08年-14年山东高考数学椭圆部分总结

合集下载

全国高考数学一轮复习-椭圆知识点总结

全国高考数学一轮复习-椭圆知识点总结

椭圆知识点知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质椭圆:12222=+b y a x )0(>>b a 与 12222=+bx a y )0(>>b a 的简单几何性质标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤b x ≤,a y ≤对称性关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±轴长长轴长=a 2,短轴长=b 2 长半轴长=a ,短半轴长=b (注意看清题目)离心率)10(<<=e ace c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;(p 是椭圆上一点)(不等式告诉我们椭圆上一点到焦点距离的范围)注意:①与坐标系无关的椭圆本身固有的性质,如:长轴长、短轴长、焦距、离心率等;②与坐标系有关的性质,如:顶点坐标、焦点坐标等知识点三:椭圆相关计算1.椭圆标准方程中的三个量c b a ,,的几何意义222c b a +=2.通径:过焦点且垂直于长轴的弦,其长ab 22焦点弦:椭圆过焦点的弦。

3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠为最大角。

2014届高考数学总复习 第8章 第5讲 椭圆

2014届高考数学总复习 第8章 第5讲 椭圆

2种必会方法 1. 定义法:根据椭圆定义,确定a2、b2的值,再结合焦点 位置,直接写出椭圆方程. 2. 待定系数法:根据椭圆焦点是在x轴还是 y 轴上,设出相 应形式的标准方程,然后根据条件确定关于a、b、c的方程组, 解出a2、b2,从而写出椭圆的标准方程.
3点必记技巧 1. 椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦 点的距离分别为最大距离和最小距离,且最大距离为a+c,最 小距离为a-c. 2. 求椭圆离心率e时,只要求出a,b,c的一个齐次方程, 再结合c2=a2-b2,就可求得e(0<e<1). 3. 求椭圆方程时,常用待定系数法,但首先要判断是否为 标准方程,判断的依据是:①中心是否在原点;②对称轴是否 为坐标轴.
2.椭圆的标准方程和几何性质
标准方 程
ax22+by22=1(a>b>0)
ay22+bx22=1(a>b>0)
图形
范围
______≤x≤______ ______≤y≤______
-b≤x≤b- a≤y≤a
对称性
对称轴:坐标轴
对称中心:原点
顶点 A1(-a,0),A2(a,0) B1(0, A1(0,-a),A2(0,
答案:C 解析:由 e=12=ac得 a=2c,b= 3c,
所以 x1+x2=-ba=- 23,x1x2=-ac=-12,
所 以 点 P(x1 , x2) 到 圆 心 (0,0) 的 距 离 为 x12+x22 =
x1+x22- 在圆 x2+y2
[变式探究] [2012·上海高考]对于常数m、n,“mn>0”是 “方程mx2+ny2=1的曲线是椭圆”的( )
A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件

高考数学椭圆知识点汇总

高考数学椭圆知识点汇总

高考数学椭圆知识点汇总椭圆,作为高考数学中的一个重要知识点,经常出现在考试中。

对于很多学生来说,椭圆可能会让人感到有些困惑和难以掌握。

因此,本文将对高考数学中的椭圆知识点进行汇总,以帮助大家更好地理解和应对考试。

一、基本概念椭圆是平面上到两个定点F1和F2的距离之和等于常数2a,且以两点连线的中点为中心的闭合曲线。

F1和F2称为椭圆的焦点,连线F1F2的长度称为椭圆的焦距,直线段连接两个焦点的中点和椭圆上一点的长度称为椭圆的半径。

二、标准方程椭圆的标准方程为:(x-x0)²/a² + (y-y0)²/b² = 1 或 (y-y0)²/a² + (x-x0)²/b² = 1,其中(x0, y0)为椭圆的中心坐标,a为长轴长度,b为短轴长度。

三、图形性质1. 在横轴上,椭圆的离心率为e=√(a²-b²)/a,范围为0<e<1。

当e→0时,椭圆变成一个圆。

2. 椭圆关于x、y轴对称,即对于任意(x, y)在椭圆上,则(-x, y)、(x, -y)、(-x, -y)也在椭圆上。

3. 椭圆的离心率小于1,因此离心率为1的图形为双曲线,离心率大于1的图形为抛物线。

四、焦点与半径1. 焦距等于2ae,其中e为焦距与长轴的比值。

2. 椭圆离焦点的距离之和等于椭圆上任意一点到两个焦点的距离之和。

3. 椭圆的半径r和焦距f的关系为r² = a² - b² = a²(1 - e²) = f² + b²。

五、直线与椭圆的关系1. 直线与椭圆相交于两个点,则这两个点关于椭圆的中心对称。

2. 直线与椭圆相切于一点,则这个点恰好位于椭圆的一个焦点上。

3. 直线既不与椭圆相交也不相切,则直线与椭圆没有交点。

六、椭圆的参数方程椭圆的参数方程为:x = x0 + a*cosθ,y = y0 + b*sinθ,其中θ为参数,0 ≤ θ ≤ 2π。

【复习方略】2014高考数学(人教A版,理)课件(山东专供)第八章 第六节椭 圆

【复习方略】2014高考数学(人教A版,理)课件(山东专供)第八章 第六节椭  圆
x 2 y 2 (a>b>0)的离心率 e 2,且椭圆C上的点到Q(0,2) 2 1 2 3 a b
的距离的最大值为3. ①求椭圆C的方程; ②在椭圆C上,是否存在点M(m,n)使得直线l:mx+ny=1与圆O: x2+y2=1相交于不同的两点A,B,且△OAB的面积最大?若 存在,求出点M的坐标及相对应的△OAB的面积;若不存在,
图 形
标准 方程
x 2 y2 2 1 2 a b ___________(a >b>0)
y2 x 2 2 1 2 a b __________(a >b>0)
范围 对称性
-a a ___≤x≤__ b -b ___≤y≤__
b -b ___≤x≤__ -a a ___≤y≤__ 坐标轴 对称轴:_______ 原点 对称中心:_____
(2)由题意知|PF1|+|PF2|=2a, PF1 PF2 ,
∴|PF1|2+|PF2|2=|F1F2|2=4c2,
∴(|PF1|+|PF2|)2-2|PF1||PF2|=4c2, ∴2|PF1||PF2|=4a2-4c2=4b2. ∴|PF1||PF2|=2b2, ∴S
PF 1F2
1 1 = |PF1||PF2|= 〓2b2=b2=9. 2 2
请说明理由.
【思路点拨】(1)根据椭圆的几何性质,利用数形结合的思想 ,
将|AF1|,|F1F2|,|F1B|用含a,c的代数式表示,再由其成等比数
列构建a,c的方程,转化为关于离心率e的方程,得e. (2)①先根据 e 2,将待定系数a用b表示,再根据椭圆C上任
3
意一点P(x,y)满足椭圆C的方程,将|PQ|表示为y的函数,求其 最大值,从而求出b,得C的方程;

高考数学-椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用及经典例题解析

高考数学-椭圆第二定义应用一、随圆的第二定义(比值定义): 若),e e d MF为常数10(,<<=则M 的轨迹是以F 为焦点,L 为准线的椭圆。

注:①其中F 为定点,F (C ,0),d 为M 到定直线L :ca x 2=的距离 ②F 与L 是对应的,即:左焦点对应左准线,右焦点对应右准线。

二、第二定义的应用[例1]已知11216,)3,2(22=+-y x F A 是的右焦点,点M 为椭圆的动点,求MF MA 2+的最小值,并求出此时点M 的坐标。

分析:此题主要在于MF 2的转化,由第二定义:21==e d MF ,可得出d MF =2,即为M 到L (右准线)的距离。

再求最小值可较快的求出。

解:作图,过M 作l MN ⊥于N ,L 为右准线:8=x , 由第二定义,知:21==e d MF,MN d MF ==∴2,2MN MA MF MA +=+Θ 要使MF MA 2+为最小值, 即:MF MA +为“最小”, 由图知:当A 、M 、N 共线,即:l AM ⊥时,MF MA 2+为最小;且最小值为A 到L 的距离=10, 此时,可设)3,(0x M ,代入椭圆方程中,解得:320=x 故当)3,32(M 时, MF MA 2+为的最小值为10[评注]:(1)以上解法是椭圆第二定义的巧用,将问题转化为点到直线的距离去求,可使题目变得简单。

(2)一般地,遇到一个定点到定直线问题应想到椭圆的第二定义。

[例2]:设),(00y x P 为椭圆)0(,12222>>=+b a by a x 的一点,离心率为e ,P 到左焦点F 1和右焦点F 2的距离分别为r 1,r 2 求证:0201,ex a r ex a r -=+=证明:作图, 由第二定义:e c ax PF =+201即:a ex ca x e c a x e PF r +=+=+⋅==0202011)( 又a PF PF 221=+0012)(22ex a ex a a r a r -=+-=-=∴注:①上述结论01ex a r +=,02ex a r -=称为椭圆中的焦半径公式 ②a x a ex a r PF ≤≤-+==0011由 得出c a a e a r c a ea a r -=-⋅+≥+=+≤)(11且 即c a PF c a +≤≤-1 当)a ,(,P c a PF 01--=为时 当)(a,,P c a PF 01为时+=[练习](1)过1922=+y x 的左焦点F 作倾斜角为300的直线交椭圆于A 、B 两点,则弦AB 的长为 2 分析:是焦点弦AB Θ )x (x e a )ex (a )ex (a BF AF AB B A B A +⋅+=+++=+=∴2只需求?=+B A x x (用联立方程后,韦达定理的方法可解)(2)148642122=+y x 、F F 为的左、右焦点,P 为椭圆上的一点,若,321PF PF =则P 到左准线的距离为 24分析:由焦半径公式,设)y x p 00,(得,x )ex a ex a 8(3000=-=+即又左准线为:16-=x 则P 到左准线距离为8-(-16)=24[例3] 设椭圆的左焦点为F ,AB 过F 的弦,试分析以AB 为直径的圆与左准线L 的位置关系 解,设M 为弦AB 的中点,(即为“圆心”)作,A L AA 11于⊥ ,B L BB 11于⊥,M L MM 11于⊥由椭圆的第二定义知:)(11BB AA e BF AF AB +=+=10<<e Θ 11BB AA AB +<∴又在直角梯形11A ABB 中,1MM 是中位线1112MM BB AA =+∴ 即:12MM AB < 12MM AB<∴ (2AB为圆M 的半径1MM r ,为圆心M 到左准线的距离d d r <⇒故以AB 为直径的圆与左准线相离椭圆第二定义的应用练习1、椭圆两准线间的距离等于焦距的4倍,则此椭圆的离心率e 等于( )A .21 B.31 C.41 D.42 2、椭圆的两个焦点是)3,0(1-F 和)3,0(2F ,一条准线方程是316-=y ,则此椭圆方程是( ) A .191622=+y x B.171622=+y x C. 116922=+y x D.116722=+y x 3、由椭圆116922=+y x 的四个顶点组成的菱形的高等于: 。

椭圆高考知识点总结

椭圆高考知识点总结

椭圆高考知识点总结椭圆作为高考数学中的一个重要知识点,是极坐标和二次曲线的重要组成部分。

椭圆具有丰富的性质和应用,掌握椭圆的基本概念和相关公式对于解题非常重要。

本文将对椭圆的知识点进行总结和归纳,帮助大家更好地理解和掌握椭圆的相关内容。

一、椭圆的基本概念椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹,记为E,F1F2的中点为圆心O,直线F1F2的长度为2c,那么我们有以下的基本概念:1. 长轴和短轴:椭圆的两个焦点F1和F2之间的距离2a称为椭圆的长轴,过圆心O的直线中长轴的两倍称为椭圆的短轴。

2. 首焦距和垂直焦距:首焦距也就是焦点到椭圆上一点的距离,垂直焦距就是焦点到椭圆的一条切线的距离。

3. 离心率:椭圆的离心率定义为离心距与长轴的比值,记为e。

离心率e的范围是0<e<1,当e=0时,椭圆退化为圆。

二、椭圆的方程椭圆的方程是椭圆上的一点(x, y)满足的条件,一般形式为:((x-h)²/a²) + ((y-k)²/b²) = 1其中,(h, k)为椭圆的圆心坐标。

三、椭圆的性质椭圆有许多重要的性质,包括以下几个方面:1. 对称性:椭圆具有两个互相关于长轴和短轴对称的轴线,这两个轴线称为椭圆的对称轴。

2. 切线性质:椭圆上任意一点处的切线斜率等于这点椭圆的切线的斜率。

3. 焦点性质:对于椭圆上的任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别为点P到焦点F1和F2的距离。

4. 弦长性质:椭圆上两点之间的弦和对应的准线之积等于常数4a²。

5. 曲线方程的性质:椭圆的标准方程为((x-h)²/a²) + ((y-k)²/b²) = 1,等于1的点表示椭圆上的点,大于1和小于1的点在椭圆的内部和外部。

四、椭圆的常见问题在高考试题中,椭圆常常与坐标系、焦点坐标、离心率、方程等形式相关,考察的重点主要有以下几个方面:1. 椭圆的焦点坐标和离心率的确定;2. 椭圆的方程参数的确定,如长轴、短轴或焦点的坐标;3. 椭圆的对称轴、矩形、标准方程的应用和转化;4. 椭圆的参数方程与极坐标方程的变换;5. 椭圆与抛物线、双曲线等其他二次曲线的关系。

高考数学椭圆与双曲线重要规律定理

高考数学椭圆与双曲线重要规律定理

椭圆与双曲线性质--(重要结论)清华附中高三数学备课组椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。

12. 若000(,)P x y 在椭圆22221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b -=.6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。

专题 椭圆(知识点讲解)- 2023年高考数学一轮复习知识点讲解(解析版)

专题 椭圆(知识点讲解)- 2023年高考数学一轮复习知识点讲解(解析版)

专题9.3 椭圆(知识点讲解)【知识框架】【核心素养】1.结合椭圆的定义,考查应用能力,凸显逻辑推理、数学运算的核心素养.2.结合椭圆的定义、简单的几何性质、几何图形,会求椭圆方程及解与几何性质有关的问题,凸显数学运算、直观想象的核心素养.【知识点展示】一.椭圆的定义及其应用1.椭圆的概念(1)文字形式:在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.(2)代数式形式:集合①若,则集合P为椭圆;②若,则集合P为线段;1212P={M||MF|+|MF|=2a|FF|=2c.}a c>a c=③若,则集合P 为空集.2.椭圆的标准方程:焦点在轴时,;焦点在轴时,二.椭圆的标准方程 1. 椭圆的标准方程:(1)焦点在轴,;(2)焦点在轴,.2.满足条件:三.椭圆的几何性质椭圆的标准方程及其几何性质条件图形标准方程范围对称性曲线关于轴、原点对称 曲线关于轴、原点对称 顶点 长轴顶点 ,短轴顶点长轴顶点 ,轴顶点焦点焦距a c <x 2222=1(a>b>0)x y a b +y 2222=1(a>b>0)y x a b +x 2222+=1(a>b>0)x y a by 2222y +=1(a>b>0)x a b22222000a c a b c a b c >,=+,>,>,>22222000a c a b c a b c >,=+,>,>,>2222+=1(a>b>0)x y a b 2222y +=1(a>b>0)x a b x a y b ≤≤,x b y a ≤≤,,x y ,x y (),0a ±()0,b ±()0,a ±(),0b ±(),0c ±()0,c ±222122()F F c c a b -==离心率,其中通径过焦点垂直于长轴的弦叫通径,其长为1.直线与椭圆位置关系的判断(1)代数法:把椭圆方程与直线方程联立消去y ,整理得到关于x 的方程Ax 2+Bx +C =0.记该一元二次方程根的判别式为Δ,①若Δ>0,则直线与椭圆相交;②若Δ=0,则直线与椭圆相切;③若Δ<0,则直线与椭圆相离.(2)几何法:在同一直角坐标系中画出椭圆和直线,利用图象和性质可判断直线与椭圆的位置关系.2.直线与椭圆的相交长问题:(1)弦长公式:设直线与椭圆有两个公共点则弦长公式为或 (2)弦中点问题,适用“点差法”. (3)椭圆中点弦的斜率公式若M (x 0,y 0)是椭圆的弦AB (AB 不平行y 轴)的中点,则有k AB ·k OM =22b a-,即k AB =2020b x a y -.【常考题型剖析】题型一:椭圆的定义及其应用例1.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】() 0,1ce a∈=c =22a b -22b a1122()()M x y N x y ,,,,MN =221212(1)[()4]k x x x x ++-MN 2121221(1)[(y )4]y y y k++-2222+=1(a>b>0)x y a b由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .例2. (2021·全国)已知椭圆22:143x y C +=的右焦点为F ,P 为椭圆C 上一动点,定点(2,4)A ,则||||PA PF -的最小值为( ) A .1 B .-1C 17D .17【答案】A 【分析】设椭圆的左焦点为F ',得到||4PF PF '=-,得出||||||4PA PF PA PF '-=+-,结合图象,得到当且仅当P ,A ,F '三点共线时,||PA PF '+取得最小值,即可求解. 【详解】设椭圆的左焦点为F ',则||4PF PF '+=,可得||4PF PF '=-, 所以||||||4PA PF PA PF '-=+-,如图所示,当且仅当P ,A ,F '三点共线(点P 在线段AF '上)时, 此时||PA PF '+取得最小值,又由椭圆22:143x y C +=,可得(1,0)F '-且(2,4)A ,所以2(21)165AF '=++=,所以||||PA PF -的最小值为1. 故选:A .例3.(2023·全国·高三专题练习)已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为( )A .33B .3C 3D .9【答案】A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解. 【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A【规律方法】1.应用椭圆的定义,可以得到结论:(1)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2.2.对焦点三角形的处理方法,通常是运用.3.椭圆定义的应用技巧12F PF △⎧⎪⎨⎪⎩定义式的平方余弦定理面积公式2212222121212(2a)212S θθ∆⎧⎪=⎪=-⋅⎨⎪⎪=⋅⎩⇔(|PF|+|PF|)(2c)|PF|+|PF||PF||PF|cos |PF||PF|sin(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 题型二:椭圆的标准方程例4.(2022·全国·高考真题(文))已知椭圆2222:1(0)x y C a b a b+=>>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为( )A .2211816x y +=B .22198x yC .22132x y +=D .2212x y +=【答案】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率22113c b e a a ==-=,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=-BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y .故选:B.例5.(2019·全国高考真题(文))已知椭圆C 的焦点为12,过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为( )A.2212x y += B.22132x y +=C.22143x y +=D.22154x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =.22224233312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得32n =.2222423,3312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 例6.【多选题】(2023·全国·高三专题练习)点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=︒,则椭圆C 方程可以是( )A .221259x y +=B .2212516x y +=C .221189x y +=D .221169x y +=【答案】AC【分析】设椭圆上顶点为B ,由题满足1290F BF ∠≥︒,即2221212BF BF F F +≤,可得222a b ≥,即可得出答案.【详解】设椭圆方程为22221x y a b+=()0a b >>,设椭圆上顶点为B ,椭圆C 上存在点P ,使得1290F PF ∠=︒, 则需1290F BF ∠≥︒, 2221212BF BF F F ∴+≤,即2224a a c +≤,222c a b =-,222424a a b -≤, 则222a b ≥,所以选项AC 满足. 故选:AC. 1.用待定系数法求椭圆标准方程的一般步骤是: (1)作判断:根据条件判断焦点的位置.(2)设方程:焦点不确定时,要注意分类讨论,或设方程为 221mx ny +=.(3)找关系:根据已知条件,建立关于的方程组. (4)求解,得方程.2.(1)方程与有相同的离心率.(2)与椭圆共焦点的椭圆系方程为,恰当运用椭圆系方程,可使运算简便. 题型三:椭圆的几何性质例7.(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A 3B 2C .12D .13【答案】A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【详解】解:(),0A a -, 设()11,P x y ,则()11,Q x y -, 则1111,AP AQ y y k k x a x a==+-+, 故21112211114AP AQy y y k k x a x a x a ⋅=⋅==+-+-+, 又2211221x y a b +=,则()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C 的离心率22312c b e a a ==-=. 故选:A .(0)0m n m n ≠>,>且a b c m n 、、或、2222y +=1x a b 2222y +=(>0)x a b λλ2222+=1(a>b>0)x y a b22222+=1(a>b>0,0)x y b k a k b k+>++与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.5M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( ) A .25B .45C .23D .3【答案】B【分析】利用椭圆的离心率可得5a c =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解 【详解】因为椭圆C 的离心率55c e a ==,所以5a c =. 因为222a b c =+,所以2b c =,所以椭圆C 的蒙日圆的半径为223a b c +=. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==. 因为222182MP MQMP MQ c +⋅≤=,当32MP MQ c ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=. 由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,25a =, 故椭圆C 的长轴长为45. 故选:B例9.(2018·全国·高考真题(文))已知椭圆C :21(0)4x y a a +=>的一个焦点为(20),,则C 的离心率为( ) A .13B .12C 2D 22【答案】C【详解】分析:首先根据题中所给的条件椭圆的一个焦点为()20,,从而求得2c =,再根据题中所给的方程中系数,可以得到24b =,利用椭圆中对应,,a b c 的关系,求得22a =,最后利用椭圆离心率的公式求得结果. 详解:根据题意,可知2c =,因为24b =,所以2228a b c =+=,即22a =, 所以椭圆C 的离心率为22222e ==,故选C. 例10.(2022·四川成都·高三期末(理))已知椭圆()22:10x y C a b a b +=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______.【答案】25,23⎛⎤⎥ ⎝⎦【分析】根据题意可得1290F AF ∠=,且c b >,再根据焦点三角形中的关系表达出离心率,结合函数的单调性求解即可【详解】由题意,因为线段12F F 为直径的圆与椭圆C 在第一象限相交于点A . 故半径1OF b >,即 c b >,且1290F AF ∠=.又离心率()22212121212121212222AF AF AF AF AF AF F F c c a a AF AF AF AF AF AF +-⋅+====+++()12212122122112AF AF AF AF AFAF AF AF ⋅=-=-+++,因为122AF AF ≤,结合题意有1212AF AF <≤, 设12AF t AF =,则2112c a t t=-++,易得对勾函数12y t t =++在(]1,2上单调递增, 故2112y t t=-++在(]1,2上单调递增, 故2221111111222212t t -<-≤-++++++,即2523c a <≤故答案为:25,23⎛⎤⎥ ⎝⎦1.关于椭圆几何性质的考查,主要有四类问题,一是考查椭圆中的基本量a ,b ,c ;二是考查椭圆的离心率;三是考查离心率发最值或范围;四是其它综合应用.2.学习中,要注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a +c ).(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 3.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征. 4.求解有关离心率的问题时,一般并不是直接求出c 和a 的值,而是根据题目给出的椭圆的几何特征,建立关于参数c 、a 、b 的方程或不等式,通过解方程或不等式求得离心率的值或范围.较多时候利用.题型四:直线与椭圆的位置关系例11.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________. 【答案】2xy =-()22-<<x 2222e?b b c a=2222+=1(a>b>0)x y a b22 ,1c b e e a a=-=【分析】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y ,利用点差法可得答案.【详解】设斜率为12的直线方程为12y x b =+,与椭圆的交点为()()1122,,,A x y B x y , 设中点坐标为(),x y ,则211221121,,222y y x xy y x y x x -++=-==-, 所以221122221414⎧+=⎪⎪⎨⎪+=⎪⎩x y x y ,两式相减可得()()()()12221214+=-+-x x x x y y y y ,()()22121124-+-=+x x y y y y x x ,即2xy =-, 由于在椭圆内部,由221412⎧+=⎪⎪⎨⎪=+⎪⎩x y y x b得22102++-=x bx b ,所以()22210∆=--=b b 时,即2b =±直线与椭圆相切,此时由22102±+=x x 解得2x =或2x =-,所以22x -<<, 所求得轨迹方程为2xy =-()22-<<x . 故答案为:2xy =-()22-<<x . 例12.(2022·北京八中高三阶段练习)已知P 为椭圆22:1(0)x y E a b a b +=>>上任意一点,12,F F 为左、右焦点,M 为1PF 中点.如图所示:若1122OM PF +=,离心率3e =(1)求椭圆E 的标准方程; (2)已知直线l 经过11,2且斜率为12与椭圆交于,A B 两点,求弦长AB 的值.【答案】(1)2214x y +=(2)5【分析】(1)由题意可得21||||2OM PF =结合1122OM PF +=求得a ,继而求得b ,即可得椭圆方程;(2)写出直线l 的方程,联立椭圆方程,可求得交点坐标,从而求得弦长. (1)由题意知,M 为1PF 中点,O 为12F F 的中点,故21||||2OM PF =, 又 1122OM PF +=,故121()22PF PF +=,即124PF PF +=,所以24,2a a == , 又因为32e =,故3c =,所以2221b a c =-= , 故椭圆E 的标准方程为2214x y += ;(2)由直线l 经过11,2⎛⎫- ⎪⎝⎭且斜率为12可知直线方程为11(1)22y x =+-,即112y x =+,联立2214x y +=,消去y 可得220x x += ,解得120,2x x ==- ,则,A B 两点不妨取为(0,1),(2,0)-, 故22215AB =+=.例13.(2022·天津·高考真题)椭圆()2210x y a b a b +=>>的右焦点为F 、右顶点为A ,上顶点为B ,且满足3BF AB=(1)求椭圆的离心率e ;(2)直线l 与椭圆有唯一公共点M ,与y 轴相交于N (N 异于M ).记O 为坐标原点,若=OM ON ,且OMN 3 【答案】(1)63e =(2)22162x y +=【分析】(1)根据已知条件可得出关于a 、b 的等量关系,由此可求得该椭圆的离心率的值; (2)由(1)可知椭圆的方程为2223x y a +=,设直线l 的方程为y kx m =+,将直线l 的方程与椭圆方程联立,由0∆=可得出()222313m a k =+,求出点M 的坐标,利用三角形的面积公式以及已知条件可求得2a 的值,即可得出椭圆的方程. (1)解:()2222222222234332BF b c a a b a a b ABb a b a +===⇒=+⇒=++,离心率为22263c a b e a a -===. (2)解:由(1)可知椭圆的方程为2223x y a +=,易知直线l 的斜率存在,设直线l 的方程为y kx m =+,联立2223y kx mx y a=+⎧⎨+=⎩得()()222213630k x kmx m a +++-=,由()()()222222223641330313k m k m a m a k ∆=-+-=⇒=+,①2331M kmx k =-+,213M M m y kx m k =+=+,由=OM ON 可得()()222229131m k m k +=+,②由3OMN S =可得2313213km m k⋅=+,③联立①②③可得213k =,24m =,26a =,故椭圆的标准方程为22162x y +=. 一.涉及直线与椭圆的基本题型有: 1.位置关系的判断2.弦长、弦中点问题.弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立,消元,利用根与系数的关系表示中点; (2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率. 3.轨迹问题4.定值、最值及参数范围问题5.存在性问题二.常用思想方法和技巧有:1.设而不求;2.坐标法;3.根与系数关系.三. 若直线与椭圆有两个公共点可结合韦达定理,代入弦长公式或,求距离. 题型五:椭圆与圆的相关问题例14. (2019·天津·高考真题(文)) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .3|2||OA OB =(O 为原点). (Ⅰ)求椭圆的离心率;1122()()M x y N x y ,,,,MN 221212(1)[()4]k x x x x ++-MN =2121221(1)[(y )4]y y y k++-(Ⅱ)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线4x =上,且OC AP ∥,求椭圆的方程.【答案】(I )12;(II )2211612x y +=.【分析】(I )根据题意得到32a b =,结合椭圆中,,a b c 的关系,得到2223()2a a c =+,化简得出12c a =,从而求得其离心率; (II )结合(I )的结论,设出椭圆的方程2222143x y c c +=,写出直线的方程,两个方程联立,求得交点的坐标,利用直线与圆相切的条件,列出等量关系式,求得2c =,从而得到椭圆的方程.【详解】(I )解:设椭圆的半焦距为c ,由已知有32a b =, 又由222a b c =+,消去b 得2223()2a a c =+,解得12c a =,所以,椭圆的离心率为12.(II )解:由(I )知,2,3a c b c ==,故椭圆方程为2222143x y c c +=,由题意,(,0)F c -,则直线l 的方程为3()4y x c =+,点P 的坐标满足22221433()4x y c c y x c ⎧+=⎪⎪⎨⎪=+⎪⎩,消去y 并化简,得到2276130x cx c +-=,解得1213,7cx c x ==-, 代入到l 的方程,解得1239,214y c y c ==-,因为点P 在x 轴的上方,所以3(,)2P c c ,由圆心在直线4x =上,可设(4,)C t ,因为OC AP ∥,且由(I )知(2,0)A c -,故3242ct c c =+,解得2t =, 因为圆C 与x 轴相切,所以圆的半径为2,又由圆C 与l 相切,得23(4)24231()4c +-=+,解得2c =, 所以椭圆的方程为:2211612x y +=.【点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识,考查用代数方法研究圆锥曲线的性质,考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.例15.(陕西高考真题)已知椭圆()的半焦距为,原点到经过两点,的直线的距离为. (Ⅰ)求椭圆的离心率;(Ⅱ)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.【答案】;(Ⅱ).【解析】(Ⅰ)过点的直线方程为, 则原点到直线的距离, 由,得,解得离心率. (Ⅱ)由(1)知,椭圆的方程为. 依题意,圆心是线段的中点,且. 易知,不与轴垂直.设其直线方程为,代入(1)得:E 221x y a b+=0a b >>c O (),0c ()0,b 12c E AB :M ()()225212x y ++-=E A B E 3221123x y +=()(),0,0,c b 0bx cy bc +-=O 22bcd ab c ==+12d c =2222a b a c ==-32c e a ==E 22244x y b +=()2,1M -AB 10AB =AB x ()21y k x =++.设,则,.由,得,解得. 从而.于是.由.故椭圆的方程为.例16.(2021·山东·高三开学考试)在平面直角坐标系xOy 中,已知点1(6,0)F -,2(6,0)F ,动点M 满足1243MF MF +=M 的轨迹为曲线C . (1)求C 的方程;(2)圆224x y +=的切线与C 相交于A ,B 两点,P 为切点,求||||PA PB ⋅的值.【答案】(1)221126x y +=(2)||||4PA PB ⋅=【分析】(1)结合椭圆的定义求得,,a b c ,由此求得C 的方程.(2)当直线AB 斜率不存在时,求得,PA PB ,从而求得PA PB ⋅;当直线AB 斜率存在时,设出直线AB 的方程,根据直线和圆的位置关系列方程,联立直线的方程和椭圆的方程,化简写出根与系数关系,求得0OA OB ⋅=,由此判断出90AOB ∠=︒,结合相似三角形求得PA PB ⋅.(1)为12124326MF MF F F +=>=,所以点M 的轨迹曲线C 是以1F ,2F 为焦点的椭圆.设其方程为22221(0)x y a b a b+=>>,则243a =,226a b -=,解得23a =,6b =,所以曲线C 的方程为221126x y +=. (2)当直线AB 的斜率不存在时,(2,0)P ±,此时||||2PA PB ==,则||||4PA PB ⋅=.()()()22221482142140k x k k x k b +++++-=()()1122,,,A x y B x y ()12282114k k x x k++=-+()22122421414k b x x k+-=-+124x x +=-()2821=414k k k +--+12k =21282x x b =-()()222121212151410222AB x x x x x b ⎛⎫=+-=+-=- ⎪⎝⎭10AB =()210210b -=23b =E 221123x y +=当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+, 由直线AB 与圆224x y +=相切可得2||21m k =+,化简得()2241m k =+.联立22,1,126y kx m x y =+⎧⎪⎨+=⎪⎩得()2222142120k x kmx m +++-=,0∆>.设()11,A x y ,()22,B x y ,则122421km x x k -+=+,212221221m x x k -=+, 所以1212OA OB x x y y ⋅=+()()2212121k x x km x x m =++++()()2222222121242121k m k mm k k +-=-+++()222312121m k k -+=+()()222121121021k k k +-+==+,所以90AOB ∠=︒,所以AOB 为直角三角形.由OP AB ⊥,可得AOP OBP ∽△△, 所以||||||||PA OP OP PB =,所以2||||||4PA PB OP ⋅==. 综上,||||4PA PB ⋅=. 从高考命题看,与椭圆、圆相结合问题,一般涉及到圆的方程(圆心、半径)、直线与圆的位置关系(相切、相交)、点到直线的距离、直线方程等.。

2014届高考数学总复习课时讲义79椭圆

2014届高考数学总复习课时讲义79椭圆

椭圆1.椭圆的定义:第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准方程: (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a ay b x ,焦点:F 1(0,-c),F 2(0,c),其中c=22b a -. 3.椭圆的参数方程:⎩⎨⎧==θθsin cos b y a x ,(参数θ是椭圆上任意一点的离心率).4.椭圆的几何性质:以标准方程)0(12222>>=+b a by a x 为例:①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(-a,0),B(0,b),B′(0,-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点.二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是 ( )()A 22132x y += ()B22132x y -=()C 22(1)132x y ++= ()D 22123x y += 2.曲线192522=+y x 与曲线)9(192522<=-+-k k y k x 之间具有的等量关系 ( ) ()A 有相等的长、短轴 ()B 有相等的焦距()C 有相等的离心率()D 有相同的准线3坐标上,且过点是 . 4.底面直径为12cm 截, 短轴长 ,离心率5.已知椭圆22221(0)x y a b a b +=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向旋转2π后,所得新椭圆的一条准线方程是163y =,则原来的椭圆方程是 ;新椭圆方程是 . 三、例题分析例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设,A B 是两个定点,且||2AB =,动点M 到A 点的距离是4线段MB 的垂直平分线l 交MA 于点P ,求动点P 程.例3.已知椭圆22221(0)x y a b a b+=>>,P 椭圆的两个焦点,(1)若α=∠21F PF ,PF ∠求证:离心率2cos2cosβαβα-+=e ;(2)若θ221=∠PF F ,求证:21PF F ∆的2tan b θ⋅.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q,若22||2||QF PF =-,求直线2PF 的方程.例5(05上海)点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

2008年全国高考数学试题分类汇编椭圆

2008年全国高考数学试题分类汇编椭圆
一个,
同理 以 PBA 为直角的 RtABP 只有一个. 若以 APB 为直角,设 P 点坐标为 (x, 1 x2 1) , A 、 B 两点的坐标分别为 ( 2, 0) 和
8
( 2, 0) ,
PA
PB
x2
2
(1
x2
1)2
1
x4 5 x2 1 0 .
8
64 4
关于 x2 的二次方程有一大于零的解, x 有两解,即以 APB 为直角的 RtABP 有两个,
关于
直线 l 的对称点为 F′(x0,y0),则
y0 k( x0 2 1),
2
2
y0 k 1. x0 2
解得
x0 y0
2 1 k2
2k 1 k2
, .
因为点
F′(x0,y0)在椭圆上,所以
( 1
2
k
2
)2
( 1
2k k
2
)2
4
1. 即
λ(λ-4)k4+2λ(λ-6)k2+(λ-4)2=0.
解:(Ⅰ)因为 AB∥l,且 AB 边通过点(0,0),所以 AB 所在直线的方程为 y=x.
设 A,B 两点坐标分别为(x1,y1),(x2,y2).

x2
3y2 yx
4,

x
1,
所以 AB 2 x1 x2 2 2.
又因为 AB 边上的高 h 等于原点到直线 l 的距离,
所以 h
2.S ABC
1 2
AB h 2.
(Ⅱ)设 AB 所在直线的方程为 y=x+m.

x2 3y2 4,
y xm

4x2
6mx

第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第5节  第1课时  椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析

第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。

山东省济南市章丘中学高三数学椭圆的简单几何性质复习资料

山东省济南市章丘中学高三数学椭圆的简单几何性质复习资料

山东省济南市章丘中学高三数学《椭圆的简单几何性质》复习资料1. 椭圆的几何性质:设椭圆方程为12222=+by a x (a >b >0).⑴ 范围: -a ≤x ≤a ,-b ≤x ≤b ,所以椭圆位于直线x=a ±和y=b ±所围成的矩形里.⑵ 对称性:分别关于x 轴、y 轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.⑶ 顶点:有四个1A (-a ,0)、2A (a ,0)1B (0,-b )、2B (0,b ).线段1A 2A 、1B 2B 分别叫做椭圆的长轴和短轴.它们的长分别等于2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. ⑷ 离心率:椭圆的焦距与长轴长的比ace =叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义⑴ 定义:平面内动点M 与一个顶点的距离和它到一条定直线的距离的比是常数ace =(e <1=时,这个动点的轨迹是椭圆.⑵ 准线:根据椭圆的对称性,12222=+by a x (a >b >0)的准线有两条,它们的方程为c a x 2±=.对于椭圆12222=+b x a y (a >b >0)的准线方程,只要把x 换成y 就可以了,即ca y 2±=.3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.设1F (-c ,0),2F (c ,0)分别为椭圆12222=+by a x (a >b >0)的左、右两焦点,M(x ,y )是椭圆上任一点,则两条焦半径长分别为ex a MF +=1,ex a MF -=2.椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a 、b 、c 、e 中有2a =2b +2c 、ace =两个关系,因此确定椭圆的标准方程只需两个独立条件. 4.椭圆的参数方程椭圆12222=+b y a x (a >b >0)的参数方程为cos sin x a y b θθ=⎧⎨=⎩(θ为参数).说明: ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P 的离心角θ与直线OP 的倾斜角α不同:θαtan tan ab=; ⑵ 椭圆的参数方程可以由方程12222=+by a x 与三角恒等式1sin cos 22=+θθ相比较而得到,所以椭圆的参数方程的实质是三角代换. 椭圆22221(0)x y a b a b+=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩. 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.6. 椭圆的切线方程(1)椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.(2)过椭圆22221(0)x y a b a b+=>>外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y ya b+=. (3)椭圆22221(0)x y a b a b+=>>与直线0Ax By C ++=相切的条件是22222A aB b c +=。

2014年高考数学一轮复习热点难点精讲精析:8.4椭 圆

2014年高考数学一轮复习热点难点精讲精析:8.4椭 圆

2014年高考一轮复习热点难点精讲精析:8.4椭 圆(一)椭圆的定义以及标准方程 ※相关链接※ 1.椭圆定义的应用利用椭圆的定义解题时,一方面要注意常数2a>|F1F2|这一条件;另一方面要注意由椭圆上任意一点与两个焦点所组成的“焦点三角形”中的数量关系.2.椭圆的标准方程(1)当已知椭圆的焦点在x 轴上时,其标准方程为22x a +22y b =1 (a>b>0);当已知椭圆的焦点在y 轴上时,其标准方程为y a 22+y b22=1(a>b>0);(2)当已知椭圆的焦点不明确而又无法确定时,其标准方程可设为2x m +2y n=1(m>0,n>0,m ≠n),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(A>0,B>0,A ≠B)这种形式,在解题时更简便.求椭圆的标准方程主要有定义、待定系数法,有时还可根据条件用代入法。

用待定系数法求椭圆方程的一般步骤是:(1)作判断:根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能。

(2)设方程:根据上述判断设方程222222221(0)1(0)x y x y a b a b a b b a+=>>+=>>或。

(3)找关系:根据已知条件,建立关于a b c m n 、、或、的方程组。

(4)得方程:解方程组,将解代入所设方程,即为所求。

注:当椭圆的焦点位置不明确而无法确定其标准方程时,可设221(0,0,)x y m n m n m n+=>>≠,可以避免讨论和繁杂的计算,也可以设为221(0,0)Ax By A B A B +=>>≠且,这种形式在解题时更简便。

※例题解析※〖例1〗已知F 1、F 2为椭圆2x 25+2y 9=1的两个焦点,过F 1的直线交椭圆于A 、B 两点,若|F 2A|+|F 2B|=12,则|AB|=____;方法诠释:注意|AF 1|+|AF 2|=10,|BF 1|+|BF 2|=10,且|AF 1|+|F 1B|=|AB|,再结合题设即可得出结论; 解析:由椭圆的定义及椭圆的标准方程得: |AF 1|+|AF 2|=10,|BF 1|+|BF 2|=10, 又已知|F 2A|+|F 2B|=12, 所以|AB|=|AF 1|+|BF 1|=8. 答案:8〖例2〗已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5、3,过P 且长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程。

2008年全国高考数学试题分类汇编—椭圆

2008年全国高考数学试题分类汇编—椭圆

2008年全国高考数学试题汇编圆锥曲线一、选择题1.(天津理科5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为( B ) A .6B .2C .21D .772 2.(天津文科7)设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为 ( B )A .2211216x y +=B .2211612x y += C .2214864x y += D .2216448x y += 3.(江西文、理科7)已知F 1、F 2是椭圆的两个焦点.满足1·2MF =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( C )A .(0,1)B .(0,21]C .(0,22)D .[22,1) 4.(上海文科12)设P 是椭圆1162522=+y x 上的点.若1F 、2F 是椭圆的两个焦点,则||||21PF PF +等于( D )A .4B .5C .8D .10.5.(湖北文、理科10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 处进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用2c 1和2c 2分别表示椭轨道Ⅰ和Ⅱ的焦距,用2a 1和2a 2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①a 1+c 1=a 2+c 2; ②a 1-c 1=a 2-c 2; ③c 1a 2>a 1c 1;④11c a <22c a . 其中正确式子的序号是 ( B ) A .①③ B .②③C .①④D .②④6. (全国2文)设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+7. (全国2理9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( ) A.2) B.C .(25),D.(28. (福建文12理11)双曲线22221x y a b-=(00)a b >>,的两个焦点为F 1,F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( ) A .(1,3)B .(]13,C .(3,+∞)D .[)3+∞,9. (辽宁文6)设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( )A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,10. (辽宁文11)已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15,则m =( ) A .1B .2C .3D .411. (辽宁理10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) A.2B .3CD .9212.(浙江理7)若双曲线22221x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )A .3B .5CD 13.( 陕西理8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABCD .314. (海南理宁夏11)已知点P 在抛物线24y x =上,那么点P 到点(21)Q -,的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( )A .114⎛⎫- ⎪⎝⎭,B .114⎛⎫ ⎪⎝⎭,C .(12),D .(12)-,15. (海南文宁夏2)双曲线221102x y -=的焦距为( )A .B .C .D .16. (湖南理8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)17. (湖南文10)若双曲线22221x y a b-=(0a >,0b >)的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A .(1B .)+∞C .(1⎤⎦D .)1+,∞18. (重庆文8)若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为( )A .2B .3C .4D .19. (重庆理8)已知双曲线22221(00)x y a b a b-=>>,的一条渐近线为(0)y kx k =>,离心率e =,则双曲线方程为( )A .222214x y a a -=B .222215x y a a -=C .222214x y b b-=D .222215x y b b-=20.(北京文3)“双曲线的方程为221916x y -=”是“双曲线的准线方程为95x =±”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21. (北京理4)若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线二、填空题22.(湖南理科12)已知椭圆22221x y a b+=(a >b >0)的右焦点为F ,右准线为l ,离心率e过顶点A (0,b )作AM ⊥l ,垂足为M ,则直线FM 的斜率等于 .答案:1223.(浙江理科12文科13)已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .答案:824.(宁夏海南文科15)过椭圆14522=+y x 的右焦点作一条斜率为2的直线与椭圆交于B A ,两点, O 为坐标原点, 则△OAB 的面积为 . 答案:5325.(江苏12)在平面直角坐标系中,椭圆)0(12222>>=+b a by a x 的焦距为2,以O 为圆心,a 为半径的圆,过点⎪⎪⎭⎫⎝⎛0,2c a 作圆的两切线互相垂直,则离心率e = .【解析】如图,切线PA 、PB 互相垂直,又半径OA 垂直于PA ,所以△OAP 是等腰直角三角形,故2a c=,解得c e a ==.【答案】226.(全国Ⅰ文科15)在△ABC 中,∠A =90°,tan B =34.若以A 、B 为焦点的椭圆经过点C ,则该椭圆的离心率e = .答案:12.不妨设2c =AB =4,AC =3,则CB =5,由椭圆定义可得2a =AC +CB =8,于是2.2c e a=27.(全国Ⅰ理科15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .答案:38.设1AB BC ==,7cos 18B =-则222252cos 9AC AB BC AB BC B =+-⋅⋅=53AC =,582321,21,3328c a c e a =+====.28.(上海理科10)某海域内有一孤岛,岛四周的海平面(视为平面)上有一浅水区(含边界),其边界是长轴长为2a ,短轴长为2b 的椭圆,已知岛上甲、乙导航灯的海拔高度分别为h 1、h 2,且两个导航灯在海平面上的投影恰好落在椭圆的两个焦点上,现有船只经过该海域(船只的大小忽略不计),在船上测得甲、乙导航灯的仰角分别为θ1、θ2,那么船只已进入该浅水区的判别条件是 . 答案:h 1cot θ1+ h 2cot θ2≤2a .29.(全国2文15).已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .15.2 30. (全国I 文14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .14.1231. (全国理II14)已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .14.232. (全国2理15)已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .15.3+33.(山东文)34. (安徽文14)已知双曲线2212x y n n --=1n = .14.435.( 江西文14)已知双曲线22221(00)x y a b a b -=>>,的两条渐近线方程为3y x =±,若顶点到渐近线的距离为1,则双曲线的方程为 .14.223144x y -= 36. (江西理15)过抛物线22(0)x py p =>的焦点F 作倾斜角为30的直线,与抛物线分别交于A B ,两点(点A 在y 轴左侧),则AF FB= .15.1337. (海南理宁夏14)设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 .14.321538. (海南文宁夏15)过椭圆22154x y +=的右焦点作一条斜率为2的直线与椭圆交于A B ,两点,O 为坐标原点,则OAB △的面积为 .15.5339. (天津理13)已知圆C 的圆心与抛物线24y x =的焦点关于直线y x =对称,直线4320x y --=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 . 13.22(1)10x y +-=40. (天津文15).已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,则圆C 的方程为 .15.22(1)18x y ++=41. (上海文6)若直线10ax y -+=经过抛物线24y x =的焦点,则实数a = .6.1-三、解答题42..(湖南文科19)已知椭圆的中心在原点,一个焦点是F (2,0),且两条准线间的距离为λ(λ>4).(Ⅰ)求椭圆的方程;(Ⅱ)若存在过点A (1,0)的直线l ,使点F 关于直线l 的对称点在椭圆上,求λ的取值范围.解:(Ⅰ)设椭圆的方程为22221x y a b+=(a >b >0).由条件知c =2,且22a c=λ,所以a 2=λ,b 2=a 2-c 2=λ-4.故椭圆的方程是221(4).4x y λλλ+=-> (Ⅱ)依题意,直线l 的斜率存在且不为0,记为k ,则直线l 的方程是y =k (x -1).设点F (2,0)关于直线l 的对称点为F ′(x 0,y 0),则00002(1),221.2y x k yk x +⎧=-⎪⎪⎨⎪⋅=--⎪⎩解得02022,12.1x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩ 因为点F ′(x 0,y 0)在椭圆上,所以222222()()11 1.4k k k λλ+++=-即 λ(λ-4)k 4+2λ(λ-6)k 2+(λ-4)2=0.设k 2=t ,则λ(λ-4)t 2+2λ(λ-6)t -(λ-4)2=0.因为λ>4,所以2(4)(4)λλλ-->0.2234(6)4(4)0,2(6)0(4)λλλλλλλλ⎧∆=-+->⎪∴--⎨>⎪-⎩解得46λ<<.43..(广东理科18文科20)设b >0,椭圆方程为222212x y b b+=,抛物线方程为28()x y b =-.如图4所示,过点F (0,b +2)作x 轴的平行线,与抛物线在第一象限的交点为G .已知抛物线在点G 的切线经过椭圆的右焦点F 1.(1)求满足条件的椭圆方程和抛物线方程;(2)设A 、B 分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P ,使得△ABP 为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). 【解析】(1)由28()x y b =-得218y x b =+, 当2y b =+得4x =±,∴G 点的坐标为(4,2)b +,1'4y x =,4'|1x y ==, 过点G 的切线方程为(2)4y b x -+=-即2y x b =+-,令0y =得2x b =-,1F ∴点的坐标为(2,0)b -,由椭圆方程得1F 点的坐标为(,0)b ,2b b ∴-=即1b =,即椭圆和抛物线的方程分别为2212x y +=和28(1)x y =-;(2)过A 作x 轴的垂线与抛物线只有一个交点P ,∴以PAB ∠为直角的Rt ABP ∆只有一个,同理∴ 以PBA ∠为直角的Rt ABP ∆只有一个.若以APB ∠为直角,设P 点坐标为21(,1)8x x +,A 、B 两点的坐标分别为(和,222421152(1)108644PA PB x x x x ∙=-++=+-=.关于2x 的二次方程有一大于零的解,x ∴有两解,即以APB ∠为直角的Rt ABP ∆有两个,因此抛物线上存在四个点使得ABP ∆为直角三角形.44.(北京文科19)已知ABC △的顶点A B ,在椭圆2234x y +=上,C 在直线2l y x =+:上,且AB l ∥.(Ⅰ)当AB 边通过坐标原点O 时,求AB 的长及ABC △的面积; (Ⅱ)当90ABC ∠=,且斜边AC 的长最大时,求AB 所在直线的方程. 解:(Ⅰ)因为AB ∥l ,且AB 边通过点(0,0),所以AB 所在直线的方程为y =x .设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).由2234,x y y x ⎧+=⎨=⎩得1,x =±所以12AB x =-=又因为AB 边上的高h 等于原点到直线l 的距离,所以12.2ABCh SAB h === (Ⅱ)设AB 所在直线的方程为y =x +m . 由2234,x y y x m⎧+=⎨=+⎩得2246340.x mx m ++-= 因为A ,B 在椭圆上, 所以212640.m ∆=-+>设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2).则21212334,,24m m x x x x -+=-=所以12AB x =-=又因为BC 的长等于点(0,m )到直线l 的距离,即BC =所以22222210(1)11.AC AB BC m m m =+=--+=-++ 所以当m =-1时,AC 边最长.(这时12640=-+>)此时AB 所在直线方程为1y x =-.45.(北京理科19)已知菱形ABCD 的顶点A C ,在椭圆2234x y +=上,对角线BD 所在直线的斜率为1.(Ⅰ)当直线BD 过点(01),时,求直线AC 的方程; (Ⅱ)当60ABC ∠=时,求菱形ABCD 面积的最大值. 解:(Ⅰ)由题意得直线直线BD 的方程为1y x =+.因为四边形ABCD 为菱形,所以AC ⊥BD .于是可设直线AC 的方程为y x n =-+由2234,x y y x n⎧+=⎨=-+⎩得2246340.x nx n -+-= 因为A ,C 在椭圆上,所以△=-12n 2+64>0,解得n 设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2),则212121122334,,,.24n n x x x x y x n y x n -+===-+=-+ 所以12.2n y y +=所以AC 的中点坐标为3,.44n n ⎛⎫⎪⎝⎭ 由四边形ABCD 为菱形可知,点3,44n n ⎛⎫⎪⎝⎭在直线y =x +1上, 所以3144n n=+,解得n =-2. 所以直线AC 的方程为2y x =--,即x +y +2=0.(Ⅱ)因为四边形ABCD 为菱形,且60ABC ∠=︒,所以.AB BC CA ==所以菱形ABCD 的面积2.S =由(Ⅰ)可得22221212316()().2n AC x x y y -+=-+-=所以2316)(S n n =-+所以当n =0时,菱形ABCD 的面积取得最大值46.(宁夏海南理科20)在直角坐标系xOy 中,椭圆)0(1:22221>>=+b a by a x C 的左右焦点分别为21F F ,.2F 也是抛物线x y C 4:22=的焦点,点M 为1C 与2C 在第一象限的交点,且35||2=MF . (I)求1C 的方程;(II)平面上的点N 满足12MN MF MF =+,直线MN l //,且与1C 交于B A 、两点,若0OA OB ∙=,求直线l 的方程.解:(I)由题意得c =1,所以a 2=b 2+1.…………①由抛物线定义知23M x =,所以283M y =, 代入椭圆方程得2248193a b+=.…………②由①②解得b 2=3(-8/9舍去),a 2=4.所以椭圆1C 的方程是22143x y +=.(II)12224(1,0(1,0(,333MN MF MF =+=--+-=-因为直线MN l //,所以l k .设直线:l y m =+,代入椭圆方程得22274120x m ++-=.设A ,B 两点坐标分别为(x 1,y 1),(x 2,y 2),则22)427(412)0m ∆=-⨯⨯->,故227m <.因为21212412,27m x x x x -+=⋅=,所以212121212)6()y y m m x x x x m ⋅=++=⋅++. 因为0OA OB ∙=,所以12120x x y y ⋅+⋅=.故212127()0x x x x m ⋅++=即224127()027m m -⨯+=.解得212m =,满足227m <.因此直线l 的方程y =±47.(福建理科21)如图、椭圆22221(0)x y a b a b+=>>的一个焦点是F (1,0),O 为坐标原点.(Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,值有222OA OB AB +<,求a 的取值范围.【解析】本小题主要考查直线与椭圆的位置关系、不等式的解法等基本知识,考查分类与整合思想,考查运算能力和综合解题能力.解法一:(Ⅰ)设M ,N 为短轴的两个三等分点,因为△MNF为正三角形,所以OF =, 即1=2,23bb ⋅解得 2214,a b =+=因此,椭圆方程为221.43x y += (Ⅱ)设1122(,),(,).A x y B x y (ⅰ)当直线 AB 与x 轴重合时,2222222222,4(1),.OA OB a AB a a OA OB AB +==>+<因此,恒有(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为:22221,1,x y x my a b=++=代入整理得22222222()20,a b m y b my b a b +++-=所以222212122222222,b m b a b y y y y a b m a b m-+==++ 因为恒有222OA OB AB +<,所以∠AOB 恒为钝角. 即11221212(,)(,)0OA OB x y x y x x y y ∙=∙=+<恒成立.2121212121212(1)(1)(1)()1x x y y my my y y m y y m y y +=+++=++++2222222222222222222222(1)()210.m b a b b m a b m a b mm a b b a b a a b m +-=-+++-+-+=<+ 又a 2+b 2m 2>0,所以-m 2a 2b 2+b 2-a 2b 2+a 2<0对m ∈R 恒成立, 即a 2b 2m 2> a 2 -a 2b 2+b 2对m ∈R 恒成立.当m ∈R 时,a 2b 2m 2最小值为0,所以a 2- a 2b 2+b 2<0. a 2<a 2b 2- b 2, a 2<( a 2-1)b 2= b 4,因为a >0,b >0,所以a <b 2,即a 2-a -1>0, 解得a或a(舍去),即a, 综合(i )(ii),a,+∞). 解法二:(Ⅰ)同解法一, (Ⅱ)解:(i )当直线l 垂直于x 轴时,x =1代入22222221(1)1,A y b a y a b a -+===1.因为恒有|OA |2+|OB |2<|AB |2,2(1+y A 2)<4 y A 2,y A 2>1,即21a a->1,解得a或a(舍去),即a. (ii )当直线l 不垂直于x 轴时,设A (x 1,y 1), B (x 2,y 2).设直线AB 的方程为y =k (x -1)代入22221,x y a b+=得(b 2+a 2k 2)x 2-2a 2k 2x + a 2 k 2- a 2 b 2=0,故x 1+x 2=222222222222222,.a k a k a b x x b a k b a k-=++因为恒有|OA |2+|OB |2<|AB |2,所以x 21+y 21+ x 22+ y 22<( x 2-x 1)2+(y 2-y 1)2,得x 1x 2+ y 1y 2<0恒成立.x 1x 2+ y 1y 2= x 1x 2+k 2(x 1-1) (x 2-1)=(1+k 2) x 1x 2-k 2(x 1+x 2)+ k 2=(1+k 2)2222222222222222222222222()a k a b a k a a b b k a b k k b a k b a k b a k --+--+=+++.由题意得(a 2- a 2 b 2+b 2)k 2- a 2 b 2<0对k ∈R 恒成立. ①当a 2- a 2 b 2+b 2>0时,不合题意; ②当a 2- a 2 b 2+b 2=0时,a; ③当a 2- a 2 b 2+b 2<0时,a 2- a 2(a 2-1)+ (a 2-1)<0,a 4- 3a 2 +1>0, 解得a 2>32+a 2>32-,a>12+,因此a≥12+. 综合(i )(ii ),a,+∞). 48.(辽宁理科20)在直角坐标系xOy 中,点P到两点(0,的距离之和为4,设点P 的轨迹为C ,直线1y kx =+与C 交于,A B 两点. (Ⅰ)写出C 的方程; (Ⅱ)若OA OB ⊥,求k 的值;(Ⅲ)若点A 在第一象限,证明:当0k >时,恒有OA OB >.(辽宁文科21)在平面直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4.设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线y =kx +1与C 交于A 、B 两点,.k 为何值时?OB OA ⊥此时||的值是多少? 【解析】本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力. 解:(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C是以(0,为焦长,长半轴为2的椭圆.它的短半轴1,b ==故曲线C 的方程为2214y x +=. ……3分 (Ⅱ)设1122(,),(,)A x y B x y ,其坐标满足221,41.y x y kx ⎧⎪+=⎨⎪=+⎩ 消去y 并整理得22(4)2k x kx ++ 3.0,故12122223,.44k x x x x k k +==-++ ……5分 若,OA OB ⊥即12120.x x y y +=面22121222233210,444k k x x y y k k k +----+=+++ 化简得2410,k -+=所以1.2k =± ……8分 (Ⅲ)2222221122;()OA OB x y x y -=++=22221222()4(11)x x x x -+--+=12123()()x x x x --+ =1226().4k x x k -+ 因为A 在第一象限,故x 1>0.由12234x x k =+知20,x <从而120.x x ->又0,k > 故220,OA OB ->即在题设条件下,恒有.OA OB > ……12分 文(Ⅱ)设1122()()A x y B x y ,,,,其坐标满足2214 1.y x y kx ⎧+=⎪⎨⎪=+⎩, 消去y 并整理得22(4)230k x kx ++-=, 故1212222344k x x x x k k +=-=-++,. ················································································· 6分 OA OB ⊥,即12120x x y y +=.而2121212()1y y k x x k x x =+++,于是222121222223324114444k k k x x y y k k k k -++=---+=++++. 所以12k =±时,12120x x y y +=,故OA OB ⊥. ································································ 8分 当12k =±时,12417x x +=,121217x x =-.(AB x ==而22212112()()4x x x x x x -=+-23224434134171717⨯⨯=+⨯=, 所以465AB =. ················································································································· 12分49.(重庆理科21)如图(21)图,(20)M -,和(20)N ,是平面上的两点,动点P 满足:6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos PM PN MPN-=,求点P 的坐标.解:(Ⅰ)由椭圆的定义,点P 的轨迹是以M 、N 为焦点,长轴长2a =6的椭圆. 因此半焦距c =2,长半轴a =3,从而短半轴b =,所以椭圆的方程为221.95x y += (Ⅱ)由2,1cos PM PN MPN⋅=-得cos 2.PM PN MPN PM PN ⋅=⋅- ①因为cos 1,MPN P ≠不为椭圆长轴顶点,故P 、M 、N 构成三角形.在△PMN中,4,MN =由余弦定理有2222cos .MNPM PN PM PN MPN =+-⋅ ②将①代入②,得22242(2).PM PN PM PN =+-⋅-故点P 在以M 、N为焦点,实轴长为2213x y -=上. 由(Ⅰ)知,点P 的坐标又满足22195x y +=,所以 由方程组22225945,3 3.x y x y ⎧+=⎪⎨+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩即P 点坐标为(,22222222-、(--,)或(-. 50.(全国Ⅱ理科21文科22)设椭圆中心在坐标原点,A (2,0)、B (0,1)是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相较于E 、F 两点.(Ⅰ)若 6=,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ······································ 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF =知01206()x x x x -=-,得02121(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ····································································································· 6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==.························································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+12===≤当21k =,即当12k =时,上式取等号.所以S的最大值为 ················· 12分 解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+ ················································································································ 9分===当222x y =时,上式取等号.所以S的最大值为 ···································· 12分51.(福建文科22)如图,椭圆2222:1x y C a b+=(a >b >0)的一个焦点为F (1,0),且过点(2,0).(Ⅰ)求椭圆C 的方程;(Ⅱ)若AB 为垂直于x 轴的动弦,直线l :4x =与x 轴交 于点N ,直线AF 与BN 交于点M . (ⅰ)求证:点M 恒在椭圆C 上; (ⅱ)求AMN △面积的最大值.【解析】本小题主要考查直线与椭圆的位置关系、轨迹方程、不等式等基本知识,考查运算能力和综合解题能力,满分14分. 解法一:(Ⅰ)由题设a =2,c =1,从而b 2=a 2-c 2=3,所以椭圆C 前方程为13422=+y x . (Ⅱ)(i)由题意得F (1,0),N (4,0).设A (m,n ),则B (m ,-n )(n ≠0),3422n m +=1. ……① AF 与BN 的方程分别为:n (x -1)-(m -1)y =0,n (x -4)-(m -4)y =0.设M (x 0,y 0),则有()()()()0000110,(2)440,(3)n x m y n x m y ---=⎧⎪⎨-+-=⎪⎩由②,③得x 0=523,52850-=--m ny m m . 222222002222222222(58)3(58)3434(25)(25)4(25)(25)(58)12(58)36914(25)4(25)x y m n m n m m m m m n m mm m --+=+=+-----+-+-===--由于所以点M 恒在椭圆G 上.(ⅱ)设AM 的方程为x =xy +1,代入3422y x +=1得(3t 2+4)y 2+6ty -9=0. 设A (x 1,y 1),M (x 2,y 2),则有:y 1+y 2=.439,4362212+-=+-t y y x x |y 1-y 2|=.4333·344)(2221221++=-+t t y y y y 令3t 2+4=λ(λ≥4),则 |y 1-y 2|=,+)--(=+)-(=- 412113411341·3432λλλλλ 因为λ≥4,0<时,,=,即=所以当04411,41≤1=t λλλ |y 1-y 2|有最大值3,此时AM 过点F . △AMN 的面积S △AMN=.292323y ·212121有最大值y y y y y FN -=-=- 解法二:(Ⅰ)问解法一: (Ⅱ)(ⅰ)由题意得F (1,0),N (4,0).设A (m ,n ),则B (m ,-n )(n ≠0), .13422=+n m ……①AF 与BN 的方程分别为:n (x -1)-(m -1)y =0, ……②n (x -4)-(m -4)y =0, ……③ 由②,③得:当≠523,528525-=--=x yn x x m 时,. ……④ 由④代入①,得3422y x +=1(y ≠0). 当x =52时,由②,③得:3(1)023(4)0,2n m y n m y ⎧--=⎪⎪⎨⎪-++=⎪⎩解得0,0,n y =⎧⎨=⎩与a ≠0矛盾.所以点M 的轨迹方程为221(0),43x x y +=≠即点M 恒在椭圆C 上. (Ⅱ)同解法一.52.(山东文科22)已知曲线11(0)xyC a b a b+=>>:所围成的封闭图形的面积为曲线1C的内切圆半径为3.记2C 为以曲线1C 与坐标轴的交点为顶点的椭圆. (Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=(O 为坐标原点),当点A 在椭圆2C 上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得22ab a b ⎧=⎧⎪=⎪⇒⎨⎨==⎪⎩,椭圆2C 的标准方程为22154x y +=. (Ⅱ)(1)设M (x ,y ),A (x 0,y 0),则由MO OA λ=得2222200()x y x y λ+=+.……………………………①由于l ⊥线段AB ,M ∈l 且M 异于椭圆中心,得000x x y y +=.……②因为点A 在椭圆2C 上运动,所以2200154x y +=.………………………③ 由①②③消去x 0,y 0得2222145x y λλ+=,即为所求点M 的轨迹方程. (2)因为12AMBSAB OM OA OM =⨯⨯=⨯==22x y λ+=,又点M 坐标同时满足222222154145x y x y λλ⎧+=⎪⎪⎨⎪+=⎪⎩,所以22220(1)9x y λ+=+.于是220(1)20140()999AMBSλλλλ+==+≥,当且仅当1λλ=即1λ=时取“=”.所以AMB △的面积的最小值为409. 53.(四川理科21)设椭圆22221x y a b += (0)a b >>的左、右焦点分别为1F 、2F ,离心率e =右准线为l ,M 、N 是l 上的两个动点,120F M F N =.(Ⅰ)若12||||25F M F N ==a 、b 的值;(Ⅱ)证明:当||MN 取最小值时,12FM F N +与12F F 共线.解析:数列和解几位列倒数第三和第二,意料之中.开始挤牙膏吧.(Ⅰ)由已知,1(,0)F c -,2(,0)F c .由e =2212c a =,∴222a c =.又222a b c =+,∴22b c =,222a b =. ∴l :2222a c x c cc===,1(2,)M c y ,2(2,)N c y .延长2NF 交1MF 于P ,记右准线l 交x 轴于Q . ∵120FM F N ⋅=,∴12F M F N ⊥.12F M F N ⊥ 由平几知识易证1Rt MQF ∆≌2Rt F QN ∆∴13QN FQ c ==,2QM F Q c ==即1y c =,23y c =.∵1225F M F N ==∴22920c c +=,22c =,22b =,24a =. ∴2a =,2b =. (Ⅰ)另解:∵120FM F N ⋅=,∴12(3,)(,)0c y c y ⋅=,21230y y c =-<. 又1225F M F N ==联立212221222392020y y c c y c y ⎧=-⎪+=⎨⎪+=⎩,消去1y 、2y 得:222(209)(20)9c c c --=, 整理得:4292094000c c -+=,22(2)(9200)0c c --=.解得22c =. 但解此方程组要考倒不少人.(Ⅱ)∵1212(3,)(,)0FM F N c y c y ⋅=⋅=,∴21230y y c =-<. 22221212122121212222412MN y y y y y y y y y y y y c =-=+---=-=≥ .当且仅当12y y =-或21y y =-时,取等号.此时MN 取最小值. 此时1212(3,3)(,3)(4,0)2FM F N c c c c c F F +=±+==.∴12FM F N +与12F F 共线. (Ⅱ)另解:∵120FM F N ⋅=,∴12(3,)(,)0c y c y ⋅=,2123y y c =-. 设1MF ,2NF 的斜率分别为k ,1k-.由1()32y k x c y kc x c =+⎧⇒=⎨=⎩,由21()2y x c c y k kx c⎧=--⎪⇒=-⎨⎪=⎩1213MN y y c k k=-=⋅+≥. 当且仅当13k k=即213k =,k =MN 最小时,k =,此时1212(3,3)(,)(3,3)(,3)(4,0)2.c FM F N c kc c c c c c c F F k+=+-=±+== ∴12FM F N +与12F F 共线. 点评:本题第一问又用到了平面几何.看来,与平面几何有联系的难题真是四川风格啊.注意平面几何可与三角向量解几沾边,应加强对含平面几何背景的试题的研究.本题好得好,出得活,出得妙!均值定理,放缩技巧,永恒的考点.54.(四川文科22)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别是F 1和F 2 ,离心率2e =,点F 2到右准线l (Ⅰ)求a b 、的值;(Ⅱ)设M 、N 是右准线l 上两动点,满足120.F M F M ∙=证明:当.MN 取最小值时,2122F F F M F N ++=0.解:(1)因为ce a=,F 2到l 的距离2a d c c =-,所以由题设得22c a a c c⎧=⎪⎪⎨⎪-=⎪⎩ 解得2.c a ==由2222,b a c b =-==得(Ⅱ)由c =a =2得12(F F l的方程为x =故可设12),).M y N y 由120F M F M ∙=知12)0,y y =得y 1y 2=-6,所以y 1y 2≠0,216y y =-, 12112166||||||||||MN y y y y y y =-=+=+≥当且仅当1y =y 2=-y 1,所以,212212())F F F M F N y y ++=-++=(0,y 1+y 2)=0.55.(安徽理科22)设椭圆2222:1(0)x y C a b a b+=>>过点,1)M ,且左焦点为1(F(Ⅰ)求椭圆C 的方程;(Ⅱ)当过点(4,1)P 的动直线l 与椭圆C 相交与两不同点,A B 时,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某定直线上. 解(Ⅰ)由题意:2222222211c a bc a b ⎧=⎪⎪+=⎨⎪⎪=-⎩,解得224,2a b ==,所求椭圆方程为 22142x y +=.(Ⅱ)方法一设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y . 由题设知,,,AP PB AQ QB 均不为零,记AP AQ PBQBλ==,则0λ>且1λ≠.又A ,P ,B ,Q 四点共线,从而,AP PB AQ QB λλ=-=.于是 1241x x λλ-=-, 1211y y λλ-=-121x x x λλ+=+, 121y y y λλ+=+从而22212241x x x λλ-=-,(1)2221221y y y λλ-=-,(2)又点A 、B 在椭圆C 上,即221124,(3)x y += 222224,(4)x y +=(1)+(2)×2并结合(3),(4)得424s y +=, 即点(,)Q x y 总在定直线220x y +-=上. 方法二设点1122(,),(,),(,)Q x y A x y B x y ,由题设,,,,PA PB AQ QB 均不为零, 且PA PB AQQB=.又 ,,,P A Q B 四点共线,可设,(0,1)PA AQ PB BQ λλλ=-=≠±,于是1141,11x yx y λλλλ--==-- (1) 2241,11x yx y λλλλ++==++ (2) 由于1122(,),(,)A x y B x y 在椭圆C 上,将(1),(2)分别代入C 的方程2224,x y +=整理得222(24)4(22)140x y x y λλ+--+-+= (3) 222(24)4(22)140x y x y λλ+-++-+= (4)(4)-(3) 得 8(22)0x y λ+-=,0,220x y λ≠+-=∵∴,即点(,)Q x y 总在定直线220x y +-=上.56.(安徽文科22)已知椭圆2222:1(0)x y C a b a b+=>>,其相应于焦点F (2,0)的准线方程为x =4.(Ⅰ)求椭圆C 的方程;(Ⅱ)已知过点F 1(-2,0)倾斜角为θ的直线交椭圆C 于A ,B 两点.,求证:22cos AB =-θ;(Ⅲ)过点F 1(-2,0)作两条互相垂直的直线分别交椭圆C 于点A 、B 和D 、E ,求A B D E +的最小值.解:(Ⅰ)由已知得2224c c a a c=⎧=⎧⎪⎪⇒⎨⎨==⎪⎩⎪⎩222a b c =+,所以24b =. 故所求椭圆C 的方程为22184x y +=. (Ⅱ)设直线AB 方程为tan (2)y x θ=+,代入椭圆C 的方程22184x y +=得2222(12tan )8tan 8(tan 1)0x x θθθ+++-=. 设点A、B的坐标分别为1122(,),(,)x y x y ,则221212228tan 8tan 8,12tan 12tan x x x x θθθθ-+=-⋅=++.于是AB ==2222222tan )sin )12tan cos 2sin 2cos +θθ+θ===+θθ+θ-θ,得证.(Ⅲ)由(Ⅱ)AB =,因为AB DE ⊥,所以DE =.因此22211tan )12tan tan 2AB DE ⎛⎫+=+θ+⎪+θθ+⎝⎭422tan 2tan 1==+θ+θ+221132214tan 2tan ==++θ++θ≥当且仅当221tan tan θ=θ即tan 1θ=±时取“=”. 所以AB DE +的最小值是3. 57. (全国I 文22理21)(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.22.解:(1)设OA m d =-,AB m =,OB m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =则离心率2e =. (2)过F 直线方程为()ay x c b=--与双曲线方程22221x y a b-=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b =最后求得双曲线方程为:221369x y -=. 58. (山东理22)(本小题满分14分)如图,设抛物线方程为22(0)x py p =>,M 为直线2y p =-上任意一点,过M 引抛物线的切线,切点分别为A B ,. (Ⅰ)求证:A M B ,,三点的横坐标成等差数列;(Ⅱ)已知当M 点的坐标为(22)p -,时,AB = (Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.22.(Ⅰ)证明:由题意设221212120(2)22x x A x B x x x M x p p p ⎛⎫⎛⎫<- ⎪ ⎪⎝⎭⎝⎭,,,,,,. 由22x py =得22x y p =,得xy p'=,所以1MA x k p =,2MB x k p=.因此直线MA 的方程为102()x y p x x p+=-, 直线MB 的方程为202()x y p x x p+=-. 所以211102()2x xp x x p p+=-,① 222202()2x xp x x p p+=-.② 由①、②得121202x x x x x +=+-, 因此1202x x x +=,即0122x x x =+.所以A M B ,,三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当02x =时, 将其代入①、②并整理得:2211440x x p --=,2222440x x p --=,所以12x x ,是方程22440x x p --=的两根,因此124x x +=,2124x x p =-,又222101221222ABx x x x x p p k x x p p-+===-,所以2AB k p=.由弦长公式得AB ==又AB = 所以1p =或2p =,因此所求抛物线方程为22x y =或24x y =.(Ⅲ)解:设33()D x y ,,由题意得1212()C x x y y ++,, 则CD 的中点坐标为12312322x x x y y y Q ++++⎛⎫⎪⎝⎭,, 设直线AB 的方程为011()x y y x x p-=-, 由点Q 在直线AB 上,并注意到点121222x x y y ++⎛⎫⎪⎝⎭,也在直线AB 上,代入得033x y x p=. 若33()D x y ,在抛物线上,则2330322x py x x ==,因此30x =或302x x =.即(00)D ,或2022x D x p ⎛⎫ ⎪⎝⎭,.(1)当00x =时,则12020x x x +==,此时,点(02)M p -,适合题意.(2)当00x ≠,对于(00)D ,,此时2212022x x C x p ⎛⎫+ ⎪⎝⎭,,2212022CDx x pk x +=221204x x px +=, 又0AB x k p=,AB CD ⊥, 所以22220121220144AB CDx x x x x k k p px p++===-, 即222124x x p +=-,矛盾.对于20022x D x p ⎛⎫ ⎪⎝⎭,,因为2212022x x C x p ⎛⎫+ ⎪⎝⎭,,此时直线CD 平行于y 轴,又00AB x k p=≠,所以直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点. 综上所述,仅存在一点(02)M p -,适合题意. 59. (湖北文20)(本小题满分13分)已知双曲线22221(00)x y C a b a b-=>>:,的两个焦点为1(20)F -,,2(20)F ,,点(3P 在双曲线C 上.(Ⅰ)求双曲线C 的方程;(Ⅱ)记O 为坐标原点,过点(02)Q ,的直线l 与双曲线C 相交于不同的两点E F ,,若OEF △的面积为,求直线l 的方程.20.本小题主要考查双曲线的定义、标准方程、直线和双曲线位置关系等平面解析几何的基础知识,考查待定系数法、不等式的解法以及综合运用数学知识进行推理运算的能力. (满分13分)(Ⅰ)解法1:依题意,由224a b +=,得双曲线方程为222221(04)4x y a a a-=<<-.将点(3代入上式,得229714a a-=-. 解得218a =(舍去)或22a =,故所求双曲线方程为22122x y -=. 解法2:依题意得,双曲线的半焦距2c =.122a PF PF =-= 22a ∴=,2222b c a =-=. ∴双曲线C 的方程为22122x y -=. (Ⅱ)解法1:依题意,可设直线l 的方程为2y kx =+,代入双曲线C 的方程并整理, 得22(1)460k x kx ---=. ①直线l 与双曲线C 相交于不同的两点E F ,,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(08,理)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为(A )1342222=-y x (B)15132222=-y x(C)1432222=-y x (D)112132222=-y x解析:本题考查椭圆、双曲线的标准方程对于椭圆1C ,13,5,a c ==曲线2C 为双曲线,5,c =4a =,3,b =标准方程为:2222 1.43x y -= 2、(08,文)已知曲线C 2=||||1(0)x y a b a b+=>>所围成的封闭图形的面积为曲线C 3C 2为以曲线C 1与坐标轴的交点顶点的椭圆. (I)求椭圆C 2的标准方程;(II)设AB 是过椭圆C 2中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点.(1)若|MO |=λ|OA |(O 为坐标原点),当点A 在椭圆C 2上运动时,求点M 的轨迹方程;(2)若M 是l 与椭圆C 2的交点,求△AMB 的面积的最小值。

解:(I)由题意得2ab ⎧=⎪⎨=由a>b>0,解得 a 2=5, b 2=4.因此所求椭圆的标准方程为2254x y +=1. (II )(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为y =kx (k≠0),A(x A ,y A ).解方程组22154,x y y kx ⎧+=⎪⎨⎪=⎩ 得 222222020,,4545AA k x y k k ==++所以 22222222202020(1)||,454545AAk k OA x y k k k +=+=+=+++ 设M(x,y),由题意知|MO|=λ|OA| (λ≠0),所以 |MO|2=λ2|OA|2,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线, 所以 直线l 的方程为y=1x k-, 即k=x y-, 因此 2222222222220(1)20()4545x x y y x y x y x yλλ+++==++ 又x 2+y 2=1,所以 2225420x y λ+=故22245x y λ+= 又 当k=0或不存时,上式仍然成立.综上所述,M 的轨迹方程为222.45x y λ+=(λ≠0), (1) 当k 存在且k ≠0时,由(1)得222222020,4545AA k x y k k ==++,由221,541,x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩解得 222222020,,5454MM k x y k k==++ 所以|OA|2=222220(1)45AAk x y k ++=+,222280(1)||||45k AB OA k +==+22220(1)||54k OM k+=+ 解法一:由于 2221||||4AMBSAB OM =∙ =2222180(1)20(1)44554k k k k ++⨯⨯++=2222400(1)(45)(54)k k k +++ 22222400(1)4554()2k k k +≥+++=22221600(1)81(1)k k ++=(409)2, 当且仅当4+5k 2=5+4k 2时等号成立,即k=±1时等号成立,此时△AMB 面积的最小值是S △AMB=409.当1400,2.29AMB k S ∆==⨯= 当k不存在时,1404.29AMB S ∆==>综上所述,AMB ∆的面积的最小值为40.9解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++22245549,20(1)20k k k +++==+ 又2211240,9OA OM OA OM OAOM+≥≥当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB ∆面积的最小值是40.9AMBS ∆=当k =0,1402.29AMB S ∆=⨯=> 当k不存在时,1404.29AMB S ∆==>综上所述,AMB ∆的面积的最小值为3、(09,文)设m R ∈,在平面直角坐标系中,已知向量(,1)a mx y =+,向量(,1)b x y =-,a b ⊥,动点(,)M x y 的轨迹为E. (1)求轨迹E 的方程,并说明该方程所表示曲线的形状; (2)已知41=m ,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E 恒有两个交点A,B,且OA OB ⊥(O 为坐标原点),并求出该圆的方程; (3)已知41=m ,设直线l 与圆C:222x y R +=(1<R<2)相切于A 1,且l 与轨迹E 只有一个公共点B 1,当R 为何值时,|A 1B 1|取得最大值?并求最大值. 解:(1)因为a b ⊥,(,1)a mx y =+,(,1)b x y =-, 所以2210a b mx y ⋅=+-=, 即221mx y +=. 当m=0时,方程表示两直线,方程为1±=y ; 当1m =时, 方程表示的是圆当0>m 且1≠m 时,方程表示的是椭圆; 当0<m 时,方程表示的是双曲线.(2).当41=m 时, 轨迹E 的方程为2214x y +=,设圆心在原点的圆的一条切线为y kx t =+,解方程组2214y kx t x y ++==⎧⎪⎨⎪⎩得224()4x kx t ++=,即222(14)8440k x ktx t +++-=, 要使切线与轨迹E 恒有两个交点A,B,则使△=2222226416(14)(1)16(41)0k t k t k t -+-=-+>,即22410k t -+>,即2241t k <+, 且12221228144414kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩22222222212121212222(44)84()()()141414k t k t t k y y kx t kx t k x x kt x x t t k k k --=++=+++=-+=+++, 要使OA OB ⊥, 需使12120x x y y +=,即222222224445440141414t t k t k k k k ----+==+++, 所以225440t k --=, 即22544t k =+且2241t k <+, 即2244205k k +<+恒成立. 所以又因为直线y kx t =+为圆心在原点的圆的一条切线,所以圆的半径为r =,222224(1)45115k t r k k +===++, 所求的圆为2245x y +=. 当切线的斜率不存在时,切线为552±=x ,与2214x y +=交于点)552,552(±或)552,552(±-也满足OA OB ⊥. 综上, 存在圆心在原点的圆2245x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥.(3)当41=m 时,轨迹E 的方程为2214x y +=,设直线l 的方程为y kx t =+,因为直线l 与圆C:222x y R +=(1<R<2)相切于A 1, 由(2)知R =, 即222(1)t R k =+ ①因为l 与轨迹E 只有一个公共点B 1,由(2)知2214y kx t x y ++==⎧⎪⎨⎪⎩得224()4x kx t ++=, 即222(14)8440k x ktx t +++-=有唯一解则△=2222226416(14)(1)16(41)0k t k t k t -+-=-+=, 即22410k t -+=, ②由①②得2222223414R t R R k R ⎧=⎪⎪-⎨-⎪=⎪⎩-, 此时A,B 重合为B 1(x 1,y 1)点, 由12221228144414kt x x k t x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩中21x x =,所以,222122441616143t R x k R --==+, B 1(x 1,y 1)点在椭圆上,所以22211214143R y x R-=-=,所以22211124||5OB x y R =+=-, 在直角三角形OA 1B 1中,2222211112244||||||55()A B OB OA R R R R=-=--=-+因为2244R R+≥当且仅当(1,2)R 时取等号,所以211||541A B ≤-=,即当(1,2)R 时|A 1B 1|取得最大值,最大值为1.【命题立意】:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.4、(09,理)设椭圆E: 22221x y a b+=(a,b>0)过M (2,,1)两点,O 为坐标原点,(I )求椭圆E 的方程;(II )是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

解:(1)因为椭圆E: 22221x y a b +=(a,b>0)过M (2,两点,所以2222421611a b a b +=+=⎧⎪⎪⎨⎪⎪⎩解得22118114a b ⎧=⎪⎪⎨⎪=⎪⎩所以2284a b ⎧=⎨=⎩椭圆E 的方程为22184x y += (2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥,设该圆的切线方程为y kx m =+解方程组22184x y y kx m+==+⎧⎪⎨⎪⎩得222()8x kx m ++=,即222(12)4280k x kmx m +++-=,则△=222222164(12)(28)8(84)0k m k m k m -+-=-+>,即22840k m -+>12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,22222222212121212222(28)48()()()121212k m k m m k y y kx m kx m k x x km x x m m k k k --=++=+++=-+=+++要使O A O B ⊥,需使12120x x y y +=,即2222228801212m m k k k--+=++,所以223880m k --=,所以223808m k -=≥又22840k m -+>,所以22238m m ⎧>⎨≥⎩,所以283m ≥,即m ≥或m ≤,因为直线y kx m =+为圆心在原点的圆的一条切线,所以圆的半径为r =,222228381318m m r m k ===-++,r =所求的圆为2283x y +=,此时圆的切线y kx m =+都满足3m ≥或3m ≤-,而当切线的斜率不存在时切线为x =与椭圆22184x y +=的两个交点为,)或(满足OA OB ⊥,综上, 存在圆心在原点的圆2283x y +=,使得该圆的任意一条切线与椭圆E 恒有两个交点A,B,且OA OB ⊥.因为12221224122812km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩, 所以22222212121222224288(84)()()4()41212(12)km m k m x x x x x x k k k --+-=+-=--⨯=+++,||AB ===== ①当0k ≠时||AB =因为221448k k ++≥所以221101844k k<≤++, 所以2232321[1]1213344k k<+≤++,||AB ≤2k =±时取”=”. ② 当0k =时,||AB =③ 当AB 的斜率不存在时,两个交点为或(,所以此时||AB =, 综上, |AB |||AB ≤≤即: ||AB ∈ 【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系.5、(10,文)如图,已知椭圆12222=+b y a x (a b 0)>>过点(1,22),离心率为 22,左右焦点分别为12F F .点P 为直线l :2x y +=上且不在x 轴上的任意一点,直线1PF 和2PF 与椭圆的交点分别为A B 、和,C D O 、为坐标原点.(Ⅰ) 求椭圆的标准方程;(Ⅱ)设直线1PF 、2PF 斜率分别为1k 2k 、.()i 证明:12132k k -= (ⅱ)问直线l 上是否存在一点P ,使直线OA OB OC OD 、、、的斜率OA OB OC OD k k k k 、、、满足0OA OB OC OD k k k k +++=?若存在,求出所有满足条件的点P 的坐标;若不存在,说明理由.解析:本小题主要考查椭圆的基本概念和性质,考查直线与椭圆的位置关系,考查数形结合思想、分类讨论思想以及探求解决新问题的能力。

相关文档
最新文档