,又670a =,所以 6370();4n n a -=⨯因此,第n 年初,M 的价值n a 的表达式为612010(1)13010,6370(),74n n n n n n a a n ---=-≤⎧⎪=⎨=⨯≥⎪⎩ (II)设n S 表示数列{}n a 的前n 项和,由等差及等比数列的求和公式得 当16n ≤≤时,1205(1),1205(1)1255;n n S n n n A n n =--=--=-当7n ≥时,666786333()570704[1()]780210()4443780210()4.n n n n n n S S a a a A n---=++++=+⨯⨯⨯-=-⨯-⨯= 因为{}n a 是递减数列,所以{}n A 是递减数列,又86968933780210()780210()4779448280,7680,864996A A ---⨯-⨯==>==<所以须在第9年初对M 更新.21.已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的等等于1.(I )求动点P 的轨迹C 的方程;(II )过点F 作两条斜率存在且互相垂直的直线12,l l ,设1l 与轨迹C 相交于点,A B ,2l 与轨迹C 相交于点,D E ,求AD EB ∙的最小值.解析:(I )设动点P 的坐标为(,)x y|| 1.x =化简得222||,y x x =+当20,4;0x y x x ≥=<时当时,y=0.、所以动点P 的轨迹C 的方程为2,4(0)0)y x x x =≥<和y=0(.(II )由题意知,直线1l 的斜率存在且不为0,设为k ,则1l 的方程为(1)y k x =-.由2(1)4y k x y x=-⎧⎨=⎩,得2222(24)0.k x k x k -++= 设1122(,),(,),A x y B x y 则12,x x 是上述方程的两个实根,于是1212242,1x x x x k+=+=. 因为12l l ⊥,所以2l 的斜率为1k-.设3344(,),(,),D x y B x y 则同理可得2343424,1x x k x x +=+=故12342222()()||||||||(1)(1)(1)(1)41(2)11(24)1184()AD EB AF FD EF FB AF EF AF FB FD EF FD FB AF FB FD EF x x x x k kk k ∙=++=+++=+=+++++=+++++++=++≥228416k +⨯=当且仅当221k k =即1k =±时,AD EB ∙取最小值16.22.(本小题13分)设函数1()ln ().f x x a x a R x=--∈ (I)讨论()f x 的单调性;(II )若()f x 有两个极值点12x x 和,记过点1122(,()),(,())A x f x B x f x 的直线的斜率为k ,问:是否存在a ,使得2?k a =-若存在,求出a 的值,若不存在,请说明理由.解析:(I )()f x 的定义域为(0,).+∞22211'()1a x ax f x x x x -+=+-=令2()1,g x x ax =-+其判别式2 4.a =-(1) 当||2,0,'()0,a f x ≤≤≥时故()(0,)f x +∞在上单调递增.(2) 当2a <-时,>0,g(x)=0的两根都小于0,在(0,)+∞上,'()0f x >,故()(0,)f x +∞在上单调递增.(3) 当2a >时,>0,g(x)=0的两根为12x x ==, 当10x x <<时, '()0f x >;当12x x x <<时, '()0f x <;当2x x >时, '()0f x >,故()f x 分别在12(0,),(,)x x +∞上单调递增,在12(,)x x 上单调递减. (II )由(I )知,2a >.因为1212121212()()()(ln ln )x x f x f x x x a x x x x --=-+--,所以 1212121212()()ln ln 11f x f x x x k ax x x x x x --==+--- 又由(I)知,121x x =.于是1212ln ln 2x x k a x x -=--若存在a ,使得2.k a =-则1212ln ln 1x x x x -=-.即1212ln ln x x x x -=-.亦即222212ln 0(1)(*)x x x x --=> 再由(I )知,函数1()2ln h t t t t=--在(0,)+∞上单调递增,而21x >,所以222112ln 12ln10.1x x x -->--=这与(*)式矛盾.故不存在a ,使得2.k a =-。

相关文档
最新文档