17-18版 第2章 第8节 函数与方程
第二章 函数-导数及其应用-第八节 对数与对数函数
第二章 函数、导数及其应用
2.对数的常用关系式(a,b,c,d 均大于 0 且不等于 1): (1)loga1= 0 .(2)logaa= 1 . (3)对数恒等式:alogaN= N . logcb (4)换底公式:logab=log a . c 1 推广 logab= ,logab·logbc·logcd= logad . logba
-lg 15 -1 3 = - 2 lg 15
3 =-2. 答案 3 (1)D (2)-2
第二章 函数、导数及其应用
对数函数的图象及应用
[典题导入] (1)(2014· 南昌模拟)函数 y=f(x)的图象如图所示, 则函数 y=log1f(x)的图象大致是
2
(
)
第二章 函数、导数及其应用
第二章 函数、导数及其应用
[听课记录]
由函数 y=f(x)的图象知,
2
当 x∈(0,2)时,f(x)≥1,所以 log1 f(x)≤0. 又函数 f(x)在(0, 1)上是减函数, 在(1, 2)上是增函数, 所以 y=log1
2
f(x)在(0,1)上是增函数,在(1,2)上是减函数.结合各选项知, 选 C. 答案 C
第二章 函数、导数及其应用
当0<a<1时,显然不成立; 当a>1时,如图,
第二章 函数、导数及其应用
要使 x∈(1 , 2) 时 f1(x) = (x - 1)2 的图象在 f2(x) = logax 的图象下 方, 只需f1(2)≤f2(2),
即(2-1)2≤loga2,
又即loga2≥1. 所以1<a≤2, 即实数a的取值范围是(1,2]. 答案 (1,2]
M>0的条件下应为logaMn=nloga|M|(n∈N*,且n为偶数). 2.对数值取正、负值的规律: 当a>1且b>1,或0<a<1且0<b<1时,logab>0; 当a>1且0<b<1,或0<a<1且b>1时,logab<0.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第二节 一元二次方程及其应用
解:设参加交流会的茶叶制作商有 m 人.依题意得 m(m-1)=380,解得 m1=20,m2=-19(舍去). 答:参加交流会的茶叶制作商有 20 人.
4.(2022·荆州第 7 题 3 分)关于 x 的方程 x2-3kx-2=0 实数根的情况,
下列判断中正确的是
(B)
A.有两个相等实数根
B.有两个不等实数根
C.没有实数根
D.有一个实数根
5.(2020·荆州第 9 题 3 分)定义新运算“a*b”:对于任意实数 a,b,都
有 a*b=(a+b)(a-b)-1,其中等式右边是通常的加法、减法、乘法运
解:设小路宽为 x m, 由题意,得(16-2x)(9-x)=112. 整理,得 x2-17x+16=0. 解得 x1=1,x2=16>9(不合题意,舍去).∴x=1. 答:小路的宽应为 1m.
17.(数学文化)《田亩比类乘除捷法》是我国古代数学家杨辉的著作, 其中有一个数学问题:“直田积八百六十四步,只云长阔共六十步,问长 多阔几何?”意思是:一块矩形田地的面积为 864 平方步,只知道它的 长与宽共 60 步,问它的长比宽多多少步?根据题意,长比宽多__112__步.
100.8
解:设后两次采购价格的平均增长率为 x,依题意得 480(1+x)2=480+100.8,解得 x1=0.1,x2=-2.1(舍). 答:后两次采购价格的平均增长率为 10%.
解:设售价为 y 元/袋时,每周的销售额为 32 400 元.依题意可列方程
y-260
为 y100-
10
=32 400,解得 y1=360,y2=900.
第二节 一元二次方程及 其应用
【考情分析】湖北近 3 年主要考查:1.选择合适的方法解一元二次方程, 常在压轴题中涉及考查;2.用一元二次方程根的判别式判断方程根的情 况或者根据根的情况求字母系数的取值范围,根与系数的关系的应用; 3.一元二次方程的应用主要以选择题的形式考查列方程,常在解答题中 与不等式、函数的实际应用结合考查,难度较大,分值一般 3-10 分.
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用
∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习
【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
《高等数学》 详细上册答案(一--七)
2014届高联高级钻石卡基础阶段学习计划《高等数学》上册(一----七)第一单元、函数极限连续使用教材:同济大学数学系编;《高等数学》;高等教育出版社;第六版;同济大学数学系编;《高等数学习题全解指南》;高等教育出版社;第六版;核心掌握知识点:1.函数的概念及表示方法;2.函数的有界性、单调性、周期性和奇偶性;3.复合函数、分段函数、反函数及隐函数的概念;4.基本初等函数的性质及其图形;5.极限及左右极限的概念,极限存在与左右极限之间的关系;6.极限的性质及四则运算法则;7.极限存在的两个准则,会利用其求极限;两个重要极限求极限的方法;8.无穷小量、无穷大量的概念,无穷小量的比较方法,利用等价无穷小求极限;9.函数连续性的概念,左、右连续的概念,判断函数间断点的类型;10.连续函数的性质和初等函数的连续性,闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),会用这些性质.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天2h第1章第1节映射与函数函数的概念函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数初等函数具体概念和形式,函数关系的建立习题1-14(3) (6)(8),5(3)★,9(2),15(4)★,17★4(4)(7),5(1),7(2),15(1)本节有两部分内容考研不要求,不必学习:1. “二、映射”;2. 本节最后——双曲函数和反双曲函数第二天3h1章第2节数列的极限数列极限的定义数列极限的性质(唯一性、有界性、保号性)习题1-21(2) (5)(8)★3(1)1. 大家要理解数列极限的定义中各个符号的含义与数列极限的几何意义;2. 对于用数列极限的定义证明,看懂即可。
第1章第3节函数的极限函数极限的概念函数的左极限、右极限与极限的存在性函数极限的基本性质(唯一性、局部有界性、局部保号性、不等式性质,函数极限与数列极限的关系等)习题1-32,4★3,1. 大家要理解函数极限的定义中各个符号的含义与函数极限的几何意义;2. 对于用函数极限的定义证明,看懂即可。
数学一复习计划
总结归纳第四、五章中的知识点, 整理并创建四、五章中的难题、错题题库
高等数学 第六章 定积分的应用
天数
学习章节
习题章节
练习题目
备注
第一天
第 6 章第 1 节
——
——
元素法
第 6 章 第 2 节
习题6—2
1(1)(4),2(1),4,5(1),9,12,15(1) (3) ,16,19,21
求平面图形的面积(直角坐标情形、极坐标情形)旋转体的体积及侧面积 平行截面面积为已知的立体的体积平面曲线的弧长
第五天
总结归纳第二章中的知识点, 整理并创建本章中的难题、错题题库
高等数学 第三章 微分中值定理与导数的应用
天数
学习章节
习题章节
练习题目
备注
第一天
第 3 章 第 1 节
习题3-1
6,8,11(1),12,15
费马定理、罗尔定理、拉格朗日定理、柯西定理及其几何意义 构造辅助函数
第二天
第 3 章第 2 节
第 1 章 第 7 节
习题1-7
1,2,3(1),4(3) (4)
无穷小阶的概念(同阶无穷小、等价无穷小、高阶无穷小、低阶无穷小、k 阶无穷小)及其应用 一些重要的等价无穷小以及它们的性质和确定方法
第五天
第 1 章 第 8 节
习题1-8
3(4),4,5
函数的连续性, 函数的间断点的定义与分类(第一类间断点与第二类间断点) 判断函数的连续性和间断点的类型
第二天
第 6 章第 3 节
习题6—3
5,11
用定积分求功、水压力、引力
第三天
第 6章总复习六
总复习题六
2,3,5
二次函数与一元二次方程、不等式(第1课时)教案 高一上学期数学人教A版(2019)必修第一册
必修第一册第二章一元二次函数、方程和不等式2.2.3 二次函数与一元二次方程、不等式(第1课时)教材分析本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第二章第3节《二次函数与一元二次方程、不等式》第1课时。
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。
从思想层面看,本节课突出体现了数形结合思想。
同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。
学情分析学生在初中已经学习了一元一次不等式、一元二次方程和二次函数的相关知识,对不等式的性质有了初步了解,但因我校学生基础普遍较差,逻辑推理和抽象思维能力仍需提高,还需依赖具体形象的内容理解抽象的逻辑关系。
教学目的1. 理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;2. 经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法;3.培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。
教学重点一元二次不等式的解法教学难点理解一元二次方程、一元二次不等式及二次函数三者之间的关系教学过程一、情境导入问题园艺师打算在绿地上用栅栏围一个矩形区域种植花卉.若栅栏的长度是24m,围成的矩形区域的面积要大于20m2,则这个矩形的边长为多少米?设这个矩形的一条边长为xm,则另一条边长为(12-x)m.由题意,得:(12-x)x>20(0<x<12)整理得x2-12x+20<0(0<x<12)。
①求得不等式①的解集,就得到了问题的答案。
思考:类比一元一次不等式,这个不等式有什么特点?能否给这类不等式起个名字,并写出它的一般形式?由此导出课题。
一元二次不等式的定义:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax2+bx+c>0 或ax2+bx+c<0 ,其中a,b,c均为常数,a≠0.思考:为什么要规定a≠0?二、探索新知探究1:回顾一次函数与一元一次方程、不等式的关系请学生画出一次函数y=2x-6的图象,并回答下列问题:1.函数y=2x-6与x轴的交点为;2.方程2x-6=0的根为;3.不等式2x-6>0的解为;4.不等式2x-6<0的解为;师生完成上述问题后小结:三个“一次”的关系。
人教A版高中同步学案数学必修第一册精品课件 第2章 二次函数与一元二次方程、不等式
次不等式.
2.一元二次不等式一定为整式不等式,例如,x2+
3
<0就不是一元二次不等式.
3.理解一元二次不等式的定义时,还需了解下列概念.
(1)如果两个不等式的解集相同,那么这两个不等式称为同解不等式;
(2)将一个不等式转化为另一个与它解集相同的不等式称为不等式的同解
综上所述,当a<-1时,原不等式的解集为{x|a<x<-1};
当a=-1时,原不等式的解集为⌀;
当a>-1时,原不等式的解集为{x|-1<x<a}.
图③
规律方法
解含参数的一元二次不等式的步骤
变式训练3 若m∈R,解关于x的不等式(x+m)[x-(3m+1)]>0.
解 方程(x+m)[x-(3m+1)]=0 的根为 x1=-m,x2=3m+1.
1
1
当 m=- 时,不等式的解集为 | ≠ ;
4
4
1
当 m<- 时,不等式的解集为{x|x<3m+1,或 x>-m}.
4
角度3.不等式的恒成立问题
【例4】 (1)已知关于x的不等式kx2+2kx-(k+2)<0恒成立,求实数k的取值范
围.
解 当k=0时,原不等式化为-2<0,显然符合题意.
当k≠0时,令f(x)=kx2+2kx-(k+2),
数根x1=x2=
二次项系数转化为
正数,再套用此结论
ax2+bx+c>0(a>0)的
解集
第2章 函数概念与基本初等函数Ⅰ 第8节 函数与方程
索引
3.(2019·全国Ⅲ卷)函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( B )
A.2
B.3
C.4
D.5
解析 由2sin x-sin 2x=0,得sin x=0或cos x=1. 又x∈[0,2π],由sin x=0, 得x=0,π,2π. 由cos x=1,得x=0,2π. ∴f(x)=0有三个实根0,π,2π, 即f(x)在[0,2π]上有三个零点.
索引
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ=b2-4ac
Δ>0
Δ=0
二次函数 y=ax2+bx+c (a>0)的图象
与x轴的交点 _(_x_1,__0_)_,__(_x_2_,__0_) _ ___(_x_1_,__0_)___
零点个数Biblioteka 21Δ<0
无交点 0
索引
常用结论
1.若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.函数的 零点不是一个“点”,而是方程f(x)=0的实根.
解析 (1)f(x)=lg x的零点是1,故(1)错误. (2)f(a)·f(b)<0是连续函数y=f(x)在(a,b)内有零点的充分不必要条件,故(2) 错误.
索引
2.函数f(x)=x+ln x-3的零点所在的区间为( C )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
解析 ∵f(x)在(0,+∞)上单调递增, 且f(2)=ln 2-1<0,f(3)=ln 3>0, 故f(x)在(2,3)上有唯一零点,故选C.
索引
5.( 易 错 题 ) 设 函 数
高考数学一轮复习第二章函数导数及其应用第八节函数与方程学案理(含解析)新人教A版
第八节函数与方程2019考纲考题考情1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点。
(2)几个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点。
(3)函数零点的判定(零点存在性定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。
2.二分法对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。
3.二次函数y=ax2+bx+c(a>0)的图象与零点的关系1.若连续不断的函数f (x )在定义域上是单调函数,则f (x )至多有一个零点。
函数的零点不是一个“点”,而是方程f (x )=0的实根。
2.函数零点存在定理是零点存在的一个充分不必要条件。
3.周期函数如果有零点,则必有无穷多个零点。
一、走进教材1.(必修1P 92A 组T 2改编)已知函数f (x )的图象是连续不断的,且有如下对应值表:A .(1,2)B .(2,3)C .(3,4)D .(4,5)解析 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点。
故选B 。
答案 B2.(必修1P 88例1改编)函数f (x )=e x+3x 的零点个数是( ) A .0 B .1 C .2 D .3解析 由f ′(x )=e x+3>0,所以f (x )在R 上单调递增,又f (-1)=1e -3<0,f (0)=1>0,因此函数f (x )有且只有一个零点。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第四节 一元一次不等式(组)及其应用
有 3 个整数解,则 a 的取值范围为
( A)
A.1<a≤2
B.1<a<2
C.1≤a<2
D.1≤a≤2
6 . (2019 · 鄂 州 第 12 题 3 分 ) 若 关 于 x , y 的 二 元 一 次 方 程 组
x-3y=4m+3,
x+5y=5
的解满足 x+y≤0,则 m
的取值范围是__mm≤≤--22__.
③学校购买篮球和足球共 40 个.
(1)
若④购买篮球的个数不少于足球个数的23,则最少可购买篮球
116 6
个;
【分层分析】(1)设购买篮球 x 个,则由题干③可得购买足球((440 0--x)
个,由题干④可列不等式为
2 xx≥≥3((4400--xx)),解此不等式得
x) xx≥≥1166.
(2)若⑤购买篮球的费用不超过购买足球的费用,则最多可购买篮球115
(2)若此不等式组的解集为-4≤x<1,则 a 的值为--22; 【分层分析】(2)由题意得1a.-25168=0--m4 m,即 a=--22;
重难点 2:一元一次不等式的应用
(一题多设问)某校为举行体育比赛活动,准备购买若干个足球和篮
球作为奖品,已知①篮球的单价为 100 元/个,②足球的单价为 60 元/个,
第四节 一元一次不等式 (组)及其应用
【考情分析】湖北近 3 年主要考查:1.一元一次不等式(组)的解法及解集 表示,考查形式有:①求不等式(组)的解集;②求不等式(组)的解集并在 数轴上表示;③求不等式组的整数解;④确定不等式组中字母参数的取 值范围.2.一元一次不等式的应用,考查形式有:①利用不等式判断哪种 方案合算;②与方程(组)、函数结合确定方案问题,设题背景有购买问题、 销售费用问题,以解答题为主
新高考总复习 数学 第二章 函数 第8节 函数与方程 习题
多维层次练14[A 级 基础巩固]1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0C.12D .0解析:当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.答案:D2.(2020·长郡中学等十三校联考)已知[x ]表示不超过实数x 的最大整数,g (x )=[x ]为取整函数,x 0是函数f (x )=ln x -2x 的零点,则g (x 0)等于( )A .1B .2C .3D .4解析:因为f (x )在(0,+∞)上是增函数,且f (2)=ln 2-1<0,f (3)=ln 3-23>0,所以x 0∈(2,3),所以g (x 0)=[x 0]=2.答案:B3.已知函数f (x )=⎩⎨⎧x 2-2x ,x ≤0,1+1x ,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .3解析:函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知,零点个数为2.答案:C4.已知f (x )是奇函数且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18C .-78D .-38解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案:C5.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x+a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C.12<a <1 D .a ≤0或a >1解析:因为当x >0时,x =1是函数f (x )的一个零点, 所以当x ≤0时,要使f (x )=-2x +a 没有零点, 则-2x +a <0或-2x +a >0恒成立, 即a <2x 或a >2x 恒成立,故a ≤0或a >1.所以函数f (x )有且只有一个零点的充分不必要条件可以是a <0. 答案:A6.(多选题)若函数f (x )=x 3+x 2-2x -2的一个正数零点附近的函数值用二分法计算,其参考数据如下:A .1.25B .1.437 5C .1.406 25D .1.421 9解析:由零点存在定理,在(1.406 25,1.437 5)内有零点, 又1.437 5-1.406 25=0.031 25<0.05,所以在区间[1.406 25,1.437 5]内任取一值可为零点近似解. 则B 、C 、D 均满足要求. 答案:BCD7.(2020·湖南雅礼中学检测)已知函数f (x )=⎩⎪⎨⎪⎧2|x |,x ≤1,x 2-3x +3,x >1,若关于x 的方程f (x )=2a (a ∈R)恰好有两个不同的实根,则实数a 的取值范围为( )A.12<a <1 B .a =12C.38<a ≤12或a >1 D .a ∈R解析:作出函数f (x )的图象如图:因为关于x 的方程f (x )=2a 恰好有两个不同实根, 所以y =2a 与函数y =f (x )的图象恰有两个交点, 所以2a >2或34<2a ≤1.解之得a >1或38<a ≤12.答案:C8.已知函数f (x )=a +log 2(x 2+a )(a >0)的最小值为8,则实数a 的取值范围是( )A .(5,6)B .(7,8)C .(8,9)D .(9,10)解析:由于f (x )在[0,+∞)上是增函数,在(-∞,0)上是减函数, 所以f (x )min =f (0)=a +log 2a =8. 令g (a )=a +log 2a -8,a >0.则g (5)=log 25-3<0,g (6)=log 26-2>0, 又g (a )在(0,+∞)上是增函数, 所以实数a 所在的区间为(5,6). 答案:A9.(2018·全国卷Ⅲ)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.解析:由题意知,cos ⎝ ⎛⎭⎪⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k=2时,x =7π9,均满足题意,所以函数f (x )在[0,π]的零点个数为3.答案:310.函数f (x )=x 2+ax +b 有零点,但不能用二分法求出,则a ,b 的关系是________,函数的零点是________(用a 表示).解析:依题意,f (x )=x 2+ax +b 有不变号零点, 所以Δ=a 2-4b =0,知a 2=4b , 从而函数的零点x 0=-a2.答案:a 2=4b -a211.(2020·济南质检)若x 1是方程x e x =1的解,x 2是方程x ln x =1的解,则x 1x 2等于________.解析:考虑到x 1,x 2是函数y =e x 、函数y =ln x 与函数y =1x 的图象的交点A ,B 的横坐标.又A ⎝ ⎛⎭⎪⎫x 1,1x 1,B ⎝ ⎛⎭⎪⎫x 2,1x 2两点关于y =x 对称,因此x 1x 2=1.答案:112.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≤1,log 3 x ,x >1.(1)若f (1)=3,则实数a =________.(2)若函数y =f (x )-2有且仅有两个零点,则实数a 的取值范围是________.解析:(1)f (1)=1-a =3,所以a =-2,(2)作出y =2与y =f (x )的图象(略),y =f (x )-2有两个零点,则12-a <2,所以a >-1.答案:(1)-2 (2)(-1,+∞)[B 级 能力提升]13.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0B .1C .2D .3解析:由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2. 答案:C14.(2020·佛山调研)设函数f (x )=⎩⎪⎨⎪⎧|ln x |,x >0,e x (x +1),x ≤0.若函数g (x )=f (x )-b 有三个零点,则实数b 的取值范围是( )A .(1,+∞) B.⎝ ⎛⎭⎪⎫-1e 2,0 C .(1,+∞)∪{0}D .(0,1]解析:令g (x )=f (x )-b =0,函数g (x )=f (x )-b 有三个零点等价于f (x )=b 有三个根,当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2),由f ′(x )<0得e x (x +2)<0,即x <-2,此时f (x )为减函数,由f ′(x )>0得e x (x +2)>0,即-2<x <0,此时f (x )为增函数, 即当x =-2时,f (x )取得极小值f (-2)=-1e 2,作出f (x )的图象如图,要使f (x )=b 有三个根,则0<b ≤1,故选D.答案:D15.已知函数f (x )=e x -e -x +4,若方程f (x )=kx +4(k >0)有三个不同的实根x 1,x 2,x 3,则x 1+x 2+x 3=________.解析:易知y =e x -e -x 为奇函数,且其图象向上平移4个单位,得y =f (x )的图象.所以y =f (x )的图象关于点(0,4)对称, 又y =kx +4过点(0,4)且关于(0,4)对称.所以方程f (x )=kx +4的三个根中有一个为0,且另两根之和为0.因此x 1+x 2+x 3=0. 答案:0[C 级 素养升华]16.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.解析:(1)当λ=2时,f (x )=⎩⎨⎧x -4,x ≥2,x 2-4x +3,x <2,其图象如图(1)所示.由图知f (x )<0的解集为(1,4).(2)f (x )=⎩⎨⎧x -4,x ≥λ,x 2-4x +3,x <λ恰有2个零点有两种情况:①二次函数有两个零点,一次函数无零点;②二次函数与一次函数各有一个零点.在同一平面直角坐标系中画出y =x -4与y =x 2-4x +3的图象,如图(2),平移直线x =λ,可得λ∈(1,3]∪(4,+∞).答案:(1,4) (1,3]∪(4,+∞) 素养培育直观想象——嵌套函数的零点问题(自主阅读)函数的零点是高考命题的热点,主要涉及判断函数零点的个数或范围,常考查三次函数与复合函数的相关问题.对于嵌套函数的零点,通常先“换元解套”,将复合函数拆解为两个相对简单函数,借助函数的图象、性质求解.1.嵌套函数的零点个数判断[典例1] 已知f (x )=⎩⎪⎨⎪⎧|lg x |,x >0,2|x |,x ≤0,则函数y =2[f (x )]2-3f (x )+1的零点个数是________.解析:由2[f (x )]2-3f (x )+1=0得 f (x )=12或f (x )=1,作出函数y =f (x )的图象.由图象知y =12与y =f (x )的图象有2个交点,y =1与y =f (x )的图象有3个交点.因此函数y =2[f (x )]2-3f (x )+1的零点有5个.答案:5[解题思路] 1.上述题目涉及嵌套函数零点个数的判断,求解的主要步骤:(1)换元解套,转化为t =g (x )与y =f (t )的零点;(2)依次解方程,令f (t )=0,求t ,代入t =g (x ),求出x 的值域判断图象交点个数.2.抓住两点:(1)转化换元;(2)充分利用函数的图象与性质. 2.嵌套函数零点中的参数[典例2] (2020·湖北重点中学联考)已知函数f (x )=xe x ,若关于x的方程[f (x )]2+mf (x )+m -1=0恰有3个不同的实数解,则实数m 的取值范围是( )A .(-∞,2)∪(2,+∞) B.⎝⎛⎭⎪⎫1-1e ,+∞C.⎝⎛⎭⎪⎫1-1e ,1 D .(1,e)解析:因为f ′(x )=e x -x e x(e x )2=1-xe x ,所以f (x )在(-∞,1)上单调递增,在(1,+∞)上递减. 因此f (x )max =f (1)=1e.又当x →-∞时,f (x )→-∞;x →+∞时,f (x )→0且f (x )>0. 从而作出t =f (x )的简图,如图所示. 令t =f (x ),g (t )=t 2+mt +m -1. 由g (t )=0,得t =-1或t =1-m .当t =-1时,f (x )=xe x =-1,方程有一解,要使原方程有3个不同的实数解,必须使t =1-m 与t =f (x )的图象有两个交点.故0<1-m <1e ,所以1-1e <m <1.答案:C[解题思路] 1.题目以函数的图象、性质为载体,考查函数零点(方程的根)中参数的求解,综合考查直观想象、数学运算、逻辑推理等数学核心素养.2.涉及复合函数零点的步骤:①换元,令t =f (x ),y =g (t ),f (x )为“内函数”,g (t )为“外函数”;②作图,作“外函数”y =g (t )的图象与“内函数”t =f (x )的图象;③观察图象进行分析.[典例3] 函数f (x )=⎩⎪⎨⎪⎧ln (-x -1),x <-1,2x +1,x ≥-1,若函数g (x )=f (f (x ))-a 有三个不同的零点,则实数a 的取值范围是________.解析:设t =f (x ),令f (f (x ))-a =0,则a =f (t ).在同一坐标系内作y =a ,y =f (t )的图象(如图所示).当a ≥-1时,y =a 与y =f (t )的图象有两个交点.设交点的横坐标为t 1,t 2(不妨设t 2>t 1)且t 1<-1,t 2≥-1.当t 1<-1时,t 1=f (x )有一解.当t 2≥-1时,t 2=f (x )有两解.综上,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点. 答案:[-1,+∞)[解题思路] 1.求解本题抓住分段函数的图象性质,由y =a 与y=f(t)的图象,确定t1,t2的取值范围.进而由t=f(x)图象确定x取值.2.含参数的嵌套函数方程,应注意让参数的取值“动起来”,抓临界位置,动静结合.。
高数课本_同济六版
第一章函数与极限(考研必考章节,其中求极限是本章最重第二章要的内容,要掌握求极限的集中方法)第三章第四章第一节映射与函数(一般章节)第五章一、集合(不用看)二、映射(不用看)三、函数(了解)第六章注:P1--5 集合部分只需简单了解第七章P5--7不用看第八章P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界第九章P17--20 不用看第十章P21 习题1.1第十一章1、2、3大题均不用做第十二章4大题只需做(3)(5)(7)(8)第十三章5--9 均做第十四章10大题只需做(4)(5)(6)第十五章11大题只需做(3)(4)(5)第十六章12大题只需做(2)(4)(6)第十七章13做14不用做15、16重点做第十八章17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看)一、数列极限的定义(了解)二、收敛极限的性质(了解)二、P26--28 例1、2、3均不用证三、p28--29 定理1、2、3的证明不用自己证但要会理解四、P30 定理4不用看五、P30--31 习题1-2六、1大题只需做(4)(6)(8)七、2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题)一、(了解)二、(了解)二、P33--34 例1、2、3、4、5只需大概了解即可三、P35 例6 要会做例7 不用做四、P36--37 定理2、3证明不用看定理3’4”完全不用看五、六、p37习题1--3七、1--4 均做5--12 均不用做第四节(重要)第五节第六节一、无穷小(重要)二、无穷大(了解)第七节第八节 p40 例2不用做 p41 定理2不用证第九节 p42习题1--4第十节第十一节 1做 2--5 不全做 6 做 7--8 不用做第五节(注意运算法则的前提条件是各自存在)第六节p43 定理1、2的证明要理解第七节p44推论1、2、3的证明不用看第八节p48 定理6的证明不用看第九节p49 习题1--5第十节1题只需做(3)(6)(7)(8)(10)(11)(13)(14)第十一节2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明第七节第八节第九节p50 准则1的证明要理解第十节p51 重要极限一定要会独立证明(经典重要极限)第十一节第十二节p53另一个重要极限的证明可以不用看第十三节p55--56柯西极限存在准则不用看第十四节第十五节p56习题1--7第十六节第十七节1大题只做(1)(4)(6)第十八节2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)第八节p58--59 定理1、2的证明要理解第九节p59 习题1--7 全做第十节第八节(基本必考小题)第九节p60--64 要重点看第八节基本必出考题第十节p64 习题1--8第十一节第十二节1、2、3、4、5要做其中4、5要重点做第十三节6--8不用做第九节(了解)第十节p66--67 定理3、4的证明均不用看第十一节p69 习题1--9第十二节1、2要做第十三节3大题只做(3)——(6)第十四节4大题只做(4)——(6)第十五节5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)第十一节第十二节一、(重要)二、(重要)p72三、一致连续性(不用看)第十三节p74习题1--10第十四节1、2、3、5要做,要会用5的结论。
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习本文没有明显的格式错误和问题段落。
以下是小幅度改写后的文章:本教案旨在帮助学生掌握高中数学中重要的等式性质与不等式性质,这是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用。
同时,等式性质与不等式性质也为学生以后顺利研究基本不等式起到重要的铺垫。
教学目标包括掌握等式性质与不等式性质及其推论,能够运用其解决简单的问题,进一步掌握比较法比较实数的大小,以及通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
教学重点是掌握不等式性质及其应用,难点则是不等式性质的应用。
为此,我们采用以学生为主体的诱思探究式教学,精讲多练的教学方法,借助多媒体等教学工具,引导学生独立思考、小组讨论,充分发挥学生的主动性和创造性。
在教学过程中,我们通过情景导入,引导学生观察和思考现实生活中的相等关系和不等关系;通过预课本,引入新课,让学生自主思考和探究不等式的基本性质、比较多项式大小的方法以及重要不等式等内容;通过典例分析和举一反三,帮助学生更好地应用不等式性质解决实际问题。
最后,我们希望通过本教案的教学,能够培养学生的数学抽象、逻辑推理、数学运算、数据分析和数学建模等方面的素养,提高学生的数学思维水平和解决实际问题的能力。
已知2<a<3,-2<b<-1,要求2a+b的取值范围。
首先,可以将2a+b拆开,得到2a+b<6-2=4,即2a+b的上界为4.然后,将2a+b拆开,得到2a+b>2×2+(-1)=3,即2a+b的下界为3.因此,2a+b的取值范围为3<2a+b<4.基本不等式”是必修1的重要内容。
它是在研究不等关系和不等式性质,掌握不等式性质的基础上对不等式的进一步研究。
同时,它也是为了以后研究选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。
(完整版)初中数学教材章节-人教版
七年级上册(人教版)第一章有理数1、正数和负数2、有理数(有理数、数轴、相反数、绝对值)3、有理数的加减法(加法法则、交换律、结合律)4、有理数的乘除(倒数、交换律、结合律、分配律)5、有理数的乘方(幂、近似数)第二章整式的加减1、整式(单项式、多项式)2、整式的加减(同类项、合并同类项)第三章一元一次方程1、从算式到方程(一元一次方程、等式的性质)2、解一元一次方程-合并同类项与移项3、解一元一次方程-去括号去分母4、实际问题与一元一次方程第四章几何图形的初步1、几何图形(立体图形、平面图形、三视图、点线面体)2、直线、射线、线段(相交)3、角(度、分、秒、角的比较与运算、角平分线、余角、补角)4、课题设计-设计制作长方形形状的包装纸盒七年级下册第五章相交线与平行线1、相交线(邻补角、对顶角、垂线、同位角、内错角、同旁内角)2、平行线及其判定(3个判定)3、平行线的性质(3个性质、命题、定理、证明)4、平移第六章实数1、平方根(算术平方根);2、立方根;3、实数(无理数)第七章平面直角坐标系1、平面直角坐标系(有序数对、坐标系、原点、横轴、纵轴)2、坐标方法的简单应用(位置、平移)第八章二元一次方程组1、二元一次方程组2、消元-解二元一次方程组3、实际问题与二元一次方程组4、三元一次方程组的解法第九章不等式1、不等式(解集、不等式的性质3个)2、一元一次不等式3、一元一次不等式组第十章数据的收集、整理与描述1、统计调查(全面调查、抽样调查、简单随机抽样)2、直方图(组距、频数);3、课题学习-从数据谈节水八年级上册第十一章 三角形1、与三角形有关的线段(三边关系、高、中线、角平分线、重心、稳定性)2、与三角形有关的角(内角和、外角)3、多边形及其内角和(多边形、内角和、外角和360°)第十二章 全等三角形1、全等三角形(全等形、性质、)2、三角形全等的判定(SSS 、SAS 、AAS 、ASA 、HL )3、角的平分线的性质第十三章 轴对称1、轴对称(对称点、垂直平分线、对称轴、垂直平分线的性质)2、画轴对称图形3、等腰三角形(性质、等边三角形、30°的直角三角形)4、课题学习-最短路径的问题第十四章 整式的乘法与因式分解1、整式的乘法(同底数幂的乘法、幂的乘方、积的乘方、单项式/多项式×单项式/多项式)2、乘法公式(平方差、完全平方公式)3、因式分解(分解因式、提公因式法、公式法)第十五章 分式1、分式(分数-分式、性质、约分、最简分式、通分、最简公分母)2、分式的运算(乘除法则、加减法则、整数指数幂)3、分式的方程(检验)八年级下册第十六章 二次根式1、二次根式(()的区别与22a a 、代数式)2、二次根式的乘除(最简二次根式)3、二次根式的加减(同类二次根式)第十七章 勾股定理1、勾股定理2、勾股定理的逆定理第十八章 平行四边形1、平行四边形(性质、判定、三角形中位线)2、特殊的平行四边形(矩形、直角三角形的中线、菱形、正方形) 第十九章 一次函数1、函数(变量、函数、解析式、图像)2、一次函数(正比例函数、一次函数、待定系数法、一次函数与方程/不等式)3、课题学习-选择方案第二十章 数据的分析1、数据的集中趋势(平均数、中位数、众数)2、数据的波动程度(方差)3、课题学习-体质健康测试中的数据分析九年级上册第二十一章一元一次方程1、一元一次方程(定义、根)2、解一元一次方程(配方法、公式法、判别式、因式分解法、根与系数的关系)3、实际问题与一元二次方程第二十二章二次函数1、二次函数的图象和性质2、二次函数与一元一次方程3、实际问题与二次函数第二十三章旋转1、图形的旋转2、中心对称(关于原点对称的点的坐标)3、课题学习-图形设计第二十四章圆1、圆的有关性质(圆心、半径、弦、等圆、垂直弦的直径、圆心角、圆周角)2、点和圆、直线和圆的位置关系3、正多边形和圆4、弧形和扇形面积第二十五章概率初步1、随机事件与概率2、用列举法求概率3、用频率估计概率九年级下册第二十六章反比例函数1、反比例函数(图像、性质)2、实际问题与反比例函数第二十七章相似1、图形的相似(相似比)2、相似三角形(判定、性质、应用)3、位似(位似图形、位似中心)第二十八章锐角三角函数1、锐角三角函数2、解直角三角形及其应用第二十九章投影与视图1、投影(平行投影、中心投影、正投影)2、三视图3、课题学习-制作立体模型。
新教材高中数学第2章一元二次函数方程和不等式2从函数观点看一元二次方程课件湘教版必修第一册
≤ 0,
所以
或
-8 ≥ 0
-8 ≤ 0,
解得m≥8或m≤0.
故m的取值范围为(-∞,0]∪[8,+∞).
反思感悟 一元二次方程ax2+bx+c=0实数根的个数的判断方法
(1)当Δ=b2-4ac>0时,方程有两个相异的实数根;
(2)当Δ=b2-4ac=0时,方程有两个相等的实数根;
(1)算:计算出两根的和与积;
(2)变:将所求的代数式表示成两根的和与积的形式;
(3)代:代入求值.
当堂检测
1.若x1,x2是一元二次方程2x2-6x+3=0的两个实数根,则|x1-x2|的值为(
A.
3
3
B. 3
C.3
)
D. 15
答案 B
解析 Δ=36-24=12>0,故方程有两个不相等的实数根.又根据一元二次方程
象
有两个相异实根 有两个相等实
一元二次方程
没有实根
2
ax +bx+c=0(a>0)的根 x1,x2(x1<x2)
根x1=x2=-
微练习
已知 m,n 是方程 2x -x-2=0
2
1
的两个实数根,则m
1
+ n 的值为
(
)
1
B.2
A.-1
1
C.2
D.1
答案 C
解析 由 m,n 是方程 2x -x-2=0 的两个实数根,得
2
所以 a
1
的取值范围要点笔记二次函数零点的求法
(1)代数法:求方程y=0的实数根.
(2)几何法:对于不能用求根公式的方程y=0,可以将它与函数的图象联系起
第二章 函数的概念与基本初等函数1-3节有答案
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一函数的定义域[典例] (1)(2019·长春质检)函数y =ln (1-x )x +1+1x 的定义域是( )A .[-1,0)∪(0,1)B .[-1,0)∪(0,1]C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则 (1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.[题组训练]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ①得f (x )+2f (-x )=2-x ,②①×2-②,得3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f (x -1),x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2,∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a -7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③.9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1.所以该函数的定义域为(0,1]. 答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,则f (f (-9))=________.解析:∵函数f (x )=⎩⎨⎧lg (1-x ),x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2.答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3. 答案:-312.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, 解得-4≤x ≤0或0<x ≤2, 故所求x 的取值范围是[-4,2]. 答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)函数f (x )的图象如图所示.第二节函数的单调性与最值一、基础知识1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论在公共定义域内:(1)函数f(x)单调递增,g(x)单调递增,则f(x)+g(x)是增函数;(2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.考点一 确定函数的单调性(区间))[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=ax x -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1).由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( ) A .f (x )=2x B .f (x )=|x -1| C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x 与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性.解:设x 1,x 2是任意两个正数,且x 1<x 2,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ). 当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0,所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax (a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数.考点二 求函数的值域(最值))[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-ax+b (a >0)在⎣⎡⎦⎤12,2上的值域为⎣⎡⎦⎤12,2,则a =________,b =________. (3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-ax +b (a >0)在⎣⎡⎦⎤12,2上是增函数, ∴f (x )min =f ⎝⎛⎭⎫12=12,f (x )max =f (2)=2.即⎩⎨⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52(3)4[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x 的值域为________.解析:当x >0时,f (x )=x +4x ≥4,当且仅当x =2时取等号; 当x <0时,-x +⎝⎛⎭⎫-4x ≥4, 即f (x )=x +4x ≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎡⎦⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎡⎦⎤-π6,2π3, 所以t ∈⎣⎡⎦⎤-12,1,y =f (t )=4t 2-12t -1, 因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎡⎦⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax ,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3,又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x ,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a 的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数, ∴f (x 1)-f (x 2)=x 1-a x 1+a2-⎝⎛⎭⎫x 2-a x 2+a 2 =(x 1-x 2)⎝⎛⎭⎫1+a x 1x 2<0.∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2.∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.[课时跟踪检测]A 级1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a .因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23D.⎣⎡⎭⎫12,23解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13,解得12≤x <23.4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧-x 2-ax -5,x ≤1,a x ,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧-a2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________.解析:由f (x )=1x 的图象知,f (x )=1x 在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞),∴f (x )=1x 在[2,a ]上也是减函数,∴f (x )max =f (2)=12,f (x )min =f (a )=1a ,∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x (a >0,x >0).(1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0, 则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎡⎦⎤12,2上是增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.12.已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. 解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). 因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)内单调递增. (2)任取x 1,x 2∈(1,+∞),且x 1<x 2, 则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0, 所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 所以0<a ≤1.所以a 的取值范围为(0,1].B 级1.若f (x )=-x 2+4mx 与g (x )=2mx +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1]解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2mx 的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数,所以⎩⎪⎨⎪⎧a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3. 答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1. (1)求f (0)的值,并证明f (x )在R 上是单调增函数; (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1. 又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3, 解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.第三节 函数的奇偶性与周期性一、基础知1.函数的奇偶性函数的定义域关于原点对称是函数具有奇偶性的前提条件.若f (x )≠0,则奇(偶)函数定义的等价形式如下:(1)f (-x )=f (x )⇔f (-x )-f (x )=0⇔f (-x )f (x )=1⇔f (x )为偶函数;(2)f (-x )=-f (x )⇔f (-x )+f (x )=0⇔f (-x )f (x )=-1⇔f (x )为奇函数.2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.周期函数定义的实质存在一个非零常数T ,使f (x +T )=f (x )为恒等式,即自变量x 每增加一个T 后,函数值就会重复出现一次.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.二、常用结论1.函数奇偶性常用结论(1)如果函数f (x )是奇函数且在x =0处有定义,则一定有f (0)=0;如果函数f (x )是偶函数,那么f (x )=f (|x |).(2)奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.(3)在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.2.函数周期性常用结论 对f (x )定义域内任一自变量x : (1)若f (x +a )=-f (x ),则T =2a (a >0). (2)若f (x +a )=1f (x ),则T =2a (a >0). (3)若f (x +a )=-1f (x ),则T =2a (a >0).3.函数图象的对称性(1)若函数y =f (x +a )是偶函数,即f (a -x )=f (a +x ),则函数y =f (x )的图象关于直线x =a 对称.(2)若对于R 上的任意x 都有f (2a -x )=f (x )或f (-x )=f (2a +x ),则y =f (x )的图象关于直线x =a 对称.(3)若函数y =f (x +b )是奇函数,即f (-x +b )+f (x +b )=0,则函数y =f (x )关于点(b,0)中心对称.考点一 函数奇偶性的判断[典例] 判断下列函数的奇偶性: (1)f (x )=36-x 2|x +3|-3;(2)f (x )=1-x 2+x 2-1; (3)f (x )=log 2(1-x 2)|x -2|-2;(4)f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.[解] (1)由f (x )=36-x 2|x +3|-3,可知⎩⎪⎨⎪⎧ 36-x 2≥0,|x +3|-3≠0⇒⎩⎪⎨⎪⎧-6≤x ≤6,x ≠0且x ≠-6,故函数f (x )的定义域为(-6,0)∪(0,6],定义域不关于原点对称,故f (x )为非奇非偶函数.(2)由⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0⇒x 2=1⇒x =±1,故函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,所以f (-x )=f (x )=-f (x ),所以函数f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0⇒-1<x <0或0<x <1,定义域关于原点对称.此时f (x )=log 2(1-x 2)|x -2|-2=log 2(1-x 2)2-x -2=-log 2(1-x 2)x ,故有f (-x )=-log 2[1-(-x )2]-x =log 2(1-x 2)x =-f (x ),所以函数f (x )为奇函数. (4)法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数.法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数.[题组训练]1.(2018·福建期末)下列函数为偶函数的是( ) A .y =tan ⎝⎛⎭⎫x +π4 B .y =x 2+e |x | C .y =x cos xD .y =ln|x |-sin x解析:选B 对于选项A ,易知y =tan ⎝⎛⎭⎫x +π4为非奇非偶函数;对于选项B ,设f (x )=x 2+e |x |,则f (-x )=(-x )2+e |-x |=x 2+e |x |=f (x ),所以y =x 2+e |x |为偶函数;对于选项C ,设f (x )=x cos x ,则f (-x )=-x cos(-x )=-x cos x =-f (x ),所以y =x cos x 为奇函数;对于选项D ,设f (x )=ln|x |-sin x ,则f (2)=ln 2-sin 2,f (-2)=ln 2-sin(-2)=ln 2+sin 2≠f (2),所以y =ln|x |-sin x 为非奇非偶函数,故选B.2.设函数f (x )=e x -e -x2,则下列结论错误的是( )A .|f (x )|是偶函数B .-f (x )是奇函数C .f (x )|f (x )|是奇函数D .f (|x |)f (x )是偶函数解析:选D ∵f (x )=e x -e -x2,则f (-x )=e -x -e x2=-f (x ).∴f (x )是奇函数. ∵f (|-x |)=f (|x |),∴f (|x |)是偶函数,∴f (|x |)f (x )是奇函数.考点二 函数奇偶性的应用[典例] (1)(2019·福建三明模拟)函数y =f (x )是R 上的奇函数,当x <0时,f (x )=2x ,则当x >0时,f (x )=( )A .-2xB .2-xC .-2-xD .2x(2)(2018·贵阳摸底考试)已知函数f (x )=a -2e x +1(a ∈R)是奇函数,则函数f (x )的值域为( )A .(-1,1)B .(-2,2)C .(-3,3)D .(-4,4)[解析] (1)当x >0时,-x <0,∵x <0时,f (x )=2x ,∴当x >0时,f (-x )=2-x .∵f (x )是R 上的奇函数,∴当x >0时,f (x )=-f (-x )=-2-x .(2)法一:由f (x )是奇函数知f (-x )=-f (x ),所以a -2e -x+1=-a +2e x +1,得2a =2e x+1+2e -x +1,所以a =1e x +1+e x e x +1=1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).法二:函数f (x )的定义域为R ,且函数f (x )是奇函数,所以f (0)=a -1=0,即a =1,所以f (x )=1-2e x +1.因为e x +1>1,所以0<1e x +1<1,-1<1-2e x +1<1,所以函数f (x )的值域为(-1,1).[答案] (1)C (2)A[解题技法]应用函数奇偶性可解决的四类问题及解题方法(1)求函数值将待求值利用奇偶性转化为已知区间上的函数值求解.(2)求解析式先将待求区间上的自变量转化到已知区间上,再利用奇偶性求解,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)求函数解析式中参数的值利用待定系数法求解,根据f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.(4)画函数图象和判断单调性利用奇偶性可画出另一对称区间上的图象及判断另一区间上的单调性.[题组训练]1.(2019·贵阳检测)若函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=log 2(x +2)-1,则f (-6)=( )A .2B .4C .-2D .-4解析:选C 根据题意得f (-6)=-f (6)=1-log 2(6+2)=1-3=-2.2.已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为________.解析:法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-⎝⎛⎭⎫x +122+14,所以当x <0时,函数f (x )的最大值为14. 法二:当x >0时,f (x )=x 2-x =⎝⎛⎭⎫x -122-14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.答案:143.(2018·合肥八中模拟)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析:∵f (x )=x ln(x +a +x 2)为偶函数,∴f (-x )=f (x ),即-x ln(a +x 2-x )=x ln(x +a +x 2),从而ln[(a +x 2)2-x 2]=0,即ln a =0,故a =1.答案:1考点三 函数的周期性[典例] (1)(2018·开封期末)已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2 019)=( )A .5 B.12C .2D .-2(2)(2018·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R),且在区间(-2,2]上,f (x )=⎩⎨⎧cos πx2,0<x ≤2,⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.[解析] (1)由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2 019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.(2)由函数f (x )满足f (x +4)=f (x )(x ∈R), 可知函数f (x )的周期是4, 所以f (15)=f (-1)=⎪⎪⎪⎪-1+12=12, 所以f (f (15))=f ⎝⎛⎭⎫12=cos π4=22. [答案] (1)D (2)22[题组训练]1.(2019·山西八校联考)已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则f ⎝⎛⎭⎫-112=________. 解析:∵f (x +2)=-1f (x ),∴f (x +4)=f (x ), ∴f ⎝⎛⎭⎫-112=f ⎝⎛⎭⎫52,又2≤x ≤3时,f (x )=x , ∴f ⎝⎛⎭⎫52=52,∴f ⎝⎛⎭⎫-112=52. 答案:522.(2019·哈尔滨六中期中)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎪⎨⎪⎧4x 2-2,-2≤x ≤0,x ,0<x <1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫214=________. 解析:由题意可得f ⎝⎛⎭⎫214=f ⎝⎛⎭⎫6-34=f ⎝⎛⎭⎫-34=4×⎝⎛⎭⎫-342-2=14,f ⎝⎛⎭⎫14=14.答案:14[课时跟踪检测]A 级1.下列函数为奇函数的是( ) A .f (x )=x 3+1 B .f (x )=ln 1-x1+xC .f (x )=e xD .f (x )=x sin x解析:选B 对于A ,f (-x )=-x 3+1≠-f (x ),所以其不是奇函数;对于B ,f (-x )=ln 1+x 1-x=-ln1-x 1+x=-f (x ),所以其是奇函数;对于C ,f (-x )=e -x ≠-f (x ),所以其不是奇函数;对于D ,f (-x )=-x sin(-x )=x sin x =f (x ),所以其不是奇函数.故选B.2.(2019·南昌联考)函数f (x )=9x +13x 的图象( )A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称解析:选B 因为f (x )=9x +13x =3x +3-x ,易知f (x )为偶函数,所以函数f (x )的图象关于y轴对称.3.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则f (-7)=( )A .3B .-3C .2D .-2解析:选B 因为函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,所以f (-7)=-f (7)=-log 2(7+1)=-3.4.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x ,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x ) D.12(e x -e -x )解析:选D 因为f (x )+g (x )=e x ,所以f (-x )+g (-x )=f (x )-g (x )=e -x ,。
2024届新高考一轮复习人教B版 主题二 第二章 第8节 函数与方程 课件(48张)
A.(0,1)
B.(1,2)
C.(-2,-1)
D.(-1,0)
A
)
解析:f(0)=-1,f(1)=2,故f(0)f(1)<0,由零点存在定理可知f(x)的零点所在
的一个区间是(0,1).
-, ≤ ,
3.已知函数 f(x)=
则函数 f(x)的零点为(
+ , > 1,
A.2
B.(0,1)
C.( ,+∞)
D.[1,+∞)
A
)
解析:x+a=0,x=-a<a,
则 x=-a 是函数 f(x)的一个零点,
由 ln x+2=0,解得 x=,
要使得 f(x)有两个不同的零点,则 a∈(0,).
+ , ≤ ,
有两个不同
+ , >
5.函数f(x)=x·2x-kx-2在区间(1,2)内有零点,则实数k的取值范围是
③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.
(4)判断是否达到近似的精度ε:若|a-b|<ε,则得到零点的近似值a(或b);否则重复步
骤(2)~(4).
用二分法求方程的近似解应具备两个条件,一是方程对应的函数在零点附近连
续不断,二是该零点左、右的函数值异号.
4.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
给定近似的精度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.
(2)求区间(a,b)的中点c.
(3)计算f(c),并进一步确定零点所在的区间:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八节函数与方程
[考纲传真]结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性与根的个数.
1.函数的零点
(1)定义:把函数y=f (x)的图像与横轴的交点的横坐标称为这个函数的零点.
(2)三个等价关系:方程f (x)=0有实数解⇔函数f (x)的图像与x轴有公共点⇔函数y=f (x)有零点.
(3)函数零点的判定(零点存在性定理):若函数y=f (x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f (a)·f (b)<0,则在区间(a,b)内,函数y=f (x)至少有一个零点.
2.二次函数y=ax2+bx+c(a>0)的图像与零点的关系
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)函数的零点就是函数的图像与x轴的交点.()
(2)函数y=f (x),x∈D在区间(a,b) D内有零点(函数图像连续不断),则f
(a)·f (b)<0.()
(3)若函数f (x)在(a,b)上单调且f (a)·f (b)<0,则函数f (x)在[a,b]上有且只
有一个零点.( )
(4)二次函数y =ax 2+bx +c 在b 2-4ac <0时没有零点.( )
[答案] (1)× (2)× (3)× (4)√
2.(教材改编)函数f (x )=e x +3x 的零点个数是( )
A .0
B .1
C .2
D .3
B [∵f (-1)=1e -3<0,f (0)=1>0,
∴f (x )在(-1,0)内有零点,
又f (x )为增函数,∴函数f (x )有且只有一个零点.]
3.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( )
A .y =cos x
B .y =sin x
C .y =ln x
D .y =x 2+1
A [由于y =sin x 是奇函数;y =ln x 是非奇非偶函数,y =x 2+1是偶函数但没有零点,只有y =cos x 是偶函数又有零点.]
4.(2016·江西赣中南五校联考)函数f (x )=3x -x 2的零点所在区间是( )
【导学号:66482074】
A .(0,1)
B .(1,2)
C .(-2,-1)
D .(-1,0)
D [∵f (-2)=-359,f (-1)=-23,
f (0)=1,f (1)=2,f (2)=5,
∴f (0)f (1)>0,f (1)f (2)>0,
f (-2)f (-1)>0,f (-1)f (0)<0,故选D.]
5.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.
【导学号:66482075】
⎝ ⎛⎭
⎪⎫13,1 [∵函数f (x )的图像为直线,由题意可得f (-1)f (1)<0, ∴(-3a +1)·(1-a )<0,解得13<a <1,。