大学一年级高数期末考试题及答案
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷及答案详解大一高等数学期末考试试卷(一)一、选择题(共12分)x,2,0,ex,fx(),1. (3分)若为连续函数,则的值为( ). a,axx,,,0,(A)1 (B)2 (C)3 (D)—1fhf(3)(3),,,2。
(3分)已知则的值为( ). limf(3)2,,h,02h1(A)1 (B)3 (C)-1 (D) 2,223. (3分)定积分的值为( )。
1cos,xdx,,,2(A)0 (B)—2 (C)1 (D)2 4。
(3分)若在处不连续,则在该点处()。
xx,fx()fx()0(A)必不可导(B)一定可导(C)可能可导 (D)必无极限二、填空题(共12分)23x1((3分)平面上过点,且在任意一点处的切线斜率为的曲线方程(0,1)(,)xy为。
124(sin)xxxdx,,2. (3分) . ,,112xlimsin3. (3分) = 。
x,0x324. (3分) 的极大值为。
yxx,,23三、计算题(共42分)xxln(15),lim。
1. (6分)求 2x,0sin3xxe,y,,2. (6分)设求y. 2x,12xxdxln(1)。
,3。
(6分)求不定积分,x,3,1,x,,fxdx(1),,4。
(6分)求其中()fx,1cos,x,,0x,1,1.ex,,,1yxt5. (6分)设函数由方程所确定,求 edttdt,,cos0yfx,()dy.,,00 26。
(6分)设求 fxdxxC()sin,,,fxdx(23)。
,,,n3,,7。
(6分)求极限 lim1。
,,,,,nn2,,四、解答题(共28分),1. (7分)设且求 fxx(ln)1,,,f(0)1,,fx()。
,,,,2。
(7分)求由曲线与轴所围成图形绕着轴旋转一周所得旋xxyxxcos,,,,,,22,,转体的体积。
323. (7分)求曲线在拐点处的切线方程. yxxx,,,,324194. (7分)求函数在上的最小值和最大值。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x xe x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0y xt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4. (7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、 填空题(每小题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫ ⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 . 5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx x x 21arctan . 二、 单项选择题(每小题4分,共20分) 1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ; () C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、 计算(每小题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C e x dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线方程为 .9131-=x y(5)微分方程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .x y y y x '''--= (B )23e .xy y y '''--=(C )23e .x y y y x '''+-= (D )23e .xy y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().fx dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------⎰⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(323323=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*2-56012,31.1()111.21(1)1x x x x r r r r e C e y x b x b e b b y x x e +=----------==----------+-------=+-----------=-=-=-------------解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图0220322203*********RRP g R x g R x g R ρρρρ=---------=--------=--------=----------------⎰⎰)分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aabab ba axf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D. (1) (3) 求D 的面积A;(2) (4) 求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= 1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y =1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y 2分(2) 切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法一:2112xe e x x xξ=++≥+解法二:设() 1.x f x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分 所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。
大一(第一学期)高数期末考试题及答案
大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。
4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x +(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(l i m .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnn n ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)c o s ()()x ye y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:112330()2xf x dx xe dx x x dx---=+-⎰⎰⎰123()1(1)xxd e x dx--=-+--⎰⎰00232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。
大一高数期末考试复习题及标准答案
大一高数期末考试复习题及答案————————————————————————————————作者:————————————————————————————————日期:一.填空题(共5小题,每小题4分,共计20分)1.21lim()xx x e x →-=.2.()()1200511xx x x e e dx --+-=⎰.3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==.4. 设()x f 可导,且1()()xtf t dt f x =⎰,1)0(=f ,则()=x f .5.微分方程044=+'+''y y y 的通解为 .二.选择题(共4小题,每小题4分,共计16分)1.设常数0>k ,则函数k e x x x f +-=ln )(在),0(∞+内零点的个数为( ).(A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程43cos2y y x ''+=的特解形式为( ).(A )cos2y A x *=; (B )cos2y Ax x *=;(C )cos2sin 2y Ax x Bx x *=+; (D )x A y 2sin *=. 3.下列结论不一定成立的是( ).(A )若[][]b a d c ,,⊆,则必有()()⎰⎰≤badcdxx f dx x f ;(B )若0)(≥x f 在[]b a ,上可积,则()0b af x dx ≥⎰;(C )若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D )若可积函数()x f 为奇函数,则()0x t f t dt⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( ).(A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(共5小题,每小题6分,共计30分) 1.计算定积分2230x x e dx-⎰.2.计算不定积分dx x xx ⎰5cos sin .本页满分36分 本页得分本页满分 12分 本页得分3.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 4. 设20()cos()xF x x t dt=-⎰,求)(x F '.5.设n n n n n x nn )2()3)(2)(1(Λ+++=,求n n x∞→lim .四.应用题(共3小题,每小题9分,共计27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.2.设平面图形D 由222x y x +≤与y x ≥所确定,试求D 绕直线2=x旋转一周所生成的旋转体的体积.3. 设1,a >at a t f t-=)(在(,)-∞+∞内的驻点为 (). t a 问a 为何值时)(a t 最小? 并求最小值.五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ' 一.填空题(每小题4分,5题共20分):1. 21lim()x x x e x →-=21e .2.()()1200511xxx xe e dx --+-=⎰e 4.3.设函数()y y x =由方程21x yt e dt x+-=⎰确定,则0x dydx==1-e .4. 设()x f 可导,且1()()x tf t dt f x =⎰,1)0(=f ,则()=x f 221x e.5.微分方程044=+'+''y y y 的通解为xe x C C y 221)(-+=.二.选择题(每小题4分,4题共16分):本页满分 12分 本页得分本页满分15分 本页得分本页满分18分 本页得分本页满分7分 本页得分1.设常数0>k ,则函数ke x x xf +-=ln )( 在),0(∞+内零点的个数为( B ). (A) 3个; (B) 2个; (C) 1个; (D) 0个. 2. 微分方程x y y 2cos 34=+''的特解形式为 ( C )(A )cos2y A x *=; (B )cos2y Ax x *=; (C )cos2sin 2y Ax x Bx x *=+; (D )x A y 2sin *= 3.下列结论不一定成立的是 ( A )(A) (A) 若[][]b a d c ,,⊆,则必有()()⎰⎰≤bad cdx x f dx x f ;(B) (B) 若0)(≥x f 在[]b a ,上可积,则()0baf x dx ≥⎰;(C) (C) 若()x f 是周期为T 的连续函数,则对任意常数a 都有()()⎰⎰+=TT a adxx f dx x f 0;(D) (D) 若可积函数()x f 为奇函数,则()0xt f t dt ⎰也为奇函数.4. 设()xx e ex f 11321++=, 则0=x 是)(x f 的( C ). (A) 连续点; (B) 可去间断点;(C) 跳跃间断点; (D) 无穷间断点. 三.计算题(每小题6分,5题共30分): 1.计算定积分⎰-2032dxe x x .解:⎰⎰⎰----===20202322121,2t t x tde dt te dx e x t x 则设 -------2⎥⎦⎤⎢⎣⎡--=⎰--200221dt e te t t -------2 2223210221----=--=ee e t --------22.计算不定积分dx x xx ⎰5cos sin .解:⎥⎦⎤⎢⎣⎡-==⎰⎰⎰x dx x x x xd dx x x x 4445cos cos 41)cos 1(41cos sin --------3 C x x x x x d x x x +--=+-=⎰tan 41tan 121cos 4tan )1(tan 41cos 43424 -----------33.求摆线⎩⎨⎧-=-=),cos 1(),sin (t a y t t a x 在2π=t 处的切线的方程. 解:切点为)),12((a a -π-------22π==t dx dy k 2)cos 1(sin π=-=t t a t a 1= -------2切线方程为 )12(--=-πa x a y 即ax y )22(π-+=. -------24. 设⎰-=xdtt x x F 02)cos()(,则=')(x F )cos()12(cos 222x x x x x ---. 5.设n n n n n x nn )2()3)(2)(1(Λ+++=,求nn x ∞→lim .解:)1ln(1ln 1∑=+=n i n n i n x ---------2 ⎰∑+=+==∞→∞→101)1ln(1)1ln(lim ln lim dxx n n i x n i n n n --------------2=12ln 211)1ln(101-=+-+⎰dx x xx x ------------2 故 n n x∞→lim =e e 412ln 2=- 四.应用题(每小题9分,3题共27分) 1.求由曲线2-=x y 与该曲线过坐标原点的切线及x 轴所围图形的面积.解:设切点为),00y x (,则过原点的切线方程为xx y 2210-=,由于点),00y x (在切线上,带入切线方程,解得切点为2,400==y x .-----3过原点和点)2,4(的切线方程为22xy =-----------------------------3面积dyy y s )222(22⎰-+==322-------------------3或322)2221(2212042=--+=⎰⎰dx x x xdx s2.设平面图形D由222x y x+≤与y x≥所确定,试求D绕直线2=x旋转一周所生成的旋转体的体积.解:法一:21VVV-=[][]⎰⎰⎰---=-----=12212122)1(12)2()11(2dyyydyydyyπππ-------6)314(21)1(31423-=⎥⎦⎤⎢⎣⎡--=ππππy--------3法二:V=⎰---12)2)(2(2dxxxxxπ⎰⎰----=1122)2(22)2(2dxxxdxxxxππ------------------ 5[]⎰--+--=12234222)22(ππdxxxxxxππππππππ32213421323414121)2(3222232-=-+=-⎥⎦⎤⎢⎣⎡⨯⨯+-=xx------------- 43. 设1,a>atatf t-=)(在(,)-∞+∞内的驻点为().t a问a为何值时)(at最小? 并求最小值.解:.lnlnln1)(ln)(aaataaatf t-==-='得由--------------- 3)(ln1lnln)(2eeaaaaat==-='得唯一驻点又由------------3.)(,0)(,;0)(,的极小值点为于是时当时当ateaateaatea eee=<'<>'>-----2 故.11ln1)(,)(eeeetatea ee-=-==最小值为的最小值点为--------------1五.证明题(7分)设函数()f x 在[0,1]上连续,在(0,1)内可导且1(0)=(1)0,()12f f f ==,试证明至少存在一点(0,1)ξ∈, 使得()=1.f ξ'证明:设()()F x f x x =-,()F x 在[0,1]上连续在(0,1)可导,因(0)=(1)=0f f ,有(0)(0)00,(1)(1)11F f F f =-==-=-,--------------- 2又由1()=12f ,知11111()=()-=1-=22222F f ,在1[1]2,上()F x 用零点定理, 根据11(1)()=-022F F <,--------------- 2可知在1(1)2,内至少存在一点η,使得1()=0(,1)(0,1)2F ηη∈⊂,,(0)=()=0F F η由ROLLE 中值定理得 至少存在一点(0,)(0,1)ξη∈⊂使得()=0F ξ'即()1=0f ξ'-,证毕. --------------3。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= .4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x→+2. (6分)设y =求.y '3.(6分)求不定积分2ln(1).x x dx +⎰ 4.(6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.(6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设(ln )1,f x x '=+且(0)1,f =求().f x2.(7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭及x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4.(7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 .5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx xx 21arctan . 二、单项选择题(每小题4分,共20分)1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上及直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点(D) ())(,11x f x 是拐点,2x 是极值点. 图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .xy y y x '''+-=(D )23e .x y y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= x x x xx x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 及22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222 =2arctan 2 =2C =----------------+---------⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分). 1.(本题6分)解微分方程256xy y y xe '''-+=.212-56012,31r r r r +=----------==----------解:特征方程分特征解.分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线及曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A;(2) (4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方xyy1程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为 .1x e y =----1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线xe y 1=及x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =及x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+ 解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。
大一高等数学期末考试试卷及答案详解
大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h→--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分)1241(sin )x x x dx -+=⎰.3. (3分) 21lim sinx x x→= . 4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分) 1. (6分)求2ln(15)lim.sin 3x x x x →+2. (6分)设y =求.y ' 3. (6分)求不定积分2ln(1).x x dx +⎰4. (6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程0cos 0yxt e dt tdt +=⎰⎰所确定,求.dy6. (6分)设2()sin ,f x dx xC =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭与x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln xy +=,则='y.3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim.4.曲线x y 1=在点⎪⎭⎫⎝⎛2,21处的切线方程为 . 5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 .6.=+⎰dx x x21arctan .二、单项选择题(每小题4分,共20分)1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ). () A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:xx x 1sinlim 2→. 2. 已知()21ln x y +=,求y '.3. 求函数xxy sin =()0>x 的导数.4. ⎰+dx xx 221. 5.⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、(10分)已知2x e为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线xxe y -=的拐点及凹凸区间.六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上与直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xxxe e f -=')(,且0)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点.(B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点.(D) ())(,11x f x 是拐点,2x 是极值点.(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .xy y y x '''+-=(D )23e .x y y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A)()0f x'. (B) ()0f x'-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B)()().=⎰df x f x(C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分).1.求极限)ln 11(lim 1x x x x --→. 解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分 =x x x xx ln 1ln lim1+-→ 2分 = x x x x x x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------⎰⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x⎰+--=30)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分).1.(本题6分)解微分方程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征方程分特征解.分 次方程的通解Y =C 分令分代入解得,所以分所以所求通解C 分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222bb aab ab b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A;(2) (4) 求D 绕直线e x =旋转一周所得旋转体的体积V .解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为.1x e y =----1分平面图形D 的面积⎰-=-=1.121)(e dy ey e A y ----2分xyxyO1e1D(2) 切线xe y 1=与x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为.3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 212)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+ 解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分 当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分 所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。
大一高等数学期末考试试卷及复习资料详解
大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。
大一(第一学期)高数期末考试题及答案
年夜一上学期高数期末考试之巴公井开创作一、单项选择题 (本年夜题有4小题, 每小题4分, 共16分)1. )(0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '=(B )(0)1f '=(C )(0)0f '=(D )()f x 不成导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小;(B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小;(D )()x β是比()x α高阶的无穷小. 3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则().(A )函数()F x 必在0x =处取得极年夜值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点;(D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点.(A )22x (B )222x +(C )1x -(D )2x +.二、填空题(本年夜题有4小题,每小题4分,共16分) 4. =+→xx x sin 2)31(l i m .5. ,)(cos 的一个原函数是已知x f x x =⋅⎰x x xx f d cos )(则.6.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ.7. =-+⎰21212211arcsin -dx xx x .三、解答题(本年夜题有5小题,每小题8分,共40分)8. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y .9.设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数.求'()g x 并讨论'()g x 在=0x 处的连续性.10. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解. 四、 解答题(本年夜题10分)11. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上即是此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本年夜题10分)12. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V.六、证明题(本年夜题有2小题,每小题4分,共8分)13. 设函数)(x f 在[]0,1上连续且单调递加,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.14. 设函数)(x f 在[]π,0上连续,且)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个分歧的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()() 解答一、单项选择题(本年夜题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本年夜题有4小题,每小题4分,共16分) 5.6e. 6.cx x +2)cos (21 .7. 2π. 8.3π.三、解答题(本年夜题有5小题,每小题8分,共40分)9.解:方程两边求导0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 11.解:10330()x f x dx xe dx ---=+⎰⎰⎰12. 解:由(0)0f =,知(0)0g =.2()()lim ()lim22xx x xf x f u duA A g x A x→→-'==-=⎰,'()g x 在=0x 处连续.13. 解:2ln dy y x dx x +=1(1),09y C =-=,11ln 39y x x x=- 四、 解答题(本年夜题10分)14. 解:由已知且2d xy y x y'=+⎰,将此方程关于x 求导得y y y '+=''2 特征方程:022=--r r 解出特征根:.2,121=-=r r其通解为xx e C e C y 221+=-代入初始条件y y ()()001='=,得31,3221==C C故所求曲线方程为:xx e e y 23132+=-五、解答题(本年夜题10分)15. 解:(1)根据题意,先设切点为)ln ,(00x x ,切线方程:)(1ln 000x x x x y -=-由于切线过原点,解出e x =0,从而切线方程为:x e y 1=则平面图形面积⎰-=-=1121)(e dy ey e A y(2)三角形绕直线x = e 一周所得圆锥体体积记为V1,则2131e V π=曲线x y ln =与x 轴及直线x = e 所围成的图形绕直线x = e 一周所得旋转体体积为V2D 绕直线x = e 旋转一周所得旋转体的体积)3125(6221+-=-=e e V V V π六、证明题(本年夜题有2小题,每小题4分,共12分)16. 证明:1()()qf x d x q f x dx -⎰⎰1()(()())qqqf x d x q f x d x f x dx =-+⎰⎰⎰故有:1()()≥⎰⎰qf x d x q f x dx证毕.证:构造辅助函数:π≤≤=⎰x dt t f x F x0,)()(0.其满足在],0[π上连续,在),0(π上可导.)()(x f x F =',且0)()0(==πF F由题设,有⎰⎰⎰⋅+===ππππ0)(sin cos )()(cos cos )(0|dxx F x x x F x xdF xdx x f ,有⎰=πsin )(xdx x F ,由积分中值定理,存在),0(πξ∈,使0sin )(=ξξF 即0)(=ξF综上可知),0(,0)()()0(πξπξ∈===F F F .在区间],[,],0[πξξ上分别应用罗尔定理,知存在),0(1ξξ∈),(2πξξ∈0)(1='ξF 0)(2='ξF 0)()(21==ξξf f。
大学一年级《高等数学》期末考试卷(五套)
1一、填空题(4'⨯ ):、已知直线过点(1,3,2)P - 且与平面427x y z ++=垂直 则直线方程为 .、曲线20z x y ⎧=⎨=⎩绕z 轴旋转所得的曲面方程为 .、反常积分11pdx x +∞⎰当 p 时收敛. 、设二次积分100(,)xI dx f x y dy =⎰⎰,则交换积分次序后得 . 、已知级数12n n u ∞==∑,则级数11()2n nn u ∞=+=∑ . 、微分方程22x y y y e '''+-=的特解可设为 . 二、选择题('35⨯= ):设a 和b 是向量,则()(2)a b a b +⨯+= ( )( )a b ⨯;( )3a b ⨯;( )b a ⨯; ( )223a a b b +⨯+.、微分方程34"'(")30y y y y x ++-=的阶数是 ( ). ( ) ; ( ) ; ( ) ; ( ) .、已知2ln(),z x y =+则2zx y∂=∂∂ ( ). ( )222()x x y -+; ( )22()x x y -+; ( )22()x x y +; ( )221()x y +.、设'00(,)0x f x y =,'00(,)0y f x y =,则在点00(,)x y 处函数(,)f x y ( ).( )连续;( )一定取得极值;( )可能取得极值; ( )全微分为零. 、设积分区域22:3D x y +≤,则二重积分(3)Ddxdy -⎰⎰ ( ).( )9π-; ( )3π-; ( )3π;( )9π.三、计算题(6'4⨯ ):、已知(1)x y z xy +=+,求函数z 在点(1,1)P 处的偏导数zx∂∂; 、设ln 0x z z y -=,求z zzy x y∂∂-∂∂; 、求幂级数21(3)nn x n ∞=-∑的收敛域; 、将函数()ln(4)f x x =-在1x =处展开成幂级数. 四、(7') 求微分方程'23xy y x +=的通解. 五、计算二重积分:(7'214'⨯=)、计算2Dy d σ⎰⎰,其中 是由直线,y x =2y x =2y =及所围成的闭区域.、计算arctan Dy d xσ⎰⎰,其中 是由圆22221,4x y x y +=+=及直线0,y y x ==所围成的第一象限部分.六、应用题:(8'216'⨯=)、某厂要用铁板作成一个体积为32m 的有盖长方体水箱,问当长、宽、高各取多少时,才能使用料最省?、求由曲线22,8,y x y x == 所围成的图形x 绕轴旋转一周所得旋转体的体积.一、选择题('35⨯=15'):、下列方程表示的曲面为旋转曲面的是 ( ).( )22149x y -+=;( )22223x y z +=;( )22z x y =-;( )22224x y z -+=.、二元函数(,)f x y 在点00(,)x y 处满足关系 ( ). ( )可微(指全微分存在)⇔可导(指偏导数存在);( )可微⇒可导⇒连续; ( )可微⇒可导,且可微⇒连续,但可导不一定连续;( )可导⇒连续,但可导不一定可微.、若函数(,)y y x z =由方程x y xyz e +=所确定,则yx∂=∂ ( ). ( )(1)(1)y x x y --; ( )(1)y x y -; ( )1yzy-; ( )(1)(1)y xz x y --.、微分方程2"2'35x y y y e -+=的一个特解为 ( ).( )259x e ; ( )253x e ; ( )22x e ; ( )252x e . 、设无穷级数311p n n∞-=∑收敛,则( ).( )1p >; ( )3p <; ( )2p >;( )2p <.二、填空题(4'⨯ 8'):、,,,a b c →→→为单位向量,且满足0a b c →→→++=则a b b c c a →→→→→→++=、函数22(,)f x y =的定义域是 .、设函数22x y z e += 则全微分dz = . 、(,)(0,3)sin limx y xyx→= . 、若(,)f x y 在区域22:14D x y ≤+≤上恒等于 ,则(,)Df x y dxdy =⎰⎰ .、幂级数1(1)2nnn x n ∞=-⋅∑的收敛半径R = . 、微分方程"8'160y y y -+=的通解为 . 三、计算题(6'4⨯ ): 、求直线234:112x y z L ---==与平面:260x y z π++-=的交点坐标; 、设函数(,,)u f x y z =可微,22z x y =-,求ux∂∂,u y ∂∂; 、判断级数21(1)1nn n ∞=-+∑的敛散性;如果收敛,指出是绝对收敛还是条件收敛;、将函数2()ln(1)f x x =+展开为x 的幂级数.四、(6')求函数22(,)4()2f x y x y x y =---的极值. 五、(7')求微分方程()230x y dx xdy -+=的通解. 六、计算下列积分:、(7')计算(2)Dy x d σ-⎰⎰,其中 是由抛物线2y x =和直线2y x =+所围成的闭区域.、(7')求旋转抛物面224z x y =--和平面0z =围成的立体的体积.、(6')求由曲线1y x=,直线4y x =,2x =,0y =所围成的平面图形的面积.一、填空题(4'⨯ '24):、经过z 轴和点(3,1,2)--的平面方程为 . 、设22(,)4()f x y x y x y =---,则其驻点为 . 、设(,)z f x y =而sin ,t x t t y e =+=,则全导数dzdt= 、微分方程'sin 0y y e x -=的通解为 .、设二次积分ln 10(,)e xI dx f x y dy =⎰⎰,则交换积分次序后得I = 、级数13n n q ∞=∑收敛,则q 的取值为 .二、选择题('35⨯= ):、下列三元数组中,哪组可作为向量的方向余弦 ( ). ( )212{,,}333-; ( )11{1,,}22-; ( )11{,,1}23;( )11{,,3}32.、二元函数(,)z f x y =在00(,)x y 处的偏导数 '00(,)x f x y 和'00(,)y f x y 存在是函数在该点全微分存在的 ( ). ( )充分条件; ( )必要条件; ( )充要条件;( )既非充分也非必要条件.、下列微分方程中,是可分离变量的微分方程为 ( ). ( )()()0x y x y x y e e dx e e dy ++-+-=; ( ))(ln xy dxdy=; ( )3()0xdy y x dx -+=; ( )422dy x y dx xy+=. 、级数11121(1)2n n n k ∞--=--∑(k 为常数) ( ). ( )绝对收敛; ( )条件收敛; ( )发散; ( )敛散性与k 有关.、设:01,0D x y x ≤≤≤≤,则4Dd σ=⎰⎰( ).( ) ; ( ) ; ( ) ; ( ).三、计算题(6'⨯ 24'):、已知方程22243x y y z +-+=确定函数(,)z z x y = 求z zx y∂∂∂∂和;、设(cos sin )xz e y x y =+,求zx∂∂,2z x y ∂∂∂;、求二元函数3322339z x y x y x =-++-的极值、将函数()ln(3)f x x x =-展开为x 的幂级数 四、(7')求微分方程2"'2x y y y e +-=的通解. 五、计算二重积分:(7'214'⨯=) .计算22Dx d yσ⎰⎰,其中 是由直线2x =,y x =及曲线1xy =所围成的闭区域. .计算二重积分22x y DI e dxdy +=⎰⎰,D 为圆221x y +=所包围的第一象限中的闭区域.六、应用题:、(8')在所有对角线为、(7')求椭圆22221x y a b+= (0,0)a b >>围成的平面图形分别绕x 轴、绕y 轴旋转一周所成的旋转体的体积一、填空题(4'⨯ 28'):、设有平面:210x y z π-+-=和直线116:112x y z L -+-==- 则π与 的夹角为 . 、曲面2221x y z ++=与平面0x y z ++=的交线在xoy 面上的投影曲线为 、设函数(1)x z y =+,则(1,1)|dz .、设222()u f x y z =+-,其中f 为可微函数,则uz∂=∂ . 、交换积分次序:2220(,)yy dy f x y dx =⎰⎰ .、设a 为常数,若级数1()n n u a ∞=-∑收敛,则lim n n u →∞= .、微分方程"5'60y y y -+=的通解为y = . 二、选择题('36⨯= ):、设向量2a i j k =-+,49b i j k =++,则 ( ).( )//a b ( )||||a b > ( )||||a b =; ( )a b ⊥、在(1,1)-内,幂级数2461x x x -+-++的和函数为( ).( )211x -;( )211x--;( )211x +; ( )211x -+. 设D 是由222x y x +=围成的闭区域,则(,)Df x y d σ⎰⎰化成极坐标系下的累次积分为 ( )( )2sin 00(cos ,sin )d f r r rdr πθθθθ⎰⎰; ( )2cos 0(cos ,sin )d f r r rdr πθθθθ⎰⎰;( )2sin 202(cos ,sin )d f r r rdr πθπθθθ-⎰⎰; ( )2cos 202(cos ,sin )d f r r rdr πθπθθθ-⎰⎰.、微分方程'cot 0y y x -=的通解是 ( ).( )cot y x =; ( )sin y C x =; ( )tan y C x =; ( )csc y C x =.、函数22(6)(4)z x x y y =--驻点个数为( ).( ) ; ( ) ; ( ) ; ( ) .、下列无穷级数中,绝对收敛的是 ( ).( )21sin n nn∞=∑; ()11n n -∞= ( )11(1)n n n -∞=-∑; ( )2211n n n ∞=+∑. 三、计算题(6'3⨯ ): 、设ln()y z x x y =-,求zx∂∂,z y ∂∂;、设222234x y z -++=,求(1,1,1)z x ∂∂,(1,1,1)zy ∂∂;、讨论级数()11121nn n ∞=--∑的敛散性;若收敛,指出是条件收敛还是绝对收敛四、(7')求微分方程'tan yy y x x=+的通解.五、(8')设某工厂生产某产品的数量S ()吨与所用的两种原料 , 的数量,x y (吨)之间的关系式2(,)0.005S x y x y =。
大一高等数学期末考试试卷及答案详
大一高等数学期末考试试卷及答案详解大一高等数学期末考试试卷(一)一、选择题(共12分)x,2,0,ex,fx(),1. (3分)若为连续函数,则的值为( ). a,axx,,,0,(A)1 (B)2 (C)3 (D)-1 fhf(3)(3),,,2. (3分)已知则的值为( ). limf(3)2,,h,02h1(A)1 (B)3 (C)-1 (D) 2,223. (3分)定积分的值为( ). 1cos,xdx,,,2(A)0 (B)-2 (C)1 (D)2 4. (3分)若在处不连续,则在该点处( ).xx,fx()fx()0(A)必不行导(B)肯定可导(C)可能可导(D)必无极限二、填空题(共12分)23x1((3分)平面上过点,且在任意一点处的切线斜率为的曲线方程(0,1)(,)xy 为. 124(sin)xxxdx,,2. (3分) . ,,112xlimsin3. (3分) = . x,0x324. (3分)的极大值为. yxx,,23三、计算题(共42分)xxln(15),lim.1. (6分)求2x,0sin3xxe,y,,2. (6分)设求y. 2x,12xxdxln(1).,3. (6分)求不定积分,x,3,1,x,,fxdx(1),,4. (6分)求其中()fx,1cos,x,,0x,1,1.ex,,,1yxt5. (6分)设函数由方程所确定,求edttdt,,cos0yfx,()dy.,,0026. (6分)设求fxdxxC()sin,,,fxdx(23).,,,n3,,7. (6分)求极限lim1.,,,,,nn2,,四、解答题(共28分),1. (7分)设且求fxx(ln)1,,,f(0)1,,fx().,,,,2. (7分)求由曲线与轴所围成图形围着轴旋转一周所得旋xxyxxcos,,,,,,22,,转体的体积.323. (7分)求曲线在拐点处的切线方程. yxxx,,,,324194. (7分)求函数在上的最小值和最大值. [5,1],yxx,,,1五、证明题(6分),,设在区间上连续,证明fx()[,]abbbba,1,, fxdxfafbxaxbfxdx()[()()]()()().,,,,,,,aa22(二)一、填空题(每小题3分,共18分)2x,1x,1,,fx,,,1(设函数,则是的第类间断点. fx2x,3x,22,,,2(函数,则. y,y,ln1,xx2 x,1,,( 3 . ,lim,,x,, x,,11,,y,4(曲线在点处的切线方程为. ,2,,x2,,32,,,1,45(函数在上的最大值,最小值. y,2x,3xxarctandx,6(. ,21,x2二、单项选择题(每小题4分,共20分) 1(数列有界是它收敛的( ) . ,,xn必要但非充分条件;充分但非必要条件;,,,,A B充分必要条件;无关条件.,,,,C D 2(下列各式正确的是( ) .1,x,xxdx,,C; ; ln,,edx,e,C,,A B ,,x111,,dx,ln1,2x,Cdx,lnlnx,C; .,,,,C D ,,xlnx1,2x2,,,3(设在上,且,则曲线在上.,,,,,,,,,,,,fxa,bfx,0fx,0y,fxa,b沿轴正向上升且为凹的;沿轴正向下降且为凹的;,,,,A xB x,,沿轴正向上升且为凸的;,,沿轴正向下降且为凸的. C xD xx,04(设,,,则,,在处的导数( ). fx,xlnxfx1,1,,,,等于;等于; A B0,,,,等于;不存在. C D,,limfx,25(已知,以下结论正确的是( ).,x,1x,1x,1,,,,,,函数在处有定义且;函数在处的某去心邻域内有定义;Af1,2Bx,1x,1,,,,函数在处的左侧某邻域内有定义;函数在处的右侧某邻域内有定义. C D 三、计算(每小题6分,共36分)12limsinx1(求极限:. x,0x2,,,2.已知,求. yy,ln1,xsinx,,3.求函数x,0的导数. y,x2xdx4. . ,21,xxcosxdx5. . ,11yx,,,y,fx6.方程确定函数,求y. y,x322x四、(10分)已知为的一个原函数,求.,,,,xfxdxefx,,x五、(6分)求曲线的拐点及凹凸区间. y,xex,,,六、(10分)设,,,求. fxdx,xe,1,C,,fx,(三)一、填空题(本题共5小题,每小题4分,共20分). 112xlim(cosx)e,x0(1) =_____________.y,xlnxx,y,1,0y,x,1(2)曲线上与直线平行的切线方程为_________.12(lnx)x,x,f(x),f(x),f(1),0f(e),xe2(3)已知,且,则___________ .2x11y,x,.y,393x,1(4)曲线的斜渐近线方程为_________ 7522y222,y,(x,1),C(x,1).yx,,,(1)3x,1(5)微分方程的通解为_________二、选择题(本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )1111dx,0dx,,2,,2,,11xx(A) (B),,1,,1,,,dx,,,dx,4,11xx(C) (D) f(x)[a,b]f'(x)(2)函数在内有定义,其导数的图形如图1-1所示,则( D ). x,x12(A)都是极值点. y,,,,x,f(x),x,f(x),1122y,f(x)(B)都是拐点.,,xx,f(x)122(C)是极值点.,是拐点.,,x,f(x)xax1121(D)是拐点,是极值点. xObx2图1-1xxx,2yCCx,,,eee12(3)函数满意的一个微分方程是( D ).xx,,,,,,yyyx,,,23e.yyy,,,23e.(A) (B)xx,,,,,,yyyx,,,23e.yyy,,,23e.(C) (D)fxfxh,,,,,,00limxh,f(x)00h(4)设在处可导,则为( A ). ,,fx,fx,,,,00(A) . (B) . (C) 0. (D)不存在.(5)下列等式中正确的结果是( A ).4,(())().fxdxfx,dfxfx()().,,,(A) (B),dfxdxfx[()]().,fxdxfx()().,,,(C) (D)三、计算题(本题共4小题,每小题6分,共24分).x1lim(,)x,1xx,1ln1(求极限.xlnx,x,1x1limlim(,)x,1x,1(x,1)lnxxx,1ln解= 1分lnxlimx,1x,1,lnxx = 2分xlnxlimx,1x,1,xlnx = 1分1lnx1,lim,x,11lnx12,,= 2分 2x,lnsint,dydy,2y,cost,tsinty,xdxdx2.方程确定为的函数,求与.,dyy(t),,tsint,,dxx(t)解(3分)2,dy(tsint),,sinttant,tsint.2,x(t)dx (6分)arctanxdx,xx(1),3. 4.计算不定积分.arctanarctanxx解:分dxdx,,,,,,,,,,,,22,,(1),xxx(1),=2arctanarctan2xdx,,,,,,,分,2()分=arctan2xC,,,,,,,,,,3xdx,01,1,x4.计算定积分.33,,xx(11x)3,dxdx,,(1,1,x)dx,,00,,x,,11x0解(3分)332523(1),,,,x,330 (6分) 1,x,t(或令)(四)一(填空题(每小题4分,5题共20分):5112xxlim()ex,,2e,x1( . 014xx,2005xxeedx1,,,,,,,,,1e2(.xy,dy2t,,edtx,x,0,yyx,()1e,13(设函数由方程确定,则. dxx12xtftdtfx()(),2,,,,,fxfx,f(0),11e4.设可导,且,,则.二(选择题(每小题4分,4题共16分):xf(x),lnx,,k(0,,,)k,0e1(设常数,则函数在内零点的个数为( B ).(A) 3个; (B) 2个; (C) 1个; (D) 0个.,,y,4y,3cos2x2(微分方程的特解形式为( C ),,yAx,cos2yAxx,cos2(A); (B);*,yAxxBxx,,cos2sin2y,Asin2x(C); (D)3(下列结论不肯定成立的是( A )db,,,,fxdx,fxdx,,,,,,c,d,a,bca(A) (A)若,则必有;bfxdx,0,,,,,a,bf(x),0a(B) (B)若在上可积,则;,,fxaT(C) (C)若是周期为的连续函数,则对任意常数都有a,TT,,,,fxdx,fxdx,,0a; xtftdt,,,,,fx0(D) (D)若可积函数为奇函数,则也为奇函数.1x1,e,,fx,1xf(x)x,02,3e4.设,则是的( C ).(A)连续点; (B)可去间断点; (C)跳动间断点; (D)无穷间断点.三(计算题(每小题6分,5题共30分):223,xxedx,1(计算定积分. 0112222,x,t,t23,设x,t则xedx,tedt,,tde,,,00022解: -------22,,21,t,t,,te,edt,,,002,,-------22113,2,t,2,,e,e,,e0222 --------2sinxxdx5,cosx2(计算不定积分.6xsinx111xdx,,dxxd(),,,5444,,,,,cosx4cosx4cosxcosx,,解: --------3x12,,(tanx,1)dtanx4,4cosx4x113,,tanx,tanx,C44cosx124 -----------3x,a(t,sint),,,,t,y,a(1,cost),2,3(求摆线在处的切线的方程.,(a(,1),a)2解:切点为-------2asintdy,,k,,a(1,cost)dxt,t,22,1 -------2,,y,a,x,a(,1)y,x,(2,)a22切线方程为即. -------2x2F(x),cos(x,t)dt22,,F(x),2xcosx,(2x,1)cos(x,x)04.设,则. nnnnn(,1)(,2)(,3)?(2)x,limxnn,,nn5(设,求.ni1xln,ln(1,),nnn,1i解: ---------2n1i1limlnx,limln(1,),ln(1,x)dx,n,0,,,,nnnn,1i --------------2111xln(1,x),xdx,2ln2,10,01,x = ------------242ln2,1e,limxn,,ne故=标准答案一、1 B; 2 C; 3 D; 4 A.23二、1 2 3 0; 4 0. yx,,1;;3 xx,55三、1解原式6分,,lim2x,033xxex2lnlnln(1),?yx,,,,2解2分212x,xex12,?,,y[] 4分22xx,,121122,,,ln(1)(1)xdx3解原式3分,2712x222 2分,,,,,,[(1)ln(1)(1)]xxxdx,221,x 1222 1分,,,,,[(1)ln(1)]xxxC 24解令则2分xt,,1,32 1分fxdxftdt()(),,,,0112tt 1分,,,(1)dtedt,,,111cos,tt2 1分,,,0[]et12 1分,,,ee1y,5两边求导得2分eyx,,,cos0,cosx, 1分?y,,yecosx 1分,sin1x,cosx 2分?,dydxsin1x,1fxdxfxdx(23)(23)(22),,,,6解2分,,2 12,,,sin(23)xC 4分223n,3323,,2lim1,7解原式= =e 6分,,n,,n2,, tt,四、1解令ln,xt,则3分xefte,,,,()1, ttftedt()(1),,teC,,.= 2分,?fC(0)1,0,,?, 2分x 1分?,,fxxe().8,222解3分Vxdx,,cosx,,,2,22 ,2cos,xdx 2分,02, 2分,.2 2,,,3解1分yxxyx,,,,,3624,66,,,x,1.令得1分y,0,,,,,,,,,x11,,,,x当时,当时, 2分y,0;y,0,为拐点, 1分?(1,3)该点处的切线为2分yx,,,321(1). 1211,,x,y,,,1,4解2分 2121,,xx3,x,.令得1分y,0,435,,yyy(5)56,2.55,,(1)1,,,,,,,,, 2分,,44,,35,,y,.y(5)56,,,,,最小值为最大值为2分?,,44,,五、证明bb,,,()()()()()()xaxbfxxaxbdfx,,,,, 1分,,aabb,,,,,,,,[()()()]()[2()xaxbfxfxxabdx 1分,aab,,,,[2()()xabdfx 1分,abb,,,,,[2()]()2()xabfxfxdx 1分,,,aab,,,,,()[()()]2(),bafafbfxdx 1分,a 移项即得所证. 1分9。
大一高数期末试卷答案
大一高数期末试卷答案1.)(x f 在],[b a 上可积的充分必要条件是)(x f 在],[b a 上连续。
( 错 ) 2.02=+'-''y y y 的通解为xe x C y )(+=。
( 错 ) 3.非零向量b a ρρ,平行的充要条件为0ρρρ=⨯b a 。
( 对 )4.)(y x f ,在),(00y x 处偏导数存在,则)(y x f ,在),(00y x 处连续。
( 错 )5.级数∑+∞=++0331n n n 收敛。
( 错 )二、填空题1.反常积分=⎰+∞-dx xe x 02 21 。
2.微分方程0sin cos =+ydy x ydx 的通解为 Cxy =cos 。
3.设=a ρ(2, 1, 2), =b ρ(4, -1, 10),a b c ρρρλ-=,且c a ρϖ⊥,则=λ 3 。
4.函数)321ln(32y x z ++=在(1,2)处的全微分dz = dy dx 2736274+ 。
5.交换积分次序=⎰⎰--22221),(x x x dy y x f dx ⎰⎰-+-211210),(y y dx y x f dy 。
6.幂级数n n x n )4(3112-+∑+∞=的收敛半径为 1 ,收敛区间为 (3,5) 。
三、解答题1.求极限⎰⎰-+→xx x dt t t t dtt 00230)sin (lim 2解:原式x x x x sin 2lim 30-=+→ x x x cos 16lim 20-=+→ xx x sin 12lim 0+→=12=2.求积分⎰10arctan xdx x 解:⎰10arctan xdx x ⎰+-=1022102121|arctan 21dx x x x x ⎰+--=102)111(218dx x π 10|)arctan (218x x --=π 214-=π3.求微分方程x e x y y cos 4cot =+'的通解 解:(1)求对应的齐次方程的通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学一年级高数期末考试题及答案一.计算题(本题满分35分,共有5道小题,每道小题7分),1.求极限()xx x xx 30sin 2cos 1lim-+→.解:()30303012cos 1lim 12cos 12lim sin 2cos 1lim x x x x x x x x x xx x x x -⎪⎭⎫ ⎝⎛+=⎥⎥⎦⎤⎢⎢⎣⎡-⎪⎭⎫ ⎝⎛+=-+→→→20302cos 1ln 032cos 1ln 02cos 1ln lim 2cos 1ln lim 2cos 1ln1lim 1lim x x x x x x x e x e x x x x x x x x +=+⋅+-=-=→→⎪⎭⎫ ⎝⎛+→⎪⎭⎫ ⎝⎛+→()412cos 1sin lim 0-=+-=→x x x x . 2.设0→x 时,()x f 与22x是等价无穷小,()⎰3xdtt f 与kAx 等价无穷小,求常数k 与A .解:由于当0→x 时,()⎰3xdtt f 与kAx 等价无穷小,所以()1lim3=⎰→kxx Ax dtt f .而()()()10132320132323230132361lim6lim 3122lim 31limlim3-→--→-→-→→=⋅=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅=⋅⋅=⎰k x k x k x k x kxx Akx Akx x x Akx x x x x f Akx x x f Ax dtt f所以,161lim10=-→k x Akx .因此,61,1==A k .3.如果不定积分()()⎰++++dxx x bax x 22211中不含有对数函数,求常数a 与b 应满足的条件.解:将()()22211x x bax x ++++化为部分分式,有()()()2222211111x DCx x B x A x x bax x ++++++=++++,因此不定积分()()⎰++++dxx x bax x 22211中不含有对数函数的充分必要条件是上式中的待定系数0==C A .即()()()()()()()22222222211111111x x x D x B x D x B x x bax x +++++=+++=++++.所以,有()()()()D B Dx x D B x D x B b ax x ++++=+++=++2112222. 比较上式两端的系数,有D B b D a D B +==+=,2,1.所以,得1=b .5.计算定积分{}⎰-2502,1min dxx .解:{}⎩⎨⎧>-≤--=-1211222,1min x x x x⎪⎪⎩⎪⎪⎨⎧>≤<-≤≤-<=3132221211x x x x x x .所以,{}()()8132212,1min 252211025=-+-+=-⎰⎰⎰⎰dx x dx x dx dx x .5.设曲线C 的极坐标方程为3sin 3θa r =,求曲线C 的全长.解:曲线3sin 3θa r =一周的定义域为πθ≤≤30,即πθ30≤≤.因此曲线C 的全长为()()()()a d a d a a d r r s πθθθθθθθθθπππ233sin 3cos3sin3sin30230242623022==+='+=⎰⎰⎰.二.(本题满分45分,共有5道小题,每道小题9分),6.求出函数()()()nn x x x f 221sin lim+=+∞→π的所有间断点,并指出这些间断点的类型.解:()()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>-=-=<=+=+∞→2102121212121sin 21sin lim 2x x x x x x x x f n n ππ. 因此211-=x 与212=x 是函数()x f 的间断点.()00lim lim 2121==---→-→x x x f ,()()1sin lim lim 2121-==++-→-→x x f x x π,因此21-=x 是函数()x f 的第一类可去型间断点.()()1sin lim lim 2121==---→-→x x f x x π,()00lim lim 2121==++-→→x x x f ,因此21=x 是函数()x f 的第一类可去型间断点.7.设ξ是函数()x x f arcsin =在区间[]b ,0上使用Lagrange (拉格朗日)中值定理中的“中值”,求极限b b ξ0lim→. 解:()x x f arcsin =在区间[]b ,0上应用Lagrange 中值定理,知存在()b ,0∈ξ,使得()0110arcsin arcsin 2--=-b b ξ.所以,22arcsin 1⎪⎭⎫⎝⎛-=b b ξ.因此,()()22220220220arcsin arcsin lim arcsin 1lim lim b b b b b b b b b b b -=⎪⎭⎫ ⎝⎛-=→→→ξ令b t arcsin =,则有422022220220sin limsin sin lim lim t tt t t t t b t t b -=-=→→→ξ3122sin 2lim 612cos 1lim 61122cos 22lim 42sin 2lim 0202030==-=-=-=→→→→t t t t t t t t t t t t t 所以,31lim 0=→b b ξ. 8.设()()⎰--=xy y dyex f 102,求()⎰1dxx f .解:()()()⎰⎰'-=11010dxx f x x xf dx x f在方程()()⎰--=xy y dy e x f 102中,令1=x ,得()()()01021102===⎰⎰---dy e dy ef y y y y .再在方程()()⎰--=xy y dy e x f 102两端对x 求导,得()21xe xf --=',因此,()()()()⎰⎰⎰'-='-=110101dxx f x dx x f x x xf dx x f()1212110111222-=⎪⎭⎫⎝⎛-⋅===---⎰⎰e e e dx xe e dx xe x xx .9.研究方程2x a e x =()0>a 在区间()∞+∞-,内实根的个数. 解:设函数()12-=-x e ax x f ,()()xx x e x ax e ax axe x f ----=-='222.令()0='x f ,得函数()x f 的驻点2,021==x x .由于0>a ,所以()()+∞=-=--∞→-∞→1lim lim 2x x x e ax x f ,()()112lim 12lim 1lim 1lim lim 22-=-=-=-=-=+∞→+∞→+∞→-+∞→+∞→x x x x x x xx x e a e x a e x a eax x f .因此,得函数()x f 的性态⑴ 若0142>--ae ,即4e a >时,函数()12-=-x e ax x f 在()0,∞-、()2,0、()∞+,2内各有一个零点,即方程2x a e x =在()∞+∞-,内有3个实根.⑵ 若0142=--ae ,即42e a =时,函数()12-=-x e ax x f 在()0,∞-、()∞+,0内各有一个零点,即方程2x a e x =在()∞+∞-,内有2个实根.⑶ 若0142<--ae ,即42e a <时,函数()12-=-x e ax xf 在()0,∞-有一个零点,即方程2x a e x =在()∞+∞-,内有1个实根.10.设函数()x f 可导,且满足()()()1-'=-'x f x x f ,()00=f .试求函数()x f 的极值. 解:在方程()()()1-'=-'x f x x f 中令x t -=,得()()()1--'-='t f t t f ,即 ()()()1--'-='x f x x f .在方程组()()()()⎩⎨⎧-=-'+'-=-'+'x x f x f x xx f x x f 中消去()x f -',得()221x x x x f ++='.积分,注意()00=f ,得()()⎰++=-xdt t t t f x f 02210.即()()x x x dt t t t x f xarctan 1ln 211222-++=++=⎰.由()221x x x x f ++='得函数()x f 的驻点1,021-==x x .而()()222121x x x x f +-+=''.所以,()010>=''f ,()0211<-=-''f .所以,()00=f 是函数()x f 极小值;()42ln 2111π-+-=-f 是函数()x f 极大值. 三.应用题与证明题(本题满分20分,共有2道小题,每道小题10分), 11.求曲线x y =的一条切线,使得该曲线与切线l 及直线0=x 和2=x 所围成的图形绕x 轴旋转的旋转体的体积为最小. 解:设切点坐标为()t t ,,由t y 21=,可知曲线x y =在()t t ,处的切线方程为()t x tt y -=-21,或()t x ty +=21.因此所求旋转体的体积为()()⎪⎭⎫⎝⎛+-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-⎥⎦⎤⎢⎣⎡+=⎰t t dx x t x t V 24384212022ππ所以,023842=⎪⎭⎫⎝⎛+-=t dt dV π.得驻点32±=t ,舍去32-=t .由于31643223222>⋅===t t t dt Vd π,因而函数V 在32=t 处达到极小值,而且也是最小值.因此所求切线方程为2143+=x y .12.设函数()x f 在闭区间[]10,上连续,在开区间()10,内可导,且()21arctan 2=⎰πxdx e x f ,()01=f .证明:至少存在一点()10,∈ξ,使得()()ξξξarctan 112+-='f .解:因为()x f 在闭区间[]1,0上连续,所以由积分中值定理,知存在⎥⎦⎤⎢⎣⎡∈πη2,0,使得()()ηπηπarctan 2arctan 2f x f e xdx e =⎰.由于()21arctan 2=⎰πxdx e x f ,所以,()21arctan 2=ηπηf e .再由()01=f ,得()()1arctan 4arctan 1f f e e ==πηη.作函数()()x e x g x f arctan =,则函数在区间[][]1,01,⊂η上连续,在区间()1,η内可导.所以由Rolle 中值定理,存在()()1,01,⊂∈ηξ,使得()0='ξg .而()()()()21arctan x e x x f ex g x f x f ++'='.所以存在()()1,01,⊂∈ηξ,使得()()()1arctan 2=++'ξξξξξf f e f e.由于()0≠ξf e ,所以()011arctan 2=++'ξξξf ,即()()ξξξarctan 112+-='f .。