2020-2021初一数学下期末模拟试卷(及答案)(6)

合集下载

菏泽市东明县2020-2021学年人教版七年级下期末数学试卷(含答案解析)

菏泽市东明县2020-2021学年人教版七年级下期末数学试卷(含答案解析)

2020-2021学年山东省菏泽市东明县七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.经过多边形一个顶点共有5条对角线,则这个多边形的边数是()A.5 B.6 C.7 D.8【分析】根据从n边形的一个顶点可以作对角线的条数公式(n﹣3)求出边数即可得解.【解答】解:∵从一个多边形的一个顶点出发可以引5条对角线,设多边形边数为n,∴n﹣3=5,解得:n=8.故选:D.【点评】本题考查了多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.掌握n边形从一个顶点出发可引出(n﹣3)条对角线是解题的关键.2.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于()A.70°B.80°C.90°D.100°【分析】根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠B=50°,∵∠C=40°,∴∠E=180°﹣∠B﹣∠1=90°,故选:C.【点评】本题考查了三角形内角和定理,平行线的性质的应用,注意:两直线平行,同旁内角互补,题目比较好,难度适中.3.下列运算正确的是()A.x6÷x3=x2B.(a+1)0=1 C.2a2﹣3a2=﹣a2D.(a﹣2)2=a2﹣4【分析】直接利用零指数幂的性质以及同底数幂的除法运算法则、完全平方公式分别判断得出答案.【解答】解:A、x6÷x3=x3,故此选项错误;B、(a+1)0=1(a≠﹣1),故此选项错误;C、2a2﹣3a2=﹣a2,正确;D、(a﹣2)2=a2﹣4a+4,故此选项错误;故选:C.【点评】此题主要考查了零指数幂的性质以及同底数幂的除法运算、完全平方公式,正确把握相关性质是解题关键.4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()A.1,2,3 B.2,5,2 C.2,3,6 D.7,1,7【分析】根据三角形的三边关系,看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、1+2=3,不能构成三角形,故本选项错误;B、2+2<5,不能构成三角形,故本选项错误;C、2+3<6,不能构成三角形,故本选项错误;D、1+7>7,能构成三角形,故本选项正确.故选:D.【点评】本题主要考查了三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,比较简单.5.若a+b=6,a﹣b=2,则a2+b2的值为()A.40 B.2021.36 D.12【分析】联立已知两等式求出a与b的值,代入原式计算即可求出值.【解答】解:联立得:解得:则原式=16+4=2021故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速时,速度的变化情况,进行选择.【解答】解:公共汽车经历:加速﹣匀速﹣减速到站﹣加速﹣匀速,加速:速度增加,匀速:速度保持不变,减速:速度下降,到站:速度为0.故选:C.【点评】此题考查的知识点是函数的图象,图象分析题一定要注意图象的横、纵坐标表示的物理量,分析出图象蕴含的物理信息,考查学生的图象分析和归纳能力.7.一枚质地均匀的正方体骰子,其六个面上分别刻有1,2,3,4,5,6六个数字,抛掷这枚骰子一次,则向上的面的数字大于4的概率是()【分析】让向上一面的数字是大于4的情况数除以总情况数6即为所求的概率.【解答】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,大于4为5,6,则向上一面的数字是大于4的概率为=.故选:C.【点评】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.8.如图1,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下的部分剪开后拼成一个平行四边形(如图2),根据两个图形阴影部分面积的关系,可以得到一个关于a,b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b) D.a2+ab=a(a+b)【分析】分别计算这两个图形阴影部分面积,根据面积相等即可得到.【解答】解:第一个图形的阴影部分的面积=a2﹣b2,第二个图形面积=(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故选:C.【点评】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.二、填空题(本大题共6小题,每小题3分,共18分)9.已知10a=15,10a﹣b=30,则10b=.【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:∵10a=15,10a﹣b=30,∴10a÷10b=15÷10b=30,则10b=.故答案为:.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.10.如图,玲玲在美术课上用丝线绣成了一个“2”,AB∥DE,∠A=30°,∠ACE=110°,则∠E的度数为100°【分析】过C作CQ∥AB,得出AB∥DE∥CQ,根据平行线的性质推出∠A=∠QCA=30°,∠E+∠ECQ=180°,求出∠ECQ,即可求出.【解答】解:过C作CQ∥AB,∵AB∥DE,∴AB∥DE∥CQ,∵∠A=30°,∴∠A=∠QCA=30°,∠E+∠ECQ=180°,∵∠ACE=110°,∴∠ECQ=110°﹣30°=80°,∴∠E=180°﹣80°=100°,故答案为:100°【点评】本题主要考查对平行线的性质,平行公理及推论等知识点的理解和掌握,能正确作辅助线并灵活运用性质进行推理是解此题的关键.11.用两根同样长的铁丝分别围成一个长方形和一个正方形.若长方形的长为xcm、宽为ycm,用含有x、y的代数式表示正方形的面积为.【分析】求出长方形的周长,求出正方形的边长,即可求出答案.【解答】解:∵长方形的周长为2(x+y)cm,【点评】本题考查了列代数式,解决问题的关键是读懂题意,掌握长方形的周长与正方形的周长、面积公式.12.如图所示,A、B、C、D在同一直线上,AB=CD,DE∥AF,若要使△ACF≌△DBE,则还需要补充一个条件:∠E=∠F.【分析】要使△ACF≌△DBE,已知DE∥AF,可以得到∠A=∠D,因为AB=CD,则再添加∠E=∠F,或AF=DE从而利用AAS或SAS判定其全等,也可添加BE∥CF或∠EBD=∠FCA 利用AAS可判定全等.【解答】解:∵AB=CD,DE∥AF∴AC=DB,∠A=∠D∵∠E=∠F∴△ACF≌△DBE(AAS)∴此处添加∠E=∠F.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.13.古人云:“入门须正,立志须高”,人生目标选择非常重要哈佛大学对一群智力、学历相似的人进行的“25年跟踪”发现:有清晰且长期目标的人占3%,大都成了顶尖成功人士;有清晰短期目标的人占10%,大都成了顶尖专业人士:目标模糊者占60%,他们能安稳工作生活,无特别成绩:其余是无目标的人,经常失业,生活动荡.这一结果用扇形统计图表示如图所示:其中无目标的人所对应的扇形的圆心角为97.2°【分析】根据圆心角=360°×百分比计算即可;【解答】解:无目标的人所对应的扇形的圆心角为360°×(1﹣60%﹣3%﹣10%)=97.2°,故答案为97.2°.【点评】本题考查扇形统计图,解题的关键是熟练掌握基本知识,属于中考常考题型.14.规定:十进制数2378记作2378(10),2378(10)=2×103+3×102+7×101+8×100,二进制数1001记作1001(2),1001(2)=1×23+0×22+0×21+1×2021(k是大于2的整数)进制数132记作132(k),132(k)=k2+3k1+2k0=k2+3k+2.计算2021(k)+30(k)=2k3+8k+1(用含k的代数式表示)【分析】根据题意可以写用代数式表示出所求式子,本题得以解决.【解答】解:2021(k)+30(k)=2×k3+0×k2+5k+1×k0+3k+0×k0=2k3+8k+1,故答案为:2k3+8k+1.【点评】本题考查有理数的混合运算,解答本题的关键是明确题意,用相应的代数式表示出所求的式子.三、解答题(本大题共9小题,共78分)15.(8分)实数a、b在数轴上的对应位置如图所示,化简|2a﹣b|﹣|b﹣1|+|a+b|.【分析】根据数轴上a,b的值得出a,b的符号,a<﹣2,b>1,以及2a﹣b<0,b﹣1>0,a+b<0,即可化简求值.【解答】解:∵a<﹣2,b>1,∴2a﹣b<0,b﹣1>0,a+b<0,∴|2a﹣b|﹣|b﹣1|+|a+b|,=﹣(2a﹣b)﹣(b﹣1)﹣(a+b),(6分)=﹣2a+b﹣b+1﹣a﹣b,=﹣3a﹣b+1.(8分)【点评】此题主要考查了整式的化简以及实数与数轴,根据数轴得出a,b的符号是解决问题的关键.16.(8分)先化简,再求值:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),其中a=,b=﹣1.【分析】先算乘法和除法,再合并同类项,最后代入求出即可;【解答】解:(a2b﹣2ab2﹣b3)÷b﹣(a+b)(a﹣b),=a2﹣2ab﹣b2﹣a2+b2,=﹣2ab,当a=,b=﹣1时,原式=﹣2××(﹣1)=1;【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.17.(8分)如图,直线AB、CD相交于O,射线OM平分∠AOC,ON⊥OM.试说明射线ON平分∠BOC.【分析】根据垂直定义得出∠NOM=90°,求出∠COM+∠CON=90°,∠AOM+∠BON=90°,根据角平分线定义得出∠AOM=∠COM,即可得出∠CON=∠BON,根据角平分线定义得出即可.【解答】解:∵ON⊥OM,∴∠NOM=90°,∴∠COM+∠CON=90°,∠AOM+∠BON=180°﹣90°=90°,∵OM平分∠AOC,∴∠AOM=∠COM,∴∠CON=∠BON,即射线ON平分∠BOC.【点评】本题考查了角平分线定义和对顶角、邻补角等知识点,能够求出∠COM+∠CON=90°、∠AOM+∠BON=90°、∠AOM=∠COM是解此题的关键.18.(9分)如图,在△ABC中,D是AB上一点,DF交AC于点E,DE=EF,AE=CE.请判断AB与CF是否平行?并说明理由.【分析】由△AED≌△CEF,推出∠A=∠ECF,推出AB∥CF.【解答】解:结论:AB∥CF.理由:在△AED和△△CEF中,,∴△AED≌△CEF.∴∠A=∠ECF,∴AB∥CF.【点评】本题考查全等三角形的判定和性质,解题的关键是准确寻找全等三角形解决问题,属于中考常考题型.19.(10分)如图,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,试求△ACD的周长;(2)如果∠CAD:∠BAD=1:2,求∠B的度数.【分析】(1)折叠时,对称轴为折痕DE,DE垂直平分线段AB,由垂直平分线的性质得DA=DB,再把△ACD的周长进行线段的转化即可;(2)设∠CAD=x,则∠BAD=2x,根据(1)DA=DB,可证∠B=∠BAD=2x,在Rt△ABC中,利用互余关系求x,再求∠B.【解答】解:(1)由折叠的性质可知,DE垂直平分线段AB,根据垂直平分线的性质可得:DA=DB,所以,DA+DC+AC=DB+DC+AC=BC+AC=14cm;(2)设∠CAD=x,则∠BAD=2x,∵DA=DB,∴∠B=∠BAD=2x,在Rt△ABC中,∠B+∠BAC=90°,即:2x+2x+x=90°,x=18°,∠B=2x=36°.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.20219分)一位农民带上若干千克自产的土豆进城出售.为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)求出降价前每千克的土豆价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?【分析】(1)由图象可知,当x=0时,y=5,所以农民自带的零钱是5元.(2)可设降价前每千克土豆价格为k元,则可列出农民手中钱y与所售土豆千克数x之间的函数关系式,由图象知,当x=30时,y的值,从而求出这个函数式.(3)可设降价后农民手中钱y与所售土豆千克数x之间的函数关系式,因为当x=a时,y=26,当x=30时,y=2021此列出方程求解.【解答】解:(1)由图象可知,当x=0时,y=5.答:农民自带的零钱是5元.(2)设降价前每千克土豆价格为k元,则农民手中钱y与所售土豆千克数x之间的函数关系式为:y=kx+5,∵当x=30时,y=2021∴20210k+5,解得k=0.5.答:降价前每千克土豆价格为0.5元.(3)设降价后农民手中钱y与所售土豆千克数x之间的函数关系式为y=0.4x+b.∵当x=30时,y=2021∴b=8,当x=a时,y=26,即0.4a+8=26,解得:a=45.答:农民一共带了45千克土豆.【点评】此类题目的解决需仔细分析函数图象,从中找寻信息,利用待定系数法求出函数解析式,从而解决问题.21.(10分)如图所示的正三角形区域内投针(区域中每个小正三角形除颜色外完全相同),针随机落在某个正三角形内(边线忽略不计)(1)投针一次,针落在图中阴影区域的概率是多少?(2)要使针落在图中阴影区域和空白区域的概率均为,还要涂黑几个小正三角形?请在图中画出.【分析】(1)求出阴影部分的面积与三角形的面积的比值即可解答;(2)利用(1)中求法得出答案即可.【解答】解:(1)因为阴影部分的面积与三角形的面积的比值是=,所以投针一次击中阴影区域的概率等于.(2)如图所示:要使针落在图中阴影区域和空白区域的概率均为,还要涂黑2个小正三角形.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.22.(8分)两个全等的三角形,可以拼出各种不同的图形,下面4个图中已画出其中一个三角形,请你利用尺规作图(不写画法,保留作图痕迹)分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画的三角形可与原三角形有重叠的部分)【分析】根据轴对称图形的性质即可解决问题;【解答】解:如图所示.(答案不唯一)【点评】本题考查利用轴对称设计图案,全等三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.(8分)“化归与转化的思想”是指在研究解决数学问题时采用某种手段将问题通过变换进行转化,进而使问题得到解决我们知道m2+n2=0可以得到m=0,n=0.如果a2+b2+2a ﹣4b+5=0,求a、b的值.【分析】根据题意,可以将题目中的式子化为材料中的形式,从而可以得到a、b的值.【解答】解:由a2+b2+2a﹣4b+5=0,得到:(a2+2a+1)+(b2﹣4b+4)=0,(a+1)2+(b﹣2)2=0,所以有a+1=0,b﹣2=0,解得a=﹣1,b=2.【点评】本题考查配方法的应用、非负数的性质﹣偶次方,解题的关键是明确题目中的材料,可以将问题中方程转化为材料中的形式.。

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

2020-2021学年新人教版七年级下期末数学试题(含答案解析)

山东省临沂市兰陵县2020-2021学年七年级下学期期末考试数学试题一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中只有一项是符合题目要求的1.81的算术平方根为()A.9 B.±9 C.3 D.±3【分析】直接根据算术平方根的定义进行解答即可.【点评】本题考查的是算术平方根的定义,即一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(﹣2,1) B.(﹣2,﹣1) C.(2,1) D.(2,﹣1)【专题】几何图形.【分析】让A点的横坐标减3,纵坐标加2即为点B的坐标.【解答】解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:A.【点评】本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.3.已知实数a,b,若a>b,则下列结论错误的是()A.a﹣7>b﹣7 B.6+a>b+6 C.D.﹣3a>﹣3b【专题】方程与不等式.【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a-7>b-7,故A选项正确;B、6+a>b+6,故B选项正确;D、-3a<-3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.4.不等式组的解集在数轴上表示正确的是()【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解不等式3-x≥2,得:x≤1,∴不等式组的解集为x<-2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.已知面积为8的正方形边长是x,则关于x的结论中,正确的是() A.x是有理数B.x不能在数轴上表示C.x是方程4x=8的解D.x是8的算术平方根【专题】实数.【分析】根据算术平方根的意义,无理数的意义,实数与数轴的关系,可得答案.【解答】解:由题意,得A、x是无理数,故A不符合题意;B、x能在数轴上表示处来,故B不符合题意;C、x是x2=8的解,故C不符合题意;D、x是8的算术平方根,故D符合题意;故选:D.【点评】本题考查了实数与数轴,利用算术平方根的意义,无理数的意义,实数与数轴的关系是解题关键.6.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限【专题】常规题型.【分析】判断出P的横纵坐标的符号,进而判断出相应象限即可.【解答】解:当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限,当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,故选:D.【点评】此题主要考查了点的坐标,根据a的取值判断出相应的象限是解决本题的关键7.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于()A.40°B.45°C.50°D.60°【分析】根据两直线平行,同位角相等可得∠1=∠EGD=115°,再根据三角形内角与外角的性质可得∠C的度数.【解答】解:∵AB∥CD,∴∠1=∠EGD=115°,∵∠2=65°,∴∠C=115°-65°=50°,故选:C.【点评】此题主要考查了平行线的性质,以及三角形内角与外角的性质,关键是掌握两直线平行,同位角相等.8.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是()A.28°B.34°C.46°D.56°【专题】线段、角、相交线与平行线.【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【解答】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=87°,∴∠CFE=87°,又∵∠DCE=121°,∴∠E=∠DCE-∠CFE=121°-87°=34°,故选:B.【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.9.如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【分析】由条件可先证明AB∥CD,再证明AE∥DF,结合平行线的性质及对顶角相等可得到∠AMC=∠BND,可得出答案.【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.【点评】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.10.甲、乙两人从A地出发,沿同一方向练习跑步,如果甲让乙先跑10米,则甲跑5秒就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,设甲、乙每秒钟分别跑x米和y米,则可列方程组为()A.B.C.D.【专题】方程与不等式.【分析】本题的等量关系:(1)乙先跑10米,甲跑5秒就追上乙;(2)如果让乙先跑2秒,那么甲跑4秒就追上乙,可以列出方程组.【解答】解:设甲、乙每秒分别跑x米,y米,由题意知:故选:D.【点评】本题考查了二元一次方程组的实际应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.11.如图,根据2021﹣2021年某市财政总收入(单位:亿元)统计图所提供的信息,下列判断正确的是()A.2021~2021年财政总收入呈逐年增长B.预计2021年的财政总收入约为253.43亿元C.2021~2021年与2021~2021年的财政总收入下降率相同D.2021~2021年的财政总收入增长率约为6.3%【专题】统计的应用.【分析】根据题意和折线统计图可以判断选项中的说法是否正确【解答】解:根据题意和折线统计图可知,从2020-2021财政收入增长了,2020-2021财政收入下降了,故选项A错误;由折线统计图无法估计2021年的财政收入,故选项B错误;∵2020-2021年的下降率是:(230.68-229.01)÷230.68≈0.72%,2020-2021年的下降率是:(243.12-238.86)÷243.12≈1.75%,故选项C错误;2020-2021年的财政总收入增长率是:(230.68-217)÷217≈6.3%,故选项D正确;故选:D.【点评】本题考查折线统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件.12.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤5 5<x≤10 10<x≤15 15<x≤20频数(通话次数) 20 16 9 5则5月份通话次数中,通话时间不超过15分钟的所占百分比是()A.10% B.40% C.50% D.90%【专题】常规题型;统计的应用.【分析】根据表格可以得到总的频数和通话时间不超过15分钟的频数,从而可以求得通话时间不超过15分钟的百分比.【解答】故选:D.【点评】本题考查频数分布表,解题的关键是明确题意,找出所求问题需要的条件.13.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的合格人数如表所示,则下列说法正确的是()年级七年级八年级九年级合格人数270 262 254 A.七年级的合格率最高B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少【分析】分析统计表,可得出各年级合格的人数,然后结合选项进行回答即可.【解答】解:∵七、八、九年级的人数不确定,∴无法求得七、八、九年级的合格率.∴A错误、C错误.由统计表可知八年级合格人数是262人,故B错误.∵270>262>254,∴九年级合格人数最少.故D正确.故选:D.【点评】本题主要考查的是统计表的认识,读懂统计表,能够从统计表中获取有效信息是解题的关键.14.若不等式组的解集为x<2m﹣2,则m的取值范围是() A.m≤2 B.m≥2 C.m>2 D.m<2【专题】计算题.【分析】根据不等式的性质求出不等式的解集,根据不等式和不等式组解集得出m≥2m-2,求出即可.【解答】由①得:x<2m-2,由②得:x<m,∵不等式组的解集为x<2m-2,∴m≥2m-2,∴m≤2.故选:A.【点评】本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据题意得出m≥2m-2是解此题的关键.二、填空题(每小题4分,共202115.(4分)计算:|2﹣|的相反数是.【专题】计算题.16.(4分)若方程x﹣y=﹣1的一个解与方程组的解相同,则k的值为.【专题】计算题;一次方程(组)及应用.【分析】联立不含k的方程组成方程组,求出方程组的解得到x与y的值,即可确定出k的值.【解答】代入方程得:2-6=k,解得:k=-4,故答案为:-4【点评】此题考查了二元一次方程组的解,以及二元一次方程的解,熟练掌握运算法则是解本题的关键.17.(4分)为了解植物园内某种花卉的生长情况,在一片约有3000株此类花卉的园地内,随机抽测了2021的高度作为样本,统计结果整理后列表如下:(每组数据可包括最低值,不包括最高值)高度(cm) 40~45 45~50 50~55 55~60 60~65 65~70 频数33 42 22 24 43 36试估计该园地内此类花卉高度小于55厘米且不小于45厘米的约为株.【专题】常规题型;统计的应用.【分析】用总人数300乘以样本中高度小于55厘米且不小于45厘米的数量占被调查株数的比例.【解答】故答案为:960.【点评】本题考查了统计表以及用样本估计总体的思想,此题主要考查从统计表中获取信息的能力.统计表可以将大量数据的分类结果清晰、一目了然地表达出来.18.(4分)如图,将长方形ABCD折叠,折痕为EF,且∠1=70°,则∠AEF的度数是.【专题】几何图形.【分析】再根据AD∥BC,即可得到∠AEF=180°-∠BFE=125°.【解答】解:∵∠1=70°,∴∠BFB'=110°,又∵AD∥BC,∴∠AEF=180°-∠BFE=125°.故答案为:125°【点评】本题主要考查了折叠问题以及平行线的性质的运用,解题时注意:两直线平行,同旁内角互补.19.(4分)在平面直角坐标系中,如果对任意一点(a,b),规定两种变换:f(a,b)=(﹣a,﹣b),g(a,b)=(b,﹣a),那么g[f(1,﹣2)]=.【专题】常规题型.【分析】首先根据变换方法可得f(1,-2)=(-1,2),再根据变换方法可得g(-1,2)=(2,1),从而可得答案.【解答】解:由题意得:f(1,-2)=(-1,2),g(-1,2)=(2,1),故答案为:(2,1).【点评】此题主要考查了点的坐标,关键是理解题意,掌握变换的方法.三、解答题(共58分)202110分)(1)计算:+﹣|﹣2|(2)解不等式组【专题】数与式;方程与不等式.【分析】(1)根据立方根、算术平方根、绝对值的性质化简计算即可;(2)先求出其中各不等式的解集,再求出这些解集的公共部分即可;【解答】(2)解:由①得,x≤3,由②得,x>0,不等式组的解集为0<x≤3.【点评】本题考查实数的运算、不等式组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,DE∥BF,∠1与∠2互补.(1)试说明:FG∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【专题】线段、角、相交线与平行线.【分析】(1)依据同角的补角相等,可得∠1=∠DBF,即可得到FG∥AB;(2)依据FG∥AB,∠CFG=60°可得∠A=∠CFG=60°,再根据∠2是△ADE的外角,可得∠2=∠A+∠AED,进而得出∠AED=150°-60°=90°,可得DE⊥AC.【解答】解:(1)∵DE∥BF∴∠2+∠DBF=180°∵∠1与∠2互补∴∠1+∠2=180°∴∠1=∠DBF∴FG∥AB(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°∴∠A=∠CFG=60°∵∠2是△ADE的外角∴∠2=∠A+∠AED∵∠2=150°∴∠AED=150°-60°=90°∴DE⊥AC【点评】本题主要考查了平行线的性质与判断,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.22.(8分)为了庆祝即将到来的“五四”青年节,某校举行了书法比赛,赛后随机抽查部分参赛同学的成绩,并制作成图表如下:分数段频数频率60≤x<70 30 0.1570≤x<80 m 0.4580≤x<90 60 n90≤x≤100 20 0.1请根据以上图表提供的信息,解答下列问题:(1)这次随机抽查了名学生;表中的数m=,n=;(2)请在图中补全频数分布直方图;(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是;(4)全校共有600名学生参加比赛,估计该校成绩80≤x<100范围内的学生有多少人?【专题】常规题型;统计的应用.【分析】(1)根据60≤x<70的频数及其频率求得总人数,进而计算可得m、n的值;(2)根据(1)的结果,可以补全直方图;(3)用360°乘以样本中分数段60≤x<70的频率即可得;(4)总人数乘以样本中成绩80≤x<100范围内的学生人数所占比例.【解答】解:(1)本次调查的总人数为30÷0.15=2021,则m=20210.45=90,n=60÷20210.3,故答案为:202190、0.3;(2)补全频数分布直方图如下:(3)若绘制扇形统计图,分数段60≤x<70所对应扇形的圆心角的度数是360°×0.15=54°,故答案为:54°;答:估计该校成绩80≤x<100范围内的学生有240人.【点评】本题考查条形统计图、图表等知识.结合生活实际,绘制条形统计图或从统计图中获取有用的信息,是近年中考的热点.只要能认真准确读图,并作简单的计算,一般难度不大.23.(8分)在△ABC中,点D在边BA或BA的延长线上,过点D作DE∥BC,交∠ABC 的角平分线于点E.(1)如图1,当点D在边BA上时,点E恰好在边AC上,求证:∠ADE=2∠DEB;(2)如图2,当点D在BA的延长线上时,请直接写出∠ADE与∠DEB之间的数量关系,并说明理由.【专题】线段、角、相交线与平行线;三角形.【分析】(1)根据角平分线的定义可得出∠ABE=∠CBE,由平行线的性质可得出∠CBE=∠DEB、∠ADE=∠ABC,进而可得出∠ABE=∠DEB,再利用三角形外角的性质即可证出∠ADE=2∠DEB;(2)根据角平分线的定义可得出∠ABC=2∠CBE,利用平行线的性质可得出∠DEB=∠CBE,进而可得出∠ABC=2∠DEB,再利用“两直线平行,同旁内角互补”可证出∠ADE+2∠DEB=180°.【解答】证明:(1)∵BE平分∠ABC,∴∠ABE=∠CBE.∵DE∥BC,∴∠CBE=∠DEB,∠ADE=∠ABC,∴∠ABE=∠DEB,∴∠ADE=∠ABE+∠DEB=2∠DEB.(2)∠ADE+2∠DEB=180°.∵BE平分∠ABC,∴∠ABC=2∠CBE.∵DE∥BC,∴∠DEB=∠CBE,∠ADE+∠ABC=180°,∴∠ABC=2∠DEB,∴∠ADE+2∠DEB=180°.【点评】本题考查了三角形内角和定理、角平分线的定义、平行线的性质以及三角形的外角性质,解题的关键是:(1)利用角平分线的定义结合平行线的性质找出∠ABE=∠DEB;(2)利用角平分线的定义结合平行线的性质找出∠ADE+2∠DEB=180°.24.(12分)某校计划购买篮球、排球共2021购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.【专题】销售问题.【分析】(1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.【解答】解:(1)设篮球每个x元,排球每个y元,依题意,得答:篮球每个50元,排球每个30元;(2)设购买篮球m个,则购买排球(2021)个,依题意,得50m+30(2021)≤800.解得m≤10,又∵m≥8,∴8≤m≤10.∵篮球的个数必须为整数,∴m只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个,以上三个方案中,方案①最省钱.【点评】本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.25.(12分)甲、乙两商场以同样价格出售同样的商品,并且各自又推出不同的优惠方案:在甲商场累计购物超过2021后,超出2021的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费.设小李在同一商场累计购物x元,其中x>2021(1)当x为何值时,小李在甲、乙两商场的实际花费相同?(2)根据小李购物花费的不同金额,请你确定在哪家商场购物更合算?【专题】方程与不等式.【分析】(1)根据已知得出甲商场2021(x-2021×90%以及乙商场100+(x-100)×95%,相等列等式,进而得出答案;(2)根据2021(x-2021×90%与100+(x-100)×95%大于、小于、等于,列三个式子,从而得出正确结论.【解答】解:(1)依题意,得2021(x-2021×90%=100+(x-100)×95%,…(2分)解得x=300.…(3分)即当x=300时,小李在甲、乙两商场的实际花费相同;…(4分)(2)①当2021(x-2021×90%>100+(x-100)×95%时,解得x<300.…(5分)②当2021(x-2021×90%<100+(x-100)×95%时,解得x>300.…(6分)③当2021(x-2021×90%=100+(x-100)×95%时,解得x=300.…(7分)答:当小李购物花费少于300元时,在乙商场购物合算;当小李购物花费多于300元时,在甲商场购物合算,当小李购物等于300元时,到两家商场花费一样多.…(8分)【点评】此题考查了一元一次不等式和一元一次方程的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.。

2020-2021初一数学下期末模拟试卷附答案

2020-2021初一数学下期末模拟试卷附答案

2020-2021初一数学下期末模拟试卷附答案一、选择题1.已知二元一次方程组m2n42m n3-=⎧⎨-=⎩,则m+n的值是()A.1B.0C.-2D.-12.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°3.点M(2,-3)关于原点对称的点N的坐标是: ( )A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2)4.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°5.计算2535-+)A.-1B.1C.525-D.2556.10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩8.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.29.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩ 10.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.811.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,412.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题13.若264a =,则3a =______.14.如图,边长为10cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A'B'C'D',则阴影部分面积为___________________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.18.已知方程1(2)(3)5m n m x n y --+-=是二元一次方程,则mn =_________;19.在平面直角坐标系xOy 中,若(4,9)P m m --在y 轴上,则线段OP 长度为________.20.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =_____.三、解答题21.解不等式组523(1)13222x x x x +>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和. 22.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b +4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D 为线段OB 上一动点,当AD ⊥AC 时,∠ODA 的角平分线与∠CAE 的角平分线的反向延长线交于点P ,求∠APD 的度数;(点E 在x 轴的正半轴). (3)如图3,当点D 在线段OB 上运动时,作DM ⊥AD 交BC 于M 点,∠BMD 、∠DAO 的平分线交于N 点,则点D 在运动过程中,∠N 的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.23.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=o ,60B ∠=o ,45D E ∠=∠=o .(1)若150BCD =o ∠,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,CD AB P ,并简要说明理由.24.某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由;(2)如果每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,那么应选择以上哪种购买方案?25.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠Q 与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒Q (已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b Q (已知),得13∠=∠( ).3∴∠=________(等量代换).【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:2423m n m n -=⎧⎨-=⎩①② ②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n 这个整体式子的值.2.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒Q .故选A.3.B解析:B 【解析】试题解析:已知点M (2,-3),则点M 关于原点对称的点的坐标是(-2,3),故选B .4.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 6.B解析:B【解析】 解:∵3104<<,∴41015<<.故选B . 10 的取值范围是解题关键.解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.8.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.9.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x )≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.11.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.12.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a =,∴a=±8.∴3a =±2 故答案为±2 【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..14.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩 解析:248cm【解析】【分析】如图,A B ''交AD 于F ,其延长线交BC 于E ,利用平移的性质得到//A B AB '',//BC B C '',4B E '=,2AF =,再利用四边形ABEF 为矩形得到10EF AB ==,然后计算出FB '和DF 即可得到阴影部分面积.【详解】解:如图,A B ''交AD 于F ,其延长线交BC 于E ,Q 边长为10cm 的正方形ABCD 先向上平移4cm 再向右平移2cm ,得到正方形A B C D '''',//A B AB ∴'',//BC B C '',4B E '=,2AF =,易得四边形ABEF 为矩形,10EF AB ∴==,6FB ∴'=,8DF =,∴阴影部分面积26848()cm =⨯=.故答案为:248cm .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.18.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.19.5【解析】【分析】先根据在轴上计算出m 的值根据纵坐标的绝对值即是线段长度可得到答案【详解】∵在轴上∴横坐标为0即解得:故∴线段长度为故答案为:5【点睛】本题只要考查了再y 轴的点的特征(横坐标为零)在 解析:5【解析】【分析】先根据(4,9)P m m --在y 轴上,计算出m 的值,根据纵坐标的绝对值即是线段OP 长度可得到答案.【详解】∵(4,9)P m m --在y 轴上,∴横坐标为0,即40m -=,解得:4m =,故(0,5)P -,∴线段OP 长度为|5|5-=,故答案为:5.【点睛】本题只要考查了再y 轴的点的特征(横坐标为零),在计算线段的长度时,注意线段长度不为负数.20.40或80【解析】当这两个角是对顶角时(2x-10)=(110-x)解之得x=40;当这两个角是邻补角时(2x-10)+(110-x)=180解之得x=80;∴x 的值是40或80点睛:本题考查了两条解析:40或80【解析】当这两个角是对顶角时,(2x -10) =(110-x ),解之得x =40;当这两个角是邻补角时,(2x -10) +(110-x ) =180,解之得x =80;∴x 的值是40或80.点睛:本题考查了两条直线相交所成的四个角之间的关系及分类讨论的数学思想,两条直线相交所成的四个角或者是对顶角的关系,或者是邻补角的关系,明确这两种关系是解答本题的关键.三、解答题21.512x -<…,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】解:523(1) 13222x xx x+>-⎧⎪⎨-⎪⎩①②„解不等式①得52x>-,解不等式②得1x≤,∴512x-<„,x为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(1)C(5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a,b即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=0.5∠BMD,∴∠DAN+∠DMN=0.5(90°﹣∠BMD)+0.5∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)] =180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.23.(1)30°; (2)答案见解析;(3)答案见解析.【解析】【分析】(1)由∠BCD =150°,∠ACB =90°,可得出∠DCA 的度数,进而得出∠ACE 的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD =∠ACB +∠ACD ,∠ACE =∠DCE−∠ACD 可得出结论;(3)根据平行线的判定定理,画出图形即可求解.【详解】解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒,∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒;(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒;(3)当120BCD ∠=︒或60︒时,CD AB P .如图②,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB P ,此时180********BCD B ∠=︒-∠=︒-︒=︒; 如图③,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,CD AB P .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.24.(1) 有三种购买方案,理由见解析;(2)为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车【解析】【分析】设要购买轿车x 辆,则要购买面包车(10-x )辆,题中要求“轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元”列出不等式,然后解出x 的取值范围,最后根据x 的值列出不同方案.【详解】(1)设购买轿车x辆,那么购买面包车(10-x)辆.由题意,得7x+4(10-x)≤55,解得x≤5.又因为x≥3,所以x的值为3,4,5,所以有三种购买方案:方案一:购买3辆轿车,7辆面包车;方案二:购买4辆轿车,6辆面包车;方案三:购买5辆轿车,5辆面包车.(2)方案一的日租金为3×200+7×110=1370(元)<1500元;方案二的日租金为4×200+6×110=1460(元)<1500元;方案三的日租金为5×200+5×110=1550(元)>1500元.所以为保证日租金不低于1500元,应选择方案三,即购买5辆轿车,5辆面包车.【点睛】本题主要考查对于一元一次不等式组的应用,要注意找好题中的不等关系.解题的关键是:(1)根据数量关系列出关于x的一元一次不等式;(2)求出三种购买方案的日租金25.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a∥b(已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。

2020-2021学年福建省泉州市七年级(下)期末数学试卷(解析版)

2020-2021学年福建省泉州市七年级(下)期末数学试卷(解析版)

2020-2021学年福建省泉州市七年级(下)期末数学试卷一、选择题(共10小题).1.下列方程中,解为x=1的是()A.x+1=1B.x﹣1=1C.2x﹣2=0D.2.不等式x≤2在数轴上表示正确的是()A.B.C.D.3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A.正五边形B.正六边形C.正八边形D.正十边形4.下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.一个三角形的两边长分别是4和9,则它的第三边长可能是()A.4B.5C.8D.136.下列不等式组中,无解的是()A.B.C.D.7.若是关于x,y的二元一次方程3k=5+3x+2y的一个解,则k的值()A.2B.3C.4D.68.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A.7x﹣4=9x﹣8B.C.7x+4=9x+8D.9.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°10.若关于x,y的二元一次方程组的解为则方程组的解为()A.B.C.D.二、填空题:本大题共6个小题,每小题4分,共24分.11.已知a>b,则﹣2a﹣2b(填“>”、“<”或“=”号).12.由3x+y=5,得到用x表示y的式子为y=.13.为建设书香校园,某中学的图书馆藏书量增加20%后达到2.4万册,则该校图书馆原来图书有万册.14.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=°.15.如图,将△ABC沿着射线BC的方向平移到△DEF的位置,若点E是BC的中点,BF =18cm,则平移的距离为cm.16.如图,在△ABC中,点D在BC边上,∠BAC=80°,∠ABC=50°,射线DC绕点D 逆时针旋转一定角度α,交AC于点E,∠ABC的平分线与∠ADE的平分线交于点P.下列结论:①∠C=50°;②∠P=∠BAD;③α=2∠P﹣∠BAD;④若∠ADE=∠AED,则∠BAD=2α.其中正确的是.(写出所有正确结论的序号)三、解答题:本大题共9个小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.解方程组:.18.解不等式组:.19.若代数式4x﹣5与3x﹣6的值互为相反数,求x的值.20.作图:在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形:(1)将△ABC向右平移5个单位得到△A′B′C′;(2)将△A′B′C′绕点A′顺时针旋转90°得到△A′DE;(3)连接EC′,则△A′EC′是三角形.21.如图,在△ABC中,∠A=62°,∠ABC=48°.(1)求∠C的度数;(2)若BD是AC边上的高,DE∥BC交AB于点E,求∠BDE的度数.22.如图,在四边形ABCD中,∠D=90°,E是BC边上一点,EF⊥AE,交CD于点F.(1)若∠EAD=60°,求∠DFE的度数;(2)若∠AEB=∠CEF,AE平分∠BAD,试说明:∠B=∠C.23.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n 元,5月份购进5台A型空调和7台B型空调共43000元;6月份购进7台A型空调和6台B型空调共45000元.(1)求m,n的值;(2)7月份该商场计划购进这两种型号空调共78000元,其中B型空调的数量不少于12台,试问有哪几种进货方案?24.已知x,y同时满足x+3y=4﹣a,x﹣5y=3a.(1)当a=4时,求x﹣y的值;(2)试说明对于任意给定的数a,x+y的值始终不变;(3)若y>1﹣m,3x﹣5≥m,且x只能取两个整数,求m的取值范围.25.阅读理解:如图1,在△ABC中,D是BC边上一点,且,试说明.解:过点A作BC边上的高AH,∵,,∴,又∵,∴.根据以上结论解决下列问题:如图2,在△ABC中,D是AB边上一点,且CD⊥AB,将△ACD沿直线AC翻折得到△ACE,点D的对应点为E,AE,BC的延长线交于点F,AB=12,AF=10.(1)若CD=4,求△ACF的面积;(2)设△ABF的面积为m,点P,M分别在线段AC,AF上.①求PF+PM的最小值(用含m的代数式表示);②已知,当PF+PM取得最小值时,求四边形PCFM的面积(用含m的代数式表示).参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,解为x=1的是()A.x+1=1B.x﹣1=1C.2x﹣2=0D.解:A、x+1=1的解为x=0,故A不符合题意;B、x﹣1=1的解为x=2,故B不符合题意;C、2x﹣2=0的解为x=1,故C符合题意;D、x﹣2=0的解为x=4,故D不符合题意;故选:C.2.不等式x≤2在数轴上表示正确的是()A.B.C.D.解:不等式x≤2在数轴上表示为:.故选:B.3.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A.正五边形B.正六边形C.正八边形D.正十边形解:A、正五边形的每个内角是(5﹣2)×180°÷5=108°,不能整除360°,不能密铺;B、正六边形的每个内角是120°,能整除360°,能密铺.C、正八边形的每个内角为:(8﹣2)×180°÷8=135°,不能整除360°,不能密铺;D、正十边形的每个内角为:(10﹣2)×180°÷10=144°,不能整除360°,不能密铺;故选:B.4.下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A.B.C.D.解:A.是轴对称图形,不是中心对称图形,故本选项不合题意;B.既是轴对称又是中心对称图形,故本选项符合题意;C.是轴对称图形,不是中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项不合题意;故选:B.5.一个三角形的两边长分别是4和9,则它的第三边长可能是()A.4B.5C.8D.13解:设第三边长为a,由三角形的三边关系,得9﹣4<a<9+4,即5<a<13,∴它的第三边长可能是8,故选:C.6.下列不等式组中,无解的是()A.B.C.D.解:A.的解集为x<﹣3,故本选项不合题意;B.的解集为﹣3<x<2,故本选项不合题意;C.的解集为x>2,故本选项不合题意;D.无解,故选:D.7.若是关于x,y的二元一次方程3k=5+3x+2y的一个解,则k的值()A.2B.3C.4D.6解:∵是关于x,y的二元一次方程3k=5+3x+2y的一个解,∴3k=5+3×(﹣1)+2×2,解得k=2,故选:A.8.明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时1斤=16两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A.7x﹣4=9x﹣8B.C.7x+4=9x+8D.解:设总共有x两银子,根据题意列方程得:=,故选:D.9.如图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于()A.360°B.290°C.270°D.250°解:∵∠A=110°,∴∠A的外角为180°﹣110°=70°,∴∠1+∠2+∠3+∠4=360°﹣70°=290°,故选:B.10.若关于x,y的二元一次方程组的解为则方程组的解为()A.B.C.D.解:∵方程组可变形为,∴,∴,故选:D.二、填空题:本大题共6个小题,每小题4分,共24分.11.已知a>b,则﹣2a<﹣2b(填“>”、“<”或“=”号).解:∵a>b,∴﹣2a<﹣2b,故答案为:<.12.由3x+y=5,得到用x表示y的式子为y=﹣3x+5.解:方程3x+y=5,解得:y=﹣3x+5,故答案为:﹣3x+513.为建设书香校园,某中学的图书馆藏书量增加20%后达到2.4万册,则该校图书馆原来图书有20万册.【解答】设原先臧书量是x万册,增加20%后变为(1+20%)x=1.2x(万册),即1.2x=2.4,解得x=20(万册),故答案是:2014.如图,△ABC≌△EDC,∠C=90°,点D在线段AC上,点E在线段CB延长线上,则∠1+∠E=90°.解:∵△ABC≌△EDC,∴∠1=∠EDC,∵∠C=90°,∴∠EDC+∠E=90°,∴∠1+∠E=90°,故答案为:90.15.如图,将△ABC沿着射线BC的方向平移到△DEF的位置,若点E是BC的中点,BF =18cm,则平移的距离为6cm.解:由平移的性质可知:EF=BC,∵点E是BC的中点,∴EC=BC=BE,∴EC=EF=CF,∵BF=18cm,∴BE=EC=CF=×18=6(cm),即平移的距离为6cm,故答案为:6.16.如图,在△ABC中,点D在BC边上,∠BAC=80°,∠ABC=50°,射线DC绕点D 逆时针旋转一定角度α,交AC于点E,∠ABC的平分线与∠ADE的平分线交于点P.下列结论:①∠C=50°;②∠P=∠BAD;③α=2∠P﹣∠BAD;④若∠ADE=∠AED,则∠BAD=2α.其中正确的是①③④.(写出所有正确结论的序号)解:∵∠BAC=80°,∠ABC=50°,∴∠C=180°﹣∠BAC﹣∠ABC=50°,故①正确;∵∠ABC的平分线与∠ADE的平分线交于点P,∴∠PDE=∠ADE,∠PBD=∠ABC,又∵∠ADC=∠ADE+∠EDC=∠ADE+α=∠ABC+∠DAB①,∠PDC=∠PDE+∠EDC=∠PDE+α=∠PBD+∠P=∠ABC+∠P,∴2∠PDE+2α=∠ABC+2∠P,即∠ADE+2α=∠ABC+2∠P②,②﹣①得:α=2∠P﹣∠DAB,故②错误,③正确;∵∠ADC=∠ADE+α=∠ABC+∠DAB,∠AED=∠C+∠EDC=∠C+α,又∵∠ADE=∠AED,∴∠C+α+α=∠ABC+∠DAB,又∵∠C=50°,∠ABC=50°,∴∠C=∠ABC,∴∠BAD=2α,故④正确,故答案为:①③④.三、解答题:本大题共9个小题,共86分,解答应写出文字说明、证明过程或演算步骤.17.解方程组:.解:,①﹣②,得y=12,把y=12代入②,得x+12=7,解得x=﹣5,故方程组的解为:.18.解不等式组:.解:,解不等式①,得x>﹣2,解不等式②,得x≤1,故不等式组的解集为:﹣2<x≤1.19.若代数式4x﹣5与3x﹣6的值互为相反数,求x的值.解:根据题意得:4x﹣5+3x﹣6=0,移项合并得:7x=11,解得:.20.作图:在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形.按要求画出下列图形:(1)将△ABC向右平移5个单位得到△A′B′C′;(2)将△A′B′C′绕点A′顺时针旋转90°得到△A′DE;(3)连接EC′,则△A′EC′是等腰直角三角形.解:(1)如图,△A′B′C′为所作;(2)如图,△A′DE为所作;(3)连接EC′,如图,∵△A′B′C′绕点A′顺时针旋转90°得到△A′DE,∴A′E=A′C′,∠EA′C′=90°,∴△A′EC′是等腰直角三角形.故答案为等腰直角.21.如图,在△ABC中,∠A=62°,∠ABC=48°.(1)求∠C的度数;(2)若BD是AC边上的高,DE∥BC交AB于点E,求∠BDE的度数.解:(1)∵∠A+∠ABC+∠C=180°,∴∠C=180°﹣62°﹣48°=70°.(2)∵BD⊥AC,∴∠BDC=90°,∴∠DBC=90°﹣70°=20°,∵DE∥BC,∴∠BDE=∠CBD=20°.22.如图,在四边形ABCD中,∠D=90°,E是BC边上一点,EF⊥AE,交CD于点F.(1)若∠EAD=60°,求∠DFE的度数;(2)若∠AEB=∠CEF,AE平分∠BAD,试说明:∠B=∠C.【解答】(1)解:∵EF⊥AE,∴∠AEF=90°,四边形AEFD的内角和是360°,∵∠D=90°,∠EAD=60°,∴∠DFE=360°﹣∠D﹣∠EAD﹣∠AEF=120°;(2)证明:四边形AEFD的内角和是360°,∠AEF=90°,∠D=90°,∴∠EAD+∠DFE=180°,∵∠DFE+∠CFE=180°,∴∠EAD=∠CFE,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BAE=∠CFE,∵∠B+∠BAE+∠AEB=180°,∠C+∠CFE+∠CEF=180°,∠AEB=∠CEF,∴∠B=∠C.23.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n 元,5月份购进5台A型空调和7台B型空调共43000元;6月份购进7台A型空调和6台B型空调共45000元.(1)求m,n的值;(2)7月份该商场计划购进这两种型号空调共78000元,其中B型空调的数量不少于12台,试问有哪几种进货方案?解:(1)依题意得:,解得:.答:m的值为3000,n的值为4000.(2)设购进B型空调x台,则购进A型空调=(26﹣x)台,依题意得:,解得:12≤x<.又∵x,(26﹣x)均为整数,∴x为3的倍数,∴x可以取12,15,18,∴该商场共有3种进货方案,方案1:购进A型空调10台,B型空调12台;方案2:购进A型空调6台,B型空调15台;方案3:购进A型空调2台,B型空调18台.24.已知x,y同时满足x+3y=4﹣a,x﹣5y=3a.(1)当a=4时,求x﹣y的值;(2)试说明对于任意给定的数a,x+y的值始终不变;(3)若y>1﹣m,3x﹣5≥m,且x只能取两个整数,求m的取值范围.解:(1)∵x,y同时满足x+3y=4﹣a,x﹣5y=3a.∴两式相加得:2x﹣2y=4﹣2a,∴x﹣y=2﹣a,当a=4时,x﹣y的值为﹣2;(2)若x+3y=4﹣a①,x﹣5y=3a②.则①×3+②得到:4x+4y=12,∴x+y=3,∴不论a取什么实数,x+y的值始终不变.(3)∵x+y=3,∴y=3﹣x,∵y>1﹣m,3x﹣5≥m,∴,整理得,∵x只能取两个整数,故令整数的值为n,n+1,有:n﹣1<≤n,n+1<m+2≤n+2.故,∴n﹣1<3n﹣5且3n﹣8<n,∴2<n<4,∴n=3,∴,∴2<m≤3.25.阅读理解:如图1,在△ABC中,D是BC边上一点,且,试说明.解:过点A作BC边上的高AH,∵,,∴,又∵,∴.根据以上结论解决下列问题:如图2,在△ABC中,D是AB边上一点,且CD⊥AB,将△ACD沿直线AC翻折得到△ACE,点D的对应点为E,AE,BC的延长线交于点F,AB=12,AF=10.(1)若CD=4,求△ACF的面积;(2)设△ABF的面积为m,点P,M分别在线段AC,AF上.①求PF+PM的最小值(用含m的代数式表示);②已知,当PF+PM取得最小值时,求四边形PCFM的面积(用含m的代数式表示).解:(1)∵CD⊥AB,∴∠ADC=90°,由翻折得,CE=CD=4,∠AEC=∠ADC=90°,∴CE⊥AF,∵AF=10,∴S△ACF=AF•CE=×10×4=20.(2)①如图2,作MN⊥AC于点O,交AB于点N,连接FN、PN,由翻折得,∠OAM=∠OAN,∵AO=AO,∠AOM=∠AON=90°,∴△AOM≌△AON(ASA),∴OM=ON,AM=AN,∴AC垂直平分MN,∴PM=PN,∴PF+PM=PF+PN≥FN,∴当点P落在FN上且FN⊥AB时,PF+PM的值最小,为此时FN的长;如图3,FN⊥AB于点N,交AC于点P,PM⊥AF,由S△ABF=AB•FN=m,得×12FN=m,解得,FN=m,此时PF+PM=FN=m,∴PF+PM的最小值为m.②如图4,当PF+PM取最小值时,FN⊥AB于点N,交AC于点P,PM⊥AF,设CD=CE=a,PM=PN=x,∵AB=12,AF=10,∴==,∴S△AFC=S△ABF=m;∵,∴AM=AF=×10=4,∴AN=AM=4,∴BN=12=4=8,∴==,∴S△AFN=S△ABF=m,由S△APM=×4x,S△APN=×4x,得S△APM=S△APN,设S△APM=S△APN=2n,∵==,∴S△FPM=3n,由S△APN+S△APM+S△FPM=S△AFN=m,得2n+2n+3n=m,∴n=m,∴S△APM=2n=m,∴S四边形PCFM=m m=m.。

2020-2021初一数学下期末试卷(及答案)

2020-2021初一数学下期末试卷(及答案)
二填空题
(x-y = 2m + l
13・若关于X、y的二元一次方程组{C的解满足X+v>0,则m的取值范围
[x+3y = 3
是—.
14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超
Ji 115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:
x+y = 3(x = a
18•若二元一次方程组彳c:”的解为{「则a-b=
3x-5y = 4[y = b
C・210.v+90 (15 -χ) >1800D・90x+210 (15 -χ) <1.8
9.卞列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离:
③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点 连接的所有线段中,垂线段最短•其中正确的个数有()
8.小明要从甲地到乙地,两地相距1・8「米・己知他步行的平均速度为90米/分,跑步的
平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步 多少分钟?设他需要跑步X分钟,则列出的不等式为()
A・210x+90 (15 -A<) >1.8B・90λ+210(15-λ)<1800
2020-2021
1.
1. 如图,将一张长方形纸条折叠,如果Zl=I30。,贝∣J, Z2=()
2. 将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30。 角的直角三角板的斜边与纸条一边重合,含45。角的三角板的一个顶点在纸条的另一边
3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打 折销售,但要保证利润率不低于5%,则至多可打()

2020-2021初一数学下期末试题(及答案)

2020-2021初一数学下期末试题(及答案)

2020-2021初一数学下期末试题(及答案) 2020-2021初一数学下期末试题(及答案)一、选择题1.已知实数a,b,若a>b,则下列结论错误的是A。

a-7>b-7B。

6+a>b+6C。

a/5>b/5D。

-3a>-3b2.计算2-5+3-5的值是()A。

-1B。

1C。

-20D。

203.估计10+1的值应在()A。

3和4之间B。

4和5之间C。

5和6之间D。

6和7之间4.XXX对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示。

下列说法中正确的是()A。

喜欢乒乓球的人数(1)班比(2)班多B。

喜欢足球的人数(1)班比(2)班多C。

喜欢羽毛球的人数(1)班比(2)班多D。

喜欢篮球的人数(2)班比(1)班多5.黄金分割数是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5-1/2的值()A。

在1.1和1.2之间B。

在1.2和1.3之间C。

在1.3和1.4之间D。

在1.4和1.5之间6.已知关于x,y的二元一次方程组2ax+by=3ax-by=1y=-1的解为,则a-2b的值是()A。

-2B。

2C。

3D。

-37.在平面直角坐标系内,线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(2,5),则点B(-4,-1)的对应点D的坐标为()A。

(-8,-3)B。

(4,2)C。

(0,1)D。

(1,8)8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A。

≥-1B。

1C。

-3< x ≤-1D。

-39.将点A(1,-1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B到达点D,使得点A到达点C(4,2),点B到达点D,则点D的坐标是()A。

(7,3)B。

(6,4)C。

(7,4)D。

(8,4)10.在平面直角坐标系中,点A的坐标为(0,1),点B 的坐标为(3,3),将线段AB平移,使得A到达点C(1,1),B到达点D,则点D的坐标为()A。

2020-2021学年四川省眉山市仁寿县七年级(下)期末数学试卷(含解析)

2020-2021学年四川省眉山市仁寿县七年级(下)期末数学试卷(含解析)

2020-2021学年四川省眉山市仁寿县七年级(下)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.某同学在解方程3x−1=□x+2时,把□处的数字看错了,解得x=−1,则该同学把□看成了()A. 3B. 13C. 6 D. −162..晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.3.在平面直角坐标系中,已知A(−2,2√3),M(1,0),点B为y轴上的动点,以AB为边构造△ABC,使点C在x轴上,∠BAC=90°,P为BC的中点,则PM的最小值为()A. 52B. √5C. 2D. √34. 3.已知,下列不等式一定成立的是A. B. C. D.5.将一副三角板如图叠放,问∠1的度数为()A. 60°B. 30°C. 75°D. 55°6.n边形的边每增加一条,它的内角和就增加()A. 90°B. 180°C. 360°D. n⋅180°7.二元一次方程组 {x−2y=−33x+y=5的解()A. {x=1y=2B. {x=−1y=2C. {x=1y=−2D. {x=−1y=−28.如图,△ABC和△A′B′C是两个完全重合的直角三角板,∠B=30°,斜边长为12cm.三角板A′B′C绕直角顶点C顺时针旋转,当点A′落在AB边上时,则点A′所转过的路径长为()A. πcmB. 2πcmC. 8π3cm D. 4πcm9.小明和小刚从相距25千米的两地同时出发相向而行,3小时后两人相遇.已知小明的速度是4km/ℎ.设小刚的速度为x km/ℎ,列方程得()A. 3x+12=25B. 3x+4=25C. 3x−25=12D. 3(4−x)=2510.如图,如果AC⊥BC,CD⊥AB,∠1=∠2,那么下列结论中正确的个数是()①∠1=∠B②∠A=∠3③AC//DE④∠2与∠B互余⑤∠2=∠A⑥A,C两点之间的距离就是线段AC的长.A. 3个B. 4个C. 5个D. 6个11.不等式组{x+2≥13−x>0的整数解共有()A. 1个B. 2个C. 3个D. 4个12.如图,在四边形ABCD中,AD//BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A. B.C. D.二、填空题(本大题共6小题,共24.0分)13.将方程x+y=2写成用含x的代数式表示y,则y=______ .14.若等腰三角形的两边长为3cm和7cm,则该等腰三角形的周长为______cm.15.对于任意实数m、n,定义一种运算m⊕n=mn+m−n+3,等式的右边是通常的加减和乘法运算,例如:3⊕5=3×5+3−5+3=16.请根据上述定义解决问题:若a<2⊕x≤7,且解集中有三个整数解,则a的范围是______.16.如图,在△ABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=______度.17.如图,在△ABC中,∠B=∠C=40°,BD=CF,BE=CD,则∠EDF的度数是.18.请写出一个由两个一元一次不等式组成的不等式组______,使它的解集为:−1≤x≤2.三、计算题(本大题共3小题,共26.0分)19. (1)解方程:2x+13−x−16=2;(2)先化简,再求值:3[2x 2−(23x 2−y 2)]−9y 2,其中x =2,y =−1.20. 解方程组:(1){x +y −z =02x −y +3z =2x −4y −2z +6=0(2){3x +y =6x +2y −z =55x −3y +2z =4(3){x +y +z =−14x −2y +3z =5y −z =8−2x(4){2x +3y =53y −4z =34z +5x =7.21. 苹果和梨中含有大量的维生素和微量元素,每天吃点水果,能够补充身体对维生素的需求,使身体更健康.水果超市3月上旬购进苹果和梨共1000千克,进价均为每千克16元,然后梨以30元/千克、苹果以24元/千克的价格很快售完.(1)若超市3月上旬售完所有苹果和梨获利不低于11600元,求购进梨至少多少千克?(2)因气温日趋升高,水果成熟速度快,而梨过熟后口味变淡,宜适时品尝,在进价不变的情况下,该超市3月中旬决定调整价格,将梨的售价在3月上旬的基础上m%;同下调m%(降价后售价不低于进价),苹果的售价在3月上旬的基础上上涨53m%,苹果的销售量上时,与(1)中获利最低时的销售量相比,梨的销售量下降了56升了25%,结果3月中旬的销售额比(1)中获利最低时的销售额增加了400元,求m 的值.四、解答题(本大题共5小题,共52.0分)22.阅读理解:求代数式y2+4y+8的最小值.解:∵y2+4y+8=(y2+4y+4)+4=(y+2)2+4≥4∴当y=−2时,代数式y2+4y+8的最小值是4.仿照应用(1):求代数式m2+2m+3的最小值.仿照应用(2):求代数式−m2+2m+3的最大值.23.如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC①将△ABC向x轴正方向平移5个单位得△A1B1C1.②以O为旋转中心,将△ABC逆时针旋转90°得△A2B2C2,并写出A2、B2、C2的坐标.24.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转α°,分别交直线BC、AD于点E、F.(1)当α=______°,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形.①α=______°,构造的四边形是菱形;②若构造的四边形是矩形,求出该矩形的面积.25.阅读理解题:定义:如果一个数的平方等于−1,记为i2=−1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(2−i)+(5+3i)=(2+5)+(−1+3)i=7+2i;(1+i)×(2−i)=1×2−1×i+2×i−i2=2+(−1+2)i+1=3+i;i3=i2×i=−1×i=−ii4=i2×i2=−1×(−1)=1根据以上信息,完成下列问题:(1)填空:3i3=______;(2)计算:(1+i)×(3−4i)+i5;(3)计算:i+i2+i3+i4+⋯+i2022.26.已知:AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°.(1)如图1,若∠ABE=65°,∠ACF=75°,求∠BAC的度数.(2)如图1,求证:EF=2AD.(3)如图2,设EF交AB于点G,交AC于点R,FC与EB交于点M,若点G为EF中点,且∠BAE=60°,请探究∠GAF和∠CAF的数量关系,并证明你的结论.答案和解析1.【答案】C【解析】【分析】本题考查了一元一次方程的解.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.先把x的值代入到方程中,把方程转换成求未知系数的方程,然后解得未知系数的值.【解答】解:把x=−1代入方程3x−1=□x+2,得3×(−1)−1=−□+2,即−4=−□+2,解得□=6.故选C.2.【答案】B【解析】A、C、D选项中的图形既是轴对称图形,又是中心对称图形;B选项中的图形是中心对称图形但不是轴对称图形.故选B.3.【答案】A【解析】解:如图,过点A作y轴的平行线交x轴于点E,过点B作BH⊥EA的延长线于点H,则四边形OEHB是矩形,∴OE=BH=2,AE=2√3,设OC=x,则CE=x+2,∵∠BAC=∠AEC=90°,∴∠BAH +∠EAC =90°,∠ECA +∠EAC =90°,∴∠BAH =∠ECA ,∴△BAH∽△ACE∴BH AE =AH CE 即2√3=AH x+2,∴AH =√33(x +2),∴OB =AH +AE =2√3+√33(x +2)=√33(x +8), ∴B(0,√33(x +8)),C(x,0)∵P 为BC 的中点,∴P(12x,√36(x +8)),作PF ⊥x 轴于点F ,在Rt △PMF 中,根据勾股定理,得PM 2=MF 2+PF 2,=(12x −1)2+[√36(x +8)]2 =13(x +12)2+254,∵13>0, ∴x =−12时,PM 2有最小值,最小值为254, ∴PM 最小值为52.故选:A .过点A 作y 轴的平行线交x 轴于点E ,过点B 作BH ⊥EA 的延长线于点H ,则四边形OEHB 是矩形,设OC =x ,则CE =x +2,证明△BAH∽△ACE ,对应边成比例,用含x 的式子表示B 、C 两点的坐标,再根据点P 是BC 中点,即可表示点P 坐标,根据勾股定理即可用二次函数解析式表示PM 的平方,进而根据二次函数的最值求得PM 的最小值. 本题考查相似三角形的判定和性质、两点间距离公式、二次函数的应用等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会构建二次函数,利用二次函数的性质解决最值问题,属于中考常考题型. 4.【答案】D【解析】根据不等式的基本性质解答,不等式两边同时加或减去同一个数,不等号方向不变;不等式两边同时乘以(或除以)同一个大于0的数,不等号方向不变;不等式两边同时乘以(或除以)同一个小于0的数,不等号方向改变。

2020-2021数学 七年级苏科下册期末(含答案)

2020-2021数学 七年级苏科下册期末(含答案)

2020-2021数学七年级苏科下册期末(含答案)一、幂的运算易错压轴解答题1.若a m=a n(a>0且a≠1,m、n是正整数),则m=n.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若2×2x=8,求x的值;(2)若(9x)2=38,求x的值.2.综合题。

(1)若2x+5y﹣3=0,求4x•32y的值.(2)若26=a2=4b,求a+b值.3.已知a m=2,a n=4,求下列各式的值(1)a m+n(2)a3m+2n.二、平面图形的认识(二)压轴解答题4.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE 和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.(1)如图①,已知∠ABE=50°,∠DCE=25°,则∠BEC = ________°;(2)如图②,若∠BEC=140°,求∠BE1C的度数;(3)猜想:若∠BEC=α度,则∠BE n C = ________ °.5.如图,在△ABC中,BC=7,高线AD、BE相交于点O,且AE=BE.(1)∠ACB与∠AOB的数量关系是________(2)试说明:△AEO≌△BEC;(3)点F是直线AC上的一点且CF=BO,动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动。

设点P的运动时间为t秒,问是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请在备用图中画出大致示意图,并直接写出符合条件的t值:若不存在,请说明理由.6.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知,则成立吗?请说明理由.(2)如图2,已知,平分,平分 . 、所在直线交于点,若,,求的度数.(3)将图2中的线段沿所在的直线平移,使得点B在点A的右侧,若,,其他条件不变,得到图3,请你求出的度数(用含m,n的式子表示).三、整式乘法与因式分解易错压轴解答题7.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.8.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02, 12=42﹣22, 20=62﹣42,因此4,12,20都是“神秘数”(1)28和2012这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?9.阅读材料:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,那么形如a+bi(a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部.它有如下特点:①它的加,减,乘法运算与整式的加,减,乘法运算类似例如计算:(2+i)+(3﹣4i)=(2+3)+(1﹣4)i=5﹣3i;(3+i)i=3i+i2=3i﹣1②若他们的实部和虚部分别相等,则称这两个复数相等若它们的实部相等,虚部互为相反数,则称这两个复数共轭,如1+2i的共轭复数为1﹣2i.(1)填空:(3i﹣2)(3+i)=________;(1+2i)3(1﹣2i)3=________;(2)若a+bi是(1+2i)2的共轭复数,求(b﹣a)a的值;(3)已知(a+i)(b+i)=1﹣3i,求(a2+b2)(i2+i3+i4+…+i2019)的值.四、二元一次方程组易错压轴解答题10.阅读下列材料,然后解答后面的问题.我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需求出其正整数解.例:由2x+3y=12得y==4﹣ x(x,y为正整数).∴则有0<x<6,又∵y=4﹣ x为正整数,∴ x为正整数.由2与3互质,可知x为3的倍数,从而x=3,代入y=4﹣ x=2.∴2x+3y=12的正整数解为 .问题:(1)请你写出方程3x+y=7的一组正整数解:________.(2)若为自然数,则满足条件的x值有 .A.2个B.3个C.4个D.5个(3)为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品至少购买1件),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去180元,问有几种购买方案.11.已知关于x,y的二元一次方程组(a为实数).(1)若方程组的解始终满足y=a+1,求a的值.(2)己知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠-6)的解.①探究实数a,b满足的关系式.②若a,b都是整数,求b的最大值和最小值.12.对x,y定义一种新运算F,规定:F(x,y)=ax+by(其中a,b均为非零常数).例如:F(3,4)=3a+4b.(1)已知F(1,﹣1)=﹣1,F(2,0)=4.①求a,b的值;②已知关于p的不等式组,求p的取值范围;(2)若运算F满足,请你直接写出F(m,m)的取值范围(用含m的代数式表示,这里m为常数且m>0).五、一元一次不等式易错压轴解答题13.某电器商城销售、两种型号的电风扇,进价分别为元、元,下表是近两周的销售情况:销售时段销售型号销售收入种型号种型号第一周台台元第二周台台元(1)求A、B两种型号的电风扇的销售单价;(2)若商城准备用不多于元的金额再采购这两种型号的电风扇共台,求种型号的电风扇最多能采购多少台?(3)在(2)的条件下商城销售完这台电风扇能否实现利润超过元的目标?若能,请给出相应的采购方案;若不能,请说明理由.14.某风景区票价如下表所示:人数/人1~4041~8080以上价格/元/人150130120有甲、乙两个旅行团队共计100人,计划到该景点游玩.已知乙队多于甲队人数的,但不超过甲队人数的,且甲、乙两队分别购票共需13600元(1)试通过计算判断,甲、乙两队购票的单价分别是多少?(2)求甲、乙两队分别有多少人?(3)暑期将至,该风景区计划对门票价格做如下调整:人数不超过40人时,门票价格不变;人数超过40人但不超过80人时,每张门票降价a元;人数超过80人时,每张门票降价2a元,其中a>0.若甲、乙两队联合购票比分别购票最多可节约2250元,直接写出a 的取值范围15.某公司有A、B两种型号的客车,它们的载客量、每天的租金如表所示:10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:原方程等价于2x+1=23 ,x+1=3,解得x=2;(2)解:原方程等价于34x=38 ,4x=8,解得x=2.【解析】【分析】(1)根据am=an(解析:(1)解:原方程等价于2x+1=23,x+1=3,解得x=2;(2)解:原方程等价于34x=38,4x=8,解得x=2.【解析】【分析】(1)根据a m=a n(a>0且a≠1,m、n是正整数),则m=n,可得答案;(2)根据a m=a n(a>0且a≠1,m、n是正整数),则m=n,可得答案.2.(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b ,∴(23)2=a2=(22)b解析:(1)解:(1)∵2x+5y﹣3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8;(2)解:∵26=a2=4b,∴(23)2=a2=(22)b=22b,∴a=±8,2b=6,解得:a=±8,b=3,∴a+b=11或﹣5.【解析】【分析】(1)直接幂的乘方运算法则将原式变形进而求出答案;(2)直接利用幂的乘方运算法则将原式变形进而求出答案.3.(1)解:∵am=2,an=4,∴am+n=am×an=2×4=8(2)解:∵am=2,an=4,∴a3m+2n=(am)3×(an)2=8×16=128【解析】【分析】(1)利解析:(1)解:∵a m=2,a n=4,∴a m+n=a m×a n=2×4=8(2)解:∵a m=2,a n=4,∴a3m+2n=(a m)3×(a n)2=8×16=128【解析】【分析】(1)利用同底数幂的乘法运算法则求出即可;(2)利用同底数幂的乘法运算法则结合幂的乘方运算法则求出即可.二、平面图形的认识(二)压轴解答题4.(1)75(2)解:如图2,∵∠ABE和∠DCE的平分线交点为E1,∴由(1)可得,∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;∵∠BEC=140°,∴∠BE1C=70°;(3)【解析】【解答】解:(1)如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE=75°;故答案为:75;( 3 )如图2,∵∠ABE1和∠DCE1的平分线交点为E2,∴由(1)可得,∠BE2C=∠ABE2+∠DCE2= ∠ABE1+ ∠DCE1= ∠CE1B= ∠BEC;∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3= ∠ABE2+ ∠DCE2= ∠CE2B= ∠BEC;…以此类推,∠E n= ∠BEC,∴当∠B EC=α度时,∠BE n C等于 °.故答案为: .【分析】(1)先过E作EF∥AB,根据AB∥CD,得出AB∥EF∥CD,再根据平行线的性质,得出∠B=∠1,∠C=∠2,进而得到∠BEC=∠ABE+∠DCE=75°;(2)先根据∠ABE和∠DCE的平分线交点为E1,运用(1)中的结论,得出∠BE1C=∠ABE1+∠DCE1= ∠ABE+ ∠DCE= ∠BEC;(3)根据∠ABE1和∠DCE1的平分线,交点为E2,得出∠BE2C= ∠BEC;根据∠ABE2和∠DCE2的平分线,交点为E3,得出∠BE3C= ∠BEC;…据此得到规律∠E n= ∠BEC,最后求得∠BE n C的度数.5.(1)解:∠ACB+∠AOB=180°(2)解:如图1(原卷没图),∵BE是高,∴∠AEB=∠BEC=90°由(1)得:∠AOB+∠ACB=180°,∵∠AOB+∠AOE=180°,∴∠AOE=∠ACB,在△AEO和△BEC中,∵∴△AEO≌△BEC(AAS)(3)解:存在,如答图2 t=②如答图3 t=注:(3)问解题过程由题意得:OP=t,BQ=4t,∵OB=CF,∠BOP=∠QCF,①当Q在边BC上时,如图2,△BOP≌△FCQ∴OP=CQ,即t=7-4t,t=②当Q在BC延长线上时,如图3,△BOP≌△FCQ,∴OP=CQ,那t=4t-7,t=综上所述,当t= 秒或秒时,以点B,O,P为顶点的三角形与以点F,C,Q为顶点的三角形全等。

2020-2021七年级数学下期末一模试卷(及答案)

2020-2021七年级数学下期末一模试卷(及答案)

2020-2021七年级数学下期末一模试卷(及答案)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=3.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm4.估计10+1的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 5.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)6.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩7.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x xx x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角 D .至多有两个内角是直角 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题13.不等式组有3个整数解,则m 的取值范围是_____.14.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______. 15.64立方根是__________.16.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.17.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.18.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.19.若方程组23133530.9a ba b-=⎧⎨+=⎩的解为8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解为_______.20.如图,将周长为10的三角形ABC沿BC方向平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__________.三、解答题21.如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO 平移之后得到的图形,并且O的对应点O′的坐标为(4,3).(1)求三角形ABO的面积;(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′、B′;(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为.22.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)23.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.24.已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.(1)利用图①证明:EF=2BC.(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.25.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=26. 故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.4.B解析:B 【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.5.D解析:D 【解析】 【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标. 【详解】解:因为点 P (m + 3,m + 1)在x 轴上, 所以m +1=0,解得:m =-1, 所以m+3=2,所以P 点坐标为(2,0). 故选D. 【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.6.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.7.D解析:D 【解析】 【分析】根据同位角的定义,对每个图进行判断即可.(1)图中∠1和∠2是同位角;故本项符合题意; (2)图中∠1和∠2是同位角;故本项符合题意; (3)图中∠1和∠2不是同位角;故本项不符合题意; (4)图中∠1和∠2不是同位角;故本项不符合题意; (5)图中∠1和∠2是同位角;故本项符合题意. 图中是同位角的是(1)、(2)、(5). 故选D . 【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=,去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:1x ==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.B解析:B 【解析】 【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案. 【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角. 故选B. 【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D 【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.2<m≤3【解析】【分析】根据不等式组x >-1x <m 有3个整数解先根据x >-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x >-1x <m 有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3 【解析】 【分析】 根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】 根据不等式组有3个整数解,可得: .故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法.14.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6,解得:y=263x-,故答案为26 3x-.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.15.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】,再计算8的立方根即可.【详解】,2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.16.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m 的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m解析:2【解析】分析:求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:23759x yx y+=⎧⎨-=⎩①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2,故答案为:2.点睛:此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 18.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩;又∵8.31.2ab=⎧⎨=⎩,∴28.31 1.2xy+=⎧⎨-=⎩,解得6.32.2 xy=⎧⎨=⎩.故答案为6.32.2 xy=⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD的周长解:根据题意将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD的周长.解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,可知AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=10,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段.三、解答题21.(1)4;(2)图见解析,点A′(2,0) 、点B′(6,2);(3)点P′的坐标为(x+4,y+3).【解析】分析:()1用矩形的面积减去3个直角三角形的面积即可.()2根据点O'的坐标,找出平移规律,画出图形,即可写出,A B''的坐标.()3根据()2中的平移规律解答即可.详解:()111134231224 4.222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=()2O的对应点O′的坐标为()4,3.可知向右平移4个单位长度,向上平移3个单位长度.如图所示:点A′(2,0) 、点B′(6,2);()3点P'的坐标为()43.x y++,点睛:考查坐标与图形,平移.弄清楚题目的意思,根据题目给的对应点坐标,找出平移的规律即可.22.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c >y∴c >300235c x -- ∴c >30037x -, ∵购进A 种的数量不少于B 种的数量,∴x ≥y∴x ≥300235c x -- ∴c ≥150﹣4x ∴c >30037x -, 且x ,y ,c 为正整数,∴C 种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.23.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.24.(1)详见解析;(2)成立,证明见解析.【解析】【分析】(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=30°,则CF=AC,从而证明结论;(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.(2)成立.证明如下:∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.∵EF=2BC,∴BE+CF=BC.又∵AH+CH=AC,AC=BC,∴AH=BE.【点睛】本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF=2BC是解题的关键.25.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.。

2020-2021学年北京人大附中七年级(下)期末数学模拟练习试卷(6)

2020-2021学年北京人大附中七年级(下)期末数学模拟练习试卷(6)

2020-2021学年北京人大附中七年级(下)期末数学模拟练习试卷(6)1.(单选题,3分)下列调查中,适宜采用普查方式的是()A.调查市场上冷冻食品的质量情况B.调查乘坐飞机的旅客是否携带了危禁物品C.调查某品牌冰箱的使用寿命D.调查2021年春晚的收视率情况2.(单选题,3分)下列说法错误的是()A.由x+2>0,可得x>-2B.由12x<0,可得x<0C.由2x>-4,可得x<-2D.由−32x>−1,可得x<233.(单选题,3分)已知点P(0,a)在y轴的负半轴上,则点A(-a,-a+5)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(单选题,3分)−√12,0,227,√−1253,0.10100100001,π2,−0.3232…其中,无理数的个数是()A.2B.3C.4D.55.(单选题,3分)把方程4x-y=3改写成用含x的式子表示y的形式,正确的是()A.y=4x-3B.y=4x+3C.x= y+34D.x= 3−y46.(单选题,3分)如图,AB || CD,∠EFD=115°,∠AEC=70°,则∠CEF的大小为()A.35°B.40°C.45°D.50°7.(单选题,3分)不等式组 {x ≥−2x <1的解集在数轴上表示为( ) A.B.C.D. 8.(单选题,3分)若m >n ,则下列不等式中成立的是( )A.m+a <n+bB.ma <nbC.ma 2>na 2D.-m <-n9.(单选题,3分)线段AB 的两个端点坐标为A (1,3)、B (2,7),线段CD 的两个端点坐标为C (2,-4)、D (3,0),则线段AB 与线段CD 的关系是( )A.平行且相等B.平行但不相等C.不平行但相等D.不平行且不相等10.(单选题,3分)某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A. {x +y =3516x =24y B. {x +y =3524x =16yC. {x +y =3516x =2×24yD. {x +y =352×16x =24y11.(填空题,3分)无理数 √29 -2的整数部分是 ___ .12.(填空题,3分)若点A (2,m )关于y 轴的对称点是B (n ,5),则mn 的值是___ .13.(填空题,3分)为了解学生每天自主学习时间,某校抽取了50名学生每天的自主学习时间作为样本进行调查,在这个问题中,样本容量是___ .14.(填空题,3分)不等式组 {x ≤7x >m无解,则m 应满足___ . 15.(填空题,3分)如图,将一张长方形纸片沿EF 折叠后,点D 落在BC 上的点D'处,点C 落在点C'处.若∠DEF=62°,则∠C'FD'=___ °.16.(填空题,3分)如图,现给出下列条件: ① ∠1=∠B , ② ∠2=∠5, ③ ∠3=∠4, ④∠BCD+∠D=180°.其中能够得到AB || CD 的条件有 ___ .(填序号)17.(问答题,0分)解下列方程组.(1) {2x −y =83x +2y =5 ; (2) {2x +3y =33x +2y =11 .18.(问答题,0分)解不等式组 {2(x +8)≤10−4(x −3)x −3x+12<1,将解集用数轴表示出来.19.(问答题,0分)复学之后,某校要求各班必须配备额温枪并全员测温打卡登记,如图所示为依据九(2)班学生5月6日温测数据绘制的不完整统计图表,已知当日温测1次的同学人数占全班人数的12%.请结合以上信息解答下列问题:(1)九(2)班学生人数为___ ;(2)温测3次的人数为m ,温测4次的人数为n ,且m=2n+1,请补全统计图;(3)若绘制扇形统计图,温测4次的同学人数所对应扇形的圆心角的度数为___ .(4)已知该校共有2200名学生.请你估计该校当日温测不少于3次的人数.20.(问答题,0分)如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标.(直接写出答案)(3)△ABC的面积等于 ___ .(4)在x轴上作出点P,使AP+BP最小,不写作法,保留作图痕迹.21.(问答题,0分)列二元一次方程组求解应用题.某商店用2200元购进《青春之歌》和《林海雪原》两种红色文化教育读本共100本,这两种的书籍的进价、标价如表所示:青春之歌林海雪原书名价格进价(元∕本)20 25标价(元∕本)30 40(2)若《青春之歌》按标价的9折出售,《林海雪原》按标价的8折出售,那么这两种书全部售出后,该商店共获利多少元?22.(问答题,0分)如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求:∠BOE和∠AOG的度数.。

2020-2021初一数学下期末模拟试卷附答案(6)

2020-2021初一数学下期末模拟试卷附答案(6)

2020-2021初一数学下期末模拟试卷附答案(6)一、选择题1.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52- 2.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)3.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩4.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( ) A .210x +90(15﹣x )≥1.8 B .90x +210(15﹣x )≤1800 C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.85.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180° ②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1B .2C .3D .46.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 7.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-29.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.10.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°11.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)12.已知m=4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <6 二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示, 垂直地面于点 ,平行于地面,若,则________.14.若方程33x x m +=-的解是正数,则m 的取值范围是______.15.不等式组11{2320x x ≥--<的解集为________.16.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________. 17.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________.18.已知方程1(2)(3)5m n m xn y --+-=是二元一次方程,则mn =_________;19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20. 5-的绝对值是______.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数. 22.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .23.已知△ABC 是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC 所在的直线上向右平移.如图①,当点E 与点B 重合时,点A 恰好落在三角尺的斜边DF 上.(1)利用图①证明:EF =2BC .(2)在三角尺的平移过程中,在图②中线段AH =BE 是否始终成立(假定AB ,AC 与三角尺的斜边的交点分别为G ,H)?如果成立,请证明;如果不成立,请说明理由.24.若关于x,y的方程组2431(1)3mx ny x yx y nx m y+=-=⎧⎧⎨⎨+=+-=⎩⎩与有相同的解.(1)求这个相同的解;(2)求m、n的值.25.解不等式组:5(1)21 111(3)32x xx x+>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示25C,B,5,∵点C是AB的中点,则设点A的坐标是x,则5∴点A表示的数是5故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.2.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 3.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.4.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.5.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB 与CD 这两条直线,故是错误的.6.C解析:C 【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C . 考点:平移的性质.7.A解析:A 【解析】 【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数. 【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<, 解得:3<x <5. 故选:A . 【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.8.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.10.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.12.B解析:B【解析】【分析】直接化简二次根式,得出3的取值范围,进而得出答案.【详解】∵m=4+3=2+3,1<3<2,∴3<m<4,故选B.【点睛】此题主要考查了估算无理数的大小,正确得出3的取值范围是解题关键.二、填空题13.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】x x m+=-332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.【解析】∵解不等式①得:x⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x<解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2, 解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 16.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x 尺长木为y 尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析: 4.5112x y x y -=⎧⎪⎨=-⎪⎩ 【解析】 【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y x y -=⎧⎪⎨=-⎪⎩,故答案为: 4.5112x y x y -=⎧⎪⎨=-⎪⎩. 【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.17.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2解析:4-,3- 【解析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键18.-2【解析】【分析】二元一次方程满足的条件:含有2个未知数未知数的项的次数是1的整式方程列出方程组求出mn 的值然后代入代数式进行计算即可得解【详解】∵方程是二元一次方程∴且m-2≠0n=1∴m=-2解析:-2【解析】【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程,列出方程组求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵方程1(2)(3)5m n m x n y --+-=是二元一次方程, ∴11m -=且m-2≠0,n=1,∴m=-2,n=1,∴mn =-2.故答案为:-2.【点睛】本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛 解析:±4【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.22.见解析【解析】【分析】根据垂直的定义可得∠ADC=∠EGC=90°,即可证得AD ∥EG ,根据平行线的性质可得∠1=∠2,∠E=∠3,再结合∠E=∠1可得∠2=∠3,从而可以证得结论.【详解】证明:∵AD ⊥BC 于D ,EG ⊥BC 于G ,(已知)∴∠ADC=∠EGC=90°,∴AD ∥EG ,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD 平分∠BAC .(角平分线的定义)23.(1)详见解析;(2)成立,证明见解析.【解析】【分析】(1)根据等边三角形的性质,得∠ACB =60°,AC =BC .结合三角形外角的性质,得∠CAF =30°,则CF =AC ,从而证明结论;(2)根据(1)中的证明方法,得到CH =CF .根据(1)中的结论,知BE +CF =AC ,从而证明结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC ,∴CF =AC =BC ,∴EF =2BC .(2)成立.证明如下:∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CHF =60°-30°=30°,∴∠CHF =∠F ,∴CH =CF .∵EF =2BC ,∴BE +CF =BC .又∵AH +CH =AC ,AC =BC ,∴AH =BE .【点睛】本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF =2BC 是解题的关键.24.(1)21x y =⎧⎨=-⎩;(2)m=6,n=4 【解析】【分析】先解关于x,y 的方程组,再代入其他方程,再解关于m,n 的方程组.【详解】解:(1)由13x y x y +=⎧⎨-=⎩得, 21x y =⎧⎨=-⎩ , (2)把21x y =⎧⎨=-⎩代入含有m,n 的方程,得 224213m n n m -=⎧⎨-+=⎩ , 解得64m n =⎧⎨=⎩【点睛】本题考核知识点:解方程组.解题关键点:熟练解方程组.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

2020-2021初一数学下期末试卷(带答案)(6)

2020-2021初一数学下期末试卷(带答案)(6)

2020-2021初一数学下期末试卷(带答案)(6)一、选择题1.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20oB .30oC .40oD .60o2.已知关于x 的不等式组的解中有3个整数解,则m 的取值范围是( ) A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤53.116的平方根是( ) A .±12 B .±14 C .14 D .124.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒ 5.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 7.16的平方根为( )A .±4 B .±2 C .+4D .2 8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个9.不等式组1212x x +>⎧⎨-≤⎩的解集是( ) A .1x < B .x ≥3 C .1≤x ﹤3 D .1﹤x ≤310.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180° 11.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6 C .4 D .2二、填空题139________.14.如果一个数的平方根为a+1和2a-7, 这个数为 ________1564__________.16.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .17.关于x 的不等式(3a-2)x<2的解为x > ,则a 的取值范围是________18.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.19.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.20.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 三、解答题21.(1)计算:2020011(1)(2019)3sin 60()2π---+--+o (2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。

2020-2021初一数学下期末模拟试卷带答案

2020-2021初一数学下期末模拟试卷带答案

2020-2021初一数学下期末模拟试卷带答案一、选择题1.已知关于x的不等式组的解中有3个整数解,则m的取值范围是()A.3<m≤4B.4≤m<5C.4<m≤5D.4≤m≤52.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°4.已知方程组276359632713x yx y+=⎧⎨+=-⎩的解满足1x y m-=-,则m的值为()A.-1B.-2C.1D.25.方程组23x y ax y+=⎧⎨-=⎩的解为5xy b=⎧⎨=⎩,则a、b分别为()A.a=8,b=﹣2B.a=8,b=2C.a=12,b=2D.a=18,b=8 6.如图,下列能判断AB∥CD的条件有()①∠B+∠BCD=180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5A.1B.2C.3D.47.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( ) A.3<x<5B.-5<x<3C.-3<x<5D.-5<x<-3 8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .≥-1B .>1C .-3<≤-1D .>-39.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)10.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,4 11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135° 12.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.如果a 的平方根是3±,则a =_________15.如图,边长为10cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A'B'C'D',则阴影部分面积为___________________.16.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.17.若不等式(a+1)x>a+1的解集是x<1,则a的取值范围是_________.18.已知21xy=⎧⎨=⎩是方程组ax5{1bybx ay+=+=的解,则a﹣b的值是___________ 19.若不等式组1xx a⎧⎨⎩><有解,则a的取值范围是______.20.如果点M(a-1,a+1)在x轴上,则a的值为___________.三、解答题21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)试说明AB∥CD;(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C的度数.22.ABCV与111A B C△,在平面直角坐标系中的位置如图所示,(1)分别写出下列各点的坐标:A ;B ;C ;(2)111A B C△由ABCV经过怎样的平移得到?(3)若点P x y(,)是ABCV内部一点,则111A B C△内部的对应点1P的坐标为____________;(4)求ABCV面积.23.如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1,B1,C1;(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.24.解不等式-3+3+1 21-3-18-xxx x ⎧≥⎪⎨⎪<⎩()25.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可.【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5,故选C .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.B解析:B【解析】 解:∵3104<<,∴41015<+<.故选B .点睛:此题主要考查了估算无理数的大小,正确得出10 的取值范围是解题关键.3.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.4.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.5.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.6.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.7.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.8.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A9.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A.【点睛】考查坐标问题,关键是根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系解答.解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.D解析:D【解析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】x x m+=-332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±, ∴a =9,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩 解析:248cm【解析】【分析】如图,A B ''交AD 于F ,其延长线交BC 于E ,利用平移的性质得到//A B AB '',//BC B C '',4B E '=,2AF =,再利用四边形ABEF 为矩形得到10EF AB ==,然后计算出FB '和DF 即可得到阴影部分面积.【详解】解:如图,A B ''交AD 于F ,其延长线交BC 于E ,Q 边长为10cm 的正方形ABCD 先向上平移4cm 再向右平移2cm ,得到正方形A B C D '''',//A B AB ∴'',//BC B C '',4B E '=,2AF =,易得四边形ABEF 为矩形,10EF AB ∴==,6FB ∴'=,8DF =,∴阴影部分面积26848()cm =⨯=.故答案为:248cm .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.16.2【解析】【分析】根据两个等边△ABD△CBD 的边长均为1将△ABD 沿AC 方向向右平移到△ABD 的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2即可解析:2【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.17.a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a<﹣1【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1,∴a+1<0,解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.18.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,19.a>1【解析】【分析】根据题意利用不等式组取解集的方法即可得到a的范围【详解】∵不等式组有解∴a>1故答案为:a>1【点睛】此题考查不等式的解集解题关键在于掌握运算法则解析:a>1.【解析】【分析】根据题意,利用不等式组取解集的方法即可得到a的范围.【详解】∵不等式组1xx a⎧⎨⎩><有解,∴a>1,故答案为:a>1.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则.20.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题21.(1)证明见解析;(2)∠C=50°.【解析】【分析】(1)欲证明AB∥CD,只需推知∠A=∠D即可;(2)利用平行线的判定定理推知CE∥FB,然后由平行线的性质、等量代换推知∠C=∠BFD=∠B=50°.【详解】(1)∵∠A=∠AGE ,∠D=∠DGC ,又∵∠AGE=∠DGC ,∴∠A=∠D ,∴AB ∥CD ;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE ∥FB ,∴∠C=∠BFD ,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB ∥CD ,∴∠B=∠BFD ,∴∠C=∠BFD=∠B=50°.【点睛】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.22.(1)()54,,()35,,()22,;(2)见解析;(3)1P (x -4,y -3);(4)72【解析】【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A′的变化写出平移方法即可;(3)根据平移规律逆向写出点1P 的坐标; (4)利用△ABC 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)()5,4;()3,5;()2,2;(2)由ABC V 先向下平移3个单位长度再向左平移4个单位长度得到.(3)1P (x -4,y -3);(4)1117331323122222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△ 【点睛】此题考查平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.23.(1)A 1(4,7),B 1(1,2),C 1(6,4);(2)见解析;(3)192【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(3)利用△ABC所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A(-2,2),点B(-5,-3),点C(0,-1),所以将三角形ABC向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A1(3,5),B1(0,0),C1(5,2);(2)△A1B1C1如图所示;(3)△ABC的面积=5×5-12×5×2-12×2×3-12×3×5=25-5-3-7.5=25-15.5=9.5.【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.﹣2<x≤1.【解析】【分析】【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可.试题解析:331(1)213(1)8(2) xxx x-⎧++⎪⎨⎪--<-⎩…,∵解不等式①得:x≤1,解不等式②得:x>﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.25.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【解析】【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.。

2020-2021学年陕西省西安市雁塔区七年级(下)期末数学试卷及参考答案

2020-2021学年陕西省西安市雁塔区七年级(下)期末数学试卷及参考答案

2020-2021学年陕西省西安市雁塔区七年级(下)期末数学试卷一、选择题(共10小题每小题只有一个选项是符合题意的)1.(3分)下列运算中的结果为a2的是()A.a+a B.(﹣a)2C.a4﹣a2D.a•a22.(3分)如图,将一张长方形纸片折叠,若∠2=50°,则∠1的度数是()A.80°B.70°C.60°D.50°3.(3分)一个不透明的袋子中只有4个白球和2个黑球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是()A.3个球都是白球B.3个球都是黑球C.3个球中有白球D.3个球中有黑球4.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.5.(3分)计算﹣6a(a﹣3b)的结果是()A.﹣6a+18ab B.﹣6a2﹣18ab C.﹣6a2+18ab D.﹣6a+9ab 6.(3分)如果一个三角形的两条边分别是4cm,6cm,那么该三角形第三条边的长不可能是()A.2cm B.4cm C.6cm D.9cm7.(3分)下列各式中,不能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x﹣2y)(x+2y)C.(2x2﹣y2)(2x2+y2)D.(2a+b﹣c)(2a﹣b﹣c)8.(3分)如图,AB=AC,角平分线BF,CE交于点O,AO与BC交于点D,则图中共有全等三角形()A.5对B.6对C.7对D.8对9.(3分)小红步行从家出发去学校,步行了5分钟时,发现作业忘在家,马上以同样的速度回家取作业,然后骑共享单车赶往学校,小红离家距离S(米)与时间t(分钟)之同的关系如图所示,则小红骑车比步行的速度每分钟快()A.80米B.120米C.140米D.200米10.(3分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,利用图1可以得到a(a+b)=a2+ab,那么利用图2所得到的数学等式为()A.(a+b+c)2=a2+b2+c2B.(a+b+c)2=2a2+2b2+2c2C.(a+b+c)2=a2+b2+c2+ab+bc+caD.(a+b+c)2=a2+b2+c2+2ab+2bc+2ca二、填空题(共4小题)11.(3分)计算:(﹣xy)2÷xy2=.12.(3分)小明家的客厅地板如图所示,一个小球在地板上任意滚动,并随机停留在某块地板砖上,每块地板砖的大小质地完全相同,那么小球停留在黑色区域的概率是.13.(3分)如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=36°,那么∠BED =.14.(3分)图中的程序表示,输入一个整数x便会按照程序进行计算.设输入的x值为18,那么根据程序,第1次计算的结果是9;第2次计算的结果是4,…这样下去第11次计算的结果是.三、解答题(共8小题,解答应写出过程)15.(5分)计算:(2a﹣3b)(a+5b)﹣7a(a+b).16.(5分)利用尺规,作△ABC的三个内角的平分线.(不写作法)17.(7分)已知x=,y=﹣,求(3x﹣y)2﹣(3x+2y)(3x﹣2y)的值.18.(7分)风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB=AD,∠B=∠D,∠BAE=∠DAC.AC与AE相等吗?请说明理由.19.(7分)某商场为了吸引顾客,设立了一个如图可以自由转动的转盘,并规定:顾客每购买200元的商品就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、绿或黄色区域,顾客就可以获得100元、50元,20元的购物券,(转盘被等分成20个扇形),已知甲顾客购物220元.(1)他获得购物券的概率是多少?(2)他得到100元、50元、20元购物券的概率分别是多少?(3)若要让获得20元购物券的概率变为,则转盘的颜色部分怎样修改?(直接写出修改方案即可).20.(8分)小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等,AC,BD相交于点P,PD⊥CD,垂足为D.小明根据自己步行的路程CD长为16m,测出标语AB的长度也为16m,请说明理由.21.(9分)在建设社会主义新农村过程中,某村委决定投资开发项目,现有6个项目可供选择,各项目所需资金及预计年利润如下表:所需资金(亿元)124678预计利润(千万元)0.20.350.550.70.91(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果预计要获得0.9千万元的利润,你可以怎样投资项目?(3)如果该村可以拿出10亿元进行多个项目的投资,预计最大年利润是多少?说明理由.22.(10分)如图①,在∠ABC中,若∠ABD=∠DBE=∠EBC,则BD,BE叫做∠ABC 的三分线,其中,BD是邻AB的三分线,BE是邻BC的三分线.(1)如图②,在△ABC中,∠A=73°,∠B=42°,∠B的三分线交AC于点D,求∠BDC的度数;(2)如图③,在△ABC中,BP是∠ABC的邻AB三分线,CP是∠ACB的邻AC三分线,且BP⊥CP,垂足为P,求∠A的度数.2020-2021学年陕西省西安市雁塔区七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题每小题只有一个选项是符合题意的)1.【分析】选项A、C根据合并同类项法则判断即可,选项B根据幂的乘方运算法则判断即可,选项D根据同底数幂的乘法法则判断即可.【解答】解:A.a+a=2a,故本选项不合题意;B.(﹣a)2=a2,故本选项符合题意;C.a4与﹣a2不是同类项,所以不能合并,故本选项不合题意;D.a•a2=a3,故本选项不合题意;故选:B.【点评】本题考查了同底数幂的乘法,幂的乘方以及合并同类项,掌握相关运算法则是解答本题的关键.2.【分析】先由折叠的性质得出∠4=∠2=50°,再根据矩形对边平行可以得出答案.【解答】解:如图,由折叠性质知∠4=∠2=50°,∴∠3=180°﹣∠4﹣∠2=80°,∵AB∥CD,∴∠1=∠3=80°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质.3.【分析】事先能肯定它一定会发生的事件称为必然事件.【解答】解:A、摸出3个球都是白球,是随机事件,故不符合题意;B、摸出3个球都是黑球,是不可能事件,故不符合题意;C、因为只有2个黑球,所以摸出的3个球中有白球,是必然事件,故符合题意;D、摸出的3个球中有黑球,是随机事件,故不符合题意.故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【分析】结合轴对称图形的概念进行求解即可.【解答】解:A、不是轴对称图形,本选项不符合题意;B、不是轴对称图形,本选项不符合题意;C、不是轴对称图形,本选项不符合题意;D、是轴对称图形,本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.【分析】利用乘法分配律,将单项式乘以多项式的每一项,再把所得的结果相加即可.【解答】解:原式=﹣6a•a+(﹣6a)•(﹣3b)=﹣6a2+18ab,故选:C.【点评】本题考查了单项式乘多项式,单项式乘多项式的本质就是乘法分配律,注意符号的确定.6.【分析】根据三角形的三边关系:三角形第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:6﹣4<x<6+4,则2<x<10.观察选项,只有选项A符合题意.故选:A.【点评】本题考查了三角形的三边关系,已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.7.【分析】利用平方差公式的结构特征判断即可.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差:(a+b)(a﹣b)=a2﹣b2.【解答】解:A.(﹣a﹣b)(a﹣b)=(﹣b)2﹣a2,此题符合平方差公式的特征,能用平方差公式计算,故此选项不符合题意;B.(﹣x﹣2y)(x+2y),两项均互为相反数,不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C.(2x2﹣y2)(2x2+y2)=(2x2)2﹣(y2)2,此题符合平方差公式的特征,能用平方差公式计算,故此选项不符合题意;D.(2a+b﹣c)(2a﹣b﹣c)=(2a﹣c)2﹣b2,此题符合平方差公式的特征,能用平方差公式计算,故此选项不符合题意,故选:B.【点评】本题考查了平方差公式.关键是掌握平方差公式的特征:两个二项因式中有一项相同,有一项互为相反数.8.【分析】根据题意和图形,可以写出全等的三角形,从而可以得到图中全等三角形的对数,本题得以解决.【解答】解:∵AB=AC,角平分线BF、CE交于点O,∴AO平分∠BAC,点D为BC的中点,∴BD=CD,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS);同理可证:△OBD≌△OCD,△OBE≌△OCF,△OEA≌△OFA,△OBA≌△OCA,△BEC≌△CFB,△ABF≌△ACF,由上可得,图中共有7对全等的三角形,故选:C.【点评】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.9.【分析】根据图象,小红5分钟步行了400米,且骑车6分钟行驶1200米,分别计算步行和骑车速度即可.【解答】解:根据图象可知,小红5分钟步行了400米,因此步行速度为80米/分钟,而小红步行了5分钟时,发现作业忘在家,马上以同样的速度回家取作业,因此小红返回家所花时间也是5分钟,结合图象,小红骑车速度==200米/分钟.∴小红骑车比步行的速度每分钟快120米,故选:B.【点评】本题主要考查函数的图象,抓住图象的关键信息及理解题意是解题的关键.10.【分析】图2的面积可表示为一个大的正方形的面积或所分成的9个图形的面积之和.【解答】解:图2的面积可表示为:(a+b+c)(a+b+c)=(a+b+c)2或a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac则有:(a+b+c)2=a2+b2+c2+2ab+2bc+2ca故选:D.【点评】本题考查了整式的几何意义,体现数形结合的思想,二、填空题(共4小题)11.【分析】直接利用积的乘方运算化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=x2y2÷xy2=3x.故答案为:3x.【点评】此题主要考查了整式的除法运算以及积的乘方运算,正确掌握整式的除法运算法则是解题关键.12.【分析】直接求出以总面积和黑色区域的面积,再利用概率公式求出答案.【解答】解:设每块地砖的面积为1,所以总面积为24,黑色区域的面积为6,所以小球停留在黑色区域的概率为:=.故答案为:.【点评】此题主要考查了几何概率,正确掌握概率求法是解题关键.13.【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行同旁内角互补,可求得∠DEA 的度数,再由三角形外角和为360°求得∠BED度数.【解答】解:∵AE平分∠BAC∴∠BAE=∠CAE=36°∵ED∥AC∴∠CAE+∠DEA=180°∴∠DEA=180°﹣36°=144°∵∠AED+∠AEB+∠BED=360°∴∠BED=360°﹣144°﹣90°=126°.故答案为126°.【点评】考查平行线的性质和三角形外角和定理.两直线平行,同旁内角互补.14.【分析】根据第二次的计算结果得出S的值,再多计算几次总结出计算结果的循环规律即可.【解答】解:根据题意得,第1次计算的结果是9,第2次计算的结果是4,∴S的值为5,∴第3次计算的结果是2,第4次计算的结果是1,第5次计算的结果是﹣4,第6次计算的结果是﹣2,第7次计算的结果是﹣1,第8次计算的结果是﹣6,第9次计算的结果是﹣3,第10次计算的结果是﹣8,第11次计算的结果是﹣4,…故答案为:﹣4.【点评】本题主要考查数字的变化规律,根据第二次的计算得出S的值是解题的关键.三、解答题(共8小题,解答应写出过程)15.【分析】根据多项式乘多项式、单项式乘多项式的运算法则计算,再合并同类项即可得.【解答】解:原式=2a2+10ab﹣3ab﹣15b2﹣7a2﹣7ab=﹣5a2﹣15b2.【点评】本题主要考查多项式乘多项式、单项式乘多项式,解题的关键是掌握多项式乘多项式、单项式乘多项式的运算法则.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.16.【分析】利用基本作图,作∠BAC和∠ABC的平分线,它们相交于O点,然后连接CO 并延长交AB于F,则CF为角平分线.【解答】解:如图,AD、BE、CF为所作.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作已知角的角平分线).17.【分析】根据完全平方公式和平方差公式可以将所求式子展开,然后合并同类项即可将所求式子化简,再将x、y的值代入化简后的式子即可解答本题.【解答】解:(3x﹣y)2﹣(3x+2y)(3x﹣2y)=9x2﹣6xy+y2﹣9x2+4y2=﹣6xy+5y2,当x=,y=﹣时,原式=﹣6××(﹣)+5×(﹣)2=.【点评】本题考查整式的混合运算—化简求值,解答本题的关键是明确整式化简求值的方法.18.【分析】求出∠BAC=∠DAE,根据全等三角形的判定定理得出△BAC≌△DAE,再根据全等三角形的性质定理得出答案即可.【解答】解:AC=AE,理由是:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(ASA),∴AC=AE.【点评】本题考查了全等三角形的性质和判定,能运用全等三角形的判定定理得出△BAC ≌△DAE是解此题的关键,注意:全等三角形的对应边相等.19.【分析】(1)根据题意直接利用概率公式求出答案;(2)根据题意直接利用概率公式求出答案;(3)利用概率公式找到改变方案即可.【解答】解:(1)∵共有20种等可能事件,其中满足条件的有11种,∴P(中奖)=;(2)由题意得:共有20种等可能结果,其中获100元购物券的有2种,获得50元购物券的有4种,获得20元购物券的有5种,∴P(获得100元)==;P(获得50元)==;P(获得20元)==;(3)直接将3个无色扇形涂为黄色.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】由AB∥CD,利用平行线的性质可得∠ABP=∠CDP,∠PAB=∠PCD,利用ASA定理可得,△ABP≌△CDP,由全等三角形的性质可得结果.【解答】解:CD=AB=16米,理由如下:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD=PB,在△ABP与△CDP中,,∴△ABP≌△CDP(ASA),∴CD=AB=16米.【点评】本题主要考查了平行线的性质和全等三角形的判定及性质定理,利用平行线的性质可得∠ABP=∠CDP,∠PAB=∠PCD是解答此题的关键.21.【分析】(1)分别根据变量、因变量的定义分别得出即可;(2)根据图表分析得出投资方案;(3)分别求出不同方案的利润进而得出答案.【解答】解:(1)所需资金和利润之间的关系.所需资金为自变量.年利润为因变量;(2)可以投资一个7亿元的项目.也可以投资一个2亿元,再投资一个4亿元的项目.还可以投资一个1亿元,再投资一个6亿元的项目.(3)共三种方案:①1亿元,2亿元,7亿元,利润是1.45亿元.②2亿元,8亿元,利润是1.35亿元.③4亿元,6亿元,利润是1.25亿元.∴最大利润是1.45亿元.【点评】此题主要考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.22.【分析】(1)分为两种情况:当BD是“邻AB三分线”时,当BD′是“邻BC三分线”时,根据三角形的外角性质求出即可;(2)求出∠PBC+∠PCB=90°,根据BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线求出∠PBC=∠ABC,∠PCB=∠ACB,求出∠ABC+∠ACB=135°,再求出∠A即可.【解答】解:(1)如图,当BD是“邻AB三分线”时,∵∠A=73°,∠B=42°,∴∠BDC=∠A+∠ABD=73°+×42°=87°;当BD′是“邻BC三分线”时,∠BDC′=∠A+∠ABD′=73°+×42°=101°;(2)∵BP⊥CP,∴∠BPC=90°,∴∠PBC+∠PCB=90°,∵BP、CP分别是∠ABC邻AB三分线和∠ACB邻AC三分线,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠ABC+∠ACB=90°,∴∠ABC+∠ACB=135°,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣135°=45°.【点评】本题考查了三角形的外角性质和三角形内角和定理,注意:三角形的一个外角等于与它不相邻的两个内角的和,用了分类讨论思想.。

2020-2021初一数学下期末一模试卷(含答案)(6)

2020-2021初一数学下期末一模试卷(含答案)(6)

2020-2021初一数学下期末一模试卷(含答案)(6) 一、选择题1.116的平方根是( )A.±12B.±14C.14D.122.计算2535-+-的值是()A.-1B.1C.525-D.255-3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°4.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩5.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多6.已知是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( )A .1B .-1C .2D .-27.若|321|20x y x y --++-=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩8.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤ B .12a << C .12a ≤< D .12a ≤≤ 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-210.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .911.若0a <,则下列不等式不成立的是( ) A .56a a +<+B .56a a -<-C .56a a <D .65a a< 12.在平面直角坐标系中,点P(1,-2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示, 垂直地面于点 ,平行于地面,若,则________.14.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.15.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.16.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .17.已知1a -+5b -=0,则(a ﹣b )2的平方根是_____. 18.关于x 的不等式(3a-2)x<2的解为x >,则a 的取值范围是________19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.5______.三、解答题21.(1)计算:2020011(1)(2019)360()2π---+-+o(2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。

2020-2021学年山东省济南市槐荫区七年级(下)期末数学试卷(解析版)

2020-2021学年山东省济南市槐荫区七年级(下)期末数学试卷(解析版)

2020-2021学年山东省济南市槐荫区七年级(下)期末数学试卷一、选择题(每小题4分,共48分)1.下列四个交通标志图中,为轴对称图形的是()A.B.C.D.2.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.83.如果“□×2ab=4a2b”,那么“□”内应填的代数式是()A.2b B.2ab C.a D.2a4.下列各式计算正确的是()A.x2•x3=x6B.3xy2﹣xy2=2xy2C.(x+y)2=x2+y2D.(2xy2)2=4xy5.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.∠3=∠4C.∠B=∠D D.AD∥BC6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行7.在下列多项式的乘法中,可以用平方差公式计算的是()A.(2x+y)(2y﹣x)B.(x+1)(﹣x﹣1)C.(3x﹣y)(3x+y)D.(x﹣y)(﹣x+y)8.如图,在△ABC中,∠B=90°,AD平分∠BAC,BC=10,CD=6,则点D到AC的距离为()A.4B.6C.8D.109.已知等腰三角形的两边长分别是4cm和8cm,则周长为()A.16cm B.20cm C.16cm或20cm D.24cm10.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A.B.C.D.11.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个B.2个C.3个D.4个12.(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字为()A.2B.4C.6D.8二、填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上,)13.在关系式y=2x中,当自变量x=3时,因变量y的值是.14.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为米.15.如图,要测量水池宽AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=120m,则水池宽AB的长度是m.16.若(x+2)(x﹣4)=x2+nx﹣8,则n=.17.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC=100°,∠C=50°,则∠BAD的大小为度.18.如图,在△ABC中,∠BAC=120°,分别作AC,AB两边的垂直平分线PM、PN,垂足分别是点M、N,以下说法:①∠P=60°;②∠EAF=∠B+∠C;③PE=PF;④点P 到点B和点C的距离相等.其中正确的是(填序号).三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤,) 19.计算:(1)(﹣3)2﹣()﹣1;(2)(4m3﹣2m2)÷2m.20.先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=4.21.点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC∥DF.22.如图,在长度为一个单位长度的小正方形组成的正方形网格中,△ABC的顶点在小正方形的顶点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积;(3)在直线l上找一点Q,使点Q到点B与点C的距离之和最小.23.2020年,周至县小李家的猕猴桃喜获丰收.在销售过程中,猕猴桃的销售额y(元)与销量x(千克)满足如下关系:销售量x(千克)12345678销售额y(元)612182430364248(1)在这个变化过程中,自变量是,因变量是;(2)猕猴桃的销售额y(元)与销售量x(千克)之间的关系式为;(3)当猕猴桃销售量为100千克时,销售额是多少元?24.如图,在△ABC中,AB=AC,点D,E在BC上(BD<BE),BD=CE.(1)求证:△ABD≌△ACE.(2)若∠ADE=2∠B,BD=2,求AE的长.25.某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油升;(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目的地还有400km,车速为60km/h,要到达目的地,油箱中的油是否够用?请说明理由.26.如图,在△ABC中,D为AB的中点,AB=AC=10,BC=8,动点P从点B出发,沿BC方向以3个单位长度每秒的速度向点C运动;同时动点Q从点C出发,沿CA方向以1个单位长度每秒的速度向点A运动,运动时间是t秒.(1)在运动过程中,当t=秒时,CP=CQ;(2)在运动过程中,当△BPD≌△CQP时,求出t的值;(3)是否存在某一时刻t,使△BPD≌△CPQ?若存在,求出t的值;若不存在,请说明理由.27.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,)1.下列四个交通标志图中,为轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,不合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不合题意;D、不是轴对称图形,不合题意.故选:B.2.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.3.如果“□×2ab=4a2b”,那么“□”内应填的代数式是()A.2b B.2ab C.a D.2a解:□×2ab=4a2b,∴4a2b÷2ab=2a,则“□”内应填的代数式是2a.故选:D.4.下列各式计算正确的是()A.x2•x3=x6B.3xy2﹣xy2=2xy2C.(x+y)2=x2+y2D.(2xy2)2=4xy解:A、原式=x5,故A不符合题意.B、原式=2xy2,故B符合题意.C、原式x2+2xy+y2,故C不符合题意.D、原式=4x2y4,故D不符合题意.故选:B.5.如图,∠1=∠2,则下列结论一定成立的是()A.AB∥CD B.∠3=∠4C.∠B=∠D D.AD∥BC 解:∵∠1=∠2,∴AD∥BC,∵∠3与∠4不一定相等,∴AB与CD不一定平行,且∠D与∠B不一定相等.故选:D.6.下列命题中是假命题的是()A.两直线平行,同位角互补B.对顶角相等C.直角三角形两锐角互余D.平行于同一直线的两条直线平行解:A、两直线平行,同位角相等,故本选项说法是假命题;B、对顶角相等,本选项说法是真命题;C、直角三角形两锐角互余,本选项说法是真命题;D、平行于同一直线的两条直线平行,本选项说法是真命题;故选:A.7.在下列多项式的乘法中,可以用平方差公式计算的是()A.(2x+y)(2y﹣x)B.(x+1)(﹣x﹣1)C.(3x﹣y)(3x+y)D.(x﹣y)(﹣x+y)解:A、(2x+y)(2y﹣x),不能用平方差公式进行计算,故本选项不符合题意;B、(x+1)(﹣x﹣1),不能用平方差公式进行计算,故本选项不符合题意;C、(3x﹣y)(3x+y),能用平方差公式进行计算,故本选项符合题意;D、(x﹣y)(﹣x+y)不能用平方差公式进行计算,故本选项不符合题意;故选:C.8.如图,在△ABC中,∠B=90°,AD平分∠BAC,BC=10,CD=6,则点D到AC的距离为()A.4B.6C.8D.10解:∵BC=10,CD=6,∴BD=BC﹣CD=10﹣6=4,△ABC中,∠B=90°,AD平分∠BAC,∴点D到AC的距离=BD=4.故选:A.9.已知等腰三角形的两边长分别是4cm和8cm,则周长为()A.16cm B.20cm C.16cm或20cm D.24cm解:当腰长为4cm时,4+4=8cm,不符合三角形三边关系,故舍去;当腰长为8cm时,符合三边关系,其周长为8+8+4=20cm.故该三角形的周长为20cm.故选:B.10.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()A.B.C.D.解:∵小华从家跑步到离家较远的新华公园,∴随着时间的增加离家的距离越来越远,∵他在那里与同学打一段时间的羽毛球,∴他离家的距离不变,又∵再步行回家,∴他离家越来越近,∴小华同学离家的距离y与所用时间x之间函数图象的大致图象是B.故选:B.11.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS,则下列结论:①点P在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.正确的有()A.1个B.2个C.3个D.4个解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;∵PA=PA,PS=PR,∴Rt△APR≌Rt△APS(HL),∴AS=AR,故②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选:D.12.(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字为()A.2B.4C.6D.8解:原式=(22﹣1)(22+1)(24+1)…(232+1)+2=(24﹣1)(24+1)…(232+1)+1=264﹣1+1=264,∵2的指数是1时,个位是2;2的指数是2时,个位是4;2的指数是3时,个位是8;2的指数是4时,个位是6;64是4的倍数,∴264的个位是6.故选:C.二、填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上,) 13.在关系式y=2x中,当自变量x=3时,因变量y的值是6.解:当x=3时,y=2x=2×3=6,故答案为:6.14.我国北斗公司在2020年发布了一款代表国内卫星导航系统最高水平的芯片,该芯片的制造工艺达到了0.000000022米.用科学记数法表示0.000000022为 2.2×10﹣8米.解:0.000000022=2.2×10﹣8.故答案为:2.2×10﹣8.15.如图,要测量水池宽AB,可从点A出发在地面上画一条线段AC,使AC⊥AB,再从点C观测,在BA的延长线上测得一点D,使∠ACD=∠ACB,这时量得AD=120m,则水池宽AB的长度是120m.解:∵AC⊥BD,∴∠CAD=∠CAB=90°,∵CA=CA,∠ACD=∠ACB,∴△ACD≌△ACB(ASA),∴AB=AD=120m,故答案为120.16.若(x+2)(x﹣4)=x2+nx﹣8,则n=﹣2.解:已知等式整理得:x2﹣2x﹣8=x2+nx﹣8,则n=﹣2,故答案为:﹣217.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠BAC=100°,∠C=50°,则∠BAD的大小为75度.解:∵∠BAC=100°,∠C=50°,∴∠B=180°﹣∠BAC﹣∠C=30°,∵AB=BD,∴∠BAD=∠ADB=(180°﹣∠B)÷2=75°,故答案为:75.18.如图,在△ABC中,∠BAC=120°,分别作AC,AB两边的垂直平分线PM、PN,垂足分别是点M、N,以下说法:①∠P=60°;②∠EAF=∠B+∠C;③PE=PF;④点P 到点B和点C的距离相等.其中正确的是①②④(填序号).解:∵PM垂直平分AC,PN垂直平分AB,∴∠PMA=∠PNA=90°,∵∠P+∠PMA+∠PNA+∠BAC=360°,∴∠P=360°﹣90°﹣90°﹣120°=60°,故①说法正确;∵∠BAC=120°,∴∠B+∠C=180°﹣120°=60°,∵PM垂直平分AC,PN垂直平分AB,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=60°,∴∠EAF=∠BAC﹣∠EAC﹣∠FAB=∠BAC﹣(∠B+∠C)=120°﹣60°=60°,∴∠EAF=∠B+∠C,故②说法正确;∵△ABC不一定是等腰三角形,∴PE与PF的大小无法确定,③说法错误;连接PC、PA、PB,∵PM垂直平分AC,PN垂直平分AB,∴PC=PA,PB=PA,∴PB=PC,即点P到点B和点C的距离相等,④说法正确,故答案为:①②④.三、解答题(本大题共9个小题,共78分,解答应写出文字说明,证明过程或演算步骤,) 19.计算:(1)(﹣3)2﹣()﹣1;(2)(4m3﹣2m2)÷2m.解:(1)原式=9﹣2=7;(2)原式=4m3÷2m﹣2m2÷2m=2m2﹣m.20.先化简,再求值:(x+5)(x﹣1)+(x﹣2)2,其中x=4.解:(x+5)(x﹣1)+(x﹣2)2=x2﹣x+5x﹣5+x2﹣4x+4=2x2﹣1,当x=4时,原式=2×42﹣1=31.21.点B,E分别在AC,DF上,BD,CE分别交AF于点G,H,∠AGB=∠EHF,∠C=∠D.求证:AC∥DF.【解答】证明:∵∠AGB=∠EHF,∠AGB=∠DGF,∴∠DGF=∠EHF,∴EC∥BD,∴∠C=∠ABD,∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF.22.如图,在长度为一个单位长度的小正方形组成的正方形网格中,△ABC的顶点在小正方形的顶点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积;(3)在直线l上找一点Q,使点Q到点B与点C的距离之和最小.解:(1)如图所示,△A1B1C1即为所求.(2)△ABC的面积为3×4﹣×1×3﹣×1×3﹣×2×4=5;(3)如图所示,点Q即为所求.23.2020年,周至县小李家的猕猴桃喜获丰收.在销售过程中,猕猴桃的销售额y(元)与销量x(千克)满足如下关系:销售量x(千克)12345678销售额y(元)612182430364248(1)在这个变化过程中,自变量是猕猴桃的销量,因变量是猕猴桃的销售额;(2)猕猴桃的销售额y(元)与销售量x(千克)之间的关系式为y=6x;(3)当猕猴桃销售量为100千克时,销售额是多少元?解:(1)在这个变化过程中,自变量是猕猴桃的销量,因变量是猕猴桃的销售额,故答案为:猕猴桃的销量,猕猴桃的销售额;(2)猕猴桃的销售额y(元)与销售量x(千克)之间的关系式为y=6x,故答案为:y=6x;(3)将x=100代入y=6x,可得y=6×100=600,答:当猕猴桃销售量为100千克时,销售额是600元.24.如图,在△ABC中,AB=AC,点D,E在BC上(BD<BE),BD=CE.(1)求证:△ABD≌△ACE.(2)若∠ADE=2∠B,BD=2,求AE的长.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠ADE=2∠B,∴∠B=∠BAD,∴BD=AD=2,∵△ABD≌△ACE,∴AE=AD=2.25.某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q(L)与行驶时间t(h)之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油24升;(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目的地还有400km,车速为60km/h,要到达目的地,油箱中的油是否够用?请说明理由.解:(1)由图可得,机动车行驶5小时后加油为36﹣12=24;(2)∵出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L,(3)由图可知,加油后可行驶6h,故加油后行驶60×6=360km,∵400>360,∴油箱中的油不够用.26.如图,在△ABC中,D为AB的中点,AB=AC=10,BC=8,动点P从点B出发,沿BC方向以3个单位长度每秒的速度向点C运动;同时动点Q从点C出发,沿CA方向以1个单位长度每秒的速度向点A运动,运动时间是t秒.(1)在运动过程中,当t=2秒时,CP=CQ;(2)在运动过程中,当△BPD≌△CQP时,求出t的值;(3)是否存在某一时刻t,使△BPD≌△CPQ?若存在,求出t的值;若不存在,请说明理由.解:(1)由题意得BP=3t,CQ=t,则CP=8﹣3t,当点C位于线段PQ的垂直平分线上时,CP=CQ,∴8﹣3t=t,解得,t=2,则当t=2时,CP=CQ,故答案为:2;(2)∵D为AB的中点,AB=AC=10,∴BD=5,∵△BPD≌△CQP,∴BD=CP,∴8﹣3t=5,解得,t=1,则当△BPD≌△CQP时,t=1;(3)不存在,∵△BPD≌△CPQ,∴BD=CQ,BP=CP,则t=5,3t=8﹣3t解得,t=5,t=,∴不存在某一时刻t,使△BPD≌△CPQ.27.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.。

2020-2021初一数学下期末模拟试卷(附答案)

2020-2021初一数学下期末模拟试卷(附答案)

2020-2021初一数学下期末模拟试卷(附答案)一、选择题1.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm2.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=()A.100°B.130°C.150°D.80°3.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是()队名比赛场数胜场负场积分前进1410424光明149523远大147a21卫星14410b钢铁1401414… …… … …A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分6.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩7.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤ B .12a << C .12a ≤< D .12a ≤≤ 8.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-29.将点A (1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A .(2,1)B .(﹣2,﹣1)C .(﹣2,1)D .(2,﹣1) 10.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度11.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B的坐标为( ) A .()5,2-B .()2,5-C .()5,2-D .()2,5--12.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限. A .一B .二C .三D .四二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8 … h/m2.63.23.84.4…14.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( )∴∠BAE= ( 两直线平行,内错角相等 ) 又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE= ∴ ∥NE ( ) ∴∠M=∠N ( ) 15.用适当的符号表示a 是非负数:_______________.16.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .17.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______. 19.结合下面图形列出关于未知数x ,y 的方程组为_____.20.若关于x 的不等式组0532x m x +<⎧⎨-⎩…无解,则m 的取值范围是_____.三、解答题21.解不等式组()x1<0{2x 13x+1--≤,并把解集在数轴上表示出来.22.计算:(1﹣3)0+|2|﹣2cos45°+(14)﹣1 23.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图. 学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为 份,“严加干涉”部分对应扇形的圆心角度数为 ; (2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人? 24.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动. 操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数; (2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系; 结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).25.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=o ,60B ∠=o ,45D E ∠=∠=o .(1)若150BCD =o ∠,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,CD AB P ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD =BE =3,DF =AC ,DE =AB ,EF =BC ,所以: 四边形ABFD 的周长为: AB +BF +FD +DA=AB +BE +EF +DF +AD =AB +BC +CA +2AD =20+2×3 =26. 故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.A解析:A 【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒Q .故选A. 3.B解析:B【解析】解:∵3104<<,∴41015<+<.故选B.点睛:此题主要考查了估算无理数的大小,正确得出10的取值范围是解题关键.4.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A 正确;B 、b=2×4+1×10=18,选项B 正确;C 、a=14-7=7,选项C 正确;D 、设该队胜了z 场,则负了(14-z )场, 依题意,得:2z=14-z , 解得:z=143, ∵z=143不为整数, ∴不存在该种情况,选项D 错误. 故选:D . 【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.6.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.7.A解析:A 【解析】 【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可. 【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1, 解不等式②得:x<a ,∵不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解, ∴不等式的整数解为:-1、0、1, ∴1<a≤2, 故选:A 【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.9.C解析:C【解析】分析:让A 点的横坐标减3,纵坐标加2即为点B 的坐标. 详解:由题中平移规律可知:点B 的横坐标为1-3=-2;纵坐标为-1+2=1, ∴点B 的坐标是(-2,1). 故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.10.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.11.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.12.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.二、填空题13.h=03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2 【解析】 【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式. 【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩,∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2. 故答案为:h =0.3n+2. 【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.14.见解析【解析】【分析】由已知易得AB∥CD 则∠BAE=∠AEC 又∠1=∠2所以∠MAE=∠AEN 则AM∥EN 故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析 【解析】 【分析】由已知易得AB ∥CD ,则∠BAE=∠AEC ,又∠1=∠2,所以∠MAE=∠AEN ,则AM ∥EN ,故∠M=∠N . 【详解】∵∠BAE +∠AED =180°(已知) ∴AB ∥CD (同旁内角互补,两直线平行) ∠BAE =∠AEC (两直线平行,内错角相等) 又∵∠1=∠2,∴∠BAE −∠1=∠AEC −∠2, 即∠MAE =∠NEA ,∴AM ∥EN ,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.15.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a ≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.16.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.17.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查【解析】根据抽样调查的定义可直接得到答案.【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查,故答案为抽样调查.【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.18.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.【解析】【分析】根据图形列出方程组即可【详解】由图可得故答案为【点睛】本题考查了二元一次方程组解题的关键是根据实际问题抽象出二元一次方程组解析:250 325x yx y+=⎧⎨=+⎩.【解析】【分析】根据图形列出方程组即可.【详解】由图可得250 325 x yx y+=⎧⎨=+⎩.故答案为250 325 x yx y+=⎧⎨=+⎩.本题考查了二元一次方程组,解题的关键是根据实际问题抽象出二元一次方程组.20.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m 的范围【详解】解不等式x+m <0得:x <﹣m 解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m ≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m 的范围.【详解】解不等式x +m <0,得:x <﹣m ,解不等式5﹣3x ≤2,得:x ≥1,∵不等式组无解,∴﹣m ≤1,则m ≥﹣1,故答案为:m ≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.三、解答题21.﹣2≤x <2,见解析【解析】【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【详解】 解:()x 1<02x 13x 1⎧-⎪⎨⎪-≤⎩①+②,解不等式①得,x <2,解不等式②得,x≥﹣2,∴不等式组的解集是﹣2≤x <2.在数轴上表示如下:22.【解析】【分析】先分别计算0次幂、化简绝对值、特殊角的三角函数值、负指数幂的计算,然后再按运算顺序进行计算即可. 【详解】()10011322cos454-⎛⎫-+--+ ⎪⎝⎭ =212242+-⨯+ =5+22-=5. 【点睛】本题考查了实数的混合运算,涉及到0次幂、负指数幂的运算,熟练掌握各运算法则是解题的关键.23.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人) 10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120+=1375(人) 则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.24.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD13=(180°﹣60°)=40°,进而得到∠1=40°;(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;(3)根据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB∥CD,∴∠1=∠EGD.又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.25.(1)30°;(2)答案见解析;(3)答案见解析.【解析】【分析】(1)由∠BCD=150°,∠ACB=90°,可得出∠DCA的度数,进而得出∠ACE的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD=∠ACB+∠ACD,∠ACE=∠DCE−∠ACD可得出结论;(3)根据平行线的判定定理,画出图形即可求解.解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒,∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒;(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒;(3)当120BCD ∠=︒或60︒时,CD AB P .如图②,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB P ,此时180********BCD B ∠=︒-∠=︒-︒=︒; 如图③,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,CD AB P .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。

2020-2021七年级数学下期末模拟试卷(及答案)

2020-2021七年级数学下期末模拟试卷(及答案)

2020-2021七年级数学下期末模拟试卷(及答案)一、选择题1.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本2.计算2535-+-的值是()A.-1B.1C.525-D.255-3.已知是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-24.16的平方根为()A.±4B.±2C.+4D.25.在实数0,-π,3,-4中,最小的数是()A.0B.-πC.3D.-46.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )A.4cm B.2cm;C.小于2cm D.不大于2cm7.不等式4-2x>0的解集在数轴上表示为()A.B.C.D.8.不等式组1212xx+>⎧⎨-≤⎩的解集是()A.1x<B.x≥3C.1≤x﹤3D.1﹤x≤3 9.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角10.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 11.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5二、填空题13.如图,将周长为9的△ABC 沿BC 方向平移2个单位得到△DEF ,则四边形ABFD 的周长为_____.14.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____. 15.如果a 的平方根是3±,则a =_________16.如图,边长为10cm 的正方形ABCD 先向上平移4cm ,再向右平移2cm ,得到正方形A'B'C'D',则阴影部分面积为___________________.1764__________.18.用适当的符号表示a 是非负数:_______________.19.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为 .20.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.三、解答题21.一个正数x 的两个平方根是2a -3与5-a ,求x 的值.22.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分. (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.23.如图,已知AB ∥CD .(1)发现问题:若∠ABF =12∠ABE ,∠CDF =12∠CDE ,则∠F 与∠E 的等量关系为 .(2)探究问题:若∠ABF =13∠ABE ,∠CDF =13∠CDE .猜想:∠F 与∠E 的等量关系,并证明你的结论.(3)归纳问题:若∠ABF =1n ∠ABE ,∠CDF =1n∠CDE .直接写出∠F 与∠E 的等量关系.24.补充完成下列解题过程:如图,已知直线a 、b 被直线l 所截,且//a b ,12100∠+∠=°,求3∠的度数.解:1∠与2∠是对顶角(已知),12∠∠∴=( )12100∠+∠=︒(已知),得21100∠=︒(等量代换).1∴∠=_________( ).//a b (已知),得13∠=∠( ).3∴∠=________(等量代换).25.把一堆书分给几名学生,如果每人分到 4 本,那么多 4 本;如果每人分到 5 本,那么最 后 1 名学生只分到 3 本.问:一共有多少名学生?多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A 、1600名学生的体重是总体,故A 正确;B 、1600名学生的体重是总体,故B 错误;C 、每个学生的体重是个体,故C 错误;D 、从中抽取了100名学生的体重是一个样本,故D 错误;故选:A .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】解:23+-(23231-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 3.B【解析】【分析】把代入x-ay=3,解一元一次方程求出a值即可.【详解】∵是关于x,y的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.4.A解析:A【解析】【分析】根据平方根的概念即可求出答案.【详解】∵(±4)2=16,∴16的平方根是±4.故选A.【点睛】本题考查了平方根的概念,属于基础题型.5.D解析:D【解析】【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.6.D解析:D【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.7.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.8.D解析:D【解析】【分析】【详解】解:1212xx+>⎧⎨-≤⎩①②,由①得x>1,由②得x≤3,所以解集为:1<x≤3;故选D.9.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 10.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.12.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C.二、填空题13.11【解析】【分析】根据平移的基本性质得出四边形ABFD的周长=AD+AB +BF+DF=1+AB+BC+1+AC即可得出答案【详解】解:根据题意将周长为9的△ABC沿BC方向向右平移1个单位得到△D解析:11【解析】【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】解:根据题意,将周长为9的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=9,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=11.故答案为:11.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.14.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a【解析】3+=1,33x y a x y +⎧⎨+=⎩①② 由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2, 即4a <1, 解得,a<4.故答案是:a<4.15.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】∵9的平方根为3±,,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.16.【解析】【分析】如图交于其延长线交于利用平移的性质得到再利用四边形为矩形得到然后计算出和即可得到阴影部分面积【详解】解:如图交于其延长线交于边长为的正方形先向上平移再向右平移得到正方形易得四边形为矩 解析:248cm【解析】【分析】如图,A B ''交AD 于F ,其延长线交BC 于E ,利用平移的性质得到//A B AB '',//BC B C '',4B E '=,2AF =,再利用四边形ABEF 为矩形得到10EF AB ==,然后计算出FB '和DF 即可得到阴影部分面积.【详解】解:如图,A B ''交AD 于F ,其延长线交BC 于E ,边长为10cm 的正方形ABCD 先向上平移4cm 再向右平移2cm ,得到正方形A B C D '''',//A B AB ∴'',//BC B C '',4B E '=,2AF =,易得四边形ABEF 为矩形,10EF AB ∴==,6FB ∴'=,8DF =,∴阴影部分面积26848()cm =⨯=.故答案为:248cm .【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.17.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】 64,再计算8的立方根即可.【详解】 6438=2, 64 2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.18.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a≥0故答案为:a≥0解析:a≥0【解析】【分析】非负数即大于等于0,据此列不等式.【详解】由题意得a≥0.故答案为:a≥0.19.【解析】试题解析:根据题意将周长为8的△ABC沿边BC向右平移1个单位得到△DEF则AD=1BF=BC+CF=BC+1DF=AC又∵AB+BC+AC=10∴四边形ABFD的周长=AD+AB+BF+D解析:【解析】试题解析:根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,则AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=10,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.考点:平移的性质.20.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案.【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查,故答案为抽样调查.【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.三、解答题21.x=49【解析】-,试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a-3+5-a=0,可求出a=2即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x.-,所以试题解析:因为一个正数x的两个平方根是2a-3与5-a,所以2a-3+5-a=0,解得a=2x=.2a-3=7-,所以4922.(1)a=5,b=2,c=3;(2)±4.【解析】【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值.(2)将a、b、c的值代数式求出值后,进一步求得平方根即可.【详解】(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是13的整数部分,∴c=3,(2)∵a=5,b=2,c=3,∴3a-b+c=16,3a-b+c的平方根是±4.【点睛】考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.23.(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,见解析;(3)∠BED=n∠BFD.【解析】【分析】(1)过点E,F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,从而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=2∠BFD;(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根据∠ABF=1 3∠ABE,∠CDF=13∠CDE即可得到结论;(3)同(1)(2)的方法即可得出∠F与∠E的等量关系.【详解】解:(1)过点E、F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,∵∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠BFD=∠CDF+∠ABF=12(∠ABE+∠CDE)=12∠BED,∴∠BED=2∠BFD.故答案为:∠BED=2∠BFD;(2)∠BED=3∠BFD.证明如下:同(1)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=13∠ABE,∠CDF=13∠CDE,∴∠BFD=∠CDF+∠ABF=13(∠ABE+∠CDE)=13∠BED,∴∠BED=3∠BFD.(3)同(1)(2)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=1n∠ABE,∠CDF=1n∠CDE,∴∠BFD=∠CDF+∠ABF=1n(∠ABE+∠CDE)=1n∠BED,∴∠BED=n∠BFD.【点睛】本题主要考查了平行线的性质和角平分线、n等分线的运用,解决问题的关键是作辅助线构造内错角,依据平行线的性质进行推导计算,解题时注意类比思想和整体思想的运用.24.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a∥b(已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.25.一共有6名学生,28本书【解析】【分析】可设有 x 名学生,y 本书.根据总本数相等,每人分到4本,那么多4 本;如果每人分到5 本,那么最 后 1 名学生只分到3本,可列出方程组,求解即可.【详解】解:设一共有x 名学生,y 本书,依题意得:445(1)3x y x y +=⎧⎨-+=⎩解得628x y =⎧⎨=⎩答:一共有6名学生,28本书【点睛】本题考查了二元一次方程组的应用,根据该班人数表示出图书数量得出方程组是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初一数学下期末模拟试卷(及答案)(6)一、选择题1.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b2.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块3.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°4.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( ) A .6折 B .7折 C .8折D .9折5.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( ) 队名 比赛场数 胜场 负场 积分 前进 14 10 4 24 光明 14 9 5 23 远大 14 7 a 21 卫星 14 4 10 b 钢铁 14 0 14 14 ……………A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分6.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)7.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤9.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( ) A .1个B .2个C .3个D .4个10.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角11.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°12.不等式组2201xx+>⎧⎨-≥-⎩的解在数轴上表示为( )A.B.C.D.二、填空题13.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.14.一棵树高h(m)与生长时间n(年)之间有一定关系,请你根据下表中数据,写出h (m)与n(年)之间的关系式:_____.n/年2468…h/m 2.6 3.2 3.8 4.4…15.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°16.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有种购买方案.17.已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.18.关于x 的不等式(3a-2)x<2的解为x > ,则a 的取值范围是________19.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.20.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________.三、解答题21.5小时的人数有:50010020080120---= 补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时, (3)由题意可得,该校每天户外活动时间超过1小时的学生数为:120802000800500+⨯=120802000800500+⨯=(人), 即该校每天户外活动时间超过1小时的学生有800人. 【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.22.如图,将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A 1 ,B 1 ,C 1 ; (2)画出平移后三角形A 1B 1C 1; (3)求三角形ABC 的面积.23.已知//AB CD ,点M 为平面内一点.(1)如图1,ABM ∠和DCM ∠互余,小明说过M 作//MP AB ,很容易说明BM CM ⊥。

请帮小明写出具体过程;(2)如图2,//AB CD ,当点M 在线段AD 上移动时(点M 与A ,D 两点不重合),指出BMC ∠与ABM ∠,DCM ∠的数量关系?请说明理由;(3)在(2)的条件下,若点M 在A ,D 两点外侧运动(点M 与E ,A ,D 三点不重合)请直接写出BMC ∠与ABM ∠,DCM ∠的数量关系.24.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题: (1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数. 25.规律探究,观察下列等式: 第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++L L【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确; D.∵a >b ,∴-3a <-3b ,∴选项D 错误. 故选D.2.D解析:D 【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y 块,而黑皮共有边数为5x 块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x ,y . 则, 解得,即黑色皮块和白色皮块的块数依次为12块、20块. 故选D .3.B解析:B 【解析】 【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案. 【详解】由题意可得:∠EDF=45°,∠ABC=30°, ∵AB ∥CF ,∴∠ABD=∠EDF=45°, ∴∠DBC=45°﹣30°=15°. 故选B. 【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.4.B解析:B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥7. 即最多打7折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.5.D解析:D 【解析】 【分析】A 、设胜一场积x 分,负一场积y 分,根据前进和光明队的得分情况,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;B 、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b 值;C 、由负的场次数=总场次数-得胜的场次数,即可求出a 值;D 、设该队胜了z 场,则负了(14-z )场,根据胜场总积分等于负场总积分,即可得出关于z 的一元一次方程,解之即可得出z 值,由该值不为整数即可得出结论. 【详解】A 、设胜一场积x 分,负一场积y 分, 依题意,得:104249523x y x y +⎧⎨+⎩==,解得:21x y ⎧⎨⎩==, ∴选项A 正确;B 、b=2×4+1×10=18,选项B 正确;C 、a=14-7=7,选项C 正确;D 、设该队胜了z 场,则负了(14-z )场, 依题意,得:2z=14-z , 解得:z=143, ∵z=143不为整数, ∴不存在该种情况,选项D 错误. 故选:D . 【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.6.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C . 【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.7.D解析:D 【解析】 【分析】 【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6; 根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°. 而∠4与∠8是AD 和BC 被BD 所截形成得内错角,则∠4=∠8错误, 故选D.8.A解析:A 【解析】 【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可. 【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1, 解不等式②得:x<a ,∵不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解, ∴不等式的整数解为:-1、0、1, ∴1<a≤2, 故选:A 【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.9.C解析:C 【解析】 【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 11.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.12.D解析:D【解析】【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答.【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1;解不等式②得,x ≤1;∴不等式组的解集是﹣1<x ≤1.不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.二、填空题13.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm 得出不等式求出即可【详解】设长为8x 高为11x 由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【详解】设长为8x ,高为11x ,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.14.h =03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h =kn+b 将n =2h =2解析:h =0.3n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式.【详解】设该函数的解析式为h =kn+b ,将n =2,h =2.6以及n =4,h =3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩, ∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2.故答案为:h =0.3n+2.【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.15.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°. 【点睛】本题考查平行线的性质及三角形外角的性质.16.2【解析】设甲种运动服买了x 套乙种买了y 套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy必需为整数可求出解解:设甲种运动服买了x套解析:2【解析】设甲种运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.解:设甲种运动服买了x套,乙种买了y套,20x+35y=365x=,∵x,y必须为正整数,∴>0,即0<y<,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.17.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组18.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a <,故答案为:a <【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 20.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3 ∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键三、解答题21.无22.(1)A 1(4,7),B 1(1,2),C 1(6,4);(2)见解析;(3)192【解析】【分析】(1)根据平移的规律变化结合平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△ABC 所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【详解】(1) 观察图形可知点A (-2,2),点B (-5,-3),点C (0,-1),所以将三角形ABC 向右平移5个单位长度,再向上平移3个单位长度后所得对应点的坐标为:A 1(3,5),B 1(0,0),C 1(5,2);(2)△A 1B 1C 1如图所示;(3)△ABC 的面积=5×5-12×5×2-12×2×3-12×3×5 =25-5-3-7.5=25-15.5=9.5.【点睛】 本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.23.(1)见解析;(2)ABM DCM BMC ∠+∠=∠,理由见解析;(3)BMC ABM DCM ∠=∠-∠【解析】【分析】(1)由题意过M 作//MP AB ,则有则BMP ABM ∠=∠,再利用互余性质以及平行线性质进行分析证明;(2)由题意过M 作//ME AB ,交BC 于E ,则可知ABM BME ∠=∠,再利用平行线性质以及角的等量替换进行分析求证;(3)根据(2)的条件,观察图形直接写出BMC ∠与ABM ∠,DCM ∠的数量关系即可.【详解】(1)解:如图,过M 作//MP AB则BMP ABM ∠=∠又//AB CD Q//MP CD ∴PMC MCD ∴∠=∠又ABM ∠Q 和DCM ∠互余90ABM MCD ∴∠+∠=︒90BMP PMC ∴∠+∠=︒BE CE ∴⊥(2)ABM DCM BMC ∠+∠=∠,理由如下过M 作//ME AB ,交BC 于E ,则ABM BME ∠=∠又//AB CD Q//ME CD ∴DCM EMC ∴∠=∠ABM DCM BME CME BMC ∴∠+∠=∠+∠=∠(3)(2)当点M 在E 、A 两点之间时,BMC DCM ABM ∠=∠-∠当点M 在射线DF 上时,BMC ABM DCM ∠=∠-∠.【点睛】本题考查平行线性质相关,熟练利用互余性质以及平行线性质和角的等量替换进行分析求证是解题关键.24.(1)40;(2)72;(3)280.【解析】【分析】(1)用最想去A 景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D 景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数; (3)用800乘以样本中最想去A 景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人); (2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=280,所以估计“最想去景点B“的学生人数为280人. 25.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【解析】【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案; (2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++L L 中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++L L1111144771010132983011+++++⨯⨯⨯⨯⨯=L 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭L 111111111++++3447710111290133018=-⎛⎫⨯-+--- ⎪⎝⎭L 1330111⎛=⨯-⎫ ⎪⎝⎭ 30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.。

相关文档
最新文档