高2019级第二次月考
2019届高三上学期历史第二次月考试卷真题
2019届高三上学期历史第二次月考试卷一、单选题1. 《汉书》云:“汉家承秦之制,并立郡县,主有专己之威,臣无百年之柄。
”这表明在西汉()A . 分封制度退出历史舞台B . 宗法制度趋于瓦解C . 郡县制有利于维护皇权D . 官僚制度未能建立2. 古代中国曾存在这样一个机构“……初只秉庙谟商戎略而已,阙后军国大计,罔不总揽……盖隐然执政之府矣”。
该机构是()A . 中朝B . 参知政事C . 内阁D . 军机处3. 《唐律疏议》规定商人有行滥短狭者(指假冒伪劣商品)而卖者,杖六十,得利赃重者按盗窃论处;宋代《太平广记》中多有卖油条者在油中掺杂鱼膏以图厚利,终被暴雷击死,商人背信弃义而家遭火灾等记载。
这些记载说明唐宋时期()A . 严格推行重农抑商B . 获取重利遭到严惩C . 注重规范商业行为D . 商人笃信因果之说4. “凡士工商贾,皆赖食于农,以故农为天下之本务,而工贾皆其末也。
”形成上述观念的根源()A . 重农抑商政策B . 资本主义萌芽C . 自给自足的自然经济D . 君主专制制度5. 董仲舒称:“与天同者大治,与天异者大乱,故为人主之道,莫不明于身之与天同者而用之”。
这表明他主张()A . 君主专制B . 天人感应C . “大一统”D . 君权神授6. 清初的学者颜元指出:“宋元来儒者却习成妇女态,甚可羞。
无事袖手谈心性,临危一死报君王,即为上品矣。
”由此可见颜元()A . 抨击理学的空疏无用B . 赞扬儒家的忠君思想C . 反对理学的统治地位D . 赋予了儒学新的内涵7. 儒家思想在后世不断发展,下列主张哪个具有民主启蒙色彩()A . 民为贵,社稷次之,君为轻B . 制天命而用之C . 天人感应,君权神授D . 为天下之大害者,君而已矣8. 有一初唐书法家,尤擅正书。
他最初效法王羲之,后独辟蹊径,自成一家,开颜柳先河,被后世书法家奉为圭臬。
该书法家最可能是()A . 张旭B . 颜真卿C . 柳公权D . 欧阳询9. 古罗马征服意大利半岛后,意大利人不能参与罗马政治活动和担任官职,没有资格分享公有地和战利品,但却要为罗马提供兵役,因此反抗斗争不断。
万州区高级中学2018-2019学年高二上学期第二次月考试卷物理
万州区高级中学2018-2019学年高二上学期第二次月考试卷物理 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图4所示,一理想变压器,当原线圈两端接U 1=220V 的正弦式交变电压时,副线圈两端的电压U 2=55V .对于该变压器,下列说法正确的是( )A .原、副线圈的匝数之比等于4:1B .原、副线圈的匝数之比等于1:4C .原、副线圈的匝数之比等于2:1D .原、副线圈的匝数之比等于1:2 【答案】A【解析】2121n n U U ,A 对2. 如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子( ) A.所受重力与电场力平衡B.电势能逐渐增加C.动能逐渐增加D.做匀变速直线运动 【答案】BD3. 如图所示电路中,电源电动势为E ,线圈L 的电阻不计.以下判断不正确...的是( )A .闭合S 稳定后,电容器两端电压为EB .闭合S 稳定后,电容器的a 极板不带电C .断开S 后的很短时间里,电容器的a 极板将带正电D .断开S 后的很短时间里,电容器的a 极板将带负电【答案】AD 【解析】试题分析:闭合S 稳定后,线圈L 相当于导线,则电容器被短路,则其电压为零,故A 错误;当闭合S 稳定后,电容器被短路,则其电压为零,电容器的a极板不带电,故B正确;断开S的瞬间,线圈L中电流减小,产生自感电动势,相当于电源,结电容器充电,根据线圈的电流方向不变,则电容器的a极板将带正电.故C 正确,D错误。
考点:考查了电感电容对交流电的阻碍作用4.一匀强电场的方向平行于xOy平面,平面内a、b、c三点的位置如图所示,三点的电势分别为10 V、17 V、26 V。
下列说法正确的是()A.电场强度的大小为2.5 V/cmB.坐标原点处的电势为1 VC.电子在a点的电势能比在b点的低7 eVD.电子从b点运动到c点,电场力做功为9 eV【答案】ABD5.在静电场中,下列说法正确的是()A. 电场强度处处为零的区域内,电势也一定处处为零B. 电场强度处处相同的区域内,电势也一定处处相同C. 电场强度的方向可以跟等势面平行D. 沿着电场强度的方向,电势总是不断降低的【答案】D【解析】A.等量同种点电荷连线中点处的电场强度为零,但电势不一定为零,电势高低与零势面的选取有关,故A错误;B.在匀强电场中,电场强度处处相等,但电势沿电场线方向降低,故B错误;C.电场线方向处处与等势面垂直,即电场线上各点的切线方向与等势面垂直,各点电场强度方向就是电场线各点切线方向,故C错误;D.电场强度方向是电势降落最快的方向,故D正确。
遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)
遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 如图,四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3,D 为四面体OABC 外一点.给出下列命题.①不存在点D ,使四面体ABCD 有三个面是直角三角形 ②不存在点D ,使四面体ABCD 是正三棱锥 ③存在点D ,使CD 与AB 垂直并且相等④存在无数个点D ,使点O 在四面体ABCD 的外接球面上 其中真命题的序号是( )A .①②B .②③C .③D .③④2. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111] 3. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样4.已知直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8平行,则实数m的值为()A.﹣7 B.﹣1 C.﹣1或﹣7 D.5.如图,空间四边形OABC中,,,,点M在OA上,且,点N为BC中点,则等于()A.B. C.D.6.函数f(x)=tan(2x+),则()A.函数最小正周期为π,且在(﹣,)是增函数B.函数最小正周期为,且在(﹣,)是减函数C.函数最小正周期为π,且在(,)是减函数D.函数最小正周期为,且在(,)是增函数7.给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=;④对分类变量X与Y它们的随机变量K2的观测值k越大,则判断“与X与Y有关系”的把握程度越小.其中正确的说法的个数是()A.1 B.2 C.3 D.48.江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距()A.10米B.100米C.30米D.20米9. 设a ,b ∈R ,i 为虚数单位,若2+a i1+i =3+b i ,则a -b 为( )A .3B .2C .1D .010.已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( ) A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭ B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭ C 、16t t ⎧⎫>-⎨⎬⎩⎭ D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭11f x [14]f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .512.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .725B .725- C. 725± D .2425二、填空题13.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=()210{ 21(0)xxx e x x x +≥++<,若函数y=f (f (x )﹣a )﹣1有三个零点,则a 的取值范围是_____.15.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .16.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.17.在数列中,则实数a=,b=.A B C三点的截面和球心的距离是球半径的一半,且18.已知过球面上,,AB BC CA===,则2球表面积是_________.三、解答题19.已知圆C的圆心在射线3x﹣y=0(x≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ)求圆C的方程;(Ⅱ)点A(1,1),B(﹣2,0),点P在圆C上运动,求|PA|2+|PB|2的最大值.20.某实验室一天的温度(单位:)随时间(单位;h)的变化近似满足函数关系;(1) 求实验室这一天的最大温差;(2) 若要求实验室温度不高于,则在哪段时间实验室需要降温?21.设a>0,是R上的偶函数.(Ⅰ)求a的值;(Ⅱ)证明:f(x)在(0,+∞)上是增函数.22.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.23.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.24.已知函数f(x)=x3+ax+2.(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.遵化市第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】【分析】对于①可构造四棱锥CABD与四面体OABC一样进行判定;对于②,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于③取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD 与AB垂直并且相等,对于④先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定④的真假.【解答】解:∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故①不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故②不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确故选D2.【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.3.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.4.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.5.【答案】B【解析】解:===;又,,,∴.故选B.【点评】本题考查了向量加法的几何意义,是基础题.6.【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+∈(,),函数f(x)=tan(2x+)单调递增,故选:D.7.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.故选:B.【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.8.【答案】C【解析】解:如图,过炮台顶部A 作水平面的垂线,垂足为B ,设A 处观测小船C 的俯角为45°,设A 处观测小船D 的俯角为30°,连接BC 、BD Rt △ABC 中,∠ACB=45°,可得BC=AB=30米Rt △ABD 中,∠ADB=30°,可得BD=AB=30米在△BCD 中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD 2=BC 2+BD 2﹣2BCBDcos30°=900 ∴CD=30米(负值舍去) 故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.9. 【答案】【解析】选A.由2+a i1+i=3+b i 得,2+a i =(1+i )(3+b i )=3-b +(3+b )i , ∵a ,b ∈R ,∴⎩⎪⎨⎪⎧2=3-b a =3+b ,即a =4,b =1,∴a -b =3(或者由a =3+b 直接得出a -b =3),选A. 10.【答案】A 【解析】考点:函数的性质。
吉林省梅河口市博文学校2019_2020学年高二英语上学期第二次月考试题
吉林省梅河口市博文学校2019-2020学年高二英语上学期第二次月考试题第一部分:听力(30分)第一节 听下面5段对话,每段对话后有一个小题,从题中所给的A,B,C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
1.What’s the weather like now?A.It’s raining B It’s sunny C It’s cloudy2.How much is the car ?A.$16,000B.$6000C.$60,0003.What’s the woman trying to do ?A. To sleepB. To stop coughingC. To think about things4.Where are the two speakers probably ?A In a clinic . B.in a drug store C.In a office5.Why was the man late ?A.His bike broke downB.He took wrong busC. The bus broke down第二节 听下面5段对话或独白,每段对话或独白后都有几个小题,从题中所给的A,B,C 三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟作答时间。
每段对话或独白读两遍。
听第6段材料,回答6-7题6.How did the woman get the tickets ?A. Someone gave her.B.She bought them C Justin Bieber gave her7.How old was the singer now ?A. 6B.12 C 18.听第7段材料,回答第8-- 9题。
高一物理上学期第二次月考(2019人教版)A卷【测试范围:必修第一册第二章、第三章】A4版含答案
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2022-2023学年上学期第二次月考A卷高一物理(考试时间:90分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:必修第一册第二章、第三章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共12小题,每小题4分,共48分。
金州区第三中学校2018-2019学年高二上学期第二次月考试卷数学
金州区第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 以过椭圆+=1(a >b >0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A .相交B .相切C .相离D .不能确定2. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40C .60D .203. 在曲线y=x 2上切线倾斜角为的点是( )A .(0,0)B .(2,4)C .(,)D .(,)4. 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )A .20+2πB .20+3πC .24+3πD .24+3π5. 已知向量=(2,﹣3,5)与向量=(3,λ,)平行,则λ=( )A .B .C .﹣D .﹣6. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a7. 已知向量=(﹣1,3),=(x ,2),且,则x=( )A .B .C .D .8. 已知定义在R 上的函数f (x )满足f (x )=,且f (x )=f (x+2),g (x )=,则方程g (x )=f (x )﹣g (x )在区间[﹣3,7]上的所有零点之和为( )A .12B .11C .10D .99. 在数列{a n }中,a 1=3,a n+1a n +2=2a n+1+2a n (n ∈N +),则该数列的前2015项的和是( )A .7049B .7052C .14098D .14101 10.长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )A .30°B .45°C .60°D .120°11.已知实数x ,y 满足,则z=2x+y 的最大值为( )A .﹣2B .﹣1C .0D .412.(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( ) A .(1,+∞) B .(﹣∞,﹣1)C .D .二、填空题13.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .14.已知f (x )=x (e x +a e -x )为偶函数,则a =________.15.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 16.已知数列}{n a 的各项均为正数,n S 为其前n 项和,且对任意∈n N *,均有n a 、n S 、2n a 成等差数列,则=n a .17.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .18.若数列{}n a 满足212332n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅,则数列{}n a 的通项公式为 .三、解答题19.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.20.(本小题满分12分)某单位共有10名员工,他们某年的收入如下表:员工编号 1 2 3 4 5 6 7 8 9 10 年薪(万元)33.5455.56.577.5850(1)求该单位员工当年年薪的平均值和中位数;(2)从该单位中任取2人,此2人中年薪收入高于5万的人数记为ξ,求ξ的分布列和期望;(3)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为3万元、5.4万元、6.5万元、2.7万元,预测该员工第五年的年薪为多少?附:线性回归方程a x b yˆˆˆ+=中系数计算公式分别为: 121()()()niii nii x x y y b x x ==--=-∑∑,x b y aˆˆ-=,其中x 、y 为样本均值.21.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.22.如图,已知几何体的底面ABCD 为正方形,AC∩BD=N,PD⊥平面ABCD,PD=AD=2EC,EC∥PD.(Ⅰ)求异面直线BD与AE所成角:(Ⅱ)求证:BE∥平面PAD;(Ⅲ)判断平面PAD与平面PAE是否垂直?若垂直,请加以证明;若不垂直,请说明理由.23.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.24.(本小题满分12分)设p :实数满足不等式39a ≤,:函数()()32331932a f x x x x -=++无极值点. (1)若“p q ∧”为假命题,“p q ∨”为真命题,求实数的取值范围;(2)已知“p q ∧”为真命题,并记为,且:2112022a m a m m ⎛⎫⎛⎫-+++> ⎪ ⎪⎝⎭⎝⎭,若是t ⌝的必要不充分条件,求正整数m 的值.金州区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.2.【答案】B【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,∴三年级要抽取的学生是×200=40,故选:B.【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.3.【答案】D【解析】解:y'=2x,设切点为(a,a2)∴y'=2a,得切线的斜率为2a,所以2a=tan45°=1,∴a=,在曲线y=x2上切线倾斜角为的点是(,).故选D.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.4.【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=2×2+=4+,底面周长C=2×3+=6+π,高为2,故柱体的侧面积为:(6+π)×2=12+2π,故柱体的全面积为:12+2π+2(4+)=20+3π,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键.5.【答案】C【解析】解:∵向量=(2,﹣3,5)与向量=(3,λ,)平行,∴==,∴λ=﹣.故选:C.【点评】本题考查了空间向量平行(共线)的问题,解题时根据两向量平行,对应坐标成比例,即可得出答案.6.【答案】C【解析】考点:等差数列的通项公式.7.【答案】C【解析】解:∵,∴3x+2=0,解得x=﹣.故选:C.【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题.8.【答案】B【解析】解:∵f(x)=f(x+2),∴函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在[﹣3,7]上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在[﹣3,7]上的交点的横坐标之和为4+4+3=11,即函数y=f(x)﹣g(x)在[﹣3,7]上的所有零点之和为11.故选:B.【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法.属于中档题.9.【答案】B【解析】解:∵a n+1a n+2=2a n+1+2a n(n∈N+),∴(a n+1﹣2)(a n﹣2)=2,当n≥2时,(a n﹣2)(a n﹣1﹣2)=2,∴,可得a n+1=a n﹣1,因此数列{a n}是周期为2的周期数列.a1=3,∴3a2+2=2a2+2×3,解得a2=4,∴S2015=1007(3+4)+3=7052.【点评】本题考查了数列的周期性,考查了计算能力,属于中档题.10.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C.【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.11.【答案】D【解析】解:画出满足条件的平面区域,如图示:,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,Z最大值=4,故选:D.【点评】本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.12.【答案】C【解析】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立,即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立若m+1=0,显然不成立若m+1≠0,则解得a.故选C.【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.二、填空题13.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.14.【答案】【解析】解析:∵f(x)是偶函数,∴f(-x)=f(x)恒成立,即(-x)(e-x+a e x)=x(e x+a e-x),∴a(e x+e-x)=-(e x+e-x),∴a=-1.答案:-115.【答案】1 2考点:三角函数的图象与性质,等比数列的性质,对数运算.【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题. 16.【答案】n【解析】∵n a ,n S ,2n a 成等差数列,∴22n n n S a a =+当1n =时,2111122a S a a ==+ 又10a > ∴11a =当2n ≥时,2211122()n n n n n n n a S S a a a a ---=-=+--, ∴2211()()0n n n n a a a a ----+=,∴111()()()0n n n n n n a a a a a a ---+--+=, 又10n n a a -+>,∴11n n a a --=, ∴{}n a 是等差数列,其公差为1, ∵11a =,∴*(N )n a n n =∈.17.【答案】(,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3), 整理得:y=﹣2x+9, 令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.18.【答案】 6,12,2,n n a n n n n *=⎧⎪=+⎨≥∈⎪⎩N【解析】【解析】()()12312n a a a a n n =++⋅⋅⋅⋅⋅⋅⋅11:6n a ==;()()()123112312:12 1n n n n a a a a a n n a a a a n n --≥⋅=++=+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅故22:n n n a n+≥=三、解答题19.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积. 20.【答案】【解析】(1)平均值为10万元,中位数为6万元. (2)年薪高于5万的有6人,低于或等于5万的有4人;ξ取值为0,1,2.152)0(21024===C C P ξ,158)1(2101614===C C C P ξ,31)2(21026===C C P ξ, ∴ξ的分布列为∴()012151535E ξ=⨯+⨯+⨯=. (3)设)4,3,2,1(,=i y x i i 分别表示工作年限及相应年薪,则5,5.2==y x ,21()2.250.250.25 2.255nii x x =-=+++=∑,41()() 1.5(2)(0.5)(0.8)0.50.6 1.5 2.27iii x x y y =--=-⨯-+-⨯-+⨯+⨯=∑,121()()7 1.45()niii nii x x y y b x x ==--===-∑∑,ˆˆ5 1.4 2.5 1.5a y b x =-=-⨯=, 由线性回归方程为 1.4 1.5y x =+.可预测该员工年后的年薪收入为8.5万元. 21.【答案】【解析】解:(I )如图(a ),取AA 1的中点M ,连接EM ,BM ,因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD .又在正方体ABCD ﹣A 1B 1C 1D 1中.AD ⊥平面ABB 1A 1,所以EM ⊥面ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影,∠EBM 直线BE 与平面ABB 1A 1所成的角. 设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt △BEM 中,即直线BE 与平面ABB 1A 1所成的角的正弦值为. (Ⅱ)在棱C 1D 1上存在点F ,使B 1F 平面A 1BE ,事实上,如图(b )所示,分别取C 1D 1和CD 的中点F ,G ,连接EG ,BG ,CD 1,FG ,因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1为平行四边形,因此D 1C ∥A 1B ,又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B ,这说明A 1,B ,G ,E 共面,所以BG ⊂平面A 1BE因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG=C 1C=B 1B ,因此四边形B 1BGF 为平行四边形,所以B 1F ∥BG ,而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.22.【答案】【解析】解:(Ⅰ)PD⊥平面ABCD,EC∥PD,∴EC⊥平面ABCD,又BD⊂平面ABCD,∴EC⊥BD,∵底面ABCD为正方形,AC∩BD=N,∴AC⊥BD,又∵AC∩EC=C,AC,EC⊂平面AEC,∴BD⊥平面AEC,∴BD⊥AE,∴异面直线BD与AE所成角的为90°.(Ⅱ)∵底面ABCD为正方形,∴BC∥AD,∵BC⊄平面PAD,AD⊂平面PAD,∴BC∥平面PAD,∵EC∥PD,EC⊄平面PAD,PD⊂平面PAD,∴EC∥平面PAD,∵EC∩BC=C,EC⊂平面BCE,BC⊂平面BCE,∴∴平面BCE∥平面PAD,∵BE⊂平面BCE,∴BE∥平面PAD.(Ⅲ)假设平面PAD与平面PAE垂直,作PA中点F,连结DF,∵PD⊥平面ABCD,AD CD⊂平面ABCD,∴PD⊥CD,PD⊥AD,∵PD=AD,F是PA的中点,∴DF⊥PA,∴∠PDF=45°,∵平面PAD⊥平面PAE,平面PAD∩平面PAE=PA,DF⊂平面PAD,∴DF⊥平面PAE,∴DF⊥PE,∵PD⊥CD,且正方形ABCD中,AD⊥CD,PD∩AD=D,∴CD⊥平面PAD.又DF⊂平面PAD,∴DF⊥CD,∵PD=2EC,EC∥PD,∴PE与CD相交,∴DF⊥平面PDCE,∴DF⊥PD,这与∠PDF=45°矛盾,∴假设不成立即平面PAD与平面PAE不垂直.【点评】本题主要考查了线面平行和线面垂直的判定定理的运用.考查了学生推理能力和空间思维能力.23.【答案】【解析】解:(I)证明:∵平面PAD⊥平面ABCD,AB⊥AD,∴AB⊥平面PAD,∵E、F为PA、PB的中点,∴EF∥AB,∴EF⊥平面PAD;(II)解:过P作AD的垂线,垂足为O,∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.取AO中点M,连OG,EO,EM,∵EF∥AB∥OG,∴OG即为面EFG与面ABCD的交线又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,故OG⊥EO∴∠EOM 即为所求在RT△EOM中,EM=OM=1∴tan ∠EOM=,故∠EOM=60°∴平面EFG 与平面ABCD 所成锐二面角的大小是60°.【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.24.【答案】(1){}125a a a <<≤或;(2)1m =. 【解析】(1)∵“p q ∧”为假命题,“p q ∨”为真命题,∴p 与只有一个命题是真命题. 若p 为真命题,为假命题,则2115a a a a ≤⎧⇒<⎨<>⎩或.………………………………5分若为真命题,p 为假命题,则22515a a a >⎧⇒<≤⎨≤≤⎩.……………………………………6分于是,实数的取值范围为{}125a a a <<≤或.……………………………………7分考点: 1、不等式;2、函数的极值点;3、命题的真假;4、充要条件.。
2019-2020年高二上学期第二次月考地理试题 含答案(VII)
2019-2020年高二上学期第二次月考地理试题含答案(VII) 一、选择题(本大题共44小题,每小题1分,共44分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)读新疆自治区不同年龄段迁入人口比例图,完成1~2题。
1.影响东部地区人口迁入新疆的主要因素是A.自然灾害B.务工经商C.读书求学D.婚姻家庭2.大量的人口迁入对新疆产生的影响有A.生态环境趋于好转B.粮食商品率降低C.提供充足的劳动力D.城市化水平降低区域人口对资源压力指数是指全国某资源人均占有量与区域该资源人均占有量之比,此比值可作为判断区域人口规模适宜程度的指标之一。
读表,完成3 --5题。
3.据表可知,浙江省城市化水平最高的主要原因是A.人均GDP高B.GDP总量大C.水资源丰富D.耕地面积广4.青海省人口对水资源压力指数最小的原因是A.降水丰富,水资源量大B.人口数量少,生产规模小C.地处高原,无工业生产D.跨流域调入的水量巨大5.最适宜发展规模化商品农业的省份是A.青海B.河南C.浙江D.黑龙江据报道,2015年6月份以来,陕西多地油桃都已经大量上市,却鲜有客商来收购,造成油桃滞销,与前几年的销售火爆局面形成鲜明对比。
据此完成6~7题。
6.陕西油桃滞销的原因可能是A.管理不善,品种退化B.盲目生产,产量过大C.品种不良,品质较差D.交通不便,运输不畅7.为了解决农产品销售难的问题,该地区应采取的最合理措施是A.政府加大对农民的补贴B.减少该作物的种植面积C.提高农业生产机械化水平D.大力发展农产品深加工工业下图为我国高铁线网中“四纵四横”线路及计划采用海底隧道修建福州一台湾的线路,甲、乙是省级行政中心,也是重要铁路枢纽。
读图,完成8~10题。
8.高铁线网体现了现代交通运输特点中的①大型化②高速化③专业化④网络化A.①②④B.①②③C.②③④D.①③④9.福州一台湾海底隧道工程建设难度较大的因素是A.洪涝B.滑坡C.海底地震D.台风10.下列关于“四纵四横”的叙述,正确的是A.青太线跨越地势第一、二级阶梯B.宁深铁路线经过少数民族主要分布区C.甲地是我国经济最为发达城市D.乙地附近铁路运行易受洪涝影响下图为亚洲年均等降水量线示意图,图中①②③④为亚洲四个干旱中心。
河南省平顶山市郏县第一高级中学2019-2020学年高二物理上学期第二次月考试题【含答案】
7、如图所示的电路中,电源的电动势为 E,内阻为 r,当闭合开关 S 后,若将滑动变阻器的
滑片 P 向下调节,则正确的是
A.电压表和电流表的示数都增大 B.灯 L2 变暗,电流表的示数减小 C.灯 L1 变亮,电压表的示数减小 D.灯 L2 变亮,电容器的带电量增加 8、如图所示,一圆环上均匀分布着正电荷,x 轴垂直于环面且过圆心 O.
代入数据可得
16.(12 分)(1)
(2)
(1)设金属杆的加速度大小为 a,则
,解得
;
(2)设金属棒达到 cd 位置时速度大小为 v、电流为 I,金属棒受力平衡,有
,解得
.
17.(1) (2)
(3)
(1)在电场中粒子做类平抛运动,设粒子在电场中运动的时间为 ,
则有
…①
…②,
根据牛顿第二定律得:
…③,
④8.24×10-2
15.(8 分)(1)F=0.1N(2) (1)以 B 球为研究对象,B 球受到重力 mg,电场力 Eq,静电力 F,AB 间绳子的拉力 和 OB 绳子的拉力 ,共 5 个力的作用,处于平衡状态,
A、B 间的静电力
,代入数据可得 F=0.1N
(2)在竖直方向上有:
,在水平方向上有:
如图所示的匀强磁场中,现给滑环一个水平向右的瞬时作用力,使其开始运动,则滑环在杆
上的运动情况可能的是( )
A. 始终做匀速运动
B. 始终做减速运动,最后静止于杆上
C. 先做加速运动,最后做匀速运动 D. 先做减速运动,最后做匀速运动
10、如题图所示,平行直线表示电场线,但未标明方向,带电量为+10-2C 的微粒在电场中只
A ①③
B ②③
C ②④
黑龙江省大庆实验中学2019-2020学年高二6月月考语文试题 Word版含答案
大庆实验中学2019—2020学年度高二下学期第二次月考语文试卷一、现代文阅读(36分)(一)论述类文本阅读(共3题,9分)阅读下面的文字,完成1-3小题。
“文学是人学。
”文学关心人,关怀人的命运和处境,从根本上说,就是关怀整个人类的生存和命运。
今天的“人”,不仅同“类”,而且同“村”。
所以,文学在关怀单个人的时候,归根结底是在关怀整个人类。
现今世界,高科技把所有人不分民族、不分肤色、不分区域地都“互联”到一起,人类的命运也就更加密切地融为一体。
因此,人类命运共同体理念使得“文学是人学”的命题更加深刻和丰富,成为新时代文学创作的重要指导方针。
我国自古以来就有强烈的天下情怀和理论主张,是孕育人类命运共同体理念的重要基石。
《尚书·尧典》记载:“协和万邦,黎民于变时雍。
”这是说国家之间应该和谐相处。
《周易》认为:“乾道变化,各正性命,保合太和,乃利贞。
首出庶物,万国威宁。
”这里明确勾画出万国安定团结、百姓安居乐业的理想图景。
《礼记》认为圣人乃以“天下为一家,以中国为一人”。
《吕氏春秋》认为“天地万物,一人之身也,此之谓大同”,并逐步形成“天下为公”“是谓大同”的观念。
中华文明自古以来就追求“天下大同”的社会理想,力图建构起一个人人各得其所、共享发展、友好相处的美好社会。
以人类命运共同体理念来观照文学创作,有助于重新认识和研究世界文学的内在发展规律,深入分析和解读经典文学作品中蕴含的精神内核。
这可以在更加开阔的视野上发掘人类命运共同体理念的文化渊源,同时推进文学创作在建构人类命运共同体上发挥更大的主观能动性。
运用人类命运共同体理念来开展文学创作,可以让作品具有更饱满的人性价值和更深邃的思想价值。
世界文学经典实际上都曾经历史性地参与了人类命运共同体的建构。
在西方,古希腊文学中“人本意识”的觉醒,表现为开始认识自我,表现为以人为中心观察世界。
斯芬克斯之谜寓意无穷,深藏着“认识你自己”的哲学意蕴,反映出古希腊人对“人”的思考和对人类命运的关注。
岳阳县二中学2018-2019学年高二上学期二次月考试卷数学
岳阳县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n 的值是()A.10B.11C.12D.13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.2.执行如图所示的程序框图,若输入的分别为0,1,则输出的()A.4 B.16 C.27 D.363.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,94. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323πB .16π C.253π D .312π5. 已知向量(1,2)a =,(1,0)b =,(3,4)c =,若λ为实数,()//a b c λ+,则λ=( )A .14B .12C .1D .26. 设集合,,则( )A BCD7. 下列命题中的说法正确的是( )A .命题“若x 2=1,则x=1”的否命题为“若x 2=1,则x ≠1”B .“x=﹣1”是“x 2+5x ﹣6=0”的必要不充分条件C .命题“∃x ∈R ,使得x 2+x+1<0”的否定是:“∀x ∈R ,均有x 2+x+1>0”D .命题“在△ABC 中,若A >B ,则sinA >sinB ”的逆否命题为真命题8. 已知向量,,其中.则“”是“”成立的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 9. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣2 10.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A .1372B .2024C .3136D .449511.若复数(a ∈R ,i 为虚数单位位)是纯虚数,则实数a 的值为( ) A .﹣2 B .4 C .﹣6 D .612.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.二、填空题13.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 14.已知集合M={x||x|≤2,x ∈R},N={x ∈R|(x ﹣3)lnx 2=0},那么M ∩N= .15.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .16.函数f (x )=的定义域是 .17.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .18.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
宁城县高级中学2018-2019学年高二上学期第二次月考试卷数学
宁城县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±32. 已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )﹣g (x )=x 3﹣2x 2,则f (2)+g (2)=( ) A .16B .﹣16C .8D .﹣83. 函数f (x )=的定义域为( )A .(﹣∞,﹣2)∪(1,+∞)B .(﹣2,1)C .(﹣∞,﹣1)∪(2,+∞)D .(1,2)4. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]5. (+)2n (n ∈N *)展开式中只有第6项系数最大,则其常数项为( )A .120B .210C .252D .456. “”是“一元二次方程x 2+x+m=0有实数解”的( )A .充分非必要条件B .充分必要条件C .必要非充分条件D .非充分非必要条件7. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0 D .48. 平面向量与的夹角为60°,=(2,0),||=1,则|+2|=( )A .B .C .4D .129. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+,则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .3 10.在长方体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,高为4,则点A 1到截面AB 1D 1的距离是( )A .B .C .D .11.过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.12.已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=二、填空题13.满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 的个数是 .14.递增数列{a n }满足2a n =a n ﹣1+a n+1,(n ∈N *,n >1),其前n 项和为S n ,a 2+a 8=6,a 4a 6=8,则S 10= .15.已知正四棱锥O ABCD -的体积为2则该正四棱锥的外接球的半径为_________16.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号)17.设向量=(1,﹣3),=(﹣2,4),=(﹣1,﹣2),若表示向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量的坐标是 .18.已知(ax+1)5的展开式中x 2的系数与的展开式中x 3的系数相等,则a= .三、解答题19.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,计算得x i =80,y i =20,x i y i =184,x i 2=720.(1)求家庭的月储蓄对月收入的回归方程; (2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.20.已知二次函数f (x )的图象过点(0,4),对任意x 满足f (3﹣x )=f (x ),且有最小值是. (1)求f (x )的解析式;(2)求函数h (x )=f (x )﹣(2t ﹣3)x 在区间[0,1]上的最小值,其中t ∈R ;(3)在区间[﹣1,3]上,y=f (x )的图象恒在函数y=2x+m 的图象上方,试确定实数m 的范围.21.数列{}n a 中,18a =,42a =,且满足*2120()n n n a a a n N ++-+=∈. (1)求数列{}n a 的通项公式; (2)设12||||||n n S a a a =++,求n S .22.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:; (Ⅲ)若,判断直线与平面是否垂直?并说明理由.23.已知函数()21ln ,2f x x ax x a R =-+∈. (1)令()()()1g x f x ax =--,讨论()g x 的单调区间;(2)若2a =-,正实数12,x x 满足()()12120f x f x x x ++=,证明1212x x +≥.24.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.宁城县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.2.【答案】B【解析】解:∵f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,∴f(﹣2)﹣g(﹣2)=(﹣2)3﹣2×(﹣2)2=﹣16.即f(2)+g(2)=f(﹣2)﹣g(﹣2)=﹣16.故选:B.【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力.3.【答案】D【解析】解:由题意得:,解得:1<x<2,故选:D.4.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;故选B.【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.5.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.6.【答案】A【解析】解:由x2+x+m=0知,⇔.(或由△≥0得1﹣4m≥0,∴.),反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件.故选A.【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系.7.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f (0)+f (0)=f (0+0)=f (0), 所以,f (0)=0; 再令y=﹣x ,则f (x )+f (﹣x )=f (0)=0, 所以,f (﹣x )=﹣f (x ), 所以,函数f (x )为奇函数. 又f (3)=4,所以,f (﹣3)=﹣f (3)=﹣4, 所以,f (0)+f (﹣3)=﹣4. 故选:B .【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题.8. 【答案】B【解析】解:由已知|a|=2,|a+2b|2=a 2+4ab+4b 2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B .【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.9. 【答案】D 【解析】试题分析:由题知(1)CB BM CM CB xCA y =-=+-,BA CA CB =-;设B M k B A =,则,1x k y k =-=-,可得1x y +=,当14x y +取最小值时,()141445x yx y x y x y y x⎛⎫+=++=++ ⎪⎝⎭,最小值在4y x x y =时取到,此时21,33y x ==,将()1,CN 2CM xCA yCB CA CB =+=+代入,则()22111233322233x y CM CN xCA yCB CA CB x y +⎛⎫⋅=++⋅=+=+= ⎪⎝⎭.故本题答案选D.考点:1.向量的线性运算;2.基本不等式. 10.【答案】C【解析】解:如图,设A 1C 1∩B 1D 1=O 1,∵B 1D 1⊥A 1O 1,B 1D 1⊥AA 1,∴B 1D 1⊥平面AA 1O 1, 故平面AA 1O 1⊥面AB 1D 1,交线为AO 1,在面AA 1O 1内过B 1作B 1H ⊥AO 1于H , 则易知A 1H 的长即是点A 1到截面AB 1D 1的距离,在Rt △A 1O 1A 中,A 1O 1=,AO 1=3,由A 1O 1•A 1A=h •AO 1,可得A 1H=,故选:C .【点评】本题主要考查了点到平面的距离,同时考查空间想象能力、推理与论证的能力,属于基础题.11.【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x =. 12.【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D .二、填空题13.【答案】 4 .【解析】解:由题意知,满足关系式{2,3}⊆A ⊆{1,2,3,4}的集合A 有:{2,3},{2,3,1},{2,3,4},{2,3,1,4}, 故共有4个, 故答案为:4.14.【答案】 35 .【解析】解:∵2a n =a n ﹣1+a n+1,(n ∈N *,n >1), ∴数列{a n }为等差数列,又a 2+a 8=6,∴2a 5=6,解得:a 5=3, 又a 4a 6=(a 5﹣d )(a 5+d )=9﹣d 2=8, ∴d 2=1,解得:d=1或d=﹣1(舍去) ∴a n =a 5+(n ﹣5)×1=3+(n ﹣5)=n ﹣2. ∴a 1=﹣1, ∴S 10=10a 1+=35.故答案为:35.【点评】本题考查数列的求和,判断出数列{a n }为等差数列,并求得a n =2n ﹣1是关键,考查理解与运算能力,属于中档题.15.【答案】118【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴截面的图形可知:22211(2)()28R R R =-+∴= 16.【答案】 ②③④【解析】解:①函数y=[sinx]是非奇非偶函数;②函数y=[sinx]的周期与y=sinx 的周期相同,故是周期为2π的周期函数; ③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx 不存在零点;④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}. 故答案为:②③④.【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.17.【答案】 (﹣2,﹣6) .【解析】解:向量4,4﹣2,2(﹣),的有向线段首尾相接能构成四边形,则向量=﹣[4+4﹣2+2(﹣)]=﹣(6+4﹣4)=﹣[6(1,﹣3)+4(﹣2,4)﹣4(﹣1,﹣2)]=﹣(2,6)=(﹣2,﹣6),故答案为:(﹣2,﹣6).【点评】本题考查了向量的多边形法则、向量坐标运算、线性运算,考查了计算能力,属于基础题.18.【答案】.【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,∴10a2=5,即a2=,解得a=.故答案为:.【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键.三、解答题19.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).20.【答案】【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3﹣x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a >0设f (x )=a (x ﹣)2+.将点(0,4)代入得:f (0)=,解得:a=1∴f (x )=(x ﹣)2+=x 2﹣3x+4.(2)h (x )=f (x )﹣(2t ﹣3)x =x 2﹣2tx+4=(x ﹣t )2+4﹣t 2,x ∈[0,1].当对称轴x=t ≤0时,h (x )在x=0处取得最小值h (0)=4;当对称轴0<x=t <1时,h (x )在x=t 处取得最小值h (t )=4﹣t 2;当对称轴x=t ≥1时,h (x )在x=1处取得最小值h (1)=1﹣2t+4=﹣2t+5. 综上所述:当t ≤0时,最小值4;当0<t <1时,最小值4﹣t 2;当t ≥1时,最小值﹣2t+5.∴.(3)由已知:f (x )>2x+m 对于x ∈[﹣1,3]恒成立,∴m <x 2﹣5x+4对x ∈[﹣1,3]恒成立,∵g (x )=x 2﹣5x+4在x ∈[﹣1,3]上的最小值为,∴m <.21.【答案】(1)102n a n =-;(2)229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.【解析】试题分析:(1)由2120n n n a a a ++-+=,所以{}n a 是等差数列且18a =,42a =,即可求解数列{}n a 的通项公式;(2)由(1)令0n a =,得5n =,当5n >时,0n a <;当5n =时,0n a =;当5n <时,0n a >,即可分类讨论求解数列n S .当5n ≤时,12||||||n n S a a a =++2129n a a a n n =+++=-∴229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩.1考点:等差数列的通项公式;数列的求和. 22.【答案】【解析】【知识点】垂直平行 【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面. 因为,平面,平面,所以平面.又因为, 所以平面平面.又因为平面, 所以平面.(Ⅱ)证明:因为底面,底面,所以. 又因为,,所以平面. 又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得. 由棱柱中,底面,可得,,又因为, 所以平面,所以. 又因为, 所以平面,所以. 这与四边形为矩形,且矛盾,故直线与平面不垂直.23.【答案】(1)当0a ≤时,函数单调递增区间为()0,+∞,无递减区间,当0a >时,函数单调递增区间为10,a ⎛⎫ ⎪⎝⎭,单调递减区间为1,a ⎛⎫+∞ ⎪⎝⎭;(2)证明见解析. 【解析】试题解析:(2)当2a =-时,()2ln ,0f x x x x x =++>,由()()12120f x f x x x ++=可得22121122ln 0x x x x x x ++++=, 即()()212121212ln x x x x x x x x +++=-,令()12,ln t x x t t t ϕ==-,则()111t t t tϕ-'=-=,则()t ϕ在区间()0,1上单调递减,在区间()1,+∞上单调递增,所以()()11t ϕϕ≥=,所以()()212121x x x x +++≥,又120x x +>,故12x x +≥, 由120,0x x >>可知120x x +>.1考点:函数导数与不等式.【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 24.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.。
2019-2020年高二下学期第二次月考政治试题 含答案(II)
2019-2020年高二下学期第二次月考政治试题含答案(II)一、选择题(本卷共27小题,每小题2分,共计54分。
在每小题列出的四个选项中,只有一项是最符合题目要求的)1.英国著名物理学家斯蒂芬•霍金在《伟大没汁》中表示:宇宙并非上帝所造,现代科学可以解释宇宙的起源。
这段话的哲学寓意是①世界的本原是物质②宇宙起源于现代科学③客观实在性是物质的根本属性④人类能够能动地认识世界A.①② B.③④ C.①④ D.②③2.从畏惧自然到征服自然,进而认识到要善待自然、与自然和谐相处,千百年来人对自然态度的变化告诉我们①人对自然的认识在曲折中逐步深化②人与自然的矛盾有个逐步展开的过程③人与自然的关系是先对立后统一④人类终究无法把握无限的自然A.①② B.③④ C.②③ D.①③3.xx年11月29日,中共中央总书记习近平在讲话中强调:“空谈误国,实干兴邦”。
从辩证唯物论角度看,这句话主要体现了A.意识有利于促进事物的发展 B.实践决定认识C.矛盾具有特殊性,要具体问题具体分析 D.物质决定意识,一切从实际出发4.幸福是人们对生活满意度的一种主观感受。
吃饱后,有人感到很幸福,有人觉得很平常、不幸福。
这说明①意识受客观条件的制约②意识受主观因素的制约③意识具有能动性④意识对客观事物具有促进作用A.①④ B.①③C.②③ D.③④5.右边的漫画《不按套路》给我们的哲学启示是A.要尊重知识,尊重权威B.要与时俱进,反对传统C.要实践第一,追求真理D.要解放思想,不断创新6.位于印度洋的马尔代夫被誉为“人间最后的乐园”,然而全球变暖正让这个“天堂岛国”面临着失去乐园的危机。
全球气候变暖造成海水上升,威胁到马尔代夫的生死存亡。
这表明①任何两个事物之间都存在原因和结果的联系②事物总是处在引起和被引起的链条之中③任何两个事物之间都是互为因果的④原因和结果在一定条件下可以相互转化A.②④ B.②③ C.①④ D.①②7.“一着不慎,满盘皆输”主要说明A.部分离不开整体,整体具有部分所没有的功能B.量变必然引起质变C.在一定条件下关键部分的性能会对整体的性能状态起决定作用D.质变是量变的必然结果8.xx年3月3日下午,全国政协第十一届五次会议在人民大会堂开幕。
黑龙江省哈师大附中2019届最新高三10月月考化学试题(含答案)
哈师大附中2019级高三第二次月考化学试卷命题人:曹崇丽审题人:唐海燕可能用到的相对原子质量:Cu 64Zn 65一、选择题(每小题只有一个选项符合题意)1.对于可逆反应2A+3B 2C ;ΔH<0,下列条件的改变一定可以加快正反应速率的是()A.增加压强B.升高温度C.增加A 的量D.加入二氧化锰作催化剂2.下列溶液一定呈中性的是()A .c(H +)=c(OH -)=10-6mol·L -1的溶液B .pH =7的溶液C .使石蕊试液呈紫色的溶液D .酸与碱恰好完全反应生成正盐的溶液3.如图所示,能表示人体大量喝水时,胃液的pH 变化的图象是()4.下列各项正确的是()电极反应式出现环境AO 2+2H 2O+4e —=4OH —碱性环境下氢氧燃料电池的负极反应B4OH ——4e —=O 2↑+2H 2O 弱酸性环境下钢铁的吸氧腐蚀的正极C2H ++2e —=H 2↑用Cu 作电极电解NaOH 溶液的阴极反应D H 2—2e —=2H +用惰性电极电解H 2SO 4的阴极反应理为:(1)HUr+H 2O Ur -+H 3O +(2)Ur -+Na +NaUr (s )下列对反应(2)叙述:①正反应为吸热反应②正反应为放热反应③升高温度平衡向正反应方向移动④降低温度平衡向正反应方向移动。
其中正确的是()A.①③B.②③C.①④D.②④6.下列有关实验的叙述正确的是()A .浓硝酸可保存在带橡皮塞的棕色细口瓶中B .用pH 试纸测定溶液pH 时,pH 试纸应事先润湿C .配制一定物质的量浓度的溶液时,选用的容量瓶规格由需配制的溶液体积决定D .中和滴定时,为了使滴定终点溶液颜色变化明显,可多滴几滴指示剂7.下列有关电解的说法正确的是()A .用惰性电极电解饱和食盐水初期,只需在溶液中加入适量的盐酸即可恢复至原溶液B .工业上用电解熔融的氯化镁冶炼镁,也可采用电解熔融的氯化铝冶炼铝C .工业用电解法进行粗铜精炼时,每转移1mol 电子,阳极上就溶解0.5N A 个铜原子D .用惰性电极电解CuSO 4溶液,有可能发生Cu 2++2H 2O Cu+H 2↑+O 2↑+2H +8.如右图所示,将两烧杯中电极用导线相连,四个电极分别为Mg 、Al 、Pt 、C 。
高三第二次月考测试(语文)试题含答案
高三第二次月考测试(语文)(考试总分:150 分)一、现代文阅读(本题共计3小题,总分36分)1.(9分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1-3题。
院落是中国古代建筑群体布局的精神内核,它是由屋宇、围墙、走廊围合而成的内向性封闭空间。
从夏代的宫殿遗址中,可以看出当时的建筑就已经呈现出一种封闭庭院的面貌。
在夏代至商代早期这种形式就开始走向定型,一直到明清时期大到皇家宫殿、寺庙、小至百姓住宅,大多采用这种几乎唯一的形式。
中国传统建筑院落的形式结构,蛰伏着封建儒家思想的灵魂。
而占中国传统文化主流的儒家思想的根基在于“礼”。
“礼者,天地之序也。
”儒家不但强调礼,而且重视“乐”,主张“礼乐”并举。
体现在建筑上,“礼乐”秩序要求建筑空间寄寓伦理,利用差序格局来分尊卑关系,方位上讲究主从关系。
建筑围合的“院”是“乐”的艺术升华。
这里,建筑是“礼”,庭院是“乐”,二者相得益彰。
合院作为集合体,对内是封闭的、凝聚的,对外是排斥的、抗拒的。
人们对外界的流动性降到最低,而这种以院落为中心组合起来的建筑满足了一个家族共居生活的各种功能需求,并且分区明确,就仿佛是一个微型的宇宙,万事俱备、伦理有序。
传统院落式建筑符合当时的人们的生活习惯。
因此,以“家庭”为单位对外封闭的中国合院格局,是这种传统的居住习惯与建筑形式相结合的产物。
行为心理学表明,人类对自身所处环境范围内进行限定是一种心理需求。
中国传统合院建筑是以高墙围合起的建筑空间,与外界隔绝,阻断了外界的喧嚣,营造出宁静、安全、洁净、私密、休憩、愉快、生态、景观的生活环境。
同时也是一种能够提供明确、稳定的空间环境,给人心理以充分安全感和领域感的空间形态。
所以说,它不仅是人们组织生活起居的核心空间,也成为人们在居住空间内与天与自然对话的场所。
虽然在中国传统建筑中,由房屋或围墙围合而造成了封闭性,但这只是一种在形式上的现象,实际上这种围合反而增加了院落建筑内部的许多情趣。
保德县高级中学2018-2019学年高二上学期第二次月考试卷数学
保德县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)2. 已知双曲线的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .(1,2]B .(1,2)C .[2,+∞)D .(2,+∞)3. 与圆C 1:x 2+y 2﹣6x+4y+12=0,C 2:x 2+y 2﹣14x ﹣2y+14=0都相切的直线有( ) A .1条 B .2条 C .3条 D .4条4. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .37 5. 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )A .B .C .D .6. lgx ,lgy ,lgz 成等差数列是由y 2=zx 成立的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件7. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)8. 已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<-C、(11)(80)(25)f f f<<-D、(25)(80)(11)f f f-<<9.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y,则()A.x=﹣B.x=C.x=﹣D.x=10.在等差数列{}n a中,11a=,公差0d≠,nS为{}n a的前n项和.若向量13(,)m a a=,133(,)n a a=-,且0m n?,则2163nnSa++的最小值为()A.4B.3C.232-D.92【命题意图】本题考查等差数列的性质,等差数列的前n项和,向量的数量积,基本不等式等基础知识,意在考查学生的学生运算能力,观察分析,解决问题的能力.11.△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,则=()A.B.C.D.±12.已知正三棱柱111ABC A B C-的底面边长为4cm,高为10cm,则一质点自点A出发,沿着三棱柱的侧面,绕行两周到达点1A的最短路线的长为()A.16cm B.123cm C.243cm D.26cm 二、填空题13.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .14.平面向量,满足|2﹣|=1,|﹣2|=1,则的取值范围 .15.已知角α终边上一点为P (﹣1,2),则值等于 .16.设f (x )是定义在R 上且周期为2的函数,在区间[﹣1,1]上,f (x )=其中a ,b ∈R.若=,则a+3b 的值为 .17.设R m ∈,实数x ,y 满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若182≤+y x ,则实数m 的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力.18.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .三、解答题19.某校举办学生综合素质大赛,对该校学生进行综合素质测试,学校对测试成绩(10分制)大于或等于7.5B 两班中各随机抽5名学生进行抽查,其成绩记录如下:x <y ,且A 和B 两班被抽查的5名学生成绩的平均值相等,方差也相等.(Ⅰ)若从B 班被抽查的5名学生中任抽取2名学生,求被抽取2学生成绩都颁发了荣誉证书的概率; (Ⅱ)从被抽查的10名任取3名,X 表示抽取的学生中获得荣誉证书的人数,求X 的期望.20.设函数f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=﹣f(x),当x∈[0,2]时,f(x)=2x﹣x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式;(3)求f(0)+f(1)+f(2)+…+f(2015)的值.21.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2(1)求a,b的值;(2)设函数g(x)=f(x)﹣2x+2,求g(x)在其定义域上的最值.22.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.23.(本小题满分14分)设函数2()1cos f x ax bx x =++-,0,2x π⎡⎤∈⎢⎥⎣⎦(其中a ,b R ∈).(1)若0a =,12b =-,求()f x 的单调区间; (2)若0b =,讨论函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上零点的个数.【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.24.某小区在一次对20岁以上居民节能意识的问卷调查中,随机抽取了100份问卷进行统计,得到相关的数(2)据了解到,全小区节能意识强的人共有350人,估计这350人中,年龄大于50岁的有多少人? (3)按年龄分层抽样,从节能意识强的居民中抽5人,再从这5人中任取2人,求恰有1人年龄在20至50岁的概率.保德县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.2.【答案】C【解析】解:已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e2=,∴e≥2,故选C【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.3.【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数.【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,;;∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.∴两圆的圆心距=r2﹣r1;∴两个圆外切,∴它们只有1条内公切线,2条外公切线.故选C.4.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.5.【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.6.【答案】A【解析】解:lgx,lgy,lgz成等差数列,∴2lgy=lgx•lgz,即y2=zx,∴充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A.【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题.7. 【答案】A 【解析】解:复数Z===(1+2i )(1﹣i )=3+i 在复平面内对应点的坐标是(3,1).故选:A .【点评】本题考查了复数的运算法则、几何意义,属于基础题.8. 【答案】D【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,(11)(3)(14)(1)(1)f f f f f ==-+=--=,又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D. 9. 【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x +y,∴x=﹣,y=, 故选:A .【点评】本题考查了空间向量的应用问题,是基础题目.10.【答案】A【解析】11.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.12.【答案】D【解析】考点:多面体的表面上最短距离问题.【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题.二、填空题13.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).14.【答案】[,1].【解析】解:设两个向量的夹角为θ,因为|2﹣|=1,|﹣2|=1,所以,,所以,=所以5=1,所以,所以5a2﹣1∈[],[,1],所以;故答案为:[,1].【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围.15.【答案】.【解析】解:角α终边上一点为P(﹣1,2),所以tanα=﹣2.===﹣.故答案为:﹣.【点评】本题考查二倍角的正切函数,三角函数的定义的应用,考查计算能力.16.【答案】﹣10.【解析】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10..17.【答案】[3,6]【解析】18.【答案】 【解析】试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:2222221111222111sin sin sin BC DC AC AC AC AC αβγ++=++2221212()2AB AD AA AC ++==.考点:直线与直线所成的角.【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键.三、解答题19.【答案】 【解析】解:(Ⅰ)∵(7+7+7.5+9+9.5)=8,=(6+x+8.5+8.5+y ),∵,∴x+y=17,①∵,=,∵,得(x﹣8)2+(y﹣8)2=1,②由①②解得或,∵x<y,∴x=8,y=9,记“2名学生都颁发了荣誉证书”为事件C,则事件C包含个基本事件,共有个基本事件,∴P(C)=,即2名学生颁发了荣誉证书的概率为.(Ⅱ)由题意知X所有可能的取值为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,EX==.【点评】本题考查概率的求法,考查离散型随机变量的方差的求法,是中档题,解题时要认真审题,注意平均值和方差的计算和应用.20.【答案】【解析】(1)证明:∵f(x+2)=﹣f(x),∴f(x+4)=f[(x+2)+2]=﹣f(x+2)=f(x),∴y=f(x)是周期函数,且T=4是其一个周期.(2)令x∈[﹣2,0],则﹣x∈[0,2],∴f(﹣x)=﹣2x﹣x2,又f(﹣x)=﹣f(x),∴在x∈[﹣2,0],f(x)=2x+x2,∴x∈[2,4],那么x﹣4∈[﹣2,0],那么f(x﹣4)=2(x﹣4)+(x﹣4)2=x2﹣6x+8,由于f(x)的周期是4,所以f(x)=f(x﹣4)=x2﹣6x+8,∴当x∈[2,4]时,f(x)=x2﹣6x+8.(3)当x∈[0,2]时,f(x)=2x﹣x2.∴f(0)=0,f(1)=1,当x∈[2,4]时,f(x)=x2﹣6x+8,∴f(2)=0,f(3)=﹣1,f(4)=0∴f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,∵y=f(x)是周期函数,且T=4是其一个周期.∴2016=4×504∴f(0)+f(1)+f(2)+…+f(2015)=504×[f(0)+f(1)+f(2)+f(3)]=504×0=0,即求f(0)+f(1)+f(2)+…+f(2015)=0.【点评】本题主要考查函数周期性的判断,函数奇偶性的应用,综合考查函数性质的应用.21.【答案】【解析】解:(1)f(x)=x+ax2+blnx的导数f′(x)=1+2a+(x>0),由题意可得f(1)=1+a=0,f′(1)=1+2a+b=2,得;(2)证明:f(x)=x﹣x2+3lnx,g(x)=f(x)﹣2x+2=3lnx﹣x2﹣x+2(x>0),g′(x)=﹣2x﹣1=﹣,可得g(x)max=g(1)=﹣1﹣1+2=0,无最小值.22.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x ﹣4y ﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3), ∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y 2=16x 或x 2=﹣12y .【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.23.【答案】【解析】(1)∵0a =,12b =-, ∴1()1cos 2f x x x =-+-,1()sin 2f x x '=-+,0,2x π⎡⎤∈⎢⎥⎣⎦. (2分) 令()0f x '=,得6x π=.当06x π<<时,()0f x '<,当62x ππ<<时,()0f x '>,所以()f x 的单调增区间是,62ππ⎡⎤⎢⎥⎣⎦,单调减区间是0,6π⎡⎤⎢⎥⎣⎦. (5分)若112a -<<-π,则()102f a π'=π+<,又()(0)0f f θ''>=,由零点存在定理,00,2θπ⎛⎫∃∈ ⎪⎝⎭,使0()0f θ'=,所以()f x 在0(0,)θ上单调增,在0,2θπ⎛⎫⎪⎝⎭上单调减.又(0)0f =,2()124f a ππ=+. 故当2142a -<≤-π时,2()1024f a ππ=+≤,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; 当241a -<<-ππ时,2()1024f a ππ=+>,此时()f x 在0,2π⎡⎤⎢⎥⎣⎦上只有一个零点.24.【答案】【解析】解(1)因为20至50岁的54人有9人节能意识强,大于50岁的46人有36人节能意识强,与相差较大,所以节能意识强弱与年龄有关(2)由数据可估计在节能意识强的人中,年龄大于50岁的概率约为∴年龄大于50岁的约有(人)(3)抽取节能意识强的5人中,年龄在20至50岁的(人),年龄大于50岁的5﹣1=4人,记这5人分别为a,B1,B2,B3,B4.从这5人中任取2人,共有10种不同取法:(a,B1),(a,B2),(a,B3),(a,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4),设A表示随机事件“这5人中任取2人,恰有1人年龄在20至50岁”,则A中的基本事件有4种:(a,B1),(a,B2),(a,B3),(a,B4)故所求概率为。
隆尧县第四中学校2018-2019学年高二上学期第二次月考试卷数学(1)
隆尧县第四中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.下列说法中正确的是()A.三点确定一个平面B.两条直线确定一个平面C.两两相交的三条直线一定在同一平面内D.过同一点的三条直线不一定在同一平面内2.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题3.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4)D.(1,4)4.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法5.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.AC⊥BEB.EF∥平面ABCDC.三棱锥A﹣BEF的体积为定值D.异面直线AE,BF所成的角为定值6.已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为()A .24B .80C .64D .2407. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22ABC AA BC BAC π=∠=,,,此三棱柱各个顶点都在一个球面上,则球的体积为( ) A .323π B .16π C.253π D .312π8. 若,,且,则λ与μ的值分别为( )A .B .5,2C .D .﹣5,﹣29. 若命题“p ∧q ”为假,且“¬q ”为假,则( ) A .“p ∨q ”为假B .p 假C .p 真D .不能判断q 的真假10.定义运算,例如.若已知,则=( )A .B .C .D .11.已知实数x ,y 满足,则目标函数z=x ﹣y 的最小值为( )A .﹣2B .5C .6D .712.关于x 的方程ax 2+2x ﹣1=0至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .﹣1≤a <0C .a >0或﹣1<a <0D .a ≥﹣1二、填空题13.数列{ a n }中,a 1=2,a n +1=a n +c (c 为常数),{a n }的前10项和为S 10=200,则c =________. 14.袋中装有6个不同的红球和4个不同的白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次摸出的也是红球的概率为 .15.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想. 16.函数f (x )=﹣2ax+2a+1的图象经过四个象限的充要条件是 .17.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .18.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.三、解答题19.在长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 为BB 1中点. (Ⅰ)证明:AC ⊥D 1E ;(Ⅱ)求DE 与平面AD 1E 所成角的正弦值;(Ⅲ)在棱AD 上是否存在一点P ,使得BP ∥平面AD 1E ?若存在,求DP 的长;若不存在,说明理由.20.已知f (x )是定义在R 上的奇函数,当x <0时,f (x )=()x . (1)求当x >0时f (x )的解析式;1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.21.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=(1)求证{b n}为等比数列.(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.22.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;Ⅱ商店记录了50天该商品的日需求量单位:件,整理得下表:,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.23.已知f(x)=x2+ax+a(a≤2,x∈R),g(x)=e x,φ(x)=.(Ⅰ)当a=1时,求φ(x)的单调区间;(Ⅱ)求φ(x)在x∈[1,+∞)是递减的,求实数a的取值范围;(Ⅲ)是否存在实数a,使φ(x)的极大值为3?若存在,求a的值;若不存在,请说明理由.24.在△ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB.(1)求B;(2)若b=2,求△ABC面积的最大值.隆尧县第四中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确.故选:D.2.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.3.【答案】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.4.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.5. 【答案】 D【解析】解:∵在正方体中,AC ⊥BD ,∴AC ⊥平面B 1D 1DB ,BE ⊂平面B 1D 1DB ,∴AC ⊥BE ,故A 正确; ∵平面ABCD ∥平面A 1B 1C 1D 1,EF ⊂平面A 1B 1C 1D 1,∴EF ∥平面ABCD ,故B 正确;∵EF=,∴△BEF 的面积为定值×EF ×1=,又AC ⊥平面BDD 1B 1,∴AO 为棱锥A ﹣BEF 的高,∴三棱锥A ﹣BEF 的体积为定值,故C 正确;∵利用图形设异面直线所成的角为α,当E 与D 1重合时sin α=,α=30°;当F 与B 1重合时tan α=,∴异面直线AE 、BF 所成的角不是定值,故D 错误; 故选D .6. 【答案】B 【解析】 试题分析:8058631=⨯⨯⨯=V ,故选B. 考点:1.三视图;2.几何体的体积. 7. 【答案】A 【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8.【答案】A【解析】解:由,得.又,,∴,解得.故选:A.【点评】本题考查了平行向量与共线向量,考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化,该题是基础题.9.【答案】B【解析】解:∵命题“p∧q”为假,且“¬q”为假,∴q为真,p为假;则p∨q为真,故选B.【点评】本题考查了复合命题的真假性的判断,属于基础题.10.【答案】D【解析】解:由新定义可得,====.故选:D.【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题.11.【答案】A【解析】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.12.【答案】D【解析】解:(1)当a=0时,方程是2x ﹣1=0,可知有一个正实根.(2)当a ≠0,当关于x 的方程ax 2+2x ﹣1=0有实根,△≥0,解可得a ≥﹣1;①当关于x 的方程ax 2+2x ﹣1=0有一个正实根,有﹣<0,解可得a >0;②当关于x 的方程ax 2+2x ﹣1=0有二个正实根,有,解可得a <0;,综上可得,a ≥﹣1; 故选D .【点评】本题主要考查一个一元二次根的分布问题,属于中档题.在二次项系数不确定的情况下,注意一定要分二次项系数分为0和不为0两种情况讨论.二、填空题13.【答案】【解析】解析:由a 1=2,a n +1=a n +c ,知数列{a n }是以2为首项,公差为c 的等差数列,由S 10=200得 10×2+10×92×c =200,∴c =4.答案:414.【答案】.【解析】解:方法一:由题意,第1次摸出红球,由于不放回,所以袋中还有5个不同的红球和4个不同的白球故在第1次摸出红球的条件下,第2次摸出的也是红球的概率为=,方法二:先求出“第一次摸到红球”的概率为:P 1=,设“在第一次摸出红球的条件下,第二次也摸到红球”的概率是P 2再求“第一次摸到红球且第二次也摸到红球”的概率为P==,根据条件概率公式,得:P 2==,故答案为:【点评】本题考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键.15.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.16.【答案】﹣.【解析】解:∵f(x)=﹣2ax+2a+1,∴求导数,得f′(x)=a(x﹣1)(x+2).①a=0时,f(x)=1,不符合题意;②若a>0,则当x<﹣2或x>1时,f′(x)>0;当﹣2<x<1时,f′(x)<0,∴f(x)在(﹣2,1)是为减函数,在(﹣∞,﹣2)、(1,+∞)上为增函数;③若a<0,则当x<﹣2或x>1时,f′(x)<0;当﹣2<x<1时,f′(x)>0,∴f(x)在(﹣2,1)是为增函数,在(﹣∞,﹣2)、(1,+∞)上为减函数因此,若函数的图象经过四个象限,必须有f(﹣2)f(1)<0,即()()<0,解之得﹣.故答案为:﹣【点评】本题主要考查了利用导数研究函数的单调性与极值、函数的图象、充要条件的判断等知识,属于基础题.17.【答案】60°.【解析】解:∵|﹣|=,∴∴=3,∴cos<>==∵∴与的夹角为60°.故答案为:60°【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.18.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,三、解答题19.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.20.【答案】【解析】解:(1)若x>0,则﹣x<0…(1分)∵当x<0时,f(x)=()x.∴f(﹣x)=()﹣x.∵f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴f(x)=﹣()﹣x=﹣2x.…(4分)(2)∵(x)是定义在R上的奇函数,∴当x=0时,f(x)=0,∴f(x)=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.21.【答案】【解析】(1)证明:设{a n}中首项为a1,公差为d.∵lga1,lga2,lga4成等差数列,∴2lga2=lga1+lga4,∴a22=a1a4.即(a1+d)2=a1(a1+3d),∴d=0或d=a1.当d=0时,a n=a1,b n==,∴=1,∴{b n}为等比数列;当d=a1时,a n=na1,b n==,∴=,∴{b n}为等比数列.综上可知{b n}为等比数列.(2)解:当d=0时,S3==,所以a1=;当d=a1时,S3==,故a1=3=d.【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆.22.【答案】【解析】:Ⅰ当日需求量10n ≥时,利润为5010(10)3030200y n n =⨯+-⨯=+; 当需求量10n <时,利润50(10)1060100y n n n =⨯--⨯=-. 所以利润y 与日需求量n 的函数关系式为:30200,10,60100,10,n n n Ny n n n N+≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯= ② 若利润在区间[400,550]内的概率为111510185025P ++==23.【答案】【解析】解:(I )当a=1时,φ(x )=(x 2+x+1)e ﹣x .φ′(x )=e ﹣x (﹣x 2+x ) 当φ′(x )>0时,0<x <1;当φ′(x )<0时,x >1或x <0∴φ(x )单调减区间为(﹣∞,0),(1,+∞),单调增区间为(0,1);(II )φ′(x )=e ﹣x [﹣x 2+(2﹣a )x]∵φ(x )在x ∈[1,+∞)是递减的, ∴φ′(x )≤0在x ∈[1,+∞)恒成立,∴﹣x 2+(2﹣a )x ≤0在x ∈[1,+∞)恒成立,∴2﹣a ≤x 在x ∈[1,+∞)恒成立, ∴2﹣a ≤1 ∴a ≥1∵a ≤2,1≤a ≤2;(III )φ′(x )=(2x+a )e ﹣x ﹣e ﹣x (x 2+ax+a )=e ﹣x [﹣x 2+(2﹣a )x]令φ′(x )=0,得x=0或x=2﹣a :由表可知,φ(x )极大=φ(2﹣a )=(4﹣a )e a ﹣2设μ(a )=(4﹣a )e a ﹣2,μ′(a )=(3﹣a )e a ﹣2>0,∴μ(a )在(﹣∞,2)上是增函数,∴μ(a )≤μ(2)=2<3,即(4﹣a )e a ﹣2≠3,∴不存在实数a ,使φ(x )极大值为3.24.【答案】【解析】(本小题满分12分)解:(1)∵bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,∴B=…(2)△ABC的面积.由已知及余弦定理,得.又a2+c2≥2ac,故ac≤4,当且仅当a=c时,等号成立.因此△ABC面积的最大值为…。
2019学年高一下学期第二次月考数学试题
一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的未命名1.已知是第二象限角,则点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:由题意结合角的范围首先确定的符号,然后确定点P所在象限即可.详解:是第二象限角,则,据此可得:点在第四象限.本题选择D选项.点睛:本题主要考查象限角的三角函数符号问题,意在考查学生的转化能力和计算求解能力.2.已知向量,,若∥,则锐角为( )A. B. C. D.【答案】C【解析】∵,∥,∴,又为锐角,∴。
选C。
3.已知,,则可以表示为()A. B. C. D.【答案】B【解析】已知,,则可以表示为,故选B.4.设,,,则()A. B. C. D.【答案】B【解析】分析:利用三角函数的诱导公式,结合三角函数的单调性进行比较即可.详解:sin=cos(﹣)=cos(﹣)=cos,而函数y=cosx在(0,π)上为减函数,则1>cos>cos>0,即0<a<b<1,tan>tan=1,即,故选:B.点睛:本题主要考查三角函数值的大小比较,利用三角函数的诱导公式,结合三角函数的单调性是解决本题的关键.5.已知,,且,则()A. -2B. 2C.D.【答案】A【解析】【分析】观察角之间的关系,拆角,,利用差角公式展开,可以求得.【详解】因为sin,,所以;又所以,,,故选A.【点睛】本题主要考查三角恒等变换,一般求解思路是先观察已知角和所求角的关系,再利用三角恒等变换公式求解.注意积累常见的拆角方法.6.在边长为2的正方形ABCD,E为CD的中点,则=()A. B. C. -1 D. 1【答案】D【解析】【分析】建立平面直角坐标系,利用平面向量的坐标运算,可以求得结果.【详解】以为坐标原点,建系如图:,则,,所以,故选D.【点睛】平面向量运算有两种方式:坐标运算和基底运算,坐标运算能极大减少运算量,是我们优先选用的方式.7.将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数的图象,则函数的单调递减区间是()A. B.C. D.【答案】C【解析】试题分析:由题意得,图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再把图象上所有的点向右平移个单位,,由,则,故选C.考点:1.三角函数的拉伸变换;2.三角函数的平移变换;3.三角函数的单调性.8.已知x∈[0,π],f(x)=sin(cos x)的最大值为a,最小值为b,g(x)=cos(sin x)的最大值为c,最小值为d,则( )A. b<d<a<cB. d<b<c<aC. b<d<c<aD. d<b<a<c【答案】A【解析】,又,则则b<d<a<c9.已知是边长为2的正三角形,,分别是边和上两动点,且满足,设的最小值和最大值分别为和,则()A. B. C. D.【答案】B【解析】设时,,同理,,当时,或时,,,故选B.10.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:,,则这两个声波合成后(即)的声波的振幅为()A. B. C. D.【答案】D【解析】因为,,所以. 则函数振幅为.故选D.11.函数的图像如图所示,A为图像与x轴的交点,过点A的直线与函数的图像交于C、B两点.则()A. -8B. -4C. 4D. 8【答案】D【解析】试题分析:因为函数可化为,所对称中心是.所以A 点的坐标是(2,0).因为A点是对称中心,所以点A是线段BC的中点,所以.所以.故选D.考点:1.正切函数的诱导公式.2.函数的对称性.3.向量的加法.4.向量的数量积.12.已知函数, 则的值为()A. B. C. D.【答案】D【解析】试题分析:若时,即时,有,即恒有,且,则,故选:D.考点:函数的性质.【思路点睛】本题主要考查函数值的计算,根据条件得到函数取值的规律性是解决本题的关键.根据式子特点,判断当时,,且,由此可知,由此即可得到结论.二、填空题:本题共4小题,每小题5分13.若函数,则f(x)的值域为___________.【答案】[,1].【解析】函数f(x)=sinπx,∵x∈[,],∴,结合正弦函数的图象可知sin xπ≤1.即f(x)的值域为[,1],故答案为:[,1].14.设平面向量,,若与的夹角为钝角,则的取值范围是__________.【答案】【解析】分析:两个向量在不共线的条件下,夹角为钝角的充要条件是它们的数量积小于零,由此列出不等式组,再解出这个不等式组,所得解集即为实数的取值范围.详解:由题意,可得且,所以且,故实数的取值范围为,故答案为.点睛:该题考查的是利用向量数量积的定义式得到向量夹角为钝角的条件,即为向量的数量积小于零,但是需要注意的是,向量数量积小于零时,还包括了反向共线的时候,所以注意对反向共线这种情况要排除.15.下列说法中,所有正确说法的序号是______________.①终边在轴上的角的集合是;②函数在第一象限是增函数;③函数的最小正周期是;④把函数的图象向右平移个单位长度得到函数的图象.【答案】③④【解析】【分析】综合三角函数的性质特征,结合图像变换得出结论.【详解】对于①,当时,,终边在轴上,所以不对;对于②,,而,所以不对;对于③,,周期为,所以正确;对于④,把函数的图象向右平移个单位长度得到的图像,所以正确.【点睛】本题综合考查了三角函数的性质及图像变换,周期的求解一般先化简目标式,利用周期公式求解;图像变换需要注意自变量的系数的影响,避免错误.16.在中,,满足的实数的取值范围是_________.【答案】【解析】中,,即则;∴由|得:整理得:解得∴实数的取值范围是.故答案为.三、解答题:解答应写出文字说明或演算步骤17.设,满足.(1)求的夹角;(2)求【答案】(1).(2).【解析】试题分析:(1)根据(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,可得a·b=,再根据数量积的定义可求出cos θ=,进而得到夹角.(2)先求(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,从而得到|3a+b|=.(1)设a与b夹角为θ,(3a-2b)2=7,9|a|2+4|b|2-12a·b=7,而|a|=|b|=1,∴a·b=,∴|a||b|cos θ=,即cos θ=又θ∈[0,π],∴a,b所成的角为.(2)(3a+b)2=9|a|2+6a·b+|b|2=9+3+1=13,∴|3a+b|=..考点:考查了向量的数量积,以及利用数量积求模,夹角等知识.点评:掌握数量积的定义:,求模可利用:来求解.18.已知函数的部分图像如图.(1)求函数的解析式.(2)求函数在区间上的最值,并求出相应的值.【答案】(1);(2),.【解析】试题分析:(1)根据图像得到,,,从而得到解析式;(2)根据第一问得到的表达式知,结合三角函数的图像可得到最值.解析:()由图像可知,又,故.周期,又,∴.∴,,,..(),,∴,.当时,,.当时,,.所以,.点睛:已知函数的图象求解析式:(1);(2)由函数的周期求;(3)利用“五点法”中相对应的特殊点求.19.作出函数y=tan x+|tan x|的图象,并求其定义域、值域、单调区间及最小正周期.【答案】见解析【解析】试题分析:化简函数的解析式可得,画出函数的图象,根据图象解答问题即可.试题解析:由题意得,画出函数的图象如图所示,由图象可知,函数的定义域是 (k∈Z);值域是[0,+∞);单调递增区间是(k∈Z);最小正周期T=π.视频20.在平面直角坐标系中,已知向量.(1)若,求的值;(2)若与的夹角为,求的值.【答案】(1)1;(2)【解析】试题分析:(1)本题考察的是两向量的垂直问题,若两向量垂直,则数量积为0,,则,结合三角函数的关系式即可求出的值。
永寿县高级中学2018-2019学年高二上学期第二次月考试卷数学
永寿县高级中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥12. 下列四个命题中的真命题是( )A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .经过任意两个不同点()111,P x y 、()222,P x y 的直线都可以用方程()()()()121121y y x x x x y y --=-- 表示C .不经过原点的直线都可以用方程1x ya b+=表示 D .经过定点()0,A b 的直线都可以用方程y kx b =+表示3. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .44. 下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5 C .3.50.3<3.40.3 D .log 76<log 675. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D26. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 8007. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π8. 已知圆M 过定点)1,0(且圆心M 在抛物线y x 22=上运动,若x 轴截圆M 所得的弦为||PQ ,则弦长||PQ 等于( )A .2B .3C .4D .与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.9. 已知全集U R =,{|239}x A x =<≤,{|02}B y y =<≤,则有( ) A .A ØB B .AB B =C .()R A B ≠∅ðD .()R A B R =ð10.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π11.设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )A .5B .C .D .12.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .akmB .akmC .2akmD .akm二、填空题13.已知函数f (x )是定义在R 上的单调函数,且满足对任意的实数x 都有f[f (x )﹣2x ]=6,则f (x )+f (﹣x )的最小值等于 .14.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.15.若双曲线的方程为4x 2﹣9y 2=36,则其实轴长为 .16.设变量x ,y 满足约束条件,则的最小值为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】函数()2ln f x x x =-的单调递增区间为__________. 18.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).三、解答题19.已知数列{a n }满足a 1=a ,a n+1=(n ∈N *).(1)求a 2,a 3,a 4;(2)猜测数列{a n }的通项公式,并用数学归纳法证明.20.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD=60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF=3,H 是CF 的中点. (1)求证:AC ⊥平面BDEF ; (2)求二面角H ﹣BD ﹣C 的大小.21.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.22.在直角坐标系xOy中,以原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1的直角坐标方程与曲线C2的普通方程;(Ⅱ)试判断曲线C1与C2是否存在两个交点?若存在,求出两交点间的距离;若不存在,说明理由.23.(本小题满分12分)某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:(1率分布直方图.(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.24.已知△ABC的顶点A(3,1),B(﹣1,3)C(2,﹣1)求:(1)AB边上的中线所在的直线方程;(2)AC边上的高BH所在的直线方程.永寿县高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:命题是特称命题,则命题的否定是∀x∈R,都有x≤﹣1或x≥1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.2.【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.111] 3.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.4.【答案】D【解析】解:对于A:设函数y=log0.4x,则此函数单调递减∴log0.44>log0.46∴A选项不成立对于B :设函数y=1.01x,则此函数单调递增∴1.013.4<1.013.5∴B 选项不成立对于C :设函数y=x 0.3,则此函数单调递增∴3.50.3>3.40.3∴C 选项不成立对于D :设函数f (x )=log 7x ,g (x )=log 6x ,则这两个函数都单调递增∴log 76<log 77=1<log 67∴D 选项成立 故选D5. 【答案】C【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 6. 【答案】A 【解析】P (X ≤90)=P (X ≥110)=110,P (90≤X ≤110)=1-15=45,P (100≤X ≤110)=25,1000×25=400. 故选A.7. 【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B .【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.8. 【答案】A【解析】过M 作MN 垂直于x 轴于N ,设),(00y x M ,则)0,(0x N ,在MNQ Rt ∆中,0||y MN =,MQ 为圆的半径,NQ 为PQ 的一半,因此2222222200000||4||4(||||)4[(1)]4(21)PQ NQ MQ MN x y y x y ==-=+--=-+又点M 在抛物线上,∴0202y x =,∴2200||4(21)4PQ x y =-+=,∴2||=PQ .9. 【答案】A【解析】解析:本题考查集合的关系与运算,3(log 2,2]A =,(0,2]B =,∵3log 20>,∴A ØB ,选A . 10.【答案】C【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.11.【答案】C【解析】解:∵双曲线焦点在y 轴上,故两条渐近线为 y=±x ,又已知渐近线为,∴ =,b=2a ,故双曲线离心率e====,故选C .【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.12.【答案】D【解析】解:根据题意,△ABC 中,∠ACB=180°﹣20°﹣40°=120°,∵AC=BC=akm ,∴由余弦定理,得cos120°=,解之得AB=akm ,即灯塔A 与灯塔B 的距离为akm ,故选:D .【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离.着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题.二、填空题13.【答案】6.【解析】解:根据题意可知:f(x)﹣2x是一个固定的数,记为a,则f(a)=6,∴f(x)﹣2x=a,即f(x)=a+2x,∴当x=a时,又∵a+2a=6,∴a=2,∴f(x)=2+2x,∴f(x)+f(﹣x)=2+2x+2+2﹣x=2x+2﹣x+4≥2+4=6,当且仅当x=0时成立,∴f(x)+f(﹣x)的最小值等于6,故答案为:6.【点评】本题考查函数的最值,考查运算求解能力,注意解题方法的积累,属于中档题.14.【答案】4【解析】解:由PA⊥平面ABC,则△PAC,△PAB是直角三角形,又由已知△ABC是直角三角形,∠ACB=90°所以BC⊥AC,从而易得BC⊥平面PAC,所以BC⊥PC,所以△PCB也是直角三角形,所以图中共有四个直角三角形,即:△PAC,△PAB,△ABC,△PCB.故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键.15.【答案】6.【解析】解:双曲线的方程为4x2﹣9y2=36,即为:﹣=1, 可得a=3, 则双曲线的实轴长为2a=6.故答案为:6.【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题.16.【答案】 4 .【解析】解:作出不等式组对应的平面区域, 则的几何意义为区域内的点到原点的斜率, 由图象可知,OC 的斜率最小,由,解得,即C (4,1),此时=4, 故的最小值为4, 故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.17.【答案】0,2⎛⎫ ⎪ ⎪⎝⎭【解析】18.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.三、解答题19.【答案】【解析】解:(1)由a n+1=,可得a2==,a3===,a4===.(2)猜测a n=(n∈N*).下面用数学归纳法证明:①当n=1时,左边=a1=a,右边==a,猜测成立.②假设当n=k(k∈N*)时猜测成立,即a k=.则当n=k+1时,a k+1====.故当n=k+1时,猜测也成立.由①,②可知,对任意n∈N*都有a n=成立.20.【答案】【解析】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD.又∵平面BDEF⊥平面ABCD,平面BDEF∩平面ABCD=BD,且AC⊂平面ABCD,∴AC⊥平面BDEF;(2)解:设AC∩BD=O,取EF的中点N,连接ON,∵四边形BDEF是矩形,O,N分别为BD,EF的中点,∴ON∥ED,∵ED⊥平面ABCD,∴ON⊥平面ABCD,由AC⊥BD,得OB,OC,ON两两垂直.∴以O为原点,OB,OC,ON所在直线分别为x轴,y轴,z轴,如图建立空间直角坐标系.∵底面ABCD是边长为2的菱形,∠BAD=60°,BF=3,∴B(1,0,0),D(﹣1,0,0),H(,,)∴=(﹣,,),=(2,0,0).设平面BDH的法向量为=(x,y,z),则令z=1,得=(0,﹣,1)由ED⊥平面ABCD,得平面BCD的法向量为=(0,0,﹣3),则cos<,>=﹣,由图可知二面角H﹣BD﹣C为锐角,∴二面角H﹣BD﹣C的大小为60°【点评】本题考查面面垂直的性质,考查线面垂直,考查面面角,考查向量法的运用,正确求出平面的法向量是关键.21.【答案】【解析】解:(1)当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}则P∩Q={1}(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}∵x∈P是x∈Q的充分条件,∴P⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型.22.【答案】【解析】解:(Ⅰ)由曲线C1的极坐标方程为ρ(sinθ+cosθ)=1,可得它的直角坐标方程为x+y=1,根据曲线C2的参数方程为(θ为参数),可得它的普通方程为+y2=1.(Ⅱ)把曲线C1与C2是联立方程组,化简可得5x2﹣8x=0,显然△=64>0,故曲线C1与C2是相交于两个点.解方程组求得,或,可得这2个交点的坐标分别为(0,1)、(,﹣).【点评】本题主要考查把极坐标方程化为直角坐标方程,把参数方程化为普通方程的方法,求两条曲线的交点,属于基础题.23.【答案】【解析】解:(1)从统计表看出选择理科的学生的数学平均成绩高于选择文科的学生的数学平均成绩,反映了数学成绩对学生选择文理科有一定的影响,频率分布直方图如下.(2)从频率分布直方图知,数学成绩有50%小于或等于80分,50%大于或等于80分,所以中位数为80分.平均分为(55×0.005+65×0.015+75×0.030+85×0.030+95×0.020)×10=79.5,即估计选择理科的学生的平均分为79.5分.24.【答案】【解析】解:(1)∵A(3,1),B(﹣1,3),C(2,﹣1),∴AB的中点M(1,2),∴直线CM的方程为=∴AB边上的中线所在的直线方程为3x+y﹣5=0;(2)∵直线AC的斜率为=2,∴直线BH的斜率为:﹣,∴AC边上的高BH所在的直线方程为y﹣3=﹣(x+1),化为一般式可得x+2y﹣5=0。
洪洞县二中2018-2019学年高二上学期第二次月考试卷数学
洪洞县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ) A .100 B .150 C .200 D .2502. 命题“若α=,则tan α=1”的逆否命题是( )A .若α≠,则tan α≠1 B .若α=,则tan α≠1C .若tan α≠1,则α≠D .若tan α≠1,则α=3. 在ABC ∆中,222sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111] A .(0,]6πB .[,)6ππ C. (0,]3π D .[,)3ππ 4. 将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为( )(A )150种 ( B ) 180 种 (C ) 240 种 (D ) 540 种5. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)6. 阅读如图所示的程序框图,运行相应的程序,若输出的的值等于126,则判断框中的①可以是( )A .i >4?B .i >5?C .i >6?D .i >7?7. 函数f (x )=kx +bx +1,关于点(-1,2)对称,且f (-2)=3,则b 的值为( )A .-1B .1C .2D .48. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π9. 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )A. B. C. D.10.若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0 C .1D .﹣1或111.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i12.求值: =( ) A .tan 38° B.C.D.﹣二、填空题13.设变量x ,y满足约束条件,则的最小值为 .14.若x 、y 满足约束条件⎩⎪⎨⎪⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.15.已知tan()3αβ+=,tan()24πα+=,那么tan β= .16.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .17.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.18.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________.三、解答题19.甲乙两个地区高三年级分别有33000人,30000人,为了了解两个地区全体高三年级学生在该地区二模考试的数学成绩情况,采用分层抽样方法从两个地区一共抽取了105名学生的数学成绩,并作出了如下的频数分布统计表,规定考试成绩在[120,150]内为优秀.(Ⅱ)根据抽样结果分别估计甲地区和乙地区的优秀率;若将此优秀率作为概率,现从乙地区所有学生中随机抽取3人,求抽取出的优秀学生人数ξ的数学期望;(Ⅲ)根据抽样结果,从样本中优秀的学生中随机抽取3人,求抽取出的甲地区学生人数η的分布列及数学期望.20.已知函数f (x )=x 3+x .(1)判断函数f (x )的奇偶性,并证明你的结论; (2)求证:f (x )是R 上的增函数;(3)若f (m+1)+f (2m ﹣3)<0,求m 的取值范围.(参考公式:a 3﹣b 3=(a ﹣b )(a 2+ab+b 2))21.已知函数f (x )=x ﹣alnx (a ∈R )(1)当a=2时,求曲线y=f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.22.(本小题满分12分)如图,多面体ABCDEF 中,四边形ABCD 为菱形,且60DAB ∠=,//EFAC ,2AD =,===.EA ED EF⊥;(1)求证:AD BE(2)若BE=-F BCD的体积.23.已知函数g(x)=f(x)+﹣bx,函数f(x)=x+alnx在x=1处的切线l与直线x+2y=0垂直.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1、x2(x1<x2)是函数g(x)的两个极值点,若b,求g(x1)﹣g(x2)的最小值.24.已知函数f(x)=x3+2bx2+cx﹣2的图象在与x轴交点处的切线方程是y=5x﹣10.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+mx,若g(x)的极值存在,求实数m的取值范围以及函数g(x)取得极值时对应的自变量x的值.洪洞县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,∴样本容量n=5000×=100.故选:A .2. 【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C .3. 【答案】C 【解析】考点:三角形中正余弦定理的运用.4. 【答案】A【解析】5人可以分为1,1,3和1,2,2两种结果,所以每所大学至少保送一人的不同保送的方法数为223335353322150C C C A A A ⋅⋅+⋅=种,故选A . 5. 【答案】C【解析】解:令f (x )=x 2﹣mx+3,若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0, 解得:m ∈(4,+∞),故选:C .【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.6. 【答案】 C【解析】解:模拟执行程序框图,可得 S=0,i=1 S=2,i=2不满足条件,S=2+4=6,i=3 不满足条件,S=6+8=14,i=4 不满足条件,S=14+16=30,i=5 不满足条件,S=30+32=62,i=6 不满足条件,S=62+64=126,i=7由题意,此时应该满足条件,退出循环,输出S 的值为126, 故判断框中的①可以是i >6? 故选:C .【点评】本小题主要考查循环结构、数列等基础知识.根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,属于基本知识的考查.7. 【答案】【解析】解析:选B.设点P (m ,n )是函数图象上任一点,P 关于(-1,2)的对称点为Q (-2-m ,4-n ),则⎩⎪⎨⎪⎧n =km +b m +14-n =k (-2-m )+b -1-m ,恒成立.由方程组得4m +4=2km +2k 恒成立, ∴4=2k ,即k =2,∴f (x )=2x +b x +1,又f (-2)=-4+b -1=3,∴b =1,故选B. 8. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 9. 【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP 是虚线,左视图为:故选A .【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视.10.【答案】A【解析】解:∵(m 2﹣1)+(m+1)i 为实数, ∴m+1=0,解得m=﹣1, 故选A .11.【答案】C【解析】解:复数===1+2i 的虚部为2.故选;C .【点评】本题考查了复数的运算法则、虚部的定义,属于基础题.12.【答案】C【解析】解:=tan(49°+11°)=tan60°=,故选:C.【点评】本题主要考查两角和的正切公式的应用,属于基础题.二、填空题13.【答案】4.【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.14.【答案】【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,∴m=4.答案:4 15.【答案】43【解析】试题分析:由1tan tan()241tan πααα++==-得1tan 3α=, tan tan[()]βαβα=+-tan()tan 1tan()tan αβααβα+-=++ 134313133-==+⨯. 考点:两角和与差的正切公式.16.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外), 均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD , 可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ), 由直线和圆相切的条件可得,t=1. 将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.17.【答案】,【解析】【知识点】圆的标准方程与一般方程双曲线 【试题解析】双曲线的渐近线方程为:圆的圆心为(2,0),半径为1.因为相切,所以所以双曲线C的渐近线方程是:故答案为:,18.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前高2019级第二次月考化学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息;2.请将答案正确填写在答题卡上;卷I(选择题)一、选择题(本题共计 7 小题,每题 6 分,共计42分)1. 在298K、100kPa时,已知:2H2O(g)==O2(g)+2H2(g) ΔH1Cl2(g)+H2(g)==2HCl(g) ΔH22Cl2(g)+2H2O(g)==4HCl(g)+O2(g) ΔH3则下列关系式正确的是()A.ΔH3=ΔH1−ΔH2B.ΔH3=ΔH1−2ΔH2C.ΔH3=ΔH1+ΔH2D.ΔH3=ΔH1+2ΔH22. 下列说法正确的是()A.已知C2H6(g)的燃烧热ΔH=−1090kJ⋅mol−1,则C2H6(g)燃烧的热化学方程式为:C2H6(g)+72O2(g)= 2CO2(g)+3H2O(g)ΔH=−1090kJ⋅mol−1B.已知2CO(g)+O2(g)=2CO2(g)ΔH=−566kJ⋅mol−1,则CO的燃烧热ΔH=−566kJ⋅mol−1C.在稀溶液中:H+(aq)+OH−(aq)=H2O(l)ΔH=−57.3kJ⋅mol−1,则稀醋酸与稀NaOH溶液反应生成1molH2O(l)时放出的热量小于57.3kJD.已知2SO2(g)+O2(g)⇌2SO3(g)ΔH1,2SO2(g)+O2(g)⇌2SO3(l)ΔH2,则ΔH1<ΔH23. 在2L的密闭容器中发生反应:4A(s)+3B(g)⇌2C(g)+D(g),2min后B减小了1.2mol.有关此反应的说法正确的是()A.在2 min内的反应速率,用C表示是0.4 mol/(L⋅min)B.分别用B、C、D表示化学反应速率其比值是3:2:1C.达到化学反应限度时,B物质转化率为100%D.向容器中增加A的投量,可以加快该反应的速率4. 对于可逆反应:2A(g)+B(g)⇌2C(g) ΔH<0,下列图像正确的是()A. B.C. D.5. 下列电离方程式中,正确的是()A.CH3COOH=CH3COO−+H+B.NaHCO3=Na++HCO3−C.KClO3⇌K++ClO3−D.BaSO4=Ba2++S2−+402−6. 水的电离平衡曲线如图所示。
下列说法正确的是()A.温度:a>b>cB.仅升高温度,可从a点变为c点C.水的离子积常数K w:b>c>dD.b点对应温度下,0.5 mol/L H2SO4溶液与1mol/L KOH溶液等体积混合,充分反应后,所得溶液中c(H+)=1.0×10−7 mol⋅L−17. 室温下,物质的量浓度相同的三种盐NaX、NaY、NaZ溶液,其pH依次为7、8、9.下列有关说法正确的是()A.HX、HY、HZ三种酸的酸性由强到弱的顺序为HZ>H Y>HXB.HX是强酸,HY、HZ是弱酸,且HZ的酸性强于HYC.X−、Y−、Z−三种酸根离子均能水解,且水解程度Z−>Y−>X−D.三种盐溶液中X−、Y−、Z−的浓度大小顺序为c(X−)>c(Y−)>c(Z−)卷II(非选择题)二、填空题(本题共计 3 小题,每题 3 分,共计9分)……订…………○…………线…※※内※※答※※题※※……订…………○…………线…8. 某课外兴趣小组欲测定某NaOH溶液的浓度,其操作步骤如下:①将碱式滴定管用蒸馏水洗净,待测溶液润洗后,再注入待测溶液,调节滴定管的尖嘴部分充满溶液,并使液面处于“0“刻度以下的位置,记下读数;将锥形瓶用蒸馏水洗净后,用待测溶液润洗锥形瓶2∼3次;从碱式滴定管中放入20.00mL待测溶液到锥形瓶中.②将酸式滴定管用蒸馏水洗净,再用标准酸液润洗2−3次后,向其中注入0.1000mol⋅L−1标准盐酸,调节滴定管的尖嘴部分充满溶液,并使液面处于“0“刻度以下的位置,记下读数.③向锥形瓶中滴入酚酞作指示剂,进行滴定.滴定至指示剂刚好变色,且半分钟内颜色不再改变为止,测得所耗盐酸的体积为V1mL.④重复以上过程,但在滴定过程中向锥形瓶加入5mL的蒸馏水,测得所耗盐酸的体积为V2mL.试回答下列问题:(1)锥形瓶中的溶液从________色变为________ 色时,停止滴定.(2)该小组在步骤①中的错误是________.由此造成的测定结果________(偏高、偏低或无影响).(3 )滴定时边滴边摇动锥形瓶,眼睛应观察________A滴定管内液面的变化B锥形瓶内溶液颜色的变化(4)如图,是某次滴定时的滴定管中的液面,其读数为________mL.(5)根据下列数据:请计算待测烧碱溶液的浓度为________ mol⋅L−1.9. 10∘C加热NaHCO3饱和溶液,测得该溶液的pH发生如下的变化:(1)甲同学认为,该溶液的pH升高的原因是HCO3−的水解程度增大,故碱性增强,该水解反应的离子方程式为________.(2)乙同学认为,溶液pH升高的原因是NaHCO3受热分解,生成了Na2CO3,并推断Na2CO3的水解程度________(填“大于”或“小于”)NaHCO3,该分解反应的方程式为________.(3)丙同学认为甲、乙的判断都不充分.丙认为:①只要在加热煮沸的溶液中加入足量的试剂BaCl2溶液,若产生沉淀,则乙判断正确.原因是________.能不能选用Ba(OH)2溶液?________(答“能”或“不能”)②将加热后的溶液冷却到10∘C,若溶液的pH________(填“大于”、“小于”或“等于”)8.3,则________(填“甲”或“乙”)判断正确.10. 氮及其化合物在工农业生产、生活中有着重要作用。
(1)如图是1mol NO2和1mol CO反应生成NO和CO2过程中能量变化示意图。
请写出NO2和CO反应的热化学方程式:________。
(2)今有常温下三种溶液:(a)0.01mol⋅L−1NH3⋅H2O溶液(b)0.01mol⋅L−1NH4Cl溶(c)0.01mol⋅L−1NaOH溶液①NH3⋅H2O的电离方程式为________;②加入NH4Cl(s)可以________(填“促进”或“抑制”)NH3⋅H2O的电离;③溶液(b)呈________(填“酸”“碱”或“中”)性;④溶液(c)的pH=________。
(3)300∘C时,在10L的密闭容器中,充入1mol NO2与1mol NH3,发生反应:6NO2(g)+8NH3(g)⇌12H2O(g)+7N2(g)。
达到平衡时,体系中NO2的物质的量分数为a%①若升高温度,达到新的平衡时NO2的物质的量分数>a%,则该反应的ΔH________0(填“>”“<”或“=”);②若容器容积可变,平衡时,保持温度不变,缩小容器体积,则________(填标号)。
A.正反应速率增大,逆反应速率减小,平衡向正反应方向移动B.正反应速率减小,逆反应速率增大,平衡向逆反应方向移动C.正反应速率增大,逆反应速率也增大,平衡向正反应方向移动D.正反应速率增大,逆反应速率也增大,平衡向逆反应方向移动(4)电化学原理在生活生产中有着广泛的应用①将反应4NH3(g)+3O2(g)===6H2O(g)+2N2(g) ΔH<0设计成燃料电池。
该原电池的负极是通入________(填“NH3”或“O2”)的一极;②以燃料电池为电源,设计下图所示电解池,若a为NaCl溶液,X和X均为石墨电极,则电解反应方程式为:________。
第3页共12页◎第4页共12页………线…………○…………线…………○…三、 解答题 (本题共计 1 小题 ,共计10分 )11.(10分) 二甲醚是一种重要的清洁燃料,可替代氟利昂作制冷剂,对臭氧层无破坏作用.工业上可利用水煤气合成二甲醚,总反应为:3H 2(g)+3CO(g)⇌CH 3OCH 3(g)+CO 2(g)△H =−246.4kJ/mol(1)该反应的化学平衡常数表达式K =________.温度升高平衡常数________(填“变大”、“变小”、“不变”)(2)在一定条件下的密闭容器中,该总反应达到平衡,只改变一个条件能同时提高反应速率和CO 的转化率的是________(填字母代号).a .降低温度b .加入催化剂c .缩小容器体积d .增加H 2的浓度e .增加CO 的浓度(3)在一定温度下,在容积为1L 的密闭容器中充入3mol H 2、3mol CO ,发生反应: 3H 2(g)+3CO(g)⇌CH 3OCH 3(g)+CO 2(g),在10min 时刚好达到平衡,此 时测得H 2的物质的量浓度为1.5mo1⋅L −1.则:①衡时n(CH 3OCH 3)=________,平衡时CO 的转化率为________.②达到平衡后,若向容器中再充入1mol H 2、1mol CO 2,经一定时间达到平衡,反应开始时正、逆反应速率的大小:v (正)________ v (逆)(填“>”“<”或“=”).③在该反应条件下能判断反应达到化学平衡状态的依据是________(填编号). A .v(CO)=3v(CO 2) B .生成a mol CO 2的同时消耗3a mol H 2 C .c(CO 2)=c(CO) D .混合气体的平均相对分子质量不变 E .气体的密度不再改变 F .气体的总质量不再改变.第7页共12页◎第8页共12页参考答案与试题解析高2019级第二次月考一、选择题(本题共计 7 小题,每题 6 分,共计42分)1.【答案】【考点】用盖斯定律进行有关反应热的计算【解析】此题暂无解析【解答】此题暂无解答2.【答案】C【考点】热化学方程式中和热燃烧热反应热和焓变【解析】【解答】A.燃烧热是在101kPa条件下,1mol可燃物完全燃烧生成稳定氧化物放出的热量,选项中热化学方程式生成的水为气态,不是稳定氧化物,故A错误;B.依据燃烧热概念结合热化学方程式计算分析判断,已知2CO(g)+O2(g)=2CO2(g)ΔH=−566kJ⋅mol−1,则CO的燃烧热ΔH=−283kJ⋅mol−1,故B错误;C.醋酸是弱酸,存在电离平衡,电离过程中吸热,稀醋酸与稀NaOH溶液反应生成1molH2O(l)时放出的热量小于57.3kJ,故C正确;D.两个反应的反应物相同,但前者生成的为气态的SO3,后者生成的为液态的SO3,同种物质液态时所具有的能量高于其气态时所具有的能量,又因两个反应都为燃烧反应属于放热反应,则后者放热更多,故ΔH1>ΔH2,故D错误;故选C。
3.【答案】B【考点】反应速率的定量表示方法【解析】发生4A(s)+3B(g)⇌2C(g)+D(g),2min后B减小了1.2mol,v(B)=1.2mol2L2min=0.3mol⋅(L⋅min)−1,反应速率之比等于化学计量数之比,且升高温度、增大浓度会增大反应速率,正逆反应速率均增大,固体不影响反应速率,可逆反应不能进行彻底,以此来解答.【解答】A.在2min内的反应速率,v(B)=1.2mol2L2min=0.3mol⋅(L⋅min)−1,用C表示是0.2mol⋅(L⋅min)−1,故A错误;B.反应速率之比等于化学计量数之比,则分别用B、C、D表示化学反应速率,其比值是3:2:1,故B正确;C.达到化学反应限度时,反应达到平衡状态,B物质转化率一定小于100%,故C错误;D.A为固体,不能用A表示的反应速率,故错误;4.【答案】A【考点】化学反应速率与化学平衡图象的综合应用化学平衡移动原理化学平衡的影响因素【解析】此题暂无解析【解答】A.该反应为放热反应,温度升高平衡向逆反应方向移动,C的质量分数减小,故A正确;B.根据反应前后的化学计量数的大小可以看出,增大压强平衡向正反应方向移动,正逆反应速率都增大,且V正>V逆,故B错误;C.催化剂同等程度地改变正逆反应速率,平衡不发生移动,故C错误;D.该反应为放热反应,温度升高平衡向逆反应方向移动,A的转化率降低,故D错误;故选A。