第二学期七年级数学期中考试卷(人教版)
人教版七年级数学下册期中试卷及答案【完整版】
人教版七年级数学下册期中试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .22.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定 4.94的值等于( ) A .32 B .32- C .32± D .81165.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A.30︒ B.40︒ C.60︒ D.50︒7.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩9.如图,a,b,c在数轴上的位置如图所示,化简22()a a c c b-++-的结果是()A.2c﹣b B.﹣b C.b D.﹣2a﹣b 10.如图,△ABC中,AD为△ABC的角平分线,BE为△ABC的高,∠C=70°,∠ABC=48°,那么∠3是()A.59°B.60°C.56°D.22°二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.在关于x、y的方程组2728x y mx y m+=+⎧⎨+=-⎩中,未知数满足x≥0,y>0,那么m的取值范围是_________________.4.若+x x-有意义,则+1x=___________.5.A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t时后两车相距50千米,则t的值为____________.6.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)x﹣7=10﹣4(x+0.5) (2)512136x x+--=12.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、C7、B8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、40°3、-2≤m <34、15、2或2.56、36°或37°.三、解答题(本大题共6小题,共72分)1、(1)3x ;(2)x=38.2、(1)7x 2﹣x+2;(2)﹣14x 2+2x ﹣1;(3)﹣5773、(1)(4,-2);(2)作图略,(3)6.4、60°5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.6、(1)A 种奖品每件16元,B 种奖品每件4元.(2)A 种奖品最多购买41件.。
新人教版七年级数学下册期中考试卷及答案【完整版】
新人教版七年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±1 2.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.已知x+y=﹣5,xy=3,则x2+y2=()A.25 B.﹣25 C.19 D.﹣19 4.一5的绝对值是()A.5 B.15C.15-D.-55.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A.12a≤<B.01a≤<C.12a-<≤D.10a-≤<6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A.70°B.180°C.110°D.80°7.《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).A .x +2x +4x =34 685B .x +2x +3x =34 685C .x +2x +2x =34 685D .x +12x +14x =34 685 8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.5.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)2(x+3)=5(x-3)2123x-()=435x--x2.解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、A5、A6、C7、A8、A9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-15、AC=DF(答案不唯一)6、±3三、解答题(本大题共6小题,共72分)1、(1)x=7;(2)x=1 2.2、x≥3 53、(1)∠BOD;∠AOE;(2)152°.4、证明略5、(1)20%;(2)6006、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.4的平方根是()A .2B .2±C .2D .2± 2.下列图形中,可以由其中一个图形通过平移得到的是( )A .B .C .D . 3.平面直角坐标系中,点()2,3P -所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中是假命题的是( ) A .对顶角相等B .两直线平行,同位角互补C .在同一平面内,经过一点有且只有一条直线与已知直线垂直D .平行于同一直线的两条直线平行5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.下列说法中正确的是( )①1的平方根是1; ②5是25的算术平方根;③(﹣4)2的平方根是﹣4;④(﹣4)3的立方根是﹣4;⑤0.01是0.1的一个平方根.A .①④B .②④C .②③D .②⑤ 7.如图,直线AB ∥CD ,BE 平分∠ABD ,若∠DBE =20°,∠DEB =80°,求∠CDE 的度数是( )A .50°B .60°C .70°D .80°8.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)二、填空题9.已知实数x,y 满足2x -+(y+1)2=0,则x-y 的立方根是_____.10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,△ABC 中∠BAC =60°,将△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,连接C ′D 与C ′C ,∠ACB 的角平分线交AD 于点E ;如果BC ′=DC ′;那么下列结论:①∠1=∠2;②AD 垂直平分C ′C ;③∠B =3∠BCC ′;④DC ∥EC ;其中正确的是:________;(只填写序号)12.如图,直线a ∥b ,直线c 与直线a ,b 分别交于点D ,E ,射线DF ⊥直线c ,则图中与∠1互余的角有 _______个.13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.在平面直角坐标系中,已知线段3,AB =且//AB x 轴,且点A 的坐标是()1,2,则点B 的坐标是____.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P 从点A 处出发,并按A ﹣B ﹣C ﹣D ﹣A ﹣B …的规律在四边形ABCD 的边上以每秒1个单位长的速度运动,运动时间为t 秒.若t =2021秒,则点P 所在位置的点的坐标是_____.三、解答题17.计算:333|3- 333 18.(1)已知a m =3,a n =5,求a 3m ﹣2n 的值.(2)已知x ﹣y =35,xy =1825,求下列各式的值: ①x 2y ﹣xy 2;②x 2+y 2.19.如图所示,AD BC ⊥于点D ,EG BC ⊥于点G ,若1E ∠=∠,则23∠∠=吗?下面是推理过程,请你填空或填写理由.证明:∵AD BC ⊥于点D ,EG BC ⊥于点G (已知),∴90ADC EGC ∠=∠=︒(____________),∴//AD EG (________________________),∴12∠=∠(________________________),∵1E ∠=∠(已知)∴2E ∠=∠(____________)∵//AD EG ,∴______3=∠(______________________________).∴______=______(等量代换)20.如图,在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C .(1)求出ABC 的面积;(2)平移ABC ,若点A 的对应点2A 的坐标为()0,2-,画出平移后对应的222A B C △,写出2B 坐标.21.阅读下面文字: 22的小数部分我们不可能全21221,将这个数减去其整数部分,差就是小数部分.又例如:由“平方与开平方互为逆运算”可知:22<2(7)<23,即273<<,∴7的整数部分是2,小数部分是72-.(1)10的整数部分是________,小数部分是________; (2)如果5的小数部分是a ,37整数部分是b ,求25b a -+的值;(3)已知103x y +=+,其中x 是整数,且01y <<,求y x -. 22.如图1,用两个边长相同的小正方形拼成一个大的正方形.(1)如图2,若正方形纸片的面积为12dm ,则此正方形的对角线AC 的长为 dm . (2)如图3,若正方形的面积为162cm ,李明同学想沿这块正方形边的方向裁出一块面积为122cm 的长方形纸片,使它的长和宽之比为3∶2,他能裁出吗?请说明理由. 23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E 作EF //AB ,则有∠BEF = .∵AB //CD ,∴ // ,∴∠FED = .∴∠BED =∠BEF +∠FED =∠B +∠D .(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .①如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; ②如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BED 的度数(用含有α,β的式子表示).【参考答案】一、选择题1.D解析:D【分析】依据平方根的定义、算术平方根的定义进行解答即可.【详解】解:∵2=, ∴故选D.【点睛】本题主要考查的是算术平方根、平方根的定义,熟练掌握相关概念是解题的关键. 2.C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C 的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C .【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C 的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C .【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.D【分析】根据点在各象限的坐标特点即可得答案.【详解】∵点的横坐标2>0,纵坐标-3<0,∴点()2,3P -所在的象限是第四象限,故选:D .【点睛】本题考查直角坐标系,解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B【分析】根据对顶角的性质、平行线的性质、平行公理判断即可.【详解】解:A 、对顶角相等,是真命题;B 、两直线平行,同位角相等,故原命题是假命题;C 、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;D 、平行于同一直线的两条直线互相平行,是真命题,故选:B .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒;当BC ∥AD 时,60DAB B ∠=∠=︒;当BC ∥ AE 时,∵60EAB B ∠=∠=︒,∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒;当AB ∥DE 时,∵ 90E EAB ∠=∠=︒,∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.6.B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断.【详解】解:1的平方根是±1,故说法①错误;5是25的算术平方根,故说法②正确;(-4)2的平方根是±4,故说法③错误;(-4)3的立方根是-4,故说法④正确;0.1是0.01的一个平方根,故说法⑤错误;综上,②④正确,故选:B .【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键. 7.B【分析】延长DE ,交AB 于点F ,根据角平分线的定义以及已知条件可得20EBF ∠=︒,由三角形的外角性质可求EFB ∠,最后由平行线的性质即可求解.【详解】延长DE ,交AB 于点F ,BE 平分∠ABD ,20DBE ∠=︒,20EBF DBE ∴∠=∠=︒,DEB DFB EBF ∠=∠+∠,∠DEB =80°,802060EFB DEB EBF ∴∠=∠-∠=︒-︒=︒,//AB CD ,60CDE EFB ∴∠=∠=︒,故选B .【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键.8.B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置.【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点的坐标为(1,0),…,∵2021÷6=336…5,∴小球第2021次碰到球桌边时,小球的位置是(5,4),故选:B.【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.二、填空题9.【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是.【点睛】本题考查的是33【分析】先根据非负数的性质列出方程求出x 、y 的值求x-y 的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C′处,∴∠1=∠2,A=AC ,DC解析:①②④【分析】根据折叠的全等性质,垂直平分线的性质,平行线的判定定理,外角的性质等判断即可【详解】解:如图,∵△ACD 沿AD 折叠,使得点C 落在AB 上的点C ′处,∴∠1=∠2,A C '=AC ,DC =D C ',∴AD 垂直平分C ′C ;∴①,②都正确;∵B C '=D C ', DC =D C ',∴B C '=D C '= DC ,∴∠3=∠B ,∠4=∠5,∴∠3=∠4+∠5=2∠5即∠B =2∠BC C ';∴③错误;根据折叠的性质,得∠ACD =∠A C 'D =∠B +∠3=2∠3,∵∠ACB 的角平分线交AD 于点E ,∴2(∠6+∠5)=2∠B ,653,∴∠+∠=∠∴3,DCE ∴∠=∠∴D C '∥EC∴④正确;故答案为:①②④.【点睛】本题考查了折叠的性质,平行线的判定,外角的性质,线段垂直平分线的性质,熟练掌握各种基本性质是解题的关键.12.4【分析】根据射线DF ⊥直线c ,可得与∠1互余的角有∠2,∠3,根据a ∥b ,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF ⊥直线c∴∠1+∠2=90°,∠1解析:4【分析】根据射线DF ⊥直线c ,可得与∠1互余的角有∠2,∠3,根据a ∥b ,可得与∠1互余的角有∠4,∠5,可得图中与∠1互余的角有4个【详解】∵射线DF ⊥直线c∴∠1+∠2=90°,∠1+∠3=90°即与∠1互余的角有∠2,∠3又∵a ∥b∴∠3=∠5,∠2=∠4∴∠1互余的角有∠4,∠5∴与∠1互余的角有4个故答案为:4【点睛】本题考查了互余的定义,如果两个角的和等于(直角),就说这两个角互为余角,简称互余,即其中每一个角是另一个角的余角;本题还考查了平行线的性质定理,两直线平行,同位角相等.13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.或【分析】设点B 的坐标为,然后根据轴得出B 点的纵坐标,再根据即可得出B 点的横坐标.【详解】设点B 的坐标为,∵轴,点A (1,2)∴B 点的纵坐标也是2,即 .∵,或 ,解得或 ,∴点解析:()4,2或()2,2-【分析】设点B 的坐标为(,)a b ,然后根据//AB x 轴得出B 点的纵坐标,再根据3,AB =即可得出B 点的横坐标.【详解】设点B 的坐标为(,)a b ,∵//AB x 轴,点A (1,2)∴B 点的纵坐标也是2,即2b = .∵3AB =,13a ∴-=或13a -= ,解得4a =或2a =- ,∴点B 的坐标为()4,2或()2,2-.故答案为:()4,2或()2,2-.【点睛】本题主要考查平行于x 轴的线段上的点的特点,掌握平行于x 轴的线段上的点的特点是解题的关键.16.(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A (1,1), B (-1,1),C (-1,-2), D(1,-2)∴AB = CD = 2,AD = BC = 3,∴四边形ABCD 的周长= AB + AD +BC +CD = 10∵P点的运动是绕矩形ABCD的周长的循环运动,且速度为每秒一个单位长度∴P点运动一周需要的时间为10秒∵2021=202×10+1∴当t=2021秒时P的位置相当于t=1秒时P的位置∵t=1秒时P的位置是从A点向B移动一个单位∴此时P点的坐标为(0,1)∴t=2021秒时P点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P点一个循环运动需要花费的时间.三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.18.(1);(2)①;②【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1),,解析:(1)2725;(2)①54125;②95 【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1)3m a =,5n a =,32m n a -∴ 32m n a a =÷32()()m n a a =÷3235=÷2725=; (2)①35x y -=,1825xy =, 22x y xy ∴-183()255xy x y =-=⨯ 54125=; ②35x y -=,1825xy =, 22x y ∴+2()2x y xy =-+23182525⎛⎫=+⨯ ⎪⎝⎭ 9362525=+ 95=. 【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E ;两直线平行,同位角相等;∠2;∠3.【分析】根据垂直的定义得到∠ADC=∠EGC=90°,根据平行线的判定得到AD ∥E解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E ;两直线平行,同位角相等;∠2;∠3.【分析】根据垂直的定义得到∠ADC =∠EGC =90°,根据平行线的判定得到AD ∥EG ,由平行线的性质得到∠1=∠2,等量代换得到∠E =∠2,由平行线的性质得到∠E =∠3,等量代换即可得到结论.【详解】证明:∵AD ⊥BC 于点D ,EG ⊥BC 于点G (已知),∴∠ADC =∠EGC =90°(垂直的定义),∴AD ∥EG (同位角相等,两直线平行),∴∠1=∠2(两直线平行,内错角相等),∵∠E =∠1(已知),∴∠E=∠2(等量代换),∵AD ∥EG ,∴∠E =∠3(两直线平行,同位角相等),∴∠2=∠3(等量代换),故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;∠E ;两直线平行,同位角相等;∠2;∠3.【点睛】本题主要考查了平行线的性质,垂直的定义,熟练掌握平行线的性质是解题的关键. 20.(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B 2(3,0),画图见解析【分析】(1)先求出AC ,BC 的长,然后根据三角形面积公式求解即可;(2)先根据A 和A 2的坐标,确定平移方式,然后求出B 2,C 2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)∵在平面直角坐标系中,Rt ABC ∆的三个顶点的坐标分别是()3,2A -,()0,4B ,()0,2C ,∴AC =3,BC =2, ∴1=32ABC S AC BC =△;(2)∵A(-3,2),A2(0,-2),∴A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的,∴B2,C2的坐标分别为(3,0),(3,-2),如图所示,即为所求.【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1)3103;(2)853)123【分析】(110的范围,再求出即可;(2537的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出3x、y的值,最后代入求出即可.【详解】解:(1)∵91016∴310<4,∴10310-3,故答案为:310-3;(2)∵459363747∴253,6377,∴a ,b =6,∴)628b a -+=-+(3)∵12,∴11<1012,∴x =11,y =10111=,∴1111212y x --== 【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键. 22.(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:解析:(1)2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长; (2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可.【详解】解:(1)∵正方形纸片的面积为21dm ,∴正方形的边长1AB BC dm ==, ∴AC =.(2)不能;根据题意设长方形的长和宽分别为3xcm 和2xcm .∴长方形面积为:2?312x x =,解得:x =∴长方形的长边为.∵4,∴他不能裁出.【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC . 即∠BED =180°﹣∠EBA +∠EDC , ∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
完整版人教(完整版)七年级数学下册期中试卷及答案
完整版人教(完整版)七年级数学下册期中试卷及答案一、选择题1.4的算术平方根是()A.2 B.4 C.2±D.4±2.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.3.在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A′(m+3,n﹣4)在第二象限,则点A所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.下列命题中是假命题的是().A.等角的补角相等B.平行于同一条直线的两条直线平行C.对顶角相等D.同位角相等5.如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC的度数可能是()A.①②③B.①②④⑤C.①②③⑤D.①②③④⑤6.下列结论正确的是()A.64的平方根是4±B.18-没有立方根C.立方根等于本身的数是0 D.332727-=-7.将45°的直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=31°,则∠2的度数为()A.10°B.14°C.20°D.31°8.如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是()A .(3,44)B .(41,44)C .(44,41)D .(44,3)二、填空题9.125的算术平方根是___. 10.点(3,0)关于y 轴对称的点的坐标是_______11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.13.如图,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ’处,折痕为EF ,若∠ABE =30°,则∠EFC ’的度数为____________.14.规定,()221x f x x =+,例如:()223931310f ==+,221113310113f ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫÷ ⎪⎝⎭,通过观察,那么()()()()11111239910099982f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()100f +=______.15.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.16.如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O 为顶点,边长为正整数的正方形的顶点,A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,2),A 6(0,2),A 7(0,3),A 8(3,3)……依此规律A 100坐标为________.三、解答题17.(1)计算:16125- (2)计算: 3223--(3)计算:310.0484+-- (4)计算:16122+--18.(1)已知a m =3,a n =5,求a 3m ﹣2n 的值.(2)已知x ﹣y =35,xy =1825,求下列各式的值: ①x 2y ﹣xy 2;②x 2+y 2.19.如图,,,12AB BF CD BF ⊥⊥∠=∠,试说明3E ∠=∠.证明:∵,AB BF CD BF ⊥⊥(已知)∴ABD ∠=∠________=________︒(垂直定义)∴________//________(________________)∵12∠=∠(________)∴________//________(________________)∴//CD________(平行于同一直线的两条直线互相平行)∴3E∠=∠(________________________).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,),C→(+1,);(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.21.已知a是77-的整数部分,b是7的小数部分,求()27a b-的平方根.22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数【参考答案】一、选择题1.A解析:A【分析】依据算术平方根的定义解答即可.【详解】4的算术平方根是2,故选:A.【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】构建不等式求出m,n的范围可得结论.【详解】解:由题意,3040mn+<⎧⎨->⎩,解得:34mn<-⎧⎨>⎩,∴A(m,n)在第二象限,故选:B.【点睛】此题主要考查坐标与图形变化-平移.解题的关键是理解题意,学会构建不等式解决问题.4.D【分析】根据等角的补角,平行线的性质,对顶角的性质,进行判断.【详解】A. 等角的补角相等,是真命题,不符合题意;B. 平行于同一条直线的两条直线平行,是真命题,不符合题意;C. 对顶角相等,是真命题,不符合题意;D. 两直线平行,同位角相等,原命题是假命题,符合题意;故选D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识.5.C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图4,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.综上所述,∠AEC的度数可能是β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.6.D【分析】根据平方根与立方根的性质逐项判断即可得.【详解】A648±±,此项错误;=,8的平方根是84B311--,此项错误;82C、立方根等于本身的数有0,1,1-,此项错误;D、33-=---,273,2733273∴-=-,此项正确;27故选:D.【点睛】本题考查了平方根与立方根的性质,掌握理解平方根与立方根的性质是解题关键.7.B【分析】根据平行线的性质,即可得出∠1=∠ADC=31°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到答案.【详解】解:∵AB∥CD,∴∠1=∠ADC=30°,又∵直角三角形ADE中,∠ADE=45°,∴∠1=45°-31°=14°,故选:B.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8.D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2021=452-4=2025-4,∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,即(44,3)的位置.故选:D .【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.二、填空题9.【分析】直接利用算术平方根的定义计算得出答案.【详解】解:的算术平方根是:.故答案为:.【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:15【分析】直接利用算术平方根的定义计算得出答案.【详解】解:12515 . 故答案为:15. 【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键.10.(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴解析:(-3,0)【分析】根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.【详解】解:点(m ,n )关于y 轴对称点的坐标(-m ,n ),所以点(3,0)关于y 轴对称的点的坐标为(-3,0).故答案为:(-3,0).【点睛】本题考查平面直角坐标系点的对称性质:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.;【详解】解:由题意可知,∠B=60°,∠C=70°,所以°,所以°,在三角形BAE 中,°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.解析:5︒;【详解】解:由题意可知,∠B=60°,∠C=70°,所以18013050A ∠=-=°,所以25BAD ∠=°,在三角形BAE 中,906030BAE ∠=-=°,所以∠EAD=5°故答案为:5°.【点睛】本题属于对角平分线和角度基本知识的变换求解.12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°, ∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.13.120【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,欲求∠EFC′的度数,需先求出∠BEF 的度数;根据折叠的性质知∠BEF=∠DEF ,而解析:120【分析】由折叠的性质知:∠EBC ′、∠BC ′F 都是直角,因此BE ∥C ′F ,那么∠EFC ′和∠BEF 互补,欲求∠EFC ′的度数,需先求出∠BEF 的度数;根据折叠的性质知∠BEF =∠DEF ,而∠AEB 的度数可在Rt △ABE 中求得,由此可求出∠BEF 的度数,即可得解.【详解】解:Rt △ABE 中,∠ABE =30°,∴∠AEB =60°;由折叠的性质知:∠BEF =∠DEF ;而∠BED =180°-∠AEB =120°,∴∠BEF =60°;由折叠的性质知:∠EBC ′=∠D =∠BC ′F =∠C =90°,∴BE ∥C ′F ,∴∠EFC ′=180°-∠BEF =120°.故答案为:120.【点睛】本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.14.【分析】由题干得到,将原式进行整理化简即可求解.【详解】∵,∴,∴.【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键. 解析:1992【分析】由题干得到()11⎛⎫+= ⎪⎝⎭f n f n ,将原式进行整理化简即可求解. 【详解】∵()1913131010f f ⎛⎫+=+= ⎪⎝⎭, ∴()()()()111,111,12f n f f f f n ⎛⎫+=+=∴= ⎪⎝⎭, ∴()()()1199100110099f f f f f ⎛⎫⎛⎫++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 119999112=+=+. 【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.15.(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.【详解】解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12, ∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案.【详解】解:∵A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4(2,0)、A 5(2,2)、A 6(0,2)、A 7(0,3)、A 8(3,3)…,∴数据每隔三个增加一次,100÷3得33余1,则点A 在x 轴上,故A 100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A 的脚标数之间的联系寻找规律.三、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 18.(1);(2)①;②【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可; (2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1),,解析:(1)2725;(2)①54125;②95 【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)①利用提公因式法因式分解解答即可;②根据完全平方公式计算即可.【详解】解:(1)3m a =,5n a =,32m n a -∴32m n a a =÷32()()m n a a =÷3235=÷2725=; (2)①35x y -=,1825xy =, 22x y xy ∴-183()255xy x y =-=⨯ 54125=; ②35x y -=,1825xy =, 22x y ∴+2()2x y xy =-+23182525⎛⎫=+⨯ ⎪⎝⎭9362525=+ 95=. 【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键.19.,90;,同位角相等,两直线平行;已知;,内错角相等,两直线平行;;两直线平行,同位角相等.【分析】根据平行线的判定定理得到AB ∥CD ∥EF ,再由平行线的性质证得结论,据此填空即可.【详解】解析:CDF ,90;,AB CD ,同位角相等,两直线平行;已知;,AB EF ,内错角相等,两直线平行;EF ;两直线平行,同位角相等.【分析】根据平行线的判定定理得到AB ∥CD ∥EF ,再由平行线的性质证得结论,据此填空即可.【详解】证明:∵,AB BF CD BF ⊥⊥(已知),∴90ABD CDF ∠=∠=︒(垂直定义),∴//AB CD (同位角相等,两直线平行),∵12∠=∠(已知),∴//AB EF (内错角相等,两直线平行),∴//CD EF (平行于同一直线的两条直线互相平行),∴3E ∠=∠(两直线平行,同位角相等).故答案为:CDF ,90;AB ,CD ,同位角相等,两直线平行;已知;AB ,EF ,内错角相等,两直线平行;EF ;两直线平行,同位角相等.【点睛】本题考查了平行线的判定与性质,熟练掌握性质及判定定理是解题的关键.20.(1)3,4,3,﹣2,D ,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A→C ( 3解析:(1)3,4,3,﹣2,D ,﹣2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案.【详解】解:(1)A →C ( 3,4),B →D (3﹣2),C →D (+1,﹣2);故答案为3,4;3,﹣2;D ,﹣2;(2)这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置,如图【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.21.【分析】先进行估算的范围,确定a,b的值,再代入代数式即可解答.【详解】解:∵,∴的整数部分为2,小数部分为,且.∴的整数部分为4.∴,∴.【点睛】本题考查了估算无理数的大小,解析:4±【分析】a,b的值,再代入代数式即可解答.【详解】解:∵23<,∴2,小数部分b2,且475<.∴7a为4.∴(22a b=⨯=,4216∴=±.4【点睛】的范围.22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.23.(1)见解析;(2)∠BAE+∠CDE=∠AED ,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E 作EF ∥AB ,根解析:(1)见解析;(2)∠BAE +∠CDE =∠AED ,证明见解析;(3)①∠AED -∠FDC =45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E 作EF ∥AB ,根据平行线的性质得AB ∥CD ∥EF ,然后由两直线平行内错角相等可得结论;(3)①根据∠AED +∠AEC =180°,∠AED +∠DEC +∠AEB =180°,DF 平分∠EDC ,可得出2∠AED +(90°-2∠FDC )=180°,即可导出角的关系;②先根据∠AED =∠F +∠FDE ,∠AED -∠FDC =45°得出∠DEP =2∠F =90°,再根据∠DEA -∠PEA =514∠DEB ,求出∠AED =50°,即可得出∠EPD 的度数. 【详解】解:(1)证明:AB ∥CD ,∴∠A +∠D =180°,∵∠C =∠A ,∴∠C +∠D =180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,∴∠F=45°,∴∠DEP=2∠F=90°,∵∠DEA-∠PEA=514∠DEB=57∠DEA,∴∠PEA=27∠AED,∴∠DEP=∠PEA+∠AED=97∠AED=90°,∴∠AED=70°,∵∠AED+∠AEC=180°,∴∠DEC+2∠AED=180°,∴∠DEC=40°,∵AD∥BC,∴∠ADE=∠DEC=40°,在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,即∠EPD=50°.【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.。
人教版七年级数学下册期中测试卷(及参考答案)
人教版七年级数学下册期中测试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差-()A.0.2 kg B.0.3 kg C.0.4 kg D.50.4 kg2.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°3.下列倡导节约的图案中,是轴对称图形的是()A.B.C. D.4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,下列条件:13241804523623①,②,③,④,⑤中能判∠=∠∠+∠=∠=∠∠=∠∠=∠+∠l l的有()断直线12A.5个B.4个C.3个D.2个7.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.28.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A,B,C均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是()A.B. C. D.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.如图所示,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是___________________.3a 的平方根是3±,则a =_________。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根为()A .9B .9±C .3D .3±2.在下面的四幅图案中,能通过图案(1)平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,在第三象限的点是( )A .(-3,5)B .(1,-2)C .(-2,-3)D .(1,1) 4.下列命题中属假命题的是( )A .两直线平行,内错角相等B .a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ⊥cC .a ,b ,c 是直线,若a //b ,b //c ,则a //cD .无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5.把一块直尺与一块含30的直角三角板如图放置,若134∠=︒,则2∠的度数为( )A .114︒B .126︒C .116︒D .124°6.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 7.如图,直线a ∥b ,∠1=74°,∠2=34°,则∠3的度数是( )A .75°B .55°C .40°D .35°8.如图,动点P 在平面直角坐标系xOy 中,按图中箭头所示方向运动,第1次从原点运动到点()1,2,第2次接着运动到点()20,,第3次接着运动到点()3,1,第4次接着运动到点()4,0,……,按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2二、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____.10.已知点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,那么a +b =_____. 11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,a ∥b ,∠1=68°,∠2=42°,则∠3=_____________.13.如图,将长方形纸片沿CD 折叠,CF 交AD 于点E ,得到图1,再将纸片沿CD 折叠.得到图2,若36AEC ∠=︒,则图2中的CDG ∠为_______14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x ,则x 的值是_____.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___.16.如图:在平面直角坐标系中,已知P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,依次扩展下去,则点P 2021的坐标为 _____________.三、解答题17.计算:(1)3840.04---(2)23(2)279-+-18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD ,∴2∠=________( )又∵12∠=∠,∴13∠=∠,∴//AB __________( )∴______180AGD ∠+=︒( )∵110AGD ∠=︒,∴BAC ∠=______度.20.将△ABO 向右平移4个单位,再向下平移1个单位,得到三角形A ′B ′O ′(1)请画出平移后的三角形A ′B ′O ′.(2)写出点A ′、O ′的坐标.21.数学张老师在课堂上提出一个问题:“通过探究知道:2 1.414≈,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用2-1来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法.现请你根据小明的说法解答:(1)3的小数部分是多少,请表示出来.(2)a 为3的小数部分,b 为5的整数部分,求-3a b +的值.(3)已知8+3=x+y ,其中x 是一个正整数,0<y <1,求()20202-3x y +的值.22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.23.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上. (1)根据图1填空:∠1= °,∠2= °;(2)现把三角板绕B 点逆时针旋转n °.①如图2,当n =25°,且点C 恰好落在DG 边上时,求∠1、∠2的度数;②当0°<n <180°时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n 的值和对应的那两条垂线;如果不存在,请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的定义即可得.【详解】解:239=,∴的算术平方根为3,9故选:C.【点睛】本题考查了算术平方根,熟记定义是解题关键.2.C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C.【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.3.C【分析】根据第三象限点的特征0x <,0y <依次判断即可.【详解】解:A :0x <,0y >,因此在第二象限,故错误;B :0x >,0y <,,因此在第四象限,故错误;C :0x <,0y <,,因此在第三象限,故正确;D :0x >,0y >,,因此在第一象限,故错误;故答案为:C【点睛】本题主要考查了平面直角坐标系象限的特征,熟悉掌握各象限的横纵坐标的取值范围是解题的关键.4.B【分析】根据平行线的性质对A 、C 进行判断;根据平行线的性质对B 进行判断;根据无理数的定义和数轴上的点与实数一一对应对D 进行判断.【详解】解:A 、两直线平行,内错角相等,所以A 选项为真命题;B 、a ,b ,c 是直线,若a ⊥b ,b ⊥c ,则a ∥c ,所以B 选项为假命题;C 、a ,b ,c 是直线,若a ∥b ,b ∥c ,则a ∥b ,所以C 选项为真命题;D 、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D 选项为真命题.故选:B .【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可. 5.D【分析】根据角的和差可先计算出∠AEF ,再根据两直线平行同旁内角互补即可得出∠2的度数.【详解】解:由题意可知AD//BC ,∠FEG=90°,∵∠1=34°,∠FEG=90°,∴∠AEF=90°-∠1=56°,∵AD//BC ,∴∠2=180°-∠AEF=124°,故选:D .【点睛】本题考查平行线的性质.熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键. 6.D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵233a =-=-,2b =-,()()33222c =--=--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.7.C【分析】根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.【详解】解:∵直线a ∥b ,∠1=74°,∴∠4=∠1=74°,∵∠2+∠3=∠4,∴∠3=∠4-∠2=74°-34°=40°.故选:C .【点睛】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 8.D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依解析:D【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为2,0,1,0,2,0,1,0…,每4次一轮这一规律,进而求出即可.【详解】解:由图可知:横坐标1,2,3,4…依次递增,则第2021个点的横坐标为2021; 纵坐标2,0,1,0,2,0,1,0…4个一循环,2021÷4=505…1,∴经过第2021次运动后,P (2021,2).故选D .【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.二、填空题9.-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣2|+=0,|a﹣2|≥0,≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a、b的值,再进而计算所给代数式的立方根.【详解】解:∵|a﹣0,|a﹣2|≥0∴a﹣2=0,3﹣b=0∴a=2,b=3∴==-,1故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a、b的值.10.-3.【分析】关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a,b 的值.【详解】解:∵点A(2a+3b,﹣2)和点B(8,3a+1)关于y轴对称,∴,解得,∴a+b=解析:-3.【分析】关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.据此可得a ,b 的值.【详解】解:∵点A (2a +3b ,﹣2)和点B (8,3a +1)关于y 轴对称,∴238312a b a +=-⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴a +b =﹣3,故答案为:﹣3.【点睛】本题考查的是关于y 轴对称的两个点的坐标关系,掌握以上知识是解题的关键. 11.101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC 的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC 中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD 是△ABC 的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a ∥b ,∴∠4=∠1=68°,∴∠5=∠4=68解析:110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68°,∵∠2=42°,∴∠5+∠2=68°+42°=110°,∵a∥b,∴∠3=∠2+∠5,∴∠3=110°,故答案为:110°.【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.13.126°【分析】在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.【详解】解:在图1中,∠AEC=36°,∵解析:126°【分析】在图1中,求出∠BCE,根据折叠的性质和外角的性质得到∠EDG,在图2中结合折叠的性质,利用∠CDG=∠EDG-∠CDE可得结果.【详解】解:在图1中,∠AEC=36°,∵AD∥BC,∴∠BCE=180°-∠AEC=144°,由折叠可知:∠ECD=(180°-144°)÷2=18°,∴∠CDE=∠AEC-∠ECD=18°,∵∠DEF=∠AEC=36°,∴∠EDG=180°-36°=144°,在图2中,∠CDG=∠EDG-∠CDE=126°,故答案为:126°.【点睛】本题考查了平行线的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出∠EDG的度数是解题的关键.14.4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P2021的在第二象限,且解析:(﹣506,505)【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P 2021的在第二象限,且纵坐标=2020÷4,再根据第二项象限点的规律即可得出结论.【详解】解:∵P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2)…,∴下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在第三象限,被4除余3的点在第四象限,∵2021÷4=505…1,∴点P 2021在第二象限,∵点P 5(﹣2,1),点P 9(﹣3,2),点P 13(﹣4,3),∴点P 2021(﹣506,505),故答案为:(﹣506,505).【点睛】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,该位置处点的规律,然后就可以进一步推得点的坐标.三、解答题17.(1);(2).【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键.解析:(1) 4.2-;(2)2.【分析】直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1220.2=---4.2=-(2233=+-2=【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x=或12x=-;(2)4x=.【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1)29(1)4x-=,312x-=±,312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB ∥DG ,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB ∥DG (内错角相等,两直线平行).∴∠AGD +∠BAC =180°(两直线平行,同旁内角互补).∵∠AGD =110°,∴∠BAC =70度.故答案为:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB ∥DG 是解题的关键.20.(1)见解析;(2)A′,O′【分析】(1)分别作出A ,B ,O 的对应点A′,B′,O′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A′B′O′即为所求作.(2)A′(解析:(1)见解析;(2)A ′()2,1,O ′()41-,【分析】(1)分别作出A ,B ,O 的对应点A ′,B ′,O ′即可.(2)根据点的位置写出坐标即可.【详解】解:(1)如图,△A ′B ′O ′即为所求作.(2)A ′(2,1),O ′(4,−1).【点睛】本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型. 21.(1)-1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a 和b 的值,从而求出结论; (3)求出的小数部分即可求出y ,从而求出x 的值,代入解析:(131;(2)1;(3)19【分析】(13(235a 和b 的值,从而求出结论;(33y ,从而求出x 的值,代入求值即可.【详解】解:(1)∵132 ∴31 ∴331;(2)∵12,23 ∴12∴1;∴1,b=2∴a b +-12+-=1(3)∵1∴1∴1)=9∴(20202x y +-=2020291⨯+-=181+=19 【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键.22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x ,则364x =,所以4x =,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB =【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.23.(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)①∠1=120°-n°,∠2=90°+n°;②见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)①根据邻补角的定义求出∠ABE,再根据两直线平行,同位角相等可得∠1=∠ABE,根据两直线平行,同旁内角互补求出∠BCG,然后根据周角等于360°计算即可得到∠2;②结合图形,分A B、B C、AC三条边与直尺垂直讨论求解.【详解】解:(1)∠1=180°-60°=120°,∠2=90°;故答案为:120,90;(2)①如图2,∵∠ABC=60°,∴∠ABE=180°-60°-n°=120°-n°,∵DG∥EF,∴∠1=∠ABE=120°-n°,∠BCG=180°-∠CBF=180°-n°,∵∠ACB+∠BCG+∠2=360°,∴∠2=360°-∠ACB-∠BCG=360°-90°-(180°-n°)=90°+n°;②当n=30°时,∵∠ABC=60°,∴∠ABF=30°+60°=90°,AB⊥DG(EF);当n=90°时,∠C=∠CBF=90°,∴BC⊥DG(EF),AC⊥DE(GF);当n=120°时,∴AB⊥DE(GF).【点睛】本题考查了平行线角的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键.。
人教版七年级数学下册期中考试卷(附答案)
人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。
人教版数学七年级下册《期中考试题》及答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2 2. 下列方程变形中属于移项的是( ) A 由2x =﹣1得x =﹣12 B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣b D. 由4﹣3x =0得﹣3x +4=03. 由132x y -=,可以得到用表示的式子( ) A 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- 4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x 5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x =2是不等式4x >15的一个解D. 不等式x ﹣2<6的两边都减去3,则此不等式仍成立6. 把方程0.10.20.510.30.4x x ---=的分母化成整数后,可得方程( ) A. 0.10.20.5134x x ---= B. 12510134x x ---= C. 125101034x x ---= D.120.5134x x ---= 7. 不等式325132x x ++≤-的解集表示在数轴上是( )A. B. C. D.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=9. 如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩ 10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A. B. C. D.二、填空题(每小题3分,共15分)11. 若2x ﹣3与1互为相反数,则x =_____.12. 在公式S =12n (a +b )中,已知S =5,n =2,a =3,那么b 的值是_____. 13. 一个两位数,两个数位上数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. 15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x﹣1)﹣2(1﹣x)=0.17. 解不等式52x+﹣1<322x+,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20. 如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21. 小明在解方程21134x x m-+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22. 阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x=13;②当3x<0时,原方程可化一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)答案与解析一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2[答案]D[解析][分析]先移项,再合并同类项,最后系数化为1即可得出答案.[详解]3x -1=5,移项得,3x =5+1,合并同类项得,3x =6,系数化为1得,x =2.故选D.[点睛]本题考查了一元一次方程的解法.熟练掌握解一元一次方程的步骤是解题的关键.2. 下列方程变形中属于移项的是( )A. 由2x =﹣1得x =﹣12B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣bD. 由4﹣3x =0得﹣3x +4=0 [答案]C[解析][分析]根据一元一次方程的解法直接进行排除选项即可.[详解]A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .[点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.3. 由132x y -=,可以得到用表示的式子( ) A. 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- [答案]A[解析][分析] 只需把含有y 的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x 的式子表示y .[详解]解:移项,得123y x =-, 系数化为1,得223x y =-. 故选:A .[点睛]本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x[答案]C[解析][分析]出错的地方为:方程两边除以x ,没有考虑x 为0的情况,据此判断即可.[详解]解:错误的地方为:方程两边都除以x ,没有考虑x 是否为0,正确解法为:移项得:2x ﹣3x =0,合并得:﹣x =0,系数化为1得:x =0.故选:C .[点睛]本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x=2是不等式4x>15的一个解D. 不等式x﹣2<6的两边都减去3,则此不等式仍成立[答案]D[解析][分析]根据不等式的解法及不等式解集的概念直接进行排除选项即可.[详解]A、方程的解只有一个,而不等式的解有无数个;故本选项不合题意.B、不等式4x>5的解集是x>54,故本选项不合题意.C、不等式4x>15的解集是x>154不包括2,故本选项不合题意.D、不等式x﹣2<6的两边都减去3,则此不等式仍成立,正确,依据是不等式的基本性质.故选:D.[点睛]本题主要考查一元一次不等式的解集及解法,熟练掌握一元一次不等式的解集及解法是解题的关键.6. 把方程0.10.20.510.30.4x x---=的分母化成整数后,可得方程( )A. 0.10.20.5134x x---= B.12510134x x---=C. 125101034x x---= D.120.5134x x---=[答案]B[解析][分析]本题方程两边都含有分数系数,在变形的过程中,利用分数的性质将分数的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程,把含分母的项的分子与分母都扩大原来的10倍.[详解]解:把原方程的分母化为整数得,12510134x x ---=故选B.[点睛]分母化成整数的过程的依据是分数的性质,掌握相关知识是解题的关键.7. 不等式325132x x++≤-的解集表示在数轴上是( )A. B.C.D.[答案]B[解析][分析] 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.[详解]解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .[点睛]本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=[答案]C[解析][分析]设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.[详解]解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .[点睛]本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.9. 如图,射线OC 端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩[答案]B[解析][分析]根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;然后由平角可建立方程组,则问题得解.[详解]解:根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;根据∠AOC 和∠BOC 组成了平角,得方程x +y =180.列方程组为180210x y x y +=⎧⎨=+⎩. 故选:B .[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A.B. C. D. [答案]C[解析][分析]可设第一个数为x ,根据已知对每个选项计算讨论得出.[详解]设第一个数为x,根据已知:A:得x+x+6+x+7+x+8=36,则x=6.25不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选C.[点睛]此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.二、填空题(每小题3分,共15分)11. 若2x﹣3与1互为相反数,则x=_____.[答案]1.[解析][分析]根据互为相反数的关系直接进行求解即可.[详解]解:根据题意得:2x﹣3+1=0,移项合并得:2x=2,解得:x=1.故答案:1.[点睛]本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.12. 在公式S=12n(a+b)中,已知S=5,n=2,a=3,那么b的值是_____.[答案]2.[解析][分析]求公式中的一个字母b的值,把已知其它字母的值代入,转化为关于b大的方程,解之即可.[详解]∵S=12n(a+b)中,且S=5,n=2,a=3,∴5=12×2×(3+b),解得:b=2.故答案为:2.[点睛]本题考查从公式中求某个字母值问题,关键是把给的已知字母的值代入,转化为某字母为未知数的方程.13. 一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.[答案]36[解析][分析]设十位数字为x ,个位数字为y ,由题意可进行列方程组进行求解即可.[详解]解:设十位数字为x ,个位数字为y ,由题意得:2101027y x y x x y =⎧⎨+=++⎩, 解得:36x y =⎧⎨=⎩, 原两位数是36,即:原两位数是36.故答案是:36.[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. [答案]38. [解析][分析]已知等式利用题中的新定义化简,计算即可求出解.[详解]解:根据题中的新定义化简得:3x +12=2﹣x , 去分母得:6x +1=4﹣2x ,解得:x =38. 故答案为:38. [点睛]本题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解题的关键.15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.[答案]12和20[解析][分析]足球缝合规律:五边形的5条边都与六边形缝合,六边形只有3条边与五边形缝合,所以五边形的个数乘以5应该等于六边形的个数乘以3,据此设足球有黑色五边形皮块x 个,列方程求解即可[详解]设足球有黑色五边形皮块x 个,则有白色六边形皮块(32-x)个,由题意得,5x=3(32-x)解得:x=12所以白色皮块数为20,黑色皮块数为12.故答案为:12和20.[点睛]本题主要考查一元一次方程应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x ﹣1)﹣2(1﹣x )=0.[答案]x =58 [解析][分析]先去括号合并同类项,然后直接解一元一次方程即可.[详解]解:()()321210x x ---=去括号,得6x ﹣3﹣2+2x =0,移项,得6x +2x =3+2,合并同类项,得8x =5,系数化为1,得x =58. [点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.17. 解不等式52x +﹣1<322x +,小兵的解答过程是这样的. 解:去分母,得x +5﹣1<3x +2①.移项,得x ﹣3x <2﹣5+1②.合并同类项,得﹣2x <﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.[答案](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答过程见解析,x>12.[解析][分析](1)根据解一元一次不等式的步骤,逐一判断即可得出结论;(2)根据解一元一次不等式的步骤,解不等式即可.[详解](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答是:去分母得(x+5)﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,系数化为1,得x>12.[点睛]此题考查的是解一元一次不等式,掌握解一元一次不等式的步骤是解题关键.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.[答案]33 xy=⎧⎨=-⎩.[解析][分析]先把方程组标号①②,把两个方程同一未知数的系数变绝对值相等的数,同号两式相减,异号两式相加,消去一个未知数,转化为一元一次方程,得解后再代入①或②,求另一未知数,把两个解联立起来即可.[详解]433 3315x yx y+=⎧⎨-=⎩①②,①×2得:8x+6y=6③,②×3得:9x﹣6y=45④,③+④得:17x=51,解得:x=3,把x=3代入①,得4×3+3y=3, 解得:y=﹣3,所以原方程组的解是33 xy=⎧⎨=-⎩.[点睛]本题考查加减消元法解方程组,关键是要变方程一未知数系数绝对值相等,同号两式相减,异号两式相加.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.[答案]a=﹣11.[解析][分析]两个方程中,有一个只有一个未知数,先解这个方程,求出后,代入第二个方程解之即可.[详解]解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,合并同类项,得﹣x=1,系数化为1得:x=﹣1,把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.解得a=﹣11.[点睛]本题考查用方程确定参数问题,关键是观察两个方程中有一个方程直接求解.20. 如图1,在边长为a大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.[答案]图2中第Ⅱ部分的面积为100.[解析][分析]根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a-b=20,进而得出答案.[详解]解:根据题意得出:3020b a a b +=⎧⎨-=⎩, 解得:255a b =⎧⎨=⎩, 故图2中Ⅱ部分的面积是:5×20=100, 答:第Ⅱ部分的面积为100.[点睛]本题考查了正方形的性质以及二元一次方程组的应用,根据已知得出a+b=30,a-b=20是解题的关键. 21. 小明在解方程21134x x m -+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x =3,请你帮助小明求出m 的值和原方程正确的解.[答案]m =4,x =45 [解析][分析]根据题意进行“将错就错”,即把方程的解是x =3代入()()42131x x m -=+-中求解m 的值,最后代入原方程进行求解即可.[详解]解:根据题意,x =3是方程()()42131x x m -=+-的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4, 所以原方程为214134x x -+=-, 解方程得x =45. [点睛]本题主要考查分式方程的解及分式方程的解法,熟练掌握分式方程的解及分式方程的解法是解题的关键.22. 阅读以下例题:解方程:|3x |=1,解:①当3x ≥0时,原方程可化一元一次方程3x =1,解这个方程得x =13;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.[答案](1)x=1或x=﹣2;(2)当b<﹣1时,方程无解;当b=﹣1时,方程只有一个解;当b>﹣1时,方程有两个解.[解析][分析](1)仿照例题分情况讨论:①当2x+1≥0时,②当2x+1<0时,化简绝对值,解关于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若无解,则b+1<0,解不等式即可求解;②若只有一个解,则b+1=0,求解即可;③若有两个解,则b+1>0,解不等式即可求解.[详解]解:(1)①当2x+1≥0时,原方程可化为一元一次方程2x+1=3,解这个方程得x=1;②当2x+1<0时,原方程可化为一元一次方程﹣2x﹣1=3,解这个方程得x=﹣2;所以原方程的解是x=1或x=﹣2;(2)因为|x﹣2|≥0,所以①当b+1<0,即b<﹣1时,方程无解;②当b+1=0,即b=﹣1时,方程只有一个解;③当b+1>0,即b>﹣1时,方程有两个解.[点睛]本题考查解绝对值方程,理解题意是解题的关键.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)[答案](1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.[解析][分析](1)设甲组工作一天商店应付元,乙组工作一天商店应付元,根据“若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)根据总费用每天需支付的费用工作时间,可分别求出单独请甲组和单独请乙组施工所需费用,比较后即可得出结论;(3)分单独请甲组施工、单独请乙组施工和请甲、乙两组合做施工三种情况考虑,利用损失的总钱数施工费用因装修损失收入,分别求出三种情况下损失的钱数,比较后即可得出结论.[详解](1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:883520 6123480x yx y+=⎧⎨+=⎩,解得:300140xy=⎧⎨=⎩.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.[点睛]本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.。
完整版人教(完整版)七年级数学下册期中试卷及答案
完整版人教(完整版)七年级数学下册期中试卷及答案 一、选择题1.81的平方根是()A .9B .9和﹣9C .3D .3和﹣3 2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,下列点中位于第四象限的是( )A .()0,3B .()2,1-C .()1,2-D .()1,1-- 4.命题:①对顶角相等;②同旁内角互补;③如果两条直线垂直于同一条直线,那么这两条直线互相平行;④过一点有且只有一条直线与已知直线平行;⑤平行于同一条直线的两条直线互相平行.其中是真命题的有( )A .5个B .4个C .3个D .2个5.如图,直线//AB CD ,点E ,F 分别在直线.AB 和直线CD 上,点P 在两条平行线之间,AEP ∠和CFP ∠的角平分线交于点H ,已知78P ∠=︒,则H ∠的度数为( )A .102︒B .156︒C .142︒D .141︒ 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与α∠互余的角共有( )A .0个B .1个C .2个D .3个8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,… 组成一条平滑的曲线,点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2π个单位长度,则第2021秒时,点P 的坐标是( )A .(2020,0)B .(2021,-1)C .(2021,1)D .(2022,0)二、填空题9.364--的算术平方根是________.10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,AD ∥BC ,BD 为∠ABC 的角平分线,DE 、DF 分别是∠ADB 和∠ADC 的角平分线,且∠BDF =α,则∠A 与∠C 的等量关系是________________(等式中含有α)12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图,将长方形纸片ABCD 沿EF 折叠,使得点C 落在边AB 上的点H 处,点D 落在点G 处,若42AHG ∠=︒,则GEF ∠的度数为______.14.已知,a b 为两个连续的整数,且 15a b <<,则a b +=_______ 15.平面直角坐标系中,已知点A (2,0),B (0,3),点P (m ,n )为第三象限内一点,若△PAB 的面积为18,则m ,n 满足的数量关系式为________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.三、解答题17.计算:(1)3-(-5)+(-6)(2)()211162--⨯ 18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.完成下面的证明.如图,已知AD ⊥BC ,EF ⊥BC ,∠1=∠2,求证:∠BAC +∠AGD =180°.证明:∵AD ⊥BC ,EF ⊥BC (已知),∴∠EFB =90°,∠ADB =90°( ),∴∠EFB =∠ADB (等量代换),∴EF ∥AD ( ),∴∠1=∠BAD ( ),又∵∠1=∠2(已知),∴∠2=∠ (等量代换),∴DG ∥BA (内错角相等,两直线平行),∴∠BAC +∠AGD =180°( ).20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC 的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A ,C 的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B 的坐标;(2)在(1)的条件下,将三角形ABC 先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A 'B 'C ',请在图中画出平移后的三角形A 'B 'C ',并分别写出点A ',B ',C '的坐标.21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a <b ,那么a = ,b = . (2)x 是17+2的小数部分,y 是17﹣1的整数部分,求x = ,y = . (3)(17﹣x )y 的平方根.22.已知足球场的形状是一个长方形,而国际标准球场的长度a 和宽度b (单位:米)的取值范围分别是100110a ≤≤,6475b ≤≤.若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由. 23.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.【参考答案】一、选择题1.D解析:D【分析】先化简,再根据平方根的地红衣求解.【详解】解:∵,∴3±,故选D.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.2.B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形解析:B【分析】根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.【详解】解:A.选项是原图形旋转得到,不合题意;B.选项是原图形平移得到,符合题意;C.选项是原图形翻折得到,不合题意;D.选项是原图形旋转得到,不合题意.故选:B【点睛】本题考查了平移的性质,理解平移的定义和性质是解题关键.3.C【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【详解】解:A、(0,3)在y轴上,故本选项不符合题意;B、(2,1)-在第二象限,故本选项不符合题意;C、(1,2)-在第四象限,故本选项符合题意;D、(1,1)--在第三象限,故本选项不符合题意.故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.D【分析】根据对顶角的概念、平行线的性质、平行公理、平行线的判定定理判断即可.【详解】解:①对顶角相等,①是真命题,故①正确;②两直线平行,同旁内角互补,②是假命题,故②错误;③在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线互相平行,③是假命题,故③是错误;④过直线外一点有且只有一条直线与已知直线平行,④是假命题,故④错误; ⑤平行于同一条直线的两条直线互相平行,⑤是真命题,故⑤正确;综上所述,真命题有①⑤,有2个.故选:D .【点睛】本题主要考查了对顶角的概念、平行线的性质、平行公理、平行线的判定定理,解题的关键是熟练掌握相关知识点.5.D【分析】过点P 作PQ ∥AB ,过点H 作HG ∥AB ,根据平行线的性质得到∠EPF =∠BEP +∠DFP =78°,结合角平分线的定义得到∠AEH +∠CFH ,同理可得∠EHF =∠AEH +∠CFH .【详解】解:过点P 作PQ ∥AB ,过点H 作HG ∥AB ,//AB CD ,则PQ ∥CD ,HG ∥CD ,∴∠BEP =∠QPE ,∠DFP =∠QPF ,∵∠EPF =∠QPE +∠QPF =78°,∴∠BEP +∠DFP =78°,∴∠AEP +∠CFP =360°-78°=282°,∵EH 平分∠AEP ,HF 平分∠CFP ,∴∠AEH +∠CFH =282°÷2=141°,同理可得:∠EHF =∠AEH +∠CFH =141°,故选D .【点睛】本题主要考查了平行线的性质,解决问题的关键是作平行线构造内错角,利用两直线平行,内错角相等得出结论.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.B【分析】由互余的定义、平行线的性质,利用等量代换求解即可.【详解】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:B.【点睛】此题考查的是对平行线的性质的理解,目的是找出与∠α和为90°的角.8.C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.【详解】解:半径为1个单位长度的半圆的周长为×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒个单位长 解析:C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点P 的坐标.【详解】解:半径为1个单位长度的半圆的周长为12×2π×1=π,∵点P 从原点O 出发,沿这条曲线向右运动,速度为每秒2个单位长度, ∴点P 每秒走12个半圆,∴当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1),当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1), 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0), …,∵2021÷4=505余1,∴P 的坐标是(2021,1),故选:C .【点睛】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题. 二、填空题9.2【分析】先求出=4,再求出算术平方根即可.【详解】解:∵=4,∴的算术平方根是2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力. 解析:2【分析】 先求出,再求出算术平方根即可.【详解】解:∵, ∴2,故答案为:2.【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力.10.-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:解析:-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点202()0,B b 是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:-1.【点睛】本题考查关于y 轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 11.∠A =∠C+2α【分析】由角平分线定义得出∠ABC =2∠CBD ,∠ADC =2∠ADF ,又因AD ∥BC 得出∠A+∠ABC =180°,∠ADC+∠C =180°,∠CBD =∠ADB ,等量代换得∠A =∠ 解析:∠A =∠C +2α【分析】由角平分线定义得出∠ABC =2∠CBD ,∠ADC =2∠ADF ,又因AD ∥BC 得出∠A +∠ABC =180°,∠ADC +∠C =180°,∠CBD =∠ADB ,等量代换得∠A =∠C +2α即可得到答案.【详解】解:如图所示:∵BD 为∠ABC 的角平分线,∴∠ABC =2∠CBD ,又∵AD ∥BC ,∴∠A +∠ABC =180°,∴∠A +2∠CBD =180°,又∵DF 是∠ADC 的角平分线,∴∠ADC =2∠ADF ,又∵∠ADF =∠ADB +α∴∠ADC =2∠ADB +2α,又∵∠ADC +∠C =180°,∴2∠ADB +2α+∠C =180°,∴∠A +2∠CBD =2∠ADB +2α+∠C又∵∠CBD =∠ADB ,∴∠A =∠C +2α,故答案为:∠A =∠C +2α.【点睛】本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质.12.48°【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数.【详解】解:若AB//CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48°【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.【详解】解:若AB //CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF ⊥MN ,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.111°【分析】结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.【详解】根据题意,得,,,∴,∴∴∴∵解析:111°【分析】结合题意,根据轴对称和长方形的性质,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠,从而推导得BFH AHG ∠=∠;通过计算得CFE ∠,根据平行线同旁内角互补的性质,得DEF ∠,即可得到答案.【详解】根据题意,得90FHG C B ∠=∠=∠=︒,HFE CFE ∠=∠,//BC AD ,GEF DEF ∠=∠ ∴90BHF AHG ∠+∠=︒,90BHF BFH ∠+∠=︒∴42BFH AHG ∠=∠=︒∴180138HFE CFE BFH ∠+∠=︒-∠=︒∴69HFE CFE ∠=∠=︒∵//BC AD∴180111DEF CFE ∠=︒-∠=︒∴111GEF DEF ∠=∠=︒故答案为:111°.【点睛】本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.14.7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵,∴,∵、为两个连续的整数,,∴,,∴;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a 、b 的值,再进行计算即可.【详解】解:∵91516<<,∴3154<<,∵a 、b 为两个连续的整数,15a b <<,∴3a =, 4b =,∴ 347a b +=+=;故答案为:7.【点睛】本题考查了无理数的估算,解题的关键是正确求出a 、b 的值,从而进行解题. 15.【分析】连接OP ,将PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,解析:3230m n +=-【分析】连接OP ,将∆PAB 的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答.【详解】解:连接OP ,如图:∵A (2,0),B (0,3),∴OA=2,OB=3,∵∠AOB=90°, ∴11=23322OAB S OA OB ⋅=⨯⨯=, ∵点P (m ,n )为第三象限内一点,m <0,n <0∴,11y 222OAP P S OA n n ∴=⋅=⨯⋅=-, 1133222OBP P S OB x m m =⋅=⨯⋅=-, 33182PAB OAB OAP OBP S S S S n m ∴=++=--+=, 整理可得:3230m n +=-;故答案为:3230m n +=-.【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形.16.(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有()12n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数.因而第2021个点的坐标是(64,4).故答案为:(64,4).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.三、解答题17.(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6=2(2)解:(-1)21 2=1-4× 1 2=1-2 =-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD ;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等解析:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD ;两直线平行,同旁内角互补【分析】先由垂直的定义得出两个90°的同位角,根据同位角相等判定两直线平行,根据两直线平行,同位角相等得到1BAD ∠=∠,再根据等量代换得出2BAD ∠=∠,根据内错角相等,两直线平行,最后根据两直线平行,同旁内角互补即可判定.【详解】解:∵AD ⊥BC ,EF ⊥BC (已知),∴∠EFB =90°,∠ADB =90°(垂直的定义),∴∠EFB =∠ADB (等量代换),∴EF ∥AD (同位角相等,两直线平行),∴∠1=∠BAD (两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠2=∠BAD (等量代换),∴DG ∥BA (内错角相等,两直线平行),∴∠BAC +∠AGD =180°(两直线平行,同旁内角互补).故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;BAD ;两直线平行,同旁内角互补【点睛】本题考查的是平行线的性质及判定,熟练掌握平行线的性质定理和判定定理是关键. 20.(1)坐标系见解析,B (0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A ,C 两点的坐标确定平面直角坐标系即可,根据点B 的位置写出点B 的坐标即可.(解析:(1)坐标系见解析,B (0,1);(2)画图见解析,A ′(2,1),B ′(4,3),C ′(5,1)【分析】(1)根据A ,C 两点的坐标确定平面直角坐标系即可,根据点B 的位置写出点B 的坐标即可.(2)分别作出A ′,B ′,C ′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B (0,1).(2)△A ′B ′C ′如图所示.A ′(2,1),B ′(4,3),C ′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)4;5;(2);3;(3)±8.【分析】(1)首先估算出的取值范围,即可得出结论;(2)根据 (1)的结论,得到,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解析:(1)4;5;(2174;3;(3)±8.【分析】(117的取值范围,即可得出结论;(2)根据 (1)的结论4175<<,得到61727<<,即可求得答案;(3)根据(2)的结论代入计算即可求得答案.【详解】解:(1)∵16<17<25, ∴4175<,∴a =4,b =5.故答案为:4;5(2)∵4175<<, ∴61727<<, 172的整数部分为6174, ∴174x =,3y =. 174;3(3)当174x ,3y =时,代入,()33(17)17174464y x ⎡⎤===⎣⎦﹣. ∴64的平方根为:8±.【点睛】本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.22.符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案.【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5b×b=7350,∴b=70,或b=-70(舍去),即宽为70米,长为1.5×70=105米,∵100≤105≤110,64≤70≤75,∴符合国际标准球场的长宽标准.【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提.23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°-2∠BFD.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.。
人教版七年级数学下册期中考试卷及参考答案
人教版七年级数学下册期中考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是()A.2-B.2 C.12-D.122.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.3.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为( )A.180 B.182 C.184 D.1864.已知三角形三边长为a、b、c,且满足247a b-=,246b c-=-,2618c a-=-,则此三角形的形状是()A.等腰三角形B.等边三角形C.直角三角形D.无法确定5.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A .厉B .害C .了D .我7.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如图是一个计算程序,若输入a 的值为﹣1,则输出的结果应为( )A .7B .﹣5C .1D .5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣a|+|b ﹣c|的结果是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.若单项式32m x y 与3m n xy +2m n +的值是_______________.5102.0110.1= 1.0201.6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a +1|+(b -2)2=0,求A 的值.3.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.4.如图,在三角形ABC中,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.5.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、A5、C6、D7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、20°.3、<4、25、±1.016、-1或5三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、(1)3a2-ab+7;(2)12.3、(1)35°;(2)36°.4、∠EDC=40°5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1) A型车、B型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A型车8辆,B型车2辆,最少租车费为2080元.。
完整版人教人教版七年级数学下册期中考试试题(含答案)_图文
完整版人教人教版七年级数学下册期中考试试题(含答案)_图文一、选择题1.2(2)-的平方根是()A .2B .2±C .2±D .22.下列图形中,可以由其中一个图形通过平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,点P (-3,0)在( )A .第二象限B .第三象限C .x 轴上D .y 轴上4.下列六个命题①有理数与数轴上的点一一对应②两条直线被第三条直线所截,内错角相等③平行于同一条直线的两条直线互相平行;④同一平面内,垂直于同一条直线的两条直线互相平行;⑤直线外一点到这条直线的垂线段叫做点到直线的距离⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .2个B .3个C .4个D .5个5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 6.下列说法中正确的是( )A .有理数和数轴上的点一一对应B .0.304精确到十分位是0.30C .立方根是本身的数只有0D .平方根是本身的数只有07.如图,ABC 中,32A ∠=︒,50B ∠=︒,将BC 边绕点C 按逆时针旋转一周回到原来位置,在旋转过程中,当//CB AB '时,求BC 边旋转的角度,嘉嘉求出的答案是50°,琪琪求出的答案是230°,则下列说法正确的是( )A .嘉嘉的结果正确B .琪琪的结果正确C .两个人的结果合在一起才正确D .两个人的结果合在一起也不正确 8.如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)二、填空题9.算术平方根等于本身的实数是__________.10.在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_______. 11.如图,已知AD 是ABC 的角平分线,CE 是ABC 的高,∠BAC =60°,∠BCE =40°,则∠ADB =_____.12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____. 15.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABCS =________. 16.如图,在平面直角坐标系中,////AB EG x 轴,////////BC DE HG AP y 轴,点D 、C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0D -,()3,2E --,()3,2G -,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E F G H P A→→→→→→→→→的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________.三、解答题17.计算:(123272;(2432.18.求下列各式中x 的值:(1)2360x -=;(2)31348x -=-.19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF //BD ( )∴∠3+∠CAB =180°( )∵∠3=∠C (已知)∴∠C +∠CAB =180°(等式的性质)∴AB //CD ( )∴∠4=∠EGA (两直线平行,同位角相等)∵∠4=∠5(已知) ∴∠5=∠EGA (等量代换)∴ED //FB ( )20.已知:如图,ΔABC 的位置如图所示:(每个方格都是边长为1个单位长度的正方形,ΔABC 的顶点都在格点上),点A ,B ,C 的坐标分别为(−1,0),(5,0),(1,5).(1)请在图中画出坐标轴,建立直角坐标系;(2)点P (m ,n )是ΔABC 内部一点,平移ΔABC ,点P 随ΔABC 一起平移,点A 落在A ′(0,4),点P 落在P ′(n ,6),求点P 的坐标并直接写出平移过程中线段PC 扫过的面积. 21.计算:(1239(6)27-- (2)﹣12+(﹣2)3×31127()89--; (3)已知实数a 、b 1a -﹣1|=0,求a 2017+b 2018的值.(4)已知5+1的整数部分为a ,5﹣1的小数部分为b ,求2a+3b 的值.22.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积)(2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.23.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠,①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)【参考答案】一、选择题1.B解析:B【分析】先计算出2(2)4-=,再求出的平方根即可.【详解】解:∵2(2)4-=,2(2)4±=∴2(2)-的平方根是2±,故选:B .【点睛】本题考查了平方根的概念和求法,掌握平方根的定义是解题的关键.2.C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C 的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C .【点睛】本题考查的解析:C【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:∵只有C 的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;故选:C .【点睛】本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.C【分析】根据点的坐标特点判断即可.【详解】解:在平面直角坐标系中,点P (-3,0)在x 轴上,故选C .【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.4.C【分析】利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.【详解】解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C.【点睛】本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.5.D【分析】由折叠的性质可知∠1=∠BAG,2∠BDC+∠2=180°,根据BE∥AG,得到∠CFB=∠CAG=2∠1,从而根据平行线的性质得到∠CDB=2∠1,则∠2=180°-4∠1.【详解】解:由题意得:AG∥BE∥CD,CF∥BD,∴∠CFB=∠CAG,∠CFB+∠DBF=180°,∠DBF+∠CDB=180°∴∠CFB=∠CDB∴∠CAG=∠CDB由折叠的性质得∠1=∠BAG,2∠BDC+∠2=180°∴∠CAG=∠CDB=∠1+∠BAG=2α∴∠2=180°-2∠BDC=180°-4α故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6.D【分析】根据实数与数轴、精确度、立方根及平方根的概念和性质逐项判断即可.【详解】解:A. 实数和数轴上的点一一对应,原说法错误;B. 0.304精确到十分位是0.3,原说法错误;C. 立方根是本身的数是0、±1,原说法错误;D. 平方根是本身的数只有0,正确,故选:D .【点睛】本题考查了实数与数轴、精确度、立方根及平方根的概念和性质,熟练掌握基础知识是解题关键.7.C【分析】分两种情况进行讨论,根据平行线的性质,周角的性质,三角形内角和的性质求解即可.【详解】解:当点B '在点C 的右边时,如下图:B CB '∠为CB 旋转的角度,∵//B C AB '∴50B B CB '∠=∠=︒,即旋转角为50︒当点B '在点C 的左边时,如下图:∵//B C AB '∴32A B CA '∠=∠=︒根据三角形内角和可得18098ACB A B ∠=︒-∠-∠=︒旋转的角度为360230B CA ACB '︒-∠-∠=︒综上所述,旋转角度为50︒或230︒故选C【点睛】此题考查了平行线的性质,三角形内角和的性质,周角的性质,熟练掌握相关基本性质是解题的关键.8.C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0, (4)个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原解析:C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).故选:C.【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.二、填空题9.0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知解析:0或1【详解】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案.解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身. 10.【分析】如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,先由直线y=x -1与两坐标轴的交点坐标确定△OBC 是等腰直角三角形,然后根据平行线的性质解析:()4,3-【分析】如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,先由直线y=x -1与两坐标轴的交点坐标确定△OBC 是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ ,∠PAQ =90°,由于点P 坐标已知,故可求出点A 的坐标,进而可求出点Q 坐标.【详解】解:如图,设点P 关于直线y=x -1的对称点是点Q ,过点P 作PA ∥x 轴交直线y=x -1于点A ,连接AQ ,设直线y=x -1交x 轴于点B ,交y 轴于点C ,则点B (1,0)、点C (0,﹣1), ∴OB=OC =1,∴∠OBC =45°,∴∠PAB=45°,∵P 、Q 关于直线y=x -1对称,∴AP=AQ ,∠PAB =∠QAB =45°,∴∠PAQ =90°,∴AQ ⊥x 轴,∵P (﹣2,3),且当y =3时,3=x ﹣1,解得x =4,∴A (4,3),∴AD =3,PA =6=AQ ,∴DQ =3,∴点Q 的坐标是(4,﹣3).故答案为:(4,﹣3).【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键. 11.100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB解析:100°【分析】根据AD是ABC的角平分线,CE是ABC的高,∠BAC=60°,可得∠BAD和∠CAD相等,都为30°,∠CEA=90°,从而求得∠ACE的度数,又因为∠BCE=40°,∠ADB=∠BCE+∠ACE+∠CAD,从而求得∠ADB的度数.【详解】解:∵AD是ABC的角平分线,∠BAC=60°.∠BAC=30°,∴∠BAD=∠CAD=12∵CE是ABC的高,∴∠CEA=90°.∵∠CEA+∠BAC+∠ACE=180°.∴∠ACE=30°.∵∠ADB=∠BCE+∠ACE+∠CAD,∠BCE=40°.∴∠ADB=40°+30°+30°=100°.故答案为:100°.【点睛】本题考查三角形的内角和、角的平分线、三角形的一个外角等于和它不相邻的内角的和,关键是根据具体目中的信息,灵活变化,求出相应的问题的答案.12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开解析:34-【分析】根据“和1负倒数”的定义分别计算2x 、3x 、4x 、5x …,可得到数字的变化规律:从1x 开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和134x =-可得: 214314x =-=--+,311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据,,三点坐标建立坐标系得:则.故答案为:11【点睛】此题考查利用直角坐标系求三角形的解析:11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得:则1115524351511222ABC S .故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.16.【分析】先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题.【详解】解:,,,,,∴,“凸”形的周长为20,又∵的余数为1,细线另一端所在位置的点在的中点处,坐标为.故解析:(0,2)【分析】先求出“凸”形ABCDEGHP 的周长为20,得到202120÷的余数为1,由此即可解决问题.【详解】解:(1,2)A ,(1,2)B -,(3,0)D -,(3,2)E --,(3,2)G -,∴2,2,2,2,6,2,2AB BC AP CD DE EG GH PH ========,∴ “凸”形ABCDEGHP 的周长为20,又∵202120÷的余数为1,∴细线另一端所在位置的点在AB 的中点处,坐标为(0,2).故答案为:(0,2).【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.三、解答题17.(1)-1;(2).【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式.(2)原式.【点解析:(1)-1;(2)4.【分析】(1)按照立方根的定义与平方的含义分别计算,再求差即可;(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.【详解】解:(1)原式341=-=-.(2)原式224=+【点睛】本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+,合并同类项得,31 8x=-,开立方得,12x=-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键.19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD∴(内错角相等,两直线平行),3180CAB(两直线平行,同旁内角互补),3C∠=∠(已知),180C CAB∴∠+∠=︒(等式的性质),//AB CD∴(同旁内角互补,两直线平行),4EGA(两直线平行,同位角相等),45∠=∠(已知),5EGA(等量代换),//ED FB∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键.20.(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为.【分析】(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m、n的值,可求得点P的坐标,再利用平行四边形的性质解析:(1)见解析;(2)点P的坐标为(1,2);线段PC扫过的面积为3.(1)根据点的坐标确定平面直角坐标系即可;(2)根据平移的规律求得m 、n 的值,可求得点P 的坐标,再利用平行四边形的性质可求得线段PC 扫过的面积.【详解】解:(1)平面直角坐标系如图所示:(2)因为点A (−1,0)落在A ′(0,4),同时点P (m ,n )落在P ′(n ,6),∴146m n n +=⎧⎨+=⎩,解得12m n =⎧⎨=⎩, ∴点P 的坐标为(1,2);如图,线段PC 扫过的面积即为平行四边形PCC ′P ′的面积,∴线段PC 扫过的面积为313⨯=.本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)0;(2)-3;(3)2;(4).【解析】【分析】直接利用算术平方根以及立方根的定义化简进而得出答案;直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案 利用绝对值以及平解析:(1)0;(2)-3;(3)2;(4).【解析】【分析】() 1直接利用算术平方根以及立方根的定义化简进而得出答案;()2直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案()3利用绝对值以及平方根的非负性质得出a ,b 的值,进而得出答案;()4直接利用23的范围进而得出a ,b 的值,即可得出答案.【详解】解:(13630=-+=;()23121(2)8⎛-+-⨯ ⎝111333⎛⎫=--+⨯-=- ⎪⎝⎭; ()3110a b -+-=,1a ∴=,1b =,20172018a b +112=+=;()451+的整数部分为a 1的小数部分为b ,3a ∴=,2b =,2366a b ∴+=+=【点睛】此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.22.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×1212⨯⨯=5 故答案为:5;(2)设阴影正方形的边长为x ,则x 2=5∴x(3)∵ ∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小. 23.(1)∠AEP+∠PFC=∠EPF ;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于点是平行线,之间解析:(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠,12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒;如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.。
新人教版七年级数学下册期中试卷【及参考答案】
新人教版七年级数学下册期中试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.对于任何有理数a ,下列各式中一定为负数的是( ).A .(3)a --+B .a -C .1a -+D .1a --2.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元5.下列说法,正确的是( )A .若ac bc =,则a b =B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC BC =,则C 是线段AB 的中点6101的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱9.下面四个图形中,∠1=∠2一定成立的是( )A .B .C .D .10.如图,△ABC 中,AD 为△ABC 的角平分线,BE 为△ABC 的高,∠C=70°,∠ABC=48°,那么∠3是( )A .59°B .60°C .56°D .22°二、填空题(本大题共6小题,每小题3分,共18分)1. 3-5的相反数为______,|1-2|=_______,绝对值为327的数为________.2.如图,//AB EF ,设90C ∠=︒,那么x ,y ,z 的关系式________.3.关于x的不等式组430340a xa x+>⎧⎨-≥⎩恰好只有三个整数解,则a的取值范围是_____________.4.已知2a﹣3b=7,则8+6b﹣4a=________.5.若一个多边形的内角和是900º,则这个多边形是________边形.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x yx y-=⎧⎨+=⎩(2)解不等式:2132x x->-2.(1)若a2=16,|b|=3,且ab<0,求a+b的值.(2)已知a、b互为相反数且a≠0,c、d互为倒数,m的绝对值是3,且m位于原点左侧,求22015 (1)()2016m a b cd--++-的值.3.如图,O,D,E三点在同一直线上,∠AOB=90°.(1)图中∠AOD的补角是_____,∠AOC的余角是_____;(2)如果OB平分∠COE,∠AOC=35°,请计算出∠BOD的度数.4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b444a a--.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、C4、C5、B6、C7、C8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)11 ±32、90x y z +-=︒3、4332a ≤≤ 4、-65、七6、两点确定一条直线. 三、解答题(本大题共6小题,共72分)1、(1)31x y =⎧⎨=-⎩;(2)x >125.2、(1)1±;(2)9.3、(1)∠AOE ,∠BOC ;(2)125°4、(1)A (8,0),B (4,4),C (0,4);(2)t =3;(3)存在;点Q 坐标(0,12)或(0,−4)5、(1)75,54;(2)补图见解析;(3)600人.6、(1)2400个, 10天;(2)480人.。
人教版七年级数学下册期中考试卷(加答案)
人教版七年级数学下册期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 4.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤a bc c =.A.5 B.4 C.3 D.25.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3 二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简a c b abc a b c abc +++结果是________. 2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________. 4.若()2320m n -++=,则m+2n 的值是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程组x 3y 1{3x 2y 8+=--=2.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m+++的值.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、B7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、40°3、(3,7)或(3,-3)4、-15、2或2.56、10三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)a+b=0,cd=1,m=±2;(2)3或-13、24°.4、(1)证明略;(2)证明略.5、(1)50;72;(2)详见解析;(3)330.6、(1)该商场购进A、B两种商品分别为200件和120件.(2)B种商品最低售价为每件1080元.。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.16的平方根是()A .4B .4±C .2D .2±2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题中是假命题的是( ) A .对顶角相等B .在同一平面内,垂直于同一条直线的两条直线平行C .同旁内角互补D .平行于同一条直线的两条直线平行5.若A ∠的两边与B 的两边分别平行,且20B A ∠=∠+︒,那么A ∠的度数为( ) A .80︒ B .60︒ C .80︒或100︒ D .60︒或100︒ 6.下列说法中:①立方根等于本身的是1-,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤23π-是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )A .3B .4C .5D .67.如图,//AB CD ,//BC DE ,若140CDE ∠=︒,则B 的度数是( )A .40°B .60°C .140°D .160°8.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是( )A .(3,44)B .(41,44)C .(44,41)D .(44,3)二、填空题9.36的平方根是______,81的算术平方根是______.10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________.13.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若56EFG ∠=︒,则1∠=____________,2∠=____________.14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.15.如图,直角坐标系中A 、B 两点的坐标分别为()3,1-,()2,1,则该坐标系内点C 的坐标为__________.16.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).动点P从点A处出发,并按A﹣B﹣C﹣D﹣A﹣B…的规律在四边形ABCD的边上以每秒1个单位长的速度运动,运动时间为t秒.若t=2021秒,则点P所在位置的点的坐标是_____.三、解答题17.计算(1)31252724+-+(2)22|21|--18.求下列各式中x的值:(1)2360x-=;(2)313 48x-=-.19.填空并完成以下过程:已知:点P在直线CD上,∠BAP+∠APD=180°,∠1=∠2.请你说明:∠E=∠F.解:∵∠BAP +∠APD=180°,(_______)∴AB∥_______,(___________)∴∠BAP=________,(__________)又∵∠1=∠2,(已知)∠3=________-∠1,∠4=_______-∠2,∴∠3=________,(等式的性质)∴AE∥PF,(____________)∴∠E=∠F.(___________)20.如图,三角形ABC在平面直角坐标系中.(1)请写出三角形ABC各点的坐标;(2)求出三角形ABC的面积;(3)若把三角形ABC向上平移2个单位,再向左平移1个单位得到三角形A B C''',在图中画出平移后三角形A B C'''.21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469<<,即263<<,显然6的整数部分是2,小数部分是62-.根据上面的材料,解决下列问题:(1)若11的整数部分是m ,5的整数部分是n ,求5m n -+的值.(2)若714+的整数部分是2x ,小数部分是y ,求142x y -+的值. 22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?23.已知:直线AB ∥CD ,直线MN 分别交AB 、CD 于点E 、F ,作射线EG 平分∠BEF 交CD 于G ,过点F 作FH ⊥MN 交EG 于H .(1)当点H 在线段EG 上时,如图1①当∠BEG =36︒时,则∠HFG = .②猜想并证明:∠BEG 与∠HFG 之间的数量关系.(2)当点H 在线段EG 的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG 与∠HFG 之间的数量关系.【参考答案】一、选择题1.D解析:D【分析】16“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根”即可进行解答.【详解】=,164∵()224±=,∴4的平方根是2±,故选D.【点睛】16方根和算术平方根.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到;C、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D、图形的大小发生变化,不属于平移得到;故选:A.【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.C【分析】利用对顶角相等、平行线的判定与性质进行判断选择即可.【详解】解:A、对顶角相等,是真命题,不符合题意;B、在同一平面内,垂直于同一条直线的两条直线平行,是真命题,不符合题意;C、同旁内角互补,是假命题,符合题意;D、平行于同一条直线的两条直线平行,真命题,不符合题意,故选:C.【点睛】本题考查判断命题的真假,解答的关键是熟练掌握对顶角相等、平行线的判定与性质等知识,难度不大.5.A【分析】根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.【详解】解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,又∵∠B=∠A+20°,∴∠A+20°=∠A,∵此方程无解,∴此种情况不符合题意,舍去;当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;又∵∠B=∠A+20°,∴∠A +20°+∠A =180°,解得:∠A =80°;综上所述,A ∠的度数为80°,故选:A .【点睛】本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.6.A【分析】根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.【详解】解:立方根等于本身的数有:1-,1,0,故①正确;平方根等于本身的数有:0,故②错误; 22-的和是0,是有理数,故③错误; 实数与数轴上的点一一对应,故④正确;23π-是无理数,不是分数,故⑤错误; 从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.故选:A .【点睛】本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念. 7.A【分析】根据平行线的性质求出∠C ,再根据平行线的性质求出∠B 即可.【详解】解:∵BC ∥DE ,∠CDE =140°,∴∠C =180°-140°=40°,∵AB ∥CD ,∴∠B =40°,故选:A .【点睛】本题考查了平行线的性质的应用,注意:平行线的性质有①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.8.D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,解析:D【分析】根据题意找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系即可.【详解】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x轴时的横坐标为时间的平方,当点离开y轴时的纵坐标为时间的平方,此时时间为奇数的点在x轴上,时间为偶数的点在y轴上,∵2021=452-4=2025-4,∴第2025秒时,动点在(45,0),故第2021秒时,动点在(45,0)向左一个单位,再向上3个单位,即(44,3)的位置.故选:D.【点睛】本题考查了动点在平面直角坐标系中的运动规律,找到动点即将离开两坐标轴时的位置,及其与点运动时间之间的关系,是解题的关键.二、填空题9.±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.解析:±6 9.【解析】∵(±6)2=36,∴36的平方根是±6;∵92=81,∴81的算术平方根是9.10.-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD ,∵∠C+∠CBD+∠CDB=180°,BC ⊥CD ,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB ∥DE ,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC 和∠CDE 的平分线交于点F ,∴∠CBF+∠CDF=12×270°=135°, ∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.12.【分析】根据题意知:,得出,从而得出,从而求算∠1.【详解】解:如图:∵∴又∵∠1=∠2,∴,解得:故答案为:【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解析:60︒【分析】根据题意知://AB CD ,得出2GFD ∠=∠,从而得出21+60=180∠︒︒,从而求算∠1.【详解】解:如图:∵//AB CD∴2GFD ∠=∠又∵∠1=∠2,60HFG ∠=︒∴21+60=180∠︒︒,解得:1=60︒∠故答案为:60︒【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.13.68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵延折叠得到,解析:68°; 112°.【分析】首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.【详解】解:∵EDCF 延EF 折叠得到EMNF ,∴DEF MEF ∠=∠,∵//AD BC ,56EFG ∠=︒,∴56DEF EFG ∠=∠=︒(两直线平行,内错角相等),∴56MEF DEF ∠=∠=︒,∴1180180565668DEF MEF ∠=︒-∠-∠=︒-︒-︒=︒,又∵//AD BC ,∴12180∠+∠=︒,∴2180118068112∠=︒-∠=︒-︒=︒.综上168∠=︒,2112∠=︒.故答案为:68°;112°.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.15.【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正解析:()1,3-【分析】首先根据A 、B 点坐标确定原点位置,然后再建立坐标系,再确定C 点坐标即可.【详解】解:点C 的坐标为(-1,3),故答案为:(-1,3).【点睛】此题主要考查了点的坐标,关键是正确建立坐标系.16.(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A(1,1), B解析:(0,1)【分析】根据点A 、B 、C 、D 的坐标可得出AB 、AD 及矩形ABCD 的周长,由题意可知P 点的运动是绕矩形ABCD 的周长的循环运动,然后进行计算求解即可.【详解】解:∵A (1,1), B (-1,1),C (-1,-2), D(1,-2)∴AB = CD = 2,AD = BC = 3,∴四边形ABCD 的周长= AB + AD +BC +CD = 10∵P 点的运动是绕矩形ABCD 的周长的循环运动,且速度为每秒一个单位长度∴P 点运动一周需要的时间为10秒∵2021=202×10+1∴当t =2021秒时P 的位置相当于t =1秒时P 的位置∵t =1秒时P 的位置是从A 点向B 移动一个单位∴此时P 点的坐标为(0,1)∴t =2021秒时P 点的坐标为(0,1)故答案为:(0,1).【点睛】本题主要考查了点的坐标与运动方式的关系,解题的关键在于找出P 点一个循环运动需要花费的时间.三、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.18.(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,,解析:(1)6x =±;(2)12x =-【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解.【详解】解:(1)移项得,236x =,开方得,6x =±;(2)移项得,33184x =-+, 合并同类项得,318x =-, 开立方得,12x =-.【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键.19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.【分析】根据平行线的性质和判定即可解决问题;【详解】解:∵∠BAP +∠APD =180°(已知),∴AB ∥CD .(同旁内角互补两直线平行),∴∠BAP =∠APC .(两直线平行内错角相等),又∵∠1=∠2,(已知),∠3=∠BAP -∠1,∠4=∠APC -∠2,∴∠3=∠4(等式的性质),∴AE ∥PF .(内错角相等两直线平行),∴∠E =∠F .(两直线平行内错角相等).【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键. 20.(1),,;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得三点坐标解析:(1)()2,2A --,()3,1B ,()0,2C ;(2)7;(3)见解析【分析】(1)根据平面直角坐标系中点的位置,即可求解;(2)三角形ABC 的面积为长方形面积减去三个直角三角形的面积,即可求解; (3)根据点的平移规则,求得A B C '''、、三点坐标,连接对应线段即可.【详解】解:(1)根据平面直角坐标系中点的位置,可得:()2,2A --,()3,1B ,()0,2C ;(2)三角形ABC 的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯2047.5 1.520137=---=-=;(3)三角形ABC 向上平移2个单位,再向左平移1个单位得到三角形A B C '''可得()3,0A '-,()2,3B ',()1,4C '-,连接''''''A B A C B C 、、,三角形A B C '''如图所示:【点睛】此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(111(214714【详解】解:(1)∵91116 ∴3114<, ∴113,即m=3, ∵459 ∴253<<, ∴52,即n=2, ∴5m n +55;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3,∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
2024—2025学年最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、9的算术平方根是()A.±3B.3C.﹣3D.2、下列数是无理数的有()A.B.﹣1C.0D.3、点M在第二象限,距离x轴5个单位长度,距离y轴3个单位长度,则M点的坐标为()A.(5,﹣3)B.(﹣5,3)C.(3,﹣5)D.(﹣3,5)4、下列是真命题的是()A.有理数与数轴上的点一一对应B.内错角相等C.同一平面内,垂直于同一条直线的两条直线互相平行D.负数没有立方根5、如图,下列各组条件中,能得到AB∥CD的是()A.∥1=∥3B.∥2=∥4C.∥B=∥D D.∥B+∥2=180°6、中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?设牛、羊每头各值金x两、y两,依题意,可列出方程组为()A.B.C.D.7、若正数a的两个平方根是3m﹣2与3﹣2m,则m为()A.0B.1C.﹣1D.1或﹣18、如图,将∥ABC沿BC方向平移3cm得到∥DEF,若∥ABC的周长为24cm,则四边形ABFD的周长为()A.30cm B.24cm C.27cm D.33cm9、如图,直线m∥n,∥1=70°,∥2=30°,则∥A等于()A.30°B.35°C.40°D.50°10、已知关于x、y的方程组的解满足x+y=6,则a的值为()A.1B.2C.﹣2D.11第8题第9题第15题二、填空题(每小题3分,满分18分)11、设n为正整数,且,则n的值为.12、若y=+2,则y=.13、若是二元一次方程ax+by=﹣1的一个解,则3a﹣2b+2024的值为.14、已知=1.038,=2.237,=4.820,则=.15、如图,a∥b,M,N分别在a,b上,P为两平行线间一点,那么∥1+∥2+∥3=°.16、如果,其中m,n为有理数,那么m+n=.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:(﹣1)2023+|1﹣|+﹣.18、已知2a﹣1的算术平方根是3,b是﹣1的立方根,c是的整数部分,求a+b+c的值.19、已知方程组的解和方程组的解相同,求(2a+b)2024.20、∥ABC与∥A'B'C'在平面直角坐标系中的位置如图所示.(1)分别写出下列各点的坐标:A(,),B(,),C(,);(2)若∥A'B'C'是由∥ABC平移得到的,点P(x,y)是∥ABC内部一点,则∥A'B'C'内与点P相对应点P'的坐标为(,);(3)求∥A'B'C'的面积.21、已知:如图,DE∥BC,BD平分∥ABC,EF平分∥AED.(1)求证:EF∥BD;(2)若BD∥AC,∥C=2∥2,求∥A的度数.22、在平面直角坐标系xOy中,已知点P(a﹣1,4a),分别根据下列条件进行求解.(1)若点P在y轴上,求此时点P坐标;(2)若点P在过点A(2,8)且与x轴平行的直线上,求此时a值;(3)若点P的横纵坐标相等,Q为x轴上的一个动点,求此时PQ的最小值.23、水果店2月份购进甲种水果50千克、乙种水果80千克,共花费1600元,其中甲种水果以20元/千克,乙种水果以15元/千克全部售出;3月份又以同样的价格购进甲种水果30千克、乙种水果40千克,共花费880元,由于市场不景气,3月份两种水果均以2月份售价的9折全部售出.(1)求甲、乙两种水果的进价每千克分别是多少元?(2)请计算该水果店2月和3月甲、乙两种水果总赢利多少元?24、规定:若P(x,y)是以x,y为未知数的二元一次方程ax+by=c的正整数解,则称此时点P为二元一次方程ax+by=c的“理想点”.请回答以下关于x,y的二元一次方程的相关问题.(1)方程x+2y=3的“理想点”P的坐标为.(2)已知m,n为非负整数,且,若是方程2x+ y=13的“理想点”,求的值;(3)“郡园点”P(x,y)满足关系式:,其中m为整数,求“理想点”P的坐标.25、如图,在平面直角坐标系中,A,B坐标分别为A(0,a)、B(b,a),且a,b满足:,现同时将点A,B分别向下平移3个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求C,D两点的坐标及四边形ABDC的面积;(2)点P是线段BD上的一个动点,连接P A,PO,当点P在BD上移动时(不与B,D重合),的值是否发生变化,并说明理由;(3)已知点M在y轴上,连接MB、MD,若∥MBD的面积与四边形ABDC 的面积相等,求点M的坐标.最新人教版七年级下学期数学期中考试试卷(参考答案)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、7 12、2 13、2023 14、22.37 15、360 16、5三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣218、119、720、解:(1)A(1,3),B(2,0),C(3,1)(2)答案为:x﹣4,y﹣2 (3)2.21、(1)略(2)60°22、(1)P(0,4)(2)a=2 (3)P(﹣,﹣),最小值为.23、(1)甲种水果的进价为每千克16元,乙种水果的进价为每千克10元.(2)该水果店2月和3月甲、乙两种水果共赢利800元.24、(1)P的坐标为(1,1)(2)m=25,n=3(3)P(1,1)25、(1)四边形ABDC的面积是15(2)值为1,值不发生变化(3)M的坐标为(0,18)或(0,﹣42)。
人教版七年级下学期期中考试数学试卷及答案解析(共3套)
人教版七年级下学期期中考试数学试卷(一)一、选择题(共10小题,每小题4分,满分40分)1.(4分)4的算术平方根为()A.﹣2 B.2 C.±2 D.2.(4分)在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个3.(4分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.(4分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE5.(4分)﹣8的立方根是()A.B.2 C.﹣2 D.6.(4分)下列图形都是由若干个相同的四边形组成的,则不能通过其中一个四边形平移得到的图形是()A.B.C.D.7.(4分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.(4分)经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴 B.平行于y轴 C..经过原点D.无法确定9.(4分)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)10.(4分)若m=,则m的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)如图,直线a,b相交,∠2=3∠1,则∠3= °.12.(5分)在实数0,﹣π,,﹣4中,最小的数是.13.(5分)点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P 点的坐标是.14.(5分)如图,在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.现有下列说法:①点A4的坐标是(2,0);②点A10的坐标是(5,0);③点A4n(n为正整数)的坐标是(2n,0);④从点A100到点A101的移动方向与从点O到点A1的移动方向一致,其中正确的是.(把所有正确结论的序号都选上)三、(本题共9小题,每小题8分,满分90分)15.(8分)计算:﹣32+|﹣3|+2.16.(8分)如果一个数的平方根是a+1和2a﹣7,求这个数.17.(8分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移4格,请在图中画出平移后的三角形A′B′C′及其高C′D′.18.(8分)已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.19.(10分)完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,()又∵∠A=∠1,(已知)∴AC∥,()∴∠2= ,()∴∠C=∠E(等量代换)20.(10分)如图,直线EF,CD相交于点O,OA⊥OB,若∠AOE=35°,∠COF=85°,求∠BOD的度数.21.(12分)已知|x﹣1|=,求实数x的值.22.(12分)如图,一个小正方形网格的边长表示50m,A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是;(3)若C同学家的坐标为(﹣150,100),请你在你所建的直角坐标系中,描出表示C同学家的点.23.(14分)如图所示,A、B、C、D四点都在x轴上,C、D两点的横坐标分别为2,3,线段CD=1;B、D两点的横坐标分别为﹣2,3,线段BD=5;A、B两点的横坐标分别为﹣3,﹣2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?(3)如果|a|=3,b=2,且有A(a,0),B(b,0),那么线段AB的长为多少?参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分) 4的算术平方根为()A.﹣2 B.2 C.±2 D.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2,故选:B.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.(4分)在下列实数:、、、、﹣1.010010001…中,无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的定义,可得答案.【解答】解:、、﹣1.010010001…是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(4分)在平面直角坐标系中,点P(﹣2,﹣3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答即可.【解答】解:点P(﹣2,﹣3)所在的象限是第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)4.(4分)如图,能判定EC∥AB的条件是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【分析】根据平行线的判定定理即可直接判断.【解答】解:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确.故选D.【点评】本题考查了判定两直线平行的方法,正确理解同位角、内错角和同旁内角的定义是关键.5.(4分)﹣8的立方根是()A.B.2 C.﹣2 D.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选C.【点评】本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.6.(4分)下列图形都是由若干个相同的四边形组成的,则不能通过其中一个四边形平移得到的图形是()A.B.C.D.【分析】根据平移与旋转的性质即可得出结论.【解答】解:A、能通过其中一个四边形平移得到,不合题意;B、能通过其中一个四边形平移得到,不合题意;C、能通过其中一个四边形平移得到,不合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.【点评】本题考查的是利用平移设计图案,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解答此题的关键.7.(4分)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.8.(4分)经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB()A.平行于x轴 B.平行于y轴 C..经过原点D.无法确定【分析】根据平行于x轴的直线上的点的纵坐标相等解答.【解答】解:∵A(2,3)、B(﹣4,3)的纵坐标都是3,∴直线AB平行于x轴.故选A.【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键.9.(4分)一个长方形在平面直角坐标系中,三个顶点的坐标分别是(﹣1,﹣1)、(﹣1,2)、(3,﹣1),则第四个顶点的坐标是()A.(2,2)B.(3,3)C.(3,2)D.(2,3)【分析】因为(﹣1,﹣1)、(﹣1,2)两点横坐标相等,长方形有一边平行于y轴,(﹣1,﹣1)、(3,﹣1)两点纵坐标相等,长方形有一边平行于x轴,过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为第四个顶点.【解答】解:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,2),即为第四个顶点坐标.故选:C.【点评】本题考查了长方形的性质和点的坐标表示方法,明确平行于坐标轴的直线上的点坐标特点是解题的关键.10.(4分)若m=,则m的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5【分析】先估计的整数部分和小数部分,然后即可判断﹣3的近似值.【解答】解:∵5<<6,∴5﹣3<﹣3<6﹣3,即2<m<3.故选B.【点评】此题主要考查了无理数的估算,一个无理数和一个有理数组成的无理数找范围时,应先找到带根号的数的范围.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.二、填空题(本题共4小题,每小题5分,满分20分)11.(5分)如图,直线a,b相交,∠2=3∠1,则∠3= 45 °.【分析】根据邻补角的定义和性质,结合图形可得∠1与∠2互为邻补角,即∠1+∠2=180°,又因∠2=3∠1,可求得∠1,再根据对顶角相等可得∠3.【解答】解:由图示得,∠1与∠2互为邻补角,即∠1+∠2=180°,又∵∠2=3∠1,∴∠1+3∠1=180°,∴∠1=45°,∴∠3=∠1=45°.故答案为:45.【点评】本题考查邻补角的定义和性质以及对顶角的性质,是一个需要熟记的内容.12.(5分)在实数0,﹣π,,﹣4中,最小的数是﹣4 .【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣π<0<,∴在﹣4,0,,﹣π中最小的数是﹣4,故答案为:﹣4.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.(5分)点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是(﹣3,2),(﹣3,﹣2).【分析】根据直角坐标系中,某点到x轴的距离是它的纵坐标的绝对值,到y轴的确距离是它的横坐标的绝对值解答.【解答】解:∵P(x,y)到x轴的距离是2,到y轴的距离是3,∴x=±3,y=±2;又∵点P在y轴的左侧,∴点P的横坐标x=﹣3,∴点P的坐标为(﹣3,2)或(﹣3,﹣2).故填(﹣3,2)或(﹣3,﹣2).【点评】本题利用了直角坐标系中,某点到x轴的距离是它的纵坐标的绝对值,到y轴的确距离是它的横坐标的绝对值.14.(5分)如图,在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图所示.现有下列说法:①点A4的坐标是(2,0);②点A10的坐标是(5,0);③点A4n(n为正整数)的坐标是(2n,0);④从点A100到点A101的移动方向与从点O到点A1的移动方向一致,其中正确的是①③④.(把所有正确结论的序号都选上)【分析】①观察图形可得出点A4的坐标,结论①正确;②观察图形可得出点A10的坐标,结论②错误;③观察图形可得出点A4、A8、A12的坐标,根据坐标的变化结合蚂蚁的运动规律即可得出点A4n(n为正整数)的坐标是(2n,0),结论③正确;④根据蚂蚁的运动规律即可得出运动方向四次一循环,依此即可得出从点A 100到点A101的移动方向与从点O到点A1的移动方向一致,结论④正确.综上即可得出结论.【解答】解:①观察图形,可知:点A4的坐标是(2,0),∴结论①正确;②观察图形,可知:点A10的坐标是(5,1),∴结论②错误;③观察图形,可知:A4(2,0),A8(4,0),A12(6,0),…,∴点A4n(n为正整数)的坐标是(2n,0),∴结论③正确;④∵蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,∴运动方向四次一循环.又∵100=25×4,∴从点A100到点A101的移动方向与从点O到点A1的移动方向一致,∴结论④正确.故答案为:①③④.【点评】本题考查了规律型中点的坐标,观察图形结合蚂蚁的运动逐一分析四条结论的正误是解题的关键.三、(本题共9小题,每小题8分,满分90分)15.(8分)计算:﹣32+|﹣3|+2.【分析】原式利用乘方的意义,绝对值的代数意义化简,合并即可得到结果.【解答】解:原式=﹣9+3﹣+2=﹣6+.【点评】此题考查了实数的运算,绝对值,注意区别﹣32与(﹣3)2.16.(8分)如果一个数的平方根是a+1和2a﹣7,求这个数.【分析】根据平方根的定义得到a+1+2a﹣7=0,然后解方程即可.【解答】解:根据题意得a+1+2a﹣7=0,解得a=2.则这个数是:(a+1)2=9.【点评】本题考查了平方根:若一个数的平方等于a,那么这个数叫a的平方根,记作±.17.(8分)如图,△ABC的顶点都在方格纸的格点上,将△ABC向左平移2格,再向上平移4格,请在图中画出平移后的三角形A′B′C′及其高C′D′.【分析】根据图形平移的性质画出平移后的△A′B′C′,再作出高C′D′即可.【解答】解:如图,△A′B′C′及高C′D′即为所求.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.(8分)已知点P(a,b)在第二象限,且|a|=3,|b|=8,求点P的坐标.【分析】根据第二象限内的点的横坐标小于零,可得a的值,根据第二象限内点的纵坐标大于零,可得b的值.【解答】解:由第二象限内的点的横坐标小于零,得a=﹣3.由第二象限内点的纵坐标大于零,得b=8,故P点坐标是(﹣3,8).【点评】本题考查了点的坐标,利用了第二象限内的点的横坐标小于零,第二象限内点的纵坐标大于零.19.(10分)完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE ,(内错角相等,两直线平行)∴∠2= ∠E ,(两直线平行,内错角相等)∴∠C=∠E(等量代换)【分析】首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.【解答】证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等【点评】此题考查了平行线的判定与性质,解题的关键是:熟记同位角相等⇔两直线平行;内错角相等⇔两直线平行;同旁内角互补⇔两直线平行.20.(10分)如图,直线EF,CD相交于点O,OA⊥OB,若∠AOE=35°,∠COF=85°,求∠BOD的度数.【分析】由对顶角相等得∠DOE=85°,由垂直得∠BOE=55°,则∠BOD=∠DOE﹣∠BOE,代入计算.【解答】解:∵∠COF=85°,∴∠DOE=∠COF=85°,∵OA⊥OB,∴∠AOB=90°,又∵∠AOE=35°,∴∠BOE=∠AOB﹣∠AOE=90°﹣35°=55°,∴∠BOD=∠DOE﹣∠BOE=85°﹣55°=35°.【点评】本题考查了垂线的定义和对顶角的性质,属于基础题;注意观察图形利用角的和、差关系或对顶角相等的性质求角的度数,同时步骤书写要合理,既不能太麻烦,也不能太简单.21.(12分)已知|x﹣1|=,求实数x的值.【分析】依据绝对值的性质可知:x﹣1=±,然后再解关于x的方程即可.【解答】解:∵|x﹣1|=,∴x﹣1=±.解得:x=+1或x=﹣+1.∴x的值为1﹣或1+.【点评】本题主要考查的是实数的性质,依据绝对值的性质得到关于x的方程是解题的关键.22.(12分)如图,一个小正方形网格的边长表示50m,A同学上学时从家中出发,先向东走250米,再向北走50米就到达学校.(1)以学校为坐标原点,向东为x轴正方向,向北为y轴正方向,在图中建立直角坐标系:(2)B同学家的坐标是(200,150);(3)若C同学家的坐标为(﹣150,100),请你在你所建的直角坐标系中,描出表示C同学家的点.【分析】(1)根据题意得出A点坐标,进而建立平面直角坐标系;(2)利用平面直角坐标系得出B点坐标;(3)利用C点坐标进而得出C点位置.【解答】解:(1)建立平面直角坐标系,如图所示:(2)B同学家的坐标为:(200,150);故答案为:(200,150);(3)如图所示:C同学家所在的点坐标为:(200,150).【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.23.(14分)如图所示,A、B、C、D四点都在x轴上,C、D两点的横坐标分别为2,3,线段CD=1;B、D两点的横坐标分别为﹣2,3,线段BD=5;A、B两点的横坐标分别为﹣3,﹣2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?(3)如果|a|=3,b=2,且有A(a,0),B(b,0),那么线段AB的长为多少?【分析】(1)根据已知条件可知,x轴上两点之间的距离等于这两点横坐标差的绝对值,依此可得线段MN的长;(2)y轴上有两点之间的距离等于这两点纵坐标差的绝对值,依此可得线段PQ 的长;(3)先由|a|=3,得出a=±3,再根据x轴上两点之间的距离等于这两点横坐标差的绝对值即可求出线段AB的长.【解答】解:(1)∵x轴上有两点M(x1,0),N(x2,0)(x1<x2),∴线段MN=|x1﹣x2|=x2﹣x1;(2)∵y轴上有两点P(0,y1),Q(0,y2)(y1<y2),∴线段PQ=|y1﹣y2|=y2﹣y1;(3)∵|a|=3,∴a=±3,∴A(±3,0),B(2,0),∴线段AB=|±3﹣2|=1或5.【点评】本题考查了坐标与图形性质,两点间的距离,正确理解题意利用数形结合是解决本题的关键.人教版七年级下学期期中考试数学试卷(二)一.选择题(每小题3,共36分)1.(3分)计算的结果是()A.﹣2 B.±2 C.2 D.42.(3分)在﹣1.732,,π,2+,3.212212221…(按照规律,两个1之间增加一个2)这些数中,无理数的个数为()A.5 B.2 C.3 D.43.(3分)在下图中,∠1,∠2是对顶角的图形是()A. B.C. D.4.(3分)点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在下列式子中,正确的是()A.=﹣B.﹣=﹣0.6 C.=﹣13 D.=±66.(3分)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°7.(3分)如图,不能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°8.(3分)下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补9.(3分)下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.4911.(3分)下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c12.(3分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|二.填空题(每小题4分,共24分)13.(4分)若x的立方根是﹣,则x= .14.(4分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.15.(4分)的相反数是.16.(4分)点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为.17.(4分)的算术平方根是.18.(4分)在数轴上表示a的点到原点的距离为3,则a﹣3= .三、计算(共90分)19.(20分)计算求值:(1)+﹣(2)﹣(3)|﹣|+2(4)3(x﹣1)3=﹣24.20.(8分)若a、b满足|a﹣2|+=0,求代数式的值.21.(8分)已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.22.(8分)已知:如图,a∥b,∠1=55°,∠2=40°,求∠3和∠4的度数.23.(8分)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.24.(12分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2 ,且∠1=∠CGD ,∴∠2=∠CG ,∴CE∥BF ,∴∠=∠C 两直线平行,同位角相等;又∵∠B=∠C(已知),∴∠BFD=∠B,∴AB∥CD .25.(12分)如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标.(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标.26.(14分)如图,AB∥CD,直L交AB、CD分别于点E、F,点M在线段EF上(点M不与E、F重合),N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时(F点除外),则∠FMN+∠FNM=∠AEF,说明理由?(2)当点N在射线FD上运动时(F点除外),∠FMN+∠FNM与∠AEF有什么关系?画出图形,猜想结论并证明.参考答案与试题解析一.选择题(每小题3,共36分)1.(3分)计算的结果是()A.﹣2 B.±2 C.2 D.4【分析】根据算术平方根的定义把原式进行化简即可.【解答】解:∵22=4,∴=2.故选C.【点评】本题考查的是二次根式的性质与化简,熟知算术平方根的定义是解答此题的关键.2.(3分)在﹣1.732,,π,2+,3.212212221…(按照规律,两个1之间增加一个2)这些数中,无理数的个数为()A.5 B.2 C.3 D.4【分析】根据无理数的定义求解即可.【解答】解:,π,2+,3.212212221…(按照规律,两个1之间增加一个2)是无理数,故选:D.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.(3分)在下图中,∠1,∠2是对顶角的图形是()A. B.C. D.【分析】此题在于考查对顶角的定义,作为对顶角,首先是由两条直线相交形成的,其次才是对顶角相等.【解答】解:根据两条直线相交,才能构成对顶角进行判断,A、B、D都不是由两条直线相交构成的图形,错误;C是由两条直线相交构成的图形,正确.故选C.【点评】此类题目的正确解答,在于对对顶角定义的掌握.4.(3分)点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号的特点解答.【解答】解:点P(1,﹣5)在第四象限.故选D.【点评】本题考查了点的坐标,熟记各象限内点的坐标的符号是解决的关键,四个象限的符号特点是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(3分)在下列式子中,正确的是()A.=﹣B.﹣=﹣0.6 C.=﹣13 D.=±6【分析】A、根据立方根的性质即可判定;B、根据算术平方根的定义即可判定;C根据算术平方根的性质化简即可判定;D、根据算术平方根定义即可判定.【解答】解:A,=﹣,故A选项正确;B、﹣≈﹣1.9,故B选项错误;C、=13,故C选项错误;D、=6,故D选项错误.故选:A.【点评】本题主要考查了平方根与算术平方根的区别.注意一个数的平方根有两个,正值为算术平方根.6.(3分)如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105°D.165°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2.【解答】解:∵∠1=15°,∠AOC=90°,∴∠BOC=75°,∵∠2+∠BOC=180°,∴∠2=105°.故选:C.【点评】利用补角和余角的定义来计算,本题较简单.7.(3分)如图,不能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∵∠1和∠3为同位角,∠1=∠3,∴a∥b;故本选项正确,不符合题意;B、∵∠2和∠4为内错角,∠2=∠4,∴a∥b;故本选项正确,不符合题意;C、∵∠2与∠3是同旁内角,∴∠2=∠3,不能证明两直线平行;故本选项错误,符合题意;D、∵∠2和∠3为同位角,∠2+∠3=180°,∴a∥b.故本选项正确,不符合题意;故选C.【点评】本题考查了平行线的判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.(3分)下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补【分析】根据垂线、平行线的性质,对顶角和补角的定义作答.【解答】解:A、一条直线的垂线可以作无数条,故错误;B、对顶角一定相等,但不相等的两个角一定不是对顶角,故正确;C、∵180°﹣90°=90°,∴直角的补角必是直角,故正确;D、符合平行线的性质,故正确;故选A.【点评】本题主要考查对定理概念的记忆,是需要熟记的内容.9.(3分)下列说法中正确的是()A.实数﹣a2是负数B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a【分析】A、根据平方运算的特点即可判定;B、根据平方根的性质即可判定;C、根据绝对值的性质即可判定;D、根据实数的绝对值的性质进行即可判定.【解答】解:A、实数﹣a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|﹣a|一定不一定是正数,a=0时不成立,故选项错误;D、实数﹣a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.【点评】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.10.(3分)(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.49【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根.【解答】解:∵(﹣0.7)2=0.49,又∵(±0.7)2=0.49,∴0.49的平方根是±0.7.故选B.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.(3分)下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c【分析】根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”和“在同一平面内垂直于同一直线的两条直线互相平行”解答即可.【解答】解:A、正确,根据“在同一平面内,如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.B、错误,因为“在同一平面内垂直于同一直线的两条直线互相平行”.C、错误,a,b,c是直线,且a∥b,b⊥c则a⊥c;D、错误,b,c是直线,且a∥b,b∥c,则a∥c.故选A.【点评】此题考查的是平行线的判定和性质定理,比较简单.12.(3分)下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.二.填空题(每小题4分,共24分)13.(4分)若x的立方根是﹣,则x= ﹣.【分析】根据立方根的定义得出x=(﹣)3,求出即可.【解答】解:∵x的立方根是﹣,∴x=(﹣)3=﹣,故答案为:﹣.【点评】本题考查了立方根的应用,主要考查学生的计算能力.14.(4分)已知一个正数的平方根是3x﹣2和5x+6,则这个数是.【分析】由于一个非负数的平方根有2个,它们互为相反数.依此列出方程求解即可.【解答】解:根据题意可知:3x﹣2+5x+6=0,解得x=﹣,所以3x﹣2=﹣,5x+6=,∴()2=故答案为:.【点评】本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.(4分)的相反数是﹣2 .【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.16.(4分)点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为(﹣4,4).【分析】根据题中所给的点的位置,可以确定点的纵横坐标的符号,结合其到坐标轴的距离得到它的坐标.【解答】解:根据题意,点A在y轴左侧,在y轴的上侧,则点A横坐标为负,纵坐标为正;又由距离每个坐标轴都是4个单位长度,则点A的坐标为(﹣4,4).故答案为(﹣4,4).【点评】本题考查点的坐标的确定与意义,点到x轴的距离是其纵坐标的绝对值,到y轴的距离是其横坐标的绝对值.。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题1.16的算术平方根是() A .4 B .4- C .2 D .2- 2.下列运动属于平移的是( ) A .汽车在平直的马路上行驶 B .吹肥皂泡时小气泡变成大气泡 C .铅球被抛出 D .红旗随风飘扬 3.在平面直角坐标系中,点P (﹣5,4)位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列命题是假命题的是( ) A .对顶角相等B .两条直线被第三条直线所截,同位角相等C .在同一平面内,垂直于同一条直线的两条直线互相平行D .在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5.如图,////AF BE CD ,若140∠=︒,250∠=︒,3120∠=︒,则下列说法正确的是( )A .100F ∠=︒B .140C ∠=︒ C .130A ∠=︒D .60D ∠=︒6.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根C .立方根等于本身的数是0D .327-=﹣37.珠江流域某江段江水流向经过B 、C 、D 三点,拐弯后与原来方向相同.如图,若∠ABC =120°,∠BCD =80°,则∠CDE 等于( )A .20°B .40°C .60°D .80°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.916的算术平方根是_______. 10.若()1,1A m n +-与点()-3,2B 关于y 轴对称,则()2019m n +的值是___________;11.如图,在ABC ∆中A α∠=,作ABC ∠的角平分线与ACB ∠的外角的角平分线交于点1A ;1A BC ∠的角平分线与1A CB ∠角平分线交于2A ,如此下去,则2021A ∠=__________.12.如图,已知直线EF ⊥MN 垂足为F ,且∠1=138°,则当∠2等于__时,AB ∥CD .13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.定义:对任何有理数,a b ,都有22a b a ab b ⊗=++,若已知22(2)(3)a b -++=0,则a b ⊗=____________.15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点1(0,1)A ,()21,1A ,()31,0A ,()42,0A ,…,那么点2021A 的坐标为__________.三、解答题17.计算:(1)|2−3|+38+23;(2)已知(x –2)2=16,求x 的值. 18.求下列各式中x 的值 (1)2280x -= (2)()352125x -=- 19.完成下面的证明:已知:如图,130∠=︒,60B ∠=︒,AB AC ⊥. 求证://AD BC .证明:AB AC ⊥(已知),∵∠______90=︒(____________________). ∴130∠=︒,60B ∠=︒(已知), ∵1BAC B ∠+∠+∠=__________. 即∠______180B +∠=︒∴//AD BC (______________________________).20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.如图①,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图②所示的大正方形,设图②所示的大正方形的边长为a .(1)求a 的值;(2)若a 的整数部分为m ,小数部分为n ,试求式子2m a an -+的值. 22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形. (1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?23.已知,//AE BD ,A D ∠=∠. (1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,故选:A.【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A 选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一分析,排除错误答案.【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合.故选:A.【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】根据各象限内点的坐标特征解答.【详解】解:点P(﹣5,4)位于第二象限.故选:B.【点睛】本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.4.B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案.【详解】A、对顶角相等;真命题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.正确的命题叫做真命题,错误的命题叫做假命题.5.D【分析】根据平行线的性质进行求解即可得到答案.【详解】解:∵BE∥CD∴∠ 2+∠C=180°,∠ 3+∠D=180°∵∠ 2=50°,∠ 3=120°∴∠C=130°,∠D=60°又∵BE∥AF,∠ 1=40°∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°故选D.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键. 6.D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A、64的立方根是4,原说法错误,故这个选项不符合题意;B、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意;C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D、327=﹣3,原说法正确,故这个选项符合题意;故选:D.【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.7.A【分析】过点C作CF∥AB,则CF∥DE,利用平行线的性质和角的等量代换求解即可.【详解】解:由题意得,AB∥DE,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题主要考查了平行线的性质,合理作出辅助线是解题的关键.8.C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C【分析】经观察分析所有点,除A 1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A 2022在第一象限;第一象限的点A 2(1,1),A 6(2,2),A 10(3,3)…观察易得到点的坐标=24n +. 【详解】 解:由题可知第一象限的点:A 2,A 6,A 10…角标除以4余数为2; 第二象限的点:A 3,A 7,A 11…角标除以4余数为3; 第三象限的点:A 4,A 8,A 12…角标除以4余数为0; 第四象限的点:A 5,A 9,A 13…角标除以4余数为1; 由上规律可知:2022÷4=505…2 ∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标) ∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506). 故选C . 【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解.二、填空题 9.. 【详解】试题分析:∵的平方为,∴的算术平方根为.故答案为. 考点:算术平方根.解析:34.【详解】 试题分析:∵34的平方为916,∴916的算术平方根为34.故答案为34.考点:算术平方根.10.1 【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案. 【详解】由点与点的坐标关于y 轴对称,得: ,, 解得:,, ∴.故答案为:. 【点睛】 本题解析:1 【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案. 【详解】由点()11A m n +-,与点()32B -,的坐标关于y 轴对称,得: 13m +=,12n -=,解得:2m =,1n =-, ∴20192019()(21)1m n +=-=. 故答案为:1. 【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可. 【详解】解:设BC 延长与点D , ∵,的角平分线与的外角的角平分线交于点, ∴ , 同 解析:202112α【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出A ∠与1A ∠,A ∠与2A ∠的关系,找出规律即可. 【详解】解:设BC 延长与点D ,∵180ACD ACB ∠=︒-∠,ABC ∠的角平分线与ACD ∠的外角的角平分线交于点1A ,∴111180()A A BC ACB ACA ∠=︒-∠+∠+∠11180(180)22ABC ACB ACB =︒-∠-∠-︒-∠190()2ABC ACB =︒-∠+∠190(180)2A =︒-︒-∠12A =∠, 同理可得1221122A A A ∠=∠=∠,2331122A A A ∠=∠=∠,∴2021202112A A ∠=∠,∵A α∠=, ∴2021202112A α∠=,故答案为:202112α.【点睛】本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.12.48° 【分析】先假设,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用即可求出∠2的度数. 【详解】 解:若AB//CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,解析:48°【分析】先假设//AB CD ,求得∠3=∠4,由∠1=138°,根据邻补角求出∠3,再利用EF MN 即可求出∠2的度数.【详解】解:若AB //CD ,则∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF ⊥MN ,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.【点睛】本题主要考查平行线的性质,两直线垂直,平角定义,解题思维熟知邻补角、垂直的角度关系.13.5【分析】根据翻折的性质,可得到∠DEC=∠FED ,∠BEF 与∠DEC 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FE解析:5【分析】根据翻折的性质,可得到∠DEC =∠FED ,∠BEF 与∠DE C 、∠FED 三者相加为180°,求出∠BEF 的度数即可.【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =45°,∠B =90°,∴∠DEC =12(180°-45°)=67.5°.故答案为:67.5.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.【分析】先求出a ,b 的值,2和-3分别代表新运算中的a 、b ,把a 、b 的值代入所给的式子即可求值.【详解】解:∵=0,∴a=2,b= -3,∴==4-6+9=7,故答案为:7.【点睛】解析:【分析】先求出a ,b 的值,2和-3分别代表新运算中的a 、b ,把a 、b 的值代入所给的式子即可求值.【详解】解:∵22(2)(3)a b -++=0,∴a=2,b= -3,∴22a b a ab b ⊗=++=2222(3)(3)+⨯-+-=4-6+9=7,故答案为:7.【点睛】本题是定义新运算题型,直接把对应的数字代入所给的式子可求出所要的结果.解题的关键是对号入座不要找错对应关系.15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A (0,0),点B 和点A 在同一坐标轴上,∴点B 在x 轴上或在y 轴上,∴当点B 在x 轴上时,点B 的坐标为(5,0)或(﹣5,0),当点B 在y 轴上时,点B 的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.【分析】由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An 的一般规律,从而可求得结果.【详解】∵,,,∴根据点的平移规律,可分别得:,,,,,,,,…,,,解析:()1010,1【分析】由题意可知,每隔四次移动重复一次,继续得出A 5,A 6,A 7,A 8,…,归纳出点A n 的一般规律,从而可求得结果.【详解】∵1(0,1)A ,()21,1A ,()31,0A ,()42,0A∴根据点的平移规律,可分别得:()52,1A ,()63,1A ,()73,0A ,()84,0A ,()94,1A ,()105,1A ,()115,0A ,()126,0A ,…,()4322,1n A n --,()4221,1n A n --,()4121,0n A n --,()42,0n A n∵2021=505×4+1∴2021A 的横坐标为2×505=1010,纵坐标为1即2021(1010,1)A故答案为:()1010,1【点睛】本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.三、解答题17.(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=4;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=+=+(2)()2216x -=, 24x -=±,1262x x ==-,,【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.18.(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)∴即(2)解得,解析:(1)122,2x x ==-;(2)35x =- 【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)2280x -=22=8x2=4x∴2x =±即122,2x x ==-(2)()352125x -=-525x -=- 解得,35x =- 【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.19.BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD ,即,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵(已知),∴∠BAC (解析:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【分析】根据垂直的定义和已知证明∠BAD 180B +∠=︒,即1180BAC B ∠+∠+∠=︒,由同旁内角互补,两直线平行即可得出结论.【详解】证明:∵AB AC ⊥(已知),∴∠BAC 90=︒(垂直的定义).∵130∠=︒,60B ∠=︒(已知),∴1BAC B ∠+∠+∠=180°即∠BAD 180B +∠=︒∴//AD BC (同旁内角互补,两直线平行)故答案为:BAC ,垂直的定义,180°,BAD ,同旁内角互补,两直线平行.【点睛】本题主要考查了垂直定义和平行线的判定,证明∠BAD 180B +∠=︒是解题关键. 20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;(2)设P (0,m解析:(1)作图见解析,A ′(1,5),B ′(0,2),C ′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可解决问题;(2)设P (0,m ),构建方程解决问题即可.【详解】解:(1)如图,△A ′B ′C ′即为所求,A ′(1,5),B ′(0,2),C ′(4,2);(2)设P(0,m),由题意:12×4×|m+2|=4×12×4×3,解得m=10或-12,∴P(0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:,∵a>0,∴;解析:(152)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可.【详解】解:(1)由题意可得:25a=,∵a>0,∴5a=(2)∵, ∴23<<,∴m =2,n 2,∴2m a an -+=)222=))222 =45+-=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是能估算出的范围. 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm 的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm ,∴20cm =故答案为:20cm ;(2)设长方形纸片的长为5xcm ,宽为4xcm ,54360x x ⋅=,解得:x520x =,答:不能剪出长宽之比为5:4,且面积为2360cm 的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.。
人教版七年级数学下册期中考试卷及答案【完整版】
人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
完整版人教(完整版)七年级数学下册期中试卷及答案
完整版人教(完整版)七年级数学下册期中试卷及答案一、选择题1.9的平方根是()A .3B .3±C .3D .3± 2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()A .B .C .D . 3.若点()1,A a a -在第二象限,则点(),1B a a -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,是假命题的是( )A .两条直线被第三条直线所截,同位角相等B .同旁内角互补,两直线平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .如果两条直线都与第三条直线平行,那么这两条直线也互相平行5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a ∥b ,b ∥c ,则a ∥cC .49的平方根是7D .负数没有立方根7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是( )A .35︒B .45︒C .50︒D .52︒8.如图,点()0,1A ,点()12,0A ,点()23,2A ,点()35,1A ,…,按照这样的规律下去,点2021A 的坐标为( )A .()6062,2020B .()3032,1010C .()3030,1011D .()6063,2021二、填空题9.4的算术平方根为_______;10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,直线m 与∠AOB 的一边射线OB 相交,∠3=120°,向上平移直线m 得到直线n ,与∠AOB 的另一边射线OA 相交,则∠2-∠1=_______º.13.如图所示,一个四边形纸片ABCD ,B D 90︒∠=∠=,把纸片按如图所示折叠,使点B 落在AD 边上的B '点,AE 是折痕,C 130︒∠=,则AEB ∠=________度.14.对于正数x 规定1()1f x x =+,例如:11115(3),()11345615f f ====++,则f (2020)+f (2019)+……+f (2)+f (1)+1111()()()()2320192020f f f f ++⋯++=___________ 15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 16.如图,一个粒子在第一象限运动,在第一秒内,它从原点运动到(0,1),接着它按如图所示的横轴、纵轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→⋯,且每秒移动一个单位,那么粒子运动到点(3,0)时经过了__________秒;2014秒时这个粒子所在的位置的坐标为_____________.三、解答题17.(1)计算:()2228-+ (2)计算:()()2232527243⎛⎫---+-+÷- ⎪⎝⎭ (3)已知()2116x +=,求x 的值.18.求下列各式中实数的x 值.(1)25x 2﹣36=0(2)|x+2|=π19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图,在平面直角坐标系中,∆ABC 的顶点 C 的坐标为(1,3).点A 、B 分别在格点上.(1)直接写出A 、B 两点的坐标;(2)若把∆ABC 向上平移3个单位,再向右平移2个单位得∆A 'B 'C ',画出∆A 'B 'C '; (3)若∆ABC 内有一点 M (m ,n ),按照(2)的平移规律直接写出平移后点M 的对应点M '的坐标.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.(1)请求出图中阴影部分(正方形)的面积和边长(2)若边长的整数部分为a ,小数部分为b ,求213a b +-的值.23.已知,AB ∥DE ,点C 在AB 上方,连接BC 、CD .(1)如图1,求证:∠BCD +∠CDE =∠ABC ;(2)如图2,过点C 作CF ⊥BC 交ED 的延长线于点F ,探究∠ABC 和∠F 之间的数量关系;(3)如图3,在(2)的条件下,∠CFD 的平分线交CD 于点G ,连接GB 并延长至点H ,若BH 平分∠ABC ,求∠BGD ﹣∠CGF 的值.【参考答案】一、选择题1.B【分析】直接根据平方根的定义进行解答即可.【详解】解:∵(±3)2=9,∴9的平方根是±3.故选:B.【点睛】本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.2.D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.解析:D【分析】根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.【详解】解:A、是由基本图形旋转得到的,故不选.B、是轴对称图形,故不选.C、是由基本图形旋转得到的,故不选.D、是由基本图形平移得到的,故选此选项.综上,本题选择D.【点睛】本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.3.A【分析】首先根据第二象限内点的坐标符号可得到0<a<1,然后分析出1-a>0,进而可得点B所在象限.【详解】解:∵点A(a-1,a)在第二象限,∴a-1<0,a>0,∴0<a<1,∴1-a>0,∴点B(a,1-a)在第一象限,【点睛】此题主要考查了点的坐标,关键是掌握第一象限内点的坐标符号(+,+),第二象限内点的坐标符号(-,+),第三象限内点的坐标符号(-,-),第四象限内点的坐标符号(+,-).4.A【分析】根据平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论可逐项判断求解.【详解】解:A.两平行直线被第三条直线所截得的同位角相等,故此选项为假命题,符合题意;B. 同旁内角互补,两直线平行,真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,真命题,不符合题意;D. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,真命题,不符合题意;故选A .【点睛】本题主要考查平行线的性质与判定,同位角,内错角,同旁内角,平行公理及推论,掌握相关内容是解题的关键.5.D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒;当BC ∥AD 时,60DAB B ∠=∠=︒;当BC ∥ AE 时,∵60EAB B ∠=∠=︒,∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒;当AB ∥DE 时,∵ 90E EAB ∠=∠=︒,∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.6.B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答.【详解】选项A ,由a >b ,b >c ,则a >c ,可得选项A 错误;选项B , 若a ∥b ,b ∥c ,则a ∥c ,正确;选项C ,由49的平方根是±7,可得选项C 错误;选项D ,由负数有立方根,可得选项D 错误;故选B .【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.B【分析】观察图形得到奇数点的规律为,A1(2,0),A3(5,1),A5(8,2),…,A2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A2n−1(3032,10解析:B【分析】观察图形得到奇数点的规律为,A 1(2,0),A 3(5,1),A 5(8,2),…,A 2n−1(3n−1,n−1),由2021是奇数,且2021=2n−1,则可求A 2n−1(3032,1010).【详解】35211(2,0),(5,1),(8,2)(31,1)n A A A A n n -⋯⋯--2462(3,2),(6,3),(9,4)(3,1)n A A A A n n ⋯⋯+∵212021n -=∴1011n =2021(3032,1010)A故选B .【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键.二、填空题9.【分析】先求出的值,然后再化简求值即可.【详解】解:∵,∴2的算术平方根是,∴的算术平方根是.故答案为.【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答【分析】【详解】解:∵2=, ∴2,∴..【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关10.-2【分析】直接利用关于x 轴对称点的性质得出m ,n 的值进而得出答案.【详解】∵点A (m ,1)和点B (2,n )关于x 轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x轴对称点的性质得出m,n的值进而得出答案.【详解】∵点A(m,1)和点B(2,n)关于x轴对称,∴m=2,n=-1,故mn=−2.故填:-2.【点睛】此题主要考查了关于x轴对称点的性质,正确掌握关于x轴对称点的性质是解题关键.11.120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB),=180°-60°,=120°;∠DFE的邻补角的度数为:180°-120°=60°.考点:角的度量.12.60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直解析:60【分析】延长BO交直线n于点C,由平行线的性质得∠ACB=∠1,由邻补角得∠AOC=60°,再由三角形外角的性质可得结论.【详解】解:延长BO交直线n于点C,如图,∵直线m向上平移直线m得到直线n,∴m∥n,∴∠ACB=∠1,∵∠3=120°,∴∠AOC=60°∵∠2=∠ACO+∠AOC=∠1+60°,∴∠2-∠1=60°.故答案为60.【点睛】本题考查了平移的性质,平行线的性质,以及三角形外角的性质,作辅助线构造三角形是解答此题的关键.13.【分析】根据四边形的内角和等于求出,根据翻折的性质可得,然后求出,再根据直角三角形两锐角互余列式计算即可得解.【详解】解:,,,由翻折的性质得,,,,.故答案为:.【点睛】解析:【分析】根据四边形的内角和等于360︒求出BAD ∠,根据翻折的性质可得BAE DAE ∠=∠,然后求出 BAE ∠,再根据直角三角形两锐角互余列式计算即可得解.【详解】解:90B D ∠=∠=︒,130C ∠=︒,360909013050BAD ,由翻折的性质得,BAE DAE ∠=∠, 11502522BAE BAD ,90B ∠=︒,902565AEB .故答案为:65.【点睛】本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 14.5【分析】由已知可求,则可求.【详解】解:,,,,故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出是解题的关键.解析:5【分析】由已知可求1()()1f x f x+=,则可求111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=. 【详解】解:1()1f x x =+, 111()1111x f x x x x x∴===+++,11()()111x f x f x x x∴+=+=++, ∴111(2020)(2019)(2)()()()120192019232020f f f f f f ++⋯++++⋯+=⨯=, 1111(2020)(2019)(2)(1)()()()(1)201920192019.523202011++⋯+++++⋯+=+=+=+f f f f f f f f 故答案为:2019.5【点睛】 本题考查代数值求值,根据所给条件,探索出1()()1f x f x+=是解题的关键. 15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,当0≤x<3时,2x≥0,x-3解析:2或2-3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23-, 当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去), 综上,x 的值为2或23-, 故答案为2或23-. 【点睛】本题考查了坐标与图形的性质,根据x 的取值范围分情况进行讨论是解题的关键. 16.(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A1,A2,…An 时所用的间分别为a1,a2,…an ,则a1=2,a2=6,a3=12,a4解析:(10,44)【分析】该题是点的坐标规律,通过对部分点分析,发现实质上是数列问题.设粒子运动到A 1,A 2,…A n 时所用的间分别为a 1,a 2,…a n ,则a 1=2,a 2=6,a 3=12,a 4=20,…,【详解】解:由题意,粒子运动到点(3,0)时经过了15秒,设粒子运动到A 1,A 2,…,A n 时所用的间分别为a 1,a 2,…,a n ,则a 1=2,a 2=6,a 3=12,a 4=20,…,a 2-a 1=2×2,a 3-a 2=2×3,a 4-a 3=2×4,…,a n -a n -1=2n ,各式相加得:a n -a 1=2(2+3+4+…+n )=n 2+n -2,∴a n =n (n +1).∵44×45=1980,故运动了1980秒时它到点A 44(44,44);又由运动规律知:A 1,A 2,…,A n 中,奇数点处向下运动,偶数点处向左运动. 故达到A 44(44,44)时向左运动34秒到达点(10,44),即运动了2014秒.所求点应为(10,44).故答案为:(10,44).故答案为:15,(10,44).【点睛】本题考查了平面直角坐标系内点的运动规律,分析粒子在第一象限的运动规律得到递推关系式a n -a n -1=2n 是本题的突破口,本题对运动规律的探索可知知:A 1,A 2,…A n 中,奇数点处向下运动,偶数点处向左运动,找到这个规律是解题的关键.三、解答题17.(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 3x =或5x =-【解析】【分析】(1 (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案.【详解】解:(1)22=-2=;(2()22243⎛⎫-+÷- ⎪⎝⎭()353442⎛⎫=--++⨯- ⎪⎝⎭, 5346=++-,6=;(3)∵()2116x +=∴14x +=±解得:3x =或5x =-.故答案为:(1)2;(2)6;(3) 3x =或5x =-.【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键. 18.(1)x =±;(2)x =﹣2﹣π或x =﹣2+π【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解.【详解】解:(1)25x2﹣36=0,25x2= 解析:(1)x =±65;(2)x =﹣2﹣π或x =﹣2+π 【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解.【详解】解:(1)25x 2﹣36=0,25x 2=36,x 2=3625, x =±65;(2)|x+2|=π,x+2=±π,x =﹣2﹣π或x =﹣2+π.【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数. 19.答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC=∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己解析:答案见详解.【分析】根据AB ⊥BC ,AB ⊥DE 可以得到BC ∥DE ,从而得到∠1=∠EBC =∠2,即可得到BE ∥GF ,即可得到答案.【详解】证明:∵AB ⊥BC ,AB ⊥DE ,垂足分别为B ,D (己知),∴∠ABC =∠ADE =90°(垂直定义),∴BC ∥DE (同位角相等,两直线平行),∴∠1=∠EBC (两直线平行,内错角相等),又∵∠l =∠2 (已知),∴∠2=∠EBC (等量代换),∴BE ∥GF (同位角相等,两直线平行),∴∠BEC +∠FGE =180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1),;(2)见解析;(3).【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M (m ,n )向上平移3个单位,再向右平移解析:(1)(1,1)A --,(4,2)B ;(2)见解析;(3)(2,3)M m n '++.【分析】(1)根据原点的位置确定点的坐标即可;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',连接,,A B C '''即可;(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到M '的坐标.【详解】(1)根据原点的位置确定点的坐标,则(1,1)A --,(4,2)B ;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',(1,1),(4,2),(1,3)A B C --,(1,2),(6,5),(3,6)A B C '''∴,在图中描出点,,A B C ''',连接,,A B C ''',∆A 'B 'C '即为所求.(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 ∴(2,3)M m n '++.【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵3134<<,c 是13的整数部分∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 22.(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.解析:(1)S=13,边长为 13;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a 和b 的值,然后得出答案.详解:解:(1)S=25-12=13, 边长为, (2)a=3,b= -3 原式=9+-3-=6.点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.23.(1)证明见解析;(2);(3).【分析】(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;(2)过点作,同(1)的方法,先根据平行线的性质解析:(1)证明见解析;(2)90ABC F ∠-∠=︒;(3)45︒.【分析】(1)过点C 作CF AB ∥,先根据平行线的性质可得180ABC BCF ∠+∠=︒,再根据平行公理推论可得CF DE ,然后根据平行线的性质可得180CDE BCF BCD ∠+∠+∠=︒,由此即可得证;(2)过点C 作CG AB ∥,同(1)的方法,先根据平行线的性质得出180ABC BCG ∠+∠=︒,180F BCG BCF ∠+∠+∠=︒,从而可得ABC F BCF ∠-∠=∠,再根据垂直的定义可得90BCF ∠=︒,由此即可得出结论;(3)过点G 作GM AB ,延长FG 至点N ,先根据平行线的性质可得ABH MGH ∠=∠,MGN DFG ∠=∠,从而可得MGH MGN ABH DFG ∠-∠=∠-∠,再根据角平分线的定义、结合(2)的结论可得45MGH MGN ∠=-∠︒,然后根据角的和差、对顶角相等可得BGD CG MGH MGN F ∠-∠=∠-∠,由此即可得出答案.【详解】证明:(1)如图,过点C 作CF AB ∥,180ABC BCF ∴∠+∠=︒,AB DE ,CF DE ∴,180CDE DCF ∴∠+∠=︒,即180CDE BCF BCD ∠+∠+∠=︒,CDE BCF BCD ABC BCF ∴∠+∠+∠=∠+∠,BCD CDE ABC ∴∠+∠=∠;(2)如图,过点C 作CG AB ∥,180ABC BCG ∴∠+∠=︒,AB DE ,CG DE ∴,180F FCG ∴∠+∠=︒,即180F BCG BCF ∠+∠+∠=︒,F BCG BCF ABC BCG ∴∠+∠+∠=∠+∠,ABC F BCF ∴∠-∠=∠,CF BC ⊥,90BCF ∴∠=︒,90ABC F ∴∠-∠=︒;(3)如图,过点G 作GM AB ,延长FG 至点N ,ABH MGH ∴∠=∠,AB DE ,GM DE ∴,MGN DFG ∴∠=∠, BH 平分ABC ∠,FN 平分CFD ∠,11,22ABH AB D C CF DFG ∴∠=∠∠∠=, 由(2)可知,90ABC CFD ∠-∠=︒,411225MGH MGN ABH DFG CF B D A C ∠-∠=∠-∠∠∠-==∴︒, 又BGD MGH MGD CGF DGN MGN MGD ∠=∠+∠⎧⎨∠=∠=∠+∠⎩, 45MGH BGD GF MGN C ∠-∠∴-==∠∠︒.【点睛】本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.。
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版人教(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列运动中,属于平移的是( )A .冷水加热过程中,小气泡上升成为大气泡B .急刹车时汽车在地面上的滑动C .随手抛出的彩球运动D .随风飘动的风筝在空中的运动 3.在平面直角坐标系中位于第二象限的点是( ) A .()2,3 B .()2,3- C .()2,3- D .()2,3-- 4.下列命题是假命题的是( )A .两个角的和等于平角时,这两个角互为补角B .内错角相等C .两条平行线被第三条直线所截,内错角相等D .对顶角相等5.若A ∠的两边与B 的两边分别平行,且20B A ∠=∠+︒,那么A ∠的度数为( ) A .80︒B .60︒C .80︒或100︒D .60︒或100︒ 6.下列运算正确的是( ) A .164=± B .()3327-= C .42= D .393= 7.如图,//a b ,160∠=︒,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒8.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……,第n 次移动到点n A ,则点2021A 的坐标是( )A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题936_________10.点A (-2,1)关于x 轴对称的点的坐标是____________________.11.如图,在平面直角坐标系中,点A ,B ,C 三点的坐标分别是()2,0A -,()0,4B ,()0,1C -,过点C 作//CD AB ,交第一象限的角平分线于点D ,连接AD 交y 轴于点E .则点E 的坐标为______.12.如图,∠B =∠C ,∠A =∠D ,有下列结论:①AB //CD ;②AE //DF ;③AE ⊥BC ;④∠AMC =∠BND .其中正确的有_____.(只填序号)13.如图,将ABC 沿着AC 边翻折得到AB 1C ,连接BB 1交AC 于点E ,过点B 1作B 1D //AC 交BC 延长线于点D ,交BA 延长线于点F ,连接DA ,若∠CBE =45°,BD =6cm ,则ADB 1的面积为_________.14.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号)16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2021次相遇地点的坐标是_________.三、解答题17.计算.(1)()()1278---+; (2)()202231127162⎛⎫-⨯-+- ⎪⎝⎭. 18.求下列各式中x 的值.(1)4x 2﹣25=0;(2)(2x ﹣1)3=﹣64.19.如图,∠1+∠2=180°,∠C =∠D .求证:AD //BC .证明:∵∠1+∠2=180°,∠2+∠AED =180°,∴∠1=∠AED ( ),∴AC // ( ),∴∠D =∠DAF ( ).∵∠C =∠D ,∴∠DAF = (等量代换).∴AD //BC ( ).20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ; (2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.21.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小辉用21-来表示2的小数部分,你同意小辉的表示方法吗? 事实上,小辉的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵479<<,即273<<,∴7的整数部分为2,小数部分为72-.请解答:(1)21的整数部分是______ ,小数部分是______ .(2)如果11的小数部分为a ,17的整数部分为b ,求11a b +-的值.22.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?23.已知:如图,直线AB //CD ,直线EF 交AB ,CD 于P ,Q 两点,点M ,点N 分别是直线CD ,EF 上一点(不与P ,Q 重合),连接PM ,MN .(1)点M ,N 分别在射线QC ,QF 上(不与点Q 重合),当∠APM +∠QMN =90°时, ①试判断PM 与MN 的位置关系,并说明理由;②若PA 平分∠EPM ,∠MNQ =20°,求∠EPB 的度数.(提示:过N 点作AB 的平行线) (2)点M ,N 分别在直线CD ,EF 上时,请你在备用图中画出满足PM ⊥MN 条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转.故选B.【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据内错角、对顶角、补角的定义一一判断即可.【详解】解:A、两个角的和等于平角时,这两个角互为补角,为真命题;B、两直线平行,内错角相等,故错误,为假命题;C、两条平行线被第三条直线所截,内错角相等,为真命题;D、对顶角相等,为真命题;故选:B.【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.5.A【分析】根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.【详解】解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,又∵∠B=∠A+20°,∴∠A+20°=∠A,∵此方程无解,∴此种情况不符合题意,舍去;当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;又∵∠B=∠A+20°,∴∠A+20°+∠A=180°,解得:∠A=80°;综上所述,A的度数为80°,故选:A.【点睛】本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.6.C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断.【详解】解:A、164=,故本选项错误;-=-,故本选项错误;B、()3327C、42=,故本选项正确;D、393≠,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键.7.D【分析】根据同位角相等,两直线平行即可求解.【详解】解:如图:a b,∠1=60°,因为//所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°-60°=120°.故选:D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.8.B【分析】根据题意可得,,,,,,,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点的纵坐标,然后根据,,,,可得:,即可求解.【详解】解:由题意得:,,,,解析:B【分析】根据题意可得1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,5(2,1)A ,6(3,1)A , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,可求出点2021A 的纵坐标,然后根据4(2,0)A ,8(4,0)A ,12(6,0)A ,,可得:2020(1010,0)A ,即可求解. 【详解】解:由题意得:1(0,1)A ,2(1,1)A ,3(1,0)A ,4(2,0)A ,5(2,1)A ,6(3,1)A , ,由此得出纵坐标规律:以1,1,0,0的顺序,每4个为一个循环,∵202145051÷= ,∴点2021A 的纵坐标为1, ∵4(2,0)A ,8(4,0)A ,12(6,0)A ,,由此得:2020(1010,0)A , ∴2021(1010,1)A .故选:B【点睛】本题主要考查了平面直角坐标系中点的坐标规律题——坐标与旋转,解题的关键是理解题意找出规律解答问题.二、填空题9..【详解】【分析】先确定,再根据平方根定义可得的平方根是±.【详解】因为,6的平方根是±,所以的平方根是±.故正确答案为±.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示解析:【详解】6=.6=,6的平方根是故正确答案为.【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义. 10.(-2,-1)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本解析:(-2,-1)【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点(-2,1)关于x 轴对称的点的坐标是(-2,-1),故答案为:(-2,-1).【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.11.【分析】设D (x ,y ),由点在第一象限的角平分线上,可得,由待定系数法得直线AB 的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD 的解析式为,令x=0时,得,即可求得点E 解析:20,3⎛⎫⎪⎝⎭ 【分析】设D (x ,y ),由点D 在第一象限的角平分线上,可得x y =,由待定系数法得直线AB 的解析式为24y x =+,由//CD AB ,可设2CD y x b =+,把()0,1C -代入, 得21CD y x =-,进而可求得1(1)D ,,再由待定系数法求得直线AD 的解析式为1233y x =+,令x =0时,得23y =,即可求得点E 的坐标. 【详解】解:设D (x ,y ),点D 在第一象限的角平分线上,∴x y =,//CD AB ,()20A -,,()04B ,∴设直线AB 的解析式为:4y kx =+,把()20A -,,代入得: k =2,24AB y x ∴=+,2CD y x b ∴=+,把()0,1C -代入,得b =-1,21CD y x ∴=-,点D 在21CD y x =-上,(11)D ∴,,设直线AD 的解析式为:11y k x b =+,可得1111120k b k b +=⎧⎨-+=⎩, 111323k b ⎧=⎪⎪∴⎨⎪=⎪⎩, 1233AD y x ∴=+, 当x =0时,23y =, 2(0)3E ∴,, 故答案为:2(0)3, 【点睛】此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键. 12.①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B =∠C ,∴AB ∥CD ,∴∠A =∠AEC ,又∵∠A =∠D ,∴∠AEC =∠D ,∴AE ∥DF ,∴∠AMC解析:①②④【分析】根据平行线的判定与性质分析判断各项正确与否即可.【详解】解:∵∠B =∠C ,∴AB ∥CD ,∴∠A =∠AEC ,又∵∠A =∠D ,∴∠AEC =∠D ,∴AE ∥DF ,∴∠AMC =∠FNM ,又∵∠BND =∠FNM ,∴∠AMC =∠BND ,故①②④正确,由条件不能得出∠AMC =90°,故③不一定正确;故答案为:①②④.【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般.13.cm²【分析】根据翻折变换的性质可知AC 垂直平分BB1,且B1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB1,∵B1D ∥AC ,∴ 解析:92cm ²【分析】根据翻折变换的性质可知AC 垂直平分BB 1,且B 1D 平行AC ,得到AC 为三角形ADB 中位线,从而求解.【详解】解:根据翻折变换的性质可知AC 垂直平分BB 1,∵B 1D ∥AC ,∴AC 为三角形ADB 中位线,∴BC =CD =12BD =3cm , 在Rt △BCE 中,∠CBE =45°,BC =3cm ,∴CE 2+BE 2=BC 2,解得BE =CE . ∴EB1=BE ∵CE 为△BDB 1中位线,∴DB1=2CE ,△ADB 1的高与EB 1相等,∴S△ADB 1=12×DB 1×EB 1=1292cm ², 故答案为:92cm ². 【点睛】本题主要考查了翻折变换的性质、三角形面积的求法,解题关键是能够明确AC 为△ADB 的中位线从而得出答案.14.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M 、N 速度分别为1单解析:(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为1613+=4秒,则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)∵2021=4×505…1,∴第2021次两个物体相遇位置为(0,2),故答案为:(0,2).【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)3 2 -【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可.【详解】解:(1)原式12783=-++=(2)原式11342⎛⎫=-⨯+- ⎪⎝⎭1342=-+-542=-32=-【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键.18.(1)x=;(2)x=.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=,x=;(2)(2x﹣1)3=﹣64解析:(1)x=52±;(2)x=32-.【分析】(1)利用平方根的定义求解;(2)利用立方根的定义求解.【详解】解:(1)4x2﹣25=0,4x2=25,x2=254,x=52±;(2)(2x﹣1)3=﹣64,2x﹣1=﹣4,2x=﹣3,x=32 -.【点睛】本题考查了利用平方根和立方根的定义解方程,熟练掌握平方根和立方根的定义是解答本题的关键.19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:,,(同角的补角相等),解析:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;∠C ;同位角相等,两直线平行.【分析】根据平行线的判定和性质定理即可得到结论.【详解】证明:12180∠+∠=︒,2180AED ∠+∠=︒,1AED ∴∠=∠(同角的补角相等),//AC DE ∴(内错角相等,两直线平行),D DAF ∴∠=∠(两直线平行,内错角相等),C D ∠=∠,DAF C ∴∠=∠(等量代换),//AD BC ∴(同位角相等,两直线平行).故答案为:同角的补角相等;DE ;内错角相等,两直线平行;两直线平行,内错角相等;C ∠;同位角相等,两直线平行.【点睛】本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a -4,b -2);(4)2【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A 、A ′的变化写出平移方法即可;(3)根据平移规律逆向写出点P ′的坐标;(4)利用△ABC 所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【详解】解:(1)A ′(-3,1); B ′(-2,-2);C ′(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)若点P (a ,b )是△ABC 内部一点,则平移后△A 'B 'C '内的对应点P '的坐标为:(a -4,b -2);(4)△ABC 的面积=11123131122222⨯-⨯⨯-⨯⨯-⨯⨯=2.【点睛】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.21.(1)4,;(2)1【分析】(1)根据题意求出所在整数范围,即可求解;(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵<<,即4<<5∴的整数部分为4,小数部分为−4.(2),解析:(1)44;(2)1【分析】(1(2)求出a ,b 然后代入代数式即可.【详解】解:(1)∵∴44.(2)34, ∴3a . ∵45<,∴4b =, ∴341a b +=+.【点睛】此题主要考查了无理数的估算,实数的运算,熟练掌握相关知识是解题的关键. 22.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为,宽为,根据解析:(1)20cm ;(2)不能剪出长宽之比为5:4,且面积为2360cm 的大长方形,理由详见解析【分析】(1)根据已知得到大正方形的面积为4002cm ,求出算术平方根即为大正方形的边长;(2)设长方形纸片的长为5xcm ,宽为4xcm ,根据面积列得54360x x ⋅=,求出x =得到520x =>,由此判断不能裁出符合条件的大正方形.【详解】(1)∵用两个面积为2200cm的小正方形拼成一个大的正方形,∴大正方形的面积为4002cm,∴大正方形的边长为40020cm=故答案为:20cm;(2)设长方形纸片的长为5xcm,宽为4xcm,⋅=,54360x x解得:18x=,x=>,551820答:不能剪出长宽之比为5:4,且面积为2360cm的大长方形.【点睛】此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键. 23.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条解析:(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM+∠QMN=90°或∠APM -∠QMN=90°.【分析】(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决.【详解】解:(1)①PM⊥MN,理由见解析:∵AB//CD,∴∠APM=∠PMQ,∵∠APM+∠QMN=90°,∴∠PMQ +∠QMN=90°,∴PM⊥MN;②过点N作NH∥CD,∵AB//CD,∴AB// NH∥CD,∴∠QMN=∠MNH,∠EPA=∠ENH,∵PA平分∠EPM,∴∠EPA=∠MPA,∵∠APM+∠QMN=90°,∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,∴∠MNQ +∠MNH +∠MNH=90°,∵∠MNQ=20°,∴∠MNH=35°,∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,∴∠EPB=180°-55°=125°,∴∠EPB的度数为125°;(2)当点M,N分别在射线QC,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,∴∠APM +∠QMN=90°;当点M,N分别在射线QC,线段PQ上时,如图:∵PM⊥MN,AB//CD,∴∠PMN=90°,∠APM=∠PMQ,∴∠PMQ -∠QMN=90°,∴∠APM -∠QMN=90°;当点M,N分别在射线QD,QF上时,如图:∵PM⊥MN,AB//CD,∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,∴∠APM+90°-∠QMN=180°,∴∠APM -∠QMN=90°;综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
第二学期七年级数学期中考试
一、填空题(每空2分,共54分)
1.如右图,与∠1成同位角的角有 个, 与∠1成内错角的角有 个, 与∠1成同旁内角的角有 个.
2.命题“两直线平行,同旁内角互补”的题设 ______ , 结论 ___________ . 3.如果有序数对(a ,)b 表示某栋楼房中a 层楼b 号房,那么有序数对(2,3)代表_______________________和(3,2)代表_________________________-
4.点(3P ,4)到x 轴的距离是 ,到y 轴的距离是 .
5.如果2
1
20a b x
y
-++=是二元一次方程,则____a =,____b =.
6. 直线a ,b ,c ,d 都不同,如果a b ∥,b c ∥,c d ∥,那么a 与d 的位置关系是 .
7.∠A ¢O ¢B ¢是∠AOB 经过平移得到的,∠A ¢O ¢B ¢ =70°,则∠AOB=____________.
第8题
cm ,6BC =cm ,则点A 到B C 的距离是 ,
两点间的距离是 . 的距离是线段 的长度,点D 到直线A B 的距离是线段 的长度;⑵在线段D A ,D B ,D C 中 是最短,在线段B A ,B E ,B D 中 最短.
10. 已知直线A B 平行于x 轴,且A 点坐标为(2-,1), 则B 点坐标为 ,条件 .
11. 过一个角的顶点作两边的垂线,已知两垂线的夹角是120°,
那么这个角的度数是 .
12.已知如右图,直线A B ,C D ,E F 相交于点O ,EF ⊥AB 于O . ⑴若∠AOC=30°,则,∠BOC=______,∠DOF=______
;
⑵若∠COE=n °,则.∠AOD=__________ 13.如图所示的马所处的位置为(2,3). ⑴图中象的位置是_________________
⑵写出马的下一步可以到达的位置_______________________________________.(最少写4个)
14. ( ) A.平行或垂直
15. )
A.67x y -= 210x x ++=
16. 下列说法中,不正确的是 ( ) A.∠a 的邻补角与∠a 的和是180°
B.对顶角的角平分线在一条直线上
C.相等的角是对顶角 D.同一个角的两个邻补角是对顶角
17. 在平滑的桌面上,下列运动中属于平移的是(运动过程中的方向不变) ( ) A.玻璃球向前滚动 B.小青蛙向前跳跃 C.小木块向前滑动 D.小螃蟹向前横行 18.下列语句中( )不是命题
A.若a b ∥,c 与a 相交,则b 与c 也相交 B.过直线外一点P ,作直线a b ∥
C.在同一平面内的两条直线不平行就相交
D.邻补角的平分线互相垂直
19. 把点P (a,5)向右移动4个单位到y 轴上则a 为( )
A.4 B.-4 C.4与-4
D 、以上都不对
20. 一辆汽车在笔直的公路上,两次拐弯后,仍在原来的方向上平行前进,则这两次拐弯的角度应是 ( ) A.第一次向右拐40°,第二次向左拐140°
A
B C
D
E
F
O
A O
B
A ¢
O ¢ B ¢
A
A
B
C
D
E 2
3 4
5 3
A
B
C
D E F
N
M
1
2
3 4 5 6 7
8 9
2
B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向左拐140° D.第一次向右拐40°,第二次向右拐140°
21.“直线1l ,2l 相交于点O ,点P 在直线1l ,2l 外,分别画出点P 到直线1l ,2l 的垂线段PM ,
P N ”.下列四个图形中画得正确的是 ( )
22.一个人从A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到
C 点,那么∠ABC 等于 (
)
23.
二元一次方程组23
35x y x y ì-=-ïïí
ï+=ïî的解为( ) A.1
2x y ì=ïïí
ï=ïî
B.1
2x y ì=-ïïí
ï=ïî
C.1
2x y ì=ïïí
ï=-ïî
D.1
2x y ì=-ïïí
ï=-ïî
24. 如果将三角形ABC 的三个顶点的横坐标都加上5,纵坐标都减去4,得到三角形A ′B ′C ′,则三角形A ′B ′C ′在三角形ABC 的基础上( ) A.先向左平移5个单位长度,再向下平移4个单位长度 B.先向右平移5个单位长度,再向上平移4个单位长度 C.先向左平移5个单位长度,再向上平移4个单位长度 D.先向右平移5个单位长度,再向下平移4个单位长度
25. 在下列四组条件中,能判定AB C D ∥的是 ( )
A.∠1=∠2 B.∠BAD=∠BCD C.∠ABC=∠ADC ,∠3=∠4 D.∠BAD+∠ABC=180° 26. 下列语句:
⑴过两条平行线A B ,C D 外一点P 作一条直线M N ,使M N A B ∥,且M N C D ∥. ⑵过两条平行线A B ,C D 外一点P 作直线M N ,使M N A B ∥,A B C D ∵∥,M N C D ∴∥.
⑶过两条平行线A B ,C D 外一点P 作一条直线M N ,使M N A B ⊥,且M N C D ⊥.
⑷过两条平行线A B ,C D 外一点P 作一条直线M N ,使MN ||AB,∵AB||CD ,∴MN||CD ,其中正确的是 ( ) A.⑴ ⑶ B.⑵ ⑷ C.⑴ ⑵ ⑶ D.全对
三、运算题:
27.(本题8分)解方程组356415x z x z ì-=ïïí
ï+=-ïî
①
②
28..(本小题9分) 已知点(A a ,4)-,(3B ,)b 根据下列条件求a ,b 的值.
⑴A ,B 关于x 轴对称; ⑵A ,B 关于y 轴对称; ⑶A ,B 关于原点对称.
29.(本小题8分) 如图,已知∠ABC=52°,∠ACB=60°,B O ,C O 分别是∠ABC 和 ∠ACB 的平分线,E F 过O 且平行于B C ,求∠BOC 的度数.
2
1 A
1 2l
B
1 2
C
2
D
D
30 . 如图,A,B C D E
,,,
积.(本小题8分)
31、已知:如图,∠DAB=∠DCB,AE、CF
说明:∠D=∠B (本小题10分)
解:∵AE、CF分别是∠DAB、∠DCB
∴DAB
∠
∠
2
1
_____
1(
DCB
∠
∠
2
1
____
3(
又∵∠DAB=∠DCB()
∴∠1=∠3()
又∵∠1=∠2()
∴∠3=∠2()
∴AB∥DC()
∴∠D+∠DAB=180()
∠B+∠DCB=180()
∴∠D=∠B(等角的补角相等)
32.(本小题3分) “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起
来,睡了一觉,当它醒来时,发现乌龟快到终点了.于是急忙追赶,但为时已晚,乌龟还是先
到达了终点……,用
1
S,
2
S分别表示乌龟和兔子所行的路程,t为时间,则图中与故事情节
相吻合的是()
34.(本小题7分) 如图,选择适当的方向击打白球,可以使白球反弹后将红球撞入袋中.此
时,∠1=∠2,∠3=∠4,如果红球与洞口的连线与台球桌面边缘的夹角∠5=30°,那么∠1
等于多少度时,才能保证红球能直接入袋?(要写出理由)
A
B C
O
E F
ABCD
3。