2021年江苏省扬州市广陵区中考数学二模试题

合集下载

江苏省扬州市广陵区梅岭中学2021-2022学年中考二模数学试题含解析

江苏省扬州市广陵区梅岭中学2021-2022学年中考二模数学试题含解析

2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(共10小题,每小题3分,共30分)1.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于12CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称2.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°3.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.74.计算3a2-a2的结果是()A .4a 2B .3a 2C .2a 2D .35.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF6.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣57.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个8.已知地球上海洋面积约为361 000 000km 2,361 000 000这个数用科学记数法可表示为( )A .3.61×106B .3.61×107C .3.61×108D .3.61×1099.如图,在四边形ABCD 中,∠A=120°,∠C=80°.将△BMN 沿着MN 翻折,得到△FMN .若MF ∥AD ,FN ∥DC ,则∠F 的度数为( )A .70°B .80°C .90°D .100°10.计算﹣1﹣(﹣4)的结果为( )A .﹣3B .3C .﹣5D .5二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,抛物线2y x 2x 3=-++交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G,F分别在x轴和y轴上,则四边形EDFG周长的最小值为__________.12.如图所示的网格是正方形网格,点P到射线OA的距离为m,点P到射线OB的距离为n,则m __________ n.(填“>”,“=”或“<”)13.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.该返回舱的最高温度为________℃.14.如图,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=__________.15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.16.函数y 2x-x的取值范围是_________.三、解答题(共8题,共72分)17.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC的外部作等腰Rt △CED ,使∠CED=90°,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)求证:△AEF 是等腰直角三角形;(2)如图2,将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,连接AE ,求证:AF=2AE ;(3)如图3,将△CED 绕点C 继续逆时针旋转,当平行四边形ABFD 为菱形,且△CED 在△ABC 的下方时,若AB=25,CE=2,求线段AE 的长.18.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A ,B ,C 表示这三个材料),将A ,B ,C 分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.小礼诵读《论语》的概率是 ;(直接写出答案)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.19.(8分)计算:(π﹣3.14)0﹣0213()2-+﹣|﹣3|.20.(8分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A ,B 两种上网学习的月收费方式: 收费方式月使用费/元 包时上网时间/h 超时费/(元/min) A7 25 0.01 B m n 0.01 设每月上网学习时间为x 小时,方案A ,B 的收费金额分别为y A ,y B .(1)如图是y B 与x 之间函数关系的图象,请根据图象填空:m = ;n = ;(2)写出y A 与x 之间的函数关系式;(3)选择哪种方式上网学习合算,为什么.21.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x (元),每日销售量y (件)每日的利润w (元).在试销过程中,每日销售量y (件)、每日的利润w (元)与销售单价x (元)之间存在一定的关系,其几组对应量如下表所示: (元)19 20 21 30 (件) 62 60 58 40(1)根据表中数据的规律,分别写出毎日销售量y (件),每日的利润w (元)关于销售单价x (元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?22.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x +1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?23.(12分)已知:如图,△MNQ 中,MQ≠NQ .(1)请你以MN 为一边,在MN 的同侧构造一个与△MNQ 全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD 中,180ACB CAD ∠+∠=︒,∠B=∠D .求证:CD=AB .24.如图,在平行四边形ABCD 中,24BC AB ==,点E 、F 分别是BC 、AD 的中点.(1)求证:ABE ∆≌CDF ∆;(2)当AE CE =时,求四边形AECF 的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】试题分析:A 、连接CE 、DE ,根据作图得到OC=OD ,CE=DE .∵在△EOC 与△EOD 中,OC=OD ,CE=DE ,OE=OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE=∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC=OD ,∴△COD 是等腰三角形,正确,不符合题意.C 、根据作图得到OC=OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 平分OE ,∴CD 不是OE 的平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选D .2、B【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.3、C【解析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.4、C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a 2-a 2=(3-1)a 2=2a 2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变.5、B【解析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD 是△ABC 的中线.故选B .【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线. 6、A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数. 7、B【解析】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选:B.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.8、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×1.故选C.9、B【解析】首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,∴∠BMF=120°,∠FNB=80°,∵将△BMN沿MN翻折得△FMN,∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,∴∠F=∠B=180°-60°-40°=80°,故选B.【点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.10、B【解析】原式利用减法法则变形,计算即可求出值.【详解】---=-+=,1(4)143故选:B.【点睛】本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11【解析】根据抛物线解析式求得点D(1,4)、点E(2,3),作点D关于y轴的对称点D′(﹣1,4)、作点E关于x轴的对称点E′(2,﹣3),从而得到四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′,当点D′、F、G、E′四点共线时,周长最短,据此根据勾股定理可得答案.【详解】如图,在y=﹣x2+2x+3中,当x=0时,y=3,即点C(0,3),∵y=﹣x2+2x+3=﹣(x-1)2+4,∴对称轴为x=1,顶点D(1,4),则点C关于对称轴的对称点E的坐标为(2,3),作点D关于y轴的对称点D′(﹣1,4),作点E关于x轴的对称点E′(2,﹣3),连结D′、E′,D′E′与x轴的交点G、与y轴的交点F即为使四边形EDFG的周长最小的点,四边形EDFG的周长=DE+DF+FG+GE=DE+D′F+FG+GE′=DE+D′E′∴四边形EDFG.【点睛】本题主要考查抛物线的性质以及两点间的距离公式,解题的关键是熟练掌握抛物线的性质,利用数形结合得出答案.12、>【解析】由图像可知在射线上有一个特殊点,点到射线的距离,点到射线的距离,于是可知,利用锐角三角函数,即可判断出【详解】由题意可知:找到特殊点,如图所示:设点到射线的距离,点到射线的距离由图可知,,,【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.13、17℃.【解析】根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃.【详解】解:返回舱的最高温度为:21+4=25℃;返回舱的最低温度为:21-4=17℃;故答案为:17℃.【点睛】本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃.14、44°【解析】首先连接OB,由点C在过点B的切线上,且OC⊥OA,根据等角的余角相等,易证得∠CBP=∠CPB,利用等腰三角形的性质解答即可.【详解】连接OB,∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°,∵OC⊥OA,∴∠A+∠APO=90°,∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°,∴∠APO=∠CBP=68°,∵∠APO=∠CPB,∴∠CPB=∠ABP=68°,∴∠OCB=180°-68°-68°=44°,故答案为44°【点睛】此题考查了切线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.15、326π-.【解析】试题解析:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=1,在RT△AOC中,∵OA=2,OC=1,∴cos∠AOC=12OCOA=,22=3OA OC-∴∠AOC=60°,3,∴∠AOB=2∠AOC=120°,则S弓形ABM=S扇形OAB-S△AOB=212021231 3602π⨯-⨯=43 3π-S阴影=S半圆-2S弓形ABM=12π×22-2(433π233π.故答案为233π.16、x≤1且x≠﹣1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020xx-≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.三、解答题(共8题,共72分)17、(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)依据AE=EF,∠DEC=∠AEF=90°,即可证明△AEF是等腰直角三角形;(2)连接EF,DF交BC于K,先证明△EKF≌△EDA,再证明△AEF是等腰直角三角形即可得出结论;(3)当AD=AC=AB时,四边形ABFD是菱形,先求得EH=DH=CH,Rt△ACH中,AH,即可得到AE=AH+EH试题解析:解:(1)如图1.∵四边形ABFD是平行四边形,∴AB=DF.∵AB=AC,∴AC=DF.∵DE=EC,∴AE=EF.∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形;(2)如图2,连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED.∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE.∵∠DKC=∠C,∴DK=DC.∵DF=AB=AC,∴KF=AD.在△EKF和△EDA中,EK ED EKF ADE KF AD=⎧⎪∠=∠⎨⎪=⎩,∴△EKF≌△EDA(SAS),∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AFAE.(3)如图3,当AD=AC=AB时,四边形ABFD是菱形,设AE交CD于H,依据AD=AC,ED=EC,可得AE垂直平分CD,而CE=2,∴EH=DH=CH,Rt△ACH中,AH,∴AE=AH+EH.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.18、(1)13;(2)23.【解析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【详解】(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=1 3 ,(2)列表得:小明小亮A B CA (A,A)(A,B)(A,C)B (B,A)(B,B)(B,C)C (C,A)(C,B)(C,C)由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=62=93.【点睛】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.19、﹣1.【解析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式1432=-+-,=1﹣3+4﹣3,=﹣1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20、(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【点睛】本题考查一次函数的应用.21、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.【解析】(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;(3)根据题意列方程即可得到即可.【详解】解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.则62196020k bk b=+⎧⎨=+⎩,解得k2b100=-⎧⎨=⎩,∴y=﹣2x+100,∴y关于x的函数表达式y=﹣2x+100,∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.∴当销售单价为34元时,∴每日能获得最大利润1元;(3)当w=350时,350=﹣2x2+136x﹣1800,解得x=25或43,由题意可得25≤x≤32,则当x=32时,18(﹣2x+100)=648,∴制造这种纪念花灯每日的最低制造成本需要648元.【点睛】此题主要考查了二次函数的应用,根据已知得出函数关系式. 22、 (1)35元;(2)30元. 【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价. 【详解】解:(1)由题意,得: W=(x-20)×y =(x-20)(-10x+1) =-10x 2+700x-10000 =-10(x-35)2+2250∴ 当x=35时,W 取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元; (2)由题意,得:210700100002000x x -+-=, 解得:130x =,240x =, 销售单价不得高于32元,∴ 销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元. 【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.23、(1)作图见解析;(2)证明书见解析. 【解析】(1)以点N 为圆心,以MQ 长度为半径画弧,以点M 为圆心,以NQ 长度为半径画弧,两弧交于一点F ,则△MNF 为所画三角形.(2)延长DA 至E ,使得AE=CB ,连结CE .证明△EAC ≌△BCA ,得:∠B =∠E ,AB=CE ,根据等量代换可以求得答案. 【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.(2)如图,延长DA 至E ,使得AE=CB ,连结CE .∵∠ACB +∠CAD =180°,∠DACDAC +∠EAC =180°,∴∠BACBCA =∠EAC. 在△EAC 和△BAC 中,AE =CE ,AC =CA ,∠EAC =∠BCN , ∴△AECEAC ≌△BCA (SAS ).∴∠B=∠E ,AB=CE. ∵∠B=∠D ,∴∠D=∠E.∴CD=CE ,∴CD=AB .考点:1.尺规作图;2.全等三角形的判定和性质. 24、(1)见解析;(2)23【解析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠B=∠D ,求出BE=DF ,根据全等三角形的判定推出即可; (2)求出△ABE 是等边三角形,求出高AH 的长,再求出面积即可. 【详解】(1)证明:∵四边形ABCD 是平行四边形, ∴AB CD =,BC AD =,B D ∠∠=, ∵点E 、F 分别是BC 、AD 的中点, ∴1BE BC 2=,1DF AD 2=, ∴BE DF =, 在ΔABE 和ΔCDF 中AB CD B D BE DF =⎧⎪∠=∠⎨⎪=⎩, ∴ΔABE ≌ΔCDF (SAS ); (2)作AH BC ⊥于H ,∵四边形ABCD 是平行四边形, ∴AD//BC ,AD BC =,∵点E 、F 分别是BC 、AD 的中点,BC 2AB 4==, ∴1BE CE BC 22===,1DF AF AD 22===, ∴AF //CE ,AF CE =, ∴四边形AECF 是平行四边形, ∵AE CE =,∴四边形AECF 是菱形, ∴AE AF 2==, ∵AB 2=,∴AB AE BE 2===, 即ΔABE 是等边三角形,BH HE 1==,由勾股定理得:22AH 213=-= ∴四边形AECF 的面积是2323= 【点睛】本题考查了等边三角形的性质和判定,全等三角形的判定,平行四边形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.。

2021年中考第二次模拟考试数学试题含答案

2021年中考第二次模拟考试数学试题含答案

第二学期第二次模拟考试初三年级(考试时间:120分钟 满分:150分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.气温由﹣1℃上升2℃后是(▲)A .3℃B .2℃C .1℃D .﹣1℃ 2.下列运算正确的是(▲)A .B .C .D .3.在式子31-x ,41-x ,3-x ,4-x 中,x 可以取到3和4的是(▲) A .31-x B .41-x C .3-x D .4-x 4.如图,一个圆柱体在正方体上沿虚线从左向右平移,平移过程中不变的是(▲) A .主视图 B .左视图 C .俯视图 D .主视图和俯视图(第4题) (第8题)5.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是(▲)中位数 众数 平均数 方差 9.29.39.10.3A .中位数B .众数C .平均数D .方差6.若一个正比例函数的图象经过不同象限的两点A (﹣2,m ),B (n ,3),那么一定有(▲) A .m >0,n >0 B .m >0,n <0 C .m <0,n >0 D .m <0,n <07.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项正确的是(▲)A .B .C .D .8.如图,Rt △ABC 中,∠ACB =90°,CM 为AB 边上的中线,AN ⊥CM ,交BC 于点N .若 CM =3,AN =4,则tan ∠CAN 的值为(▲) A .23B .34C .35D .45二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.在实数范围内分解因式:2x 2-32= ▲ .10.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为 ▲ . 11.关于x 的一元二次方程2x 2+2x ﹣m=0有实根,则m 的取值范围是 ▲ .12.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD ,∠BAE=87°,∠DCE=121°,则∠E 的度数是 ▲ .(第12题) (第14题) (第16题)PCB AP C B A P CBA P CB A13.如果圆锥的母线长为5cm,底面半径为2cm ,那么这个圆锥的侧面积为▲.14.如图,四边形ABCD是平行四边形,其中边AD是⊙O的直径,BC与⊙O相切于点B,若⊙O的周长是12π,则四边形ABCD的面积为▲.15.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数关系式为y=﹣1.5x2+60x,该型号飞机着陆后滑行▲ m才能停下来.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA= ▲.(第17题)(第18题)17.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=8,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点B恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE的长为▲.18.如图:已知矩形ABCD,AB=8,BC=6,以点A为圆心,5为半径作圆,点M为圆A上一动点,连接CM,DM,则12CM+MD的最小值为▲.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)(1)计算:22160sin2123-⎪⎭⎫⎝⎛--++)(π(2),并求出它的所有整数解的和.20.(本题满分8分)先化简再求值:,其中.21.(本题满分8分)梅岭中学初三年级要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分),由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于是他选择了偶数.小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩m(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全条形统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?23.(本题满分10分)列.方程解...:....应用题几个小伙伴打算去音乐厅看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话中的信息,请你求出这些小伙伴的人数.如图,在□ABCD 中,AE 平分∠BAD,交BC 于点E ,BF 平分∠ABC,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD .(1)求证:四边形ABEF 是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP .25. (本题满分10分)如图,山坡AB 的坡度i=1:,AB=10米,AE=15米.在高楼的顶端竖立一块倒计时牌CD ,在点B 处测量计时牌的顶端C 的仰角是45°,在点A 处测量计时牌的底端D 的仰角是60°,求这块倒计时牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.414,≈1.732)26. (本题满分10分)如图,⊙O 与Rt △ABC 的直角边AC 和斜边AB 分别相切于点C 、D ,与边BC 相交于点F ,OA 与CD 相交于点E ,连接FE 并延长交AC 边于点G . (1)求证:DF ∥AO ; (2)当AC=6,AB=10时①求⊙O 的半径 ②求CG 的长. 323如图,在平面直角坐标系中,给出如下定义:已知点A(2,3),点B(6,3),连接AB.如果线段AB上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.(1)已知点C(3,1.5),D(4,3.5),E(1,3),则是线段AB的“环绕点”的点是;(2)已知点P(m,n)在反比例函数y=的图象上,且点P是线段AB的“环绕点”,求出点P的横坐标m的取值范围;(3)已知⊙M上有一点P是线段AB的“环绕点”,且点M(4,1),求⊙M的半径r的取值范围.28.(本题满分12分)如图,直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P为抛物线在第二象限内一点,过点P作x轴的垂线,垂足为点M,与直线AB交于点C,过点P作x轴的平行线交抛物线于点Q,过点Q作x轴的垂线,垂足为点N,若点P在点Q左边,设点P的横坐标为m.①当矩形PQNM的周长最大时,求△ACM的面积;②在①的条件下,当矩形PMNQ的周长最大时,G是直线AC上一点,F是抛物线上一点,是否存在点G,使得以点P、C、G、F为顶点的四边形是平行四边形?若存在,请求出G点的坐标;若不存在,请说明理由.九年级中考二模考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 选项CBCBACDA二、填空题(本大题共有10小题,每小题3分,共30分)9.)4)(4(2-+x x 10.4102.1⨯11.21-≥m 12.34° 13.π10 14.72 15.600 16.8317.730415或 18.297三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.①33- ② 31<≤-x 和为2 20.11+a 22 21.解:小明的选择不合理;列表得∴共出现12中等可能的结果, 其中出现奇数的次数是7次,概率为,出现偶数的次数为5次,概率为,2 3 4 6 3 5 6 7 9 5789118 10 11 12 14∵,即出现奇数的概率较大,∴小明的选择不合理.22.解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如右图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.23.解:设票价为每张x元,根据题意,得+2=.解得x=60.经检验x=60是原方程的根且符合题意,小伙伴的人数为+2=8人答:小伙伴的人数为8人.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.25.解:作BF⊥DE于点F,BG⊥AE于点G,∵CE⊥AE,∴四边形BGEF为矩形,∴BG=EF,BF=GE,在Rt△ADE中,∵tan∠ADE=,∴DE=AE•tan∠ADE=15,∵山坡AB的坡度i=1:,AB=10,∴BG=5,AG=5,∴EF=BG=5,BF=AG+AE=5+15,∵∠CBF=45°∴CF=BF=5+15,∴CD=CF+EF﹣DE=20﹣10≈20﹣10×1.732=2.68≈2.7(m),答:这块宣传牌CD的高度为2.7米.26.(1)证明:连接OD.∵AB与⊙O相切于点D,又AC与⊙O相切于点C,∴AC=AD,OC⊥CA.∴CF是⊙O的直径,∵OC=OD,∴OA⊥CD,∵CF是直径,∴∠CDF=90°,∴DF⊥CD,∴DF∥AO.(2)过点作EM⊥OC于M,∵AC=6,AB=10,∴BC==8,∴AD=AC=6,∴BD=AB﹣AD=4,∵AB是切线,∴OD⊥AB,∴∠ODB=90°,∵CF是直径,∴∠CDF=90°,∵∠BDF+∠ODF=90°,∠CDO+∠ODF=90°,∴∠BDF=∠CDO,∵OC=OD,∴∠ODC=∠OCD,∴∠BDF=∠BCD,∴△BDF∽△BCD,可得BD2=BF•BC,∴BF=2,∴CF=BC﹣BF=6.OC=CF=3,∴OA==3,∵OC2=OE•OA,∴OE=,∵EM∥AC,∴===,∴OM=,EM=,FM=OF+OM=,∴===,∴CG=EM=2.27.解:(1)由“环绕点”的定义可知:点P到直线AB的距离d应满足:d≤1,∵A、B两点的纵坐标都是3,∴AB∥x轴,∴点C到直线AB的距离为|1.5﹣3|=1.5>1,点D到直线AB的距离为|3.5﹣3|=0.5<1,点E到直线AB的距离为|3﹣3|=0<1,∴点D和E是线段AB的环绕点;故答案为:点D和E;(2)当点P在线段AB的上方,点P到线段AB的距离为1时,m=2;当点P在线段AB的下方,点P到线段AB的距离为1时,m=4;所以点P的横坐标m的取值范围为:2≤m≤4;(3)当点P在线段AB的下方时,且到线段AB的最小距离是1时,r=1;当点P在线段AB的上方时,且到点A的距离是1时,如图,过M作MC⊥AB,则CM=2,AC=2,连接MA并延长交⊙M于P,则PA=1,∴MP=2+1,即r=2+1.∴⊙M的半径r的取值范围是1≤r≤2+1.28.(1)∵直线y=x+3与x轴交于点A,与y轴交于点B,∴A(﹣3,0),B(0,3).∵抛物线y=﹣x2+bx+c经过A、B两点,∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①∵点P的横坐标为m,∴P(m,﹣m2﹣2m+3),PM=﹣m2﹣2m+3.∵抛物线y=﹣x2﹣2x+3的对称轴为x=﹣=﹣=﹣1,∴PQ=2(﹣1﹣m)=﹣2m﹣2.∴矩形PQMN的周长=2(PM+PQ)=2(﹣m2﹣2m+3﹣2m﹣2)=﹣2m2﹣8m+2=﹣2(m+2)2+10,当m=﹣2时,矩形PQMN的周长最大,此时点C的坐标为(﹣2,1),CM=AM=1,=×1×1=;∴S△ACM②∵C(﹣2,1),∴P(﹣2,3),∴PC=3﹣1=2.∵点P、C、G、F为顶点的四边形是平行四边形,GF∥y轴,∴GF∥PC,且GF=PC.设G(x,x+3),则F(x,﹣x2﹣2x+3),当点F在点G的上方时,﹣x2﹣2x+3﹣(x+3)=2,解得x=﹣1或x=﹣2(舍去),当x=﹣1时,﹣x2﹣2x+3=4,即F1(﹣1,4);当点F在点G的下方时,x+3﹣(﹣x2﹣2x+3)=2,解得x=或x=,当x=时,﹣x2﹣2x+3=;当x=时,﹣x2﹣2x+3=,故F2(,),F3(,).综上所示,点F的坐标为F1(﹣1,4),F2(,),F3(,).G1(﹣1,2),G2(,2173+),G3(,2173-).当GF为对角线时G4(﹣3,0)。

扬州市广陵区中考数学二模试卷含答案解析

扬州市广陵区中考数学二模试卷含答案解析

江苏省扬州市广陵区中考数学二模试卷(解析版)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中,是无理数的是()A.B.C.D.()22.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查神舟号载人飞船的各零部件D.考察人们保护海洋的意识3.计算x2x3÷x的结果是()A.x4B.x5C.x6D.x74.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.125.如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为()A.B.C.D.6.在正方形网格中,∠BAC如图所示放置,则cos∠BAC等于()A.3 B.C.D.7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如果四边形内的一个点到四条边的距离相等,那么这个四边形一定有()A.一组邻边相等 B.一组对边平行C.两组对边分别相等 D.两组对边的和相等二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.温家宝强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是.10.因式分解:a3﹣9a=.11.双曲线y=与直线y=2x无交点,则k的取值范围是.12.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于.13.为了估计鱼塘青鱼的数量(鱼塘只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘里青鱼的数量为条.14.如图,菱形ABCD中,对角线AC、BD相交于点O、H为AD边上的中点,若OH的长为2,则菱形ABCD的周长等于.15.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=°.16.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为cm.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为.18.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣2+﹣8cos60°﹣(π+)0;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.20.(1)解不等式:;(2)用配方法解方程:x2+4x﹣1=0.21.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是个、个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?22.某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为.(1)该批产品有正品件;(2)如果从中任意取出2件,求取出2件都是正品的概率.23.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.25.已知:如图,在△ABC中,AB=BC,D是AC中点,点O是AB上一点,⊙O过点B 且与AC相切于点E,交BD于点G,交AB于点F.(1)求证:BE平分∠ABD;(2)当BD=2,sinC=时,求⊙O的半径.26.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式.27.已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图①,若△ABO是等腰三角形且AO=AB时,求点B的坐标;(2)如图②,若点C(x,0)且﹣1<x<3,BC⊥AC垂足为点C;①当x=0时,求tan∠BAC的值;②若AB与y轴正半轴的所夹锐角为α,当点C在什么位置时tanα的值最大?28.如图1,在四边形ABCD中,BA=BC,∠ABC=60°,∠ADC=30°,连接对角线BD.(1)将线段CD绕点C顺时针旋转60°得到线段CE,连接AE.①依题意补全图1;②试判断AE与BD的数量关系,并证明你的结论;(2)在(1)的条件下,直接写出线段DA、DB和DC之间的数量关系;(3)如图2,F是对角线BD上一点,且满足∠AFC=150°,连接FA和FC,探究线段FA、FB和FC之间的数量关系,并证明.江苏省扬州市广陵区中考数学二模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中,是无理数的是()A.B.C.D.()2【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是无理数,,,()2是有理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查神舟号载人飞船的各零部件D.考察人们保护海洋的意识【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解一批圆珠笔的寿命,具有破坏性,适合抽样调查,故本选项错误;B、了解全国九年级学生身高的现状,因为普查工作量大,适合抽样调查,故本选项错误;C、检查神舟号载人飞船的各零部件,精确度要求高的调查,适于全面调查,故本选项正确;D、考察人们保护海洋的意识,因为普查工作量大,适合抽样调查,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.计算x2x3÷x的结果是()A.x4B.x5C.x6D.x7【分析】首先依据同底数幂的乘法法则进行计算,然后再依据同底数幂的除法法则计算即可.【解答】解:原式=x5÷x=x4.故选:A.【点评】本题主要考查的是同底数幂的除法和同底数幂的乘法,掌握运算顺序是解题的关键.4.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2 B.5 C.6 D.12【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.【点评】本题主要考查的是估算无理数的大小,掌握夹逼法估算无理数的大小是解题的关键.5.如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为()A.B.C.D.【分析】圆锥的主视图是从物体正面看,所得到的图形.【解答】解:如图所示的Rt△ABC绕直角边AB旋转一周,所得几何体为圆锥,它的主视图为等腰三角形.故选C.【点评】本题考查了几何体的主视图,掌握定义是关键.6.在正方形网格中,∠BAC如图所示放置,则cos∠BAC等于()A.3 B.C.D.【分析】根据余弦=邻边:斜边进行计算即可.【解答】解:cos∠BAC==,故选D.【点评】此题主要考查了锐角三角函数的定义,关键是掌握余弦=邻边:斜边.7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.【点评】本题考查了平行线的性质,多边形的外角和定理,是基础题,理清求解思路是解题的关键.8.如果四边形内的一个点到四条边的距离相等,那么这个四边形一定有()A.一组邻边相等 B.一组对边平行C.两组对边分别相等 D.两组对边的和相等【分析】由四边形内的一个点到四条边的距离相等,可得出该四边形为圆外切四边形,画出图形,根据切线的性质即可得出各组相等的线段,根据线段间的关系即可得出结论.【解答】解:依照题意,画出图形,如图所示.∵如果四边形内的一个点到四条边的距离相等,∴四边形ABCD为⊙O的外切四边形,∴AE=AN,DN=DM,CM=CF,BF=BE,∵AD=AN+DN,BC=BF+CF,AB=AE+BE,CD=CM+DM,∴AD+BC=AB+CD.故选D.【点评】本题考查了角平分线的性质以及切线的性质,解题的关键是得出该四边形为圆外切四边形.本题属于中档题,难度不大,解决该题型题目时,根据角平分线的性质确定该四边形为圆外切四边形是关键.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.温家宝强调,“十二五”期间,将新建保障性住房36000000套,用于解决中低收入和新参加工作的大学生住房的需求.把36000000用科学记数法表示应是 3.6×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:36000000=3.6×107.故答案为:3.6×107.【点评】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.因式分解:a3﹣9a=a(a+3)(a﹣3).【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(a2﹣9)=a(a+3)(a﹣3),故答案为:a(a+3)(a﹣3).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.双曲线y=与直线y=2x无交点,则k的取值范围是k>2.【分析】由双曲线y=与直线y=2x无交点,于是得到2﹣k与2异号,解不等式即可得到结论.【解答】解:∵双曲线y=与直线y=2x无交点,∴2﹣k与2异号,∴2﹣k<0,∴k>2,故答案为:k>2.【点评】本题考查了反比例函数与一次函数的交点,反比例函数与正比例函数的图象特点.12.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于 6.8.【分析】由图形可看出:小矩形的2个长+一个宽=5.7,小矩形的2个宽+一个长=4.5,设出长和宽,列出方程组即可得答案.【解答】解:设小矩形的长为xm,宽为ym,由题意得:,解得:x+y=3.4.一个小矩形的周长为:3.4×2=6.8,故答案为:6.8.【点评】此题主要考查了二元一次方程组的应用,做题的关键是:弄懂题意,找出等量关系,列出方程组.13.为了估计鱼塘青鱼的数量(鱼塘只有青鱼),将200条鲤鱼放进鱼塘,随机捕捞出一条鱼,记下品种后放回,稍后再随机捕捞出一条鱼记下品种,多次重复后发现鲤鱼出现的频率为0.2,那么可以估计鱼塘里青鱼的数量为800条.【分析】根据放入鲤鱼后鲤鱼出现的频率可以估计出放入鲤鱼后鱼塘中鱼的总数量,从而可以得到原来鱼塘中青鱼的数量.【解答】解:由题意可得,鱼塘里的青鱼的数量为:200÷0.2﹣200=1000﹣200=800(条),故答案为:800.【点评】本题考查用样本估计总体,解题的关键是明确题意,由鲤鱼的数量和出现的频率可以计算出青鱼的数量.14.如图,菱形ABCD中,对角线AC、BD相交于点O、H为AD边上的中点,若OH的长为2,则菱形ABCD的周长等于16.【分析】先根据直角三角形的性质求出AD的长,进而可得出结论.【解答】解:∵菱形ABCD中,对角线AC、BD相交于点O,∵AC⊥BD.∵为AD边上的中点,OH=2,∴AD=2OH=4,∴菱形ABCD的周长=4×4=16.故答案为:16.【点评】本题考查的是菱形的性质,熟知菱形的对角线互相垂直平分是解答此题的关键.15.如图,在△ABC中,AB=AC,∠A=36°,以B为圆心,BC为半径作弧,交AC于点D,连接BD,则∠ABD=36°.【分析】在△ABC中可求得∠ACB=∠ABC=72°,在△BCD中可求得∠DBC=36°,可求出∠ABD.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,又∵BC=BD,∴∠BDC=∠BCD=72°,∴∠DBC=36°,∴∠ABD=∠ABC﹣∠DBC=72°﹣36°=36°,故答案为:36【点评】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.16.用半径为6cm,圆心角为120°的扇形围成的圆锥的底面圆半径为2cm.【分析】设圆锥的底面圆半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解方程即可.【解答】解:设圆锥的底面圆半径为r,根据题意得2πr=,解得r=2,即圆锥的底面圆半径为2cm.故答案为2.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为9.【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH 的最大值是多少即可.【解答】解:如图1,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=AB=,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=9.故答案为:9.【点评】(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了等边三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:①等边三角形的内角都相等,且为60度;②等边三角形每条边上的中线、高线和所对角的平分线互相重合.③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高或所对角的平分线所在的直线.(3)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为32.【分析】将x轴下方的阴影部分沿对称轴分成两部分补到x轴上方,即可将不规则图形转换为规则的长方形,则可求出.【解答】解:∵抛物线y=﹣x2﹣2x+3与x轴交于点A、B,∴当y=0时,则﹣x2﹣2x+3=0,解得x=﹣3或x=1,则A,B的坐标分别为(﹣3,0),(1,0),AB的长度为4,从C1,C3两个部分顶点分别向下作垂线交x轴于E、F两点.根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1与C2.如图所示,阴影部分转化为矩形.根据对称性,可得BE=CF=4÷2=2,则EF=8利用配方法可得y=﹣x2﹣2x+3=﹣(x+1)2+4则顶点坐标为(﹣1,4),即阴影部分的高为4,=8×4=32.S阴【点评】本题考查了中心对称的性质、配方法求抛物线的顶点坐标及求抛物线与x轴交点坐标,解题关键是将不规则图形通过对称转换为规则图形,求阴影面积经常要使用转化的数学思想.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(1)计算:()﹣2+﹣8cos60°﹣(π+)0;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.【分析】(1)原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果;(2)原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:(1)原式=4+2﹣8×﹣1=2﹣1;(2)原式=a2﹣4a+4+b2﹣2ab+4a﹣4=a2+b2﹣2ab=(a﹣b)2,∵a﹣b=,∴原式=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(1)解不等式:;(2)用配方法解方程:x2+4x﹣1=0.【分析】(1)利用①去分母;②去括号;③移项;④合并同类项;⑤化系数为1的步骤解出不等式;(2)根据完全平方公式和配方法解出方程即可.【解答】解:(1)去分母,得6﹣2(2x+1)≥3(1﹣x)去括号,得6﹣4x﹣2≥3﹣3x移项,得﹣4x+3x≥3﹣6+2合并同类项,得﹣x≥﹣1系数化为1,得,x≤1;(2)x2+4x﹣1=0,x2+4x+4=1+4,(x+2)2=5,x+2=±,x1=﹣2,x2=﹣2.【点评】本题考查的是一元一次不等式的解法、配方法解一元二次方程,掌握解一元一次不等式的一般步骤、配方法的一般步骤是解题的关键.21.中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a=25%,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是5个、5个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【解答】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.故答案为:25;5,5.【点评】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.22.某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为.(1)该批产品有正品3件;(2)如果从中任意取出2件,求取出2件都是正品的概率.【分析】(1)由某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与取出2件都是正品的情况,再利用概率公式即可求得答案.【解答】解:(1)∵某种电子产品共4件,从中任意取出一件,取得的产品为次品的概率为;∴批产品有正品为:4﹣4×=3.故答案为:3;(2)画树状图得:∵结果共有12种情况,且各种情况都是等可能的,其中两次取出的都是正品共6种,∴P(两次取出的都是正品)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【分析】(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.【点评】本题考查了平行线的性质、平行四边形的判定、菱形的判定与性质、全等三角形的判定与性质;熟练掌握菱形的判定与性质,证明三角形全等是解决问题的关键.24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【分析】首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款﹣甲公司的人均捐款=40,根据这个等量关系可得出方程求解.【解答】问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:﹣=40解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.【点评】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.已知:如图,在△ABC中,AB=BC,D是AC中点,点O是AB上一点,⊙O过点B 且与AC相切于点E,交BD于点G,交AB于点F.(1)求证:BE平分∠ABD;(2)当BD=2,sinC=时,求⊙O的半径.【分析】(1)连接OE,根据等腰三角形三线合一的性质和切线的性质得出OE⊥AC,BD ⊥AC,证得OE∥BD,根据平行线的性质和等腰三角形的性质即可证得结论;(2)根据sinC=求出AB=BC=4,设⊙O 的半径为r,则AO=4﹣r,得出sinA=sinC=,根据OE⊥AC,得出sinA===,即可求出半径.【解答】(1)证明:连接OE,∵AC与⊙O相切,∴OE⊥AC,∵AB=BC且D是BC中点,∴BD⊥AC,∴OE∥BD,∴∠OEB=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠ABE=∠DBE,∴BE平分∠ABD;(2)解∵BD=2,sinC=,BD⊥AC,∴BC=4,∴AB=4,设⊙O的半径为r,则AO=4﹣r∵AB=BC,∴∠C=∠A,∴sinA=sinC=,∵AC与⊙O相切于点E,∴OE⊥AC∴sinA===,∴r=.【点评】本题考查了切线的性质,等腰三角形三线合一的性质,平行线的性质和判定,等腰三角形的性质,解直角三角形等,解(1)小题的关键是求出OE∥BD,解(2)小题的关键是得出关于r的方程,题型较好,难度适中,用了方程思想.26.设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=是闭区间[1,]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此一次函数的解析式.【分析】(1)根据反比例函数y=的单调区间进行判断;(2)根据新定义运算法则列出关于系数k、b的方程组或,通过解该方程组即可求得系数k、b的值.【解答】解:(1)是;由函数的图象可知,当1≤x≤时,函数值y随着自变量x的增大而减少,而当x=1时,y=;x=时,y=1,故也有1≤y≤,所以,函数是闭区间[1,]上的“闭函数”.(2)因为一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,所以根据一次函数的图象与性质,必有:①当k>0时,,解之得k=1,b=0.∴一次函数的解析式为y=x.②当k<0时,,解之得k=﹣1,b=m+n.∴一次函数的解析式为y=﹣x+m+n.故一次函数的解析式为y=x或y=﹣x+m+n.【点评】本题考查了一次函数图象的性质以及反比例函数图象的性质.解题的关键是弄清楚“闭函数”的定义.解题时,也要注意“分类讨论”数学思想的应用.27.已知点A(3,4),点B为直线x=﹣1上的动点,设B(﹣1,y).(1)如图①,若△ABO是等腰三角形且AO=AB时,求点B的坐标;(2)如图②,若点C(x,0)且﹣1<x<3,BC⊥AC垂足为点C;。

2024年江苏省扬州市广陵区九年级中考第二次模拟考试数学试题(含答案)

2024年江苏省扬州市广陵区九年级中考第二次模拟考试数学试题(含答案)

2024年江苏省扬州市广陵区九年级中考第二次模拟考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分.本卷满分150分,考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号.3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答,非选择题在指定位置用0.5毫米的黑色笔作答.在试卷或草稿纸上答题无效.4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.如果规定收入为正,那么支出负,收入3元记作+3元,支出5元记作A .-5元B .+5元C .-3元D .元2.下列计算正确的是A .B .C .D .3.古代名著《孙子算经》中有一题:今有三人共车(如果3人一辆车),二车空;二人共车,九人步.问人与车各几何?设有车辆,则根据题意,可列出方程是A .B .C .D .4.杆秤是中国最古老也是现今人们仍然使用的衡量工具,由秤杆、秤砣、秤盘三个部分组成.秤砣、秤杆分别叫做“权”和“衡”,指的是做任何事都要权衡轻重.如图是常见的一种秤砣,则它的主视图是A .B .C .D .5.如图,平行于主光轴MN 的光线AB 和CD 经过凹透镜的折射后,折射光线BE 、DF 的反向延长线交于MN 上一点.若,则的度数是3±235x x x+=236x x x= 32x x x÷=()32626x x =x 3(2)29x x +=-3(2)29x x -=+3(2)29x x +=+3(2)29x x -=-P 160,150ABE CDF ︒︒∠=∠=EPF ∠A .B .C .D .6.一个不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是必然事件的是A .3个球都是黑球B .3个球都是白球C .3个球中有黑球D .3个球中有白球7.已知点都在反比例函数的图像上.下列结论正确的是A .若,则B .若,则C .若,则D .若,则8.若从甲、乙、丙、丁、戊五位老师中任选两位一起帮图书馆整理书籍,所需的时间如下表:如果选一个人单独去整理,花时间最少的是合作方式甲、乙乙、丙丙、丁丁、戊戊、甲所需时间(h )13910128A .甲B .戊C .丁D .丙二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9有意义的条件是______.10.2024年3月31日,我市重大城建项目——大运河“十里外滩”综合整治提升项目正式开工建设,预计总投资约82.88亿元,数据82.88亿用科学记数法表示为______.11.将甲、乙两组各5个数据绘制成折线统计图(如图),两组数据的平均数都是13,设甲、乙两组数据的方差分别为,则______(填“>”“=”或“<”).20︒30︒50︒70︒()()1122,,,A x y B x y 6y x=-120x x +=12y y =120x x +=120y y +=12x x <12y y <12x x <12y y >22s s 甲乙、2s 甲2s 乙12.化简的结果是______.13.圆锥的底面半径为1,母线长为3,则它的侧面展开图的圆心角为______.14.《九章算术》中记载了一种测量井深的方法.如图,在井口处立一根垂直于井口的木杆BD ,从木杆的顶端观察井水水岸,视线DC 与井口的直径AB 交于点,如果测得米,米,米,那么AC 为______米.15.如图,在中,,则的度数为______.16.如图,由边长为1的小正方形构成的网格中,点A 、B 、C 都在格点上,以AB 为直径的圆经过点C 、D ,则的值为______.17.如图,中,D 、E 分别是BC 、AC 的中点,BF 平分,交DE 于点,若,则EF 的长是______.2222x xx x+--B D C E 1.8AB =1BD =0.5BE =O ,60OA BC AOB ︒⊥∠=ADC ∠sin ADC ∠ABC ABC ∠F 12,9AB BC ==18.如图,在菱形ABCD 中,,点为对角线AC 上一动点,于点,连接CF .在点运动的过程中,CF 长的最小值为______.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本题满分8分)计算或化简:(1);(2).20.(本题满分8分)解不等式组并在数轴上表示出不等式组的解集.21.(本题满分8分)甲,乙两个小区各有300户居民,为了解两个小区3月份用户使用燃气量情况,小明和小丽分别从中随机抽取30户进行调查,并对数据进行整理、描述和分析.下面给出了部分信息.①甲小区用气量频数分布直方图如右图(数据分成5组:)②甲小区用气量的数据在这一组的是:③甲,乙两小区用气量的平均数、中位数、众数如下:小区平均数中位数众数60,4B AD ︒∠==E DEF ∠=60,DF EF ︒⊥F E 11tan 45|2|2-︒⎛⎫++- ⎪⎝⎭(21)(21)4(1)a a a a +---542(1),31,32x x x x +-⎧⎪+⎨+<⎪⎩...510,1015,15x x <<......20,2025,2530x x x <<<.........1520x < (151516161616181818181819)甲17.218乙17.71915根据以上信息,回答下列问题:(1)表中的值为______;(2)在甲小区抽取的用户中,记3月份用气量高于它们的平均用气量的户数为.在乙小区抽取的用户中,记3月份用气量高于它们的平均用气量的户数为.比较,的大小,并说明理由;(3)估计甲小区中用气量超过15立方米的户数.22.(本题满分8分)某市开展“弘扬家风家教,创建文明家庭”系列活动,某校团委积极响应,为宣传活动招募学生宣传员,八年级(1)、(2)班共有六名学生报名,其中八(1)班两名男生、一名女生,八(2)班一名男生、两名女生.(1)现从六名学生中随机抽取一名学生作为宣传员,抽取女生的概率是______.(2)现从八年级(1)、(2)班各随机抽取一名学生作为宣传员,请用列表法或画树状图法求抽取的两名学生是一男一女的概率.23.(本题满分10分)某中学为了丰富学生的课外体育活动,购买了篮球和足球.已知篮球的单价是足球的单价的3倍,购买足球共花费750元,购买篮球共花费900元,购买足球的数量比购买篮球的数量多15个.求足球的单价.24.(本题满分10分)如图,已知,点在射线OA 上,点D ,E 在射线OB 上,其中,四边形CEDF 是平行四边形.(1)请只用无刻度的直尺画出菱形CODN ,并请明理由.(2)作出(1)中菱形CODN 后,若,求ON 的长.25.(本题满分10分)如图,AB 为的直径,C ,D 是上不同于A ,B 的两点,,连接CD .过点作,交DB 的延长线于点,延长CE ,交AB 的延长线于点.(1)求证:CF 是的切线.(2)当时,求EF 的长.26.(本题满分10分)阅读感悟:mm 1p 2p 1p 2p AOB ∠C OC OD =60OC AOB ︒=∠=O O ABD ∠2BAC =∠C CE DB ⊥E F O 36,sin 5BD F =∠=代数证明题是数学中常见的一种题型,它要求运用逻辑推理和代数知识来证明某个数学命题的正确性,如下例题:例:已知实数x 、y 满足,证明:.证明:因为且x ,y 均为正,所以______,______.(不等式的两边都乘以同一个正数,不等号的方向不变)所以.(不等式的传递性)解决问题:(1)请将上面的证明过程填写完整.(2)尝试证明:若,则.27.(本题满分12分)问题情境:数学活动课上,王老师给同学们每人发了一张矩形纸片探究折叠的性质在矩形ABCD 的CD 边上取一点,将沿BE 翻折,使点恰好落在AD 边上点处.实践探究:(1)如图1,若,则的值为______;(2)如图2,当时,求的值;问题解决:(3)如图3,延长EF ,与的角平分线交于点M ,BM 交AD 于点,当时,求的值.28.(本题满分12分)某公园要在小广场建造一个喷泉景观.在小广场中央处垂直于地面安装一个高为1.25米的花形柱子OA ,安置在柱子顶端处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上抛物线路径如图1所示,为使水流形状较为美观,设计成水流在距OA 的水平距离为1米时达到最大高度,此时离地面2.25米.0x y >>22x y >x y >2x >xy >22x y >a b <2a bb +<E BCE C F 15CBE ︒∠=ABBC 4,12CE AF FD == ABBCABF ∠N NF AN FD=+AB BC O A(1)以点为原点建立如图2所示的平面直角坐标系,水流到OA 水平距离为米,水流喷出的高度为米,求出在第一象限内的抛物线解析式(不要求写出自变量的取值范围);(2)张师傅正在喷泉景观内维修设备期间,喷水管意外喷水,但是身高1.76米的张师傅却没有被水淋到,此时他离花形柱子OA 的距离为米,求的取值范围;(3)为了美观,在离花形柱子4米处的地面B 、C 处安装射灯,射灯射出的光线与地面成角,如图3所示,光线交汇点在花形柱子OA 的正上方,且米,求光线与抛物线水流之间的最小垂直距离.2024年九年级第二次模拟考试数学参考答案及评分标准说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)题号12345678答案ACBACCBD二、填空题(本大题共有10小题,每小题3分,共30分)9.10.11.>12.13.14.2.615.1617.1.518.1三、解答题(本大题共有10小题,共96分)19.(本题满分8分)解:(1)原式……………………………………………………………………………………3分…………………………………………………………………………………………………………1分(2)原式……………………………………………………………………………3分………………………………………………………………………………………………………1分O x y d d 45︒P 4OP =2024x ≥98.28810⨯x 120︒30︒122=++5; =224144a a a =--+4 1.a =-解:由得:,……………………………………………………………………2分由得:,………………………………………………………………………………2分则不等式组的解集为,………………………………………………………………………………2分将解集表示在数轴上如下:21.(本题满分8分)(1)16;……………………………………………………………………………………………………2分(2),理由:甲小区,(户);乙小区中位数高于平均数,则至少为15户,;………………………………………………………………………………………………3分(3)由题意得:(户)答:甲小区中用气量超过15立方米约180户.……………………………………………………………3分22.(本题满分8分)解:(1);……………………………………………………………………………………………………2分(2)列表如下:男女女男(男,男)(男,女)(男,女)男(男,男)(男,女)(男,女)女(女,男)(女,女)(女,女)共有9种等可能的结果,其中抽取的两名学生是一男一女的结果有5种,…………………………………………………………4分抽取的两名学生是一男一女的概率为.………………………………………………………………2分23.(本题满分10分)解:设足球的单价是元,则篮球的单价是3x 元,………………………………………………………1分由题意得:,………………………………………………………………………………4分解得:,………………………………………………………………………………………………3分经检验,是原方程的解,且符合题意,……………………………………………………………1分答:足球的单价是30元.……………………………………………………………………………………1分542(1)x x +≥-2x ≥-3132x x ++<3x >-2x ≥-12p p <166214p =++=2p 12p p ∴<106230018030++⨯=12∴59x 750900153x x-=30x =30x =解:(1)如图,连接CD ,EF ,相交于点,连接OG 并延长,交CF 的延长线于点,连接DN ,则四边形CODN 是菱形,即菱形CODN 为所求.……………………………………………………………………………2分理由:四边形CEDF 是平行四边形,,,四边形CODN 是平行四边形.………………………………………………………………………………2分为等腰三角形,,即,四边形CODN 是菱形.………………………………………………………………………………………2分(2)四边形CODN 是菱形,.……………………………………………………………1分在Rt 中,,………………………………………………3分25.(本题满分10分)(1)证明:如图,连接OC .是的半径,是的切线;………………………………………………………………5分(2)解:连接AD,G N ,//,CG DG CF ED CNG DOG ∴=∴∠=∠,(AAS),OGD NGC CNG DOG OG NG ∠=∠∴≅∴= ∴,OC OD COD =∴ ,CG DG OG CD =∴⊥ CD ON ⊥∴ ,,CON BON CD ON OG NG ∴∠=∠⊥=60,30.AOB CON ︒︒∠=∴∠= COG30OC COG ︒=∠=cos303,2 6.OG OC ON OG ︒∴===∴== ,12,OA OC =∴∠=∠ 312,321,∠=∠+∠∴∠=∠ 2,3,//,ABD BAC ABD OC BD ∠=∠∴∠=∠∴ ,,CE DE OC CF ⊥∴⊥ OC O CF ∴O是的直径,,,,,,,解得,,在Rt 中,由勾股定理得:.………………………………………………5分26.(本题满分10分)(1)……………………………………………………………………………………………………4分(2),,…………………………………………………………………………………………………3分………………………………………………………………………………………………………3分27.(本题满分12分)解:(1);……………………………………………………………………………………………………2分(2)设,则,将沿BE 翻折,使点恰好落在AD 边上点处,,又矩形ABCD 中,,,,AB O 90ADB ︒∴∠=,//,DE CF CF AD BAD F ⊥∴∴∠=∠ 35sin sin ,1053BD BAD F AB BD AB ∴∠=∠==∴==152OC AB == 3,5,sin 5OC CF OC F ⊥=∠= 3sin 5OCOC F OF OC BF ∴∠===+103BF =33sin ,255BEF BE BF BF ∴∠==∴==BEF 83EF ==2xyy a b < 2a b b ∴+<2a b b +∴<12AB CD a ==4DE a =- BCE C F 90,BFE C CE EF ︒∴∠=∠== 90A D ︒∠=∠=90,90AFB DFE DEF DFE ︒︒∴∠+∠=∠+∠=,~,,AF ABAFB DEF FAB EDF AF DF AB DE DE DF∴∠=∠∴∴=∴=,解得或(舍去),,由折叠可得:,,,;………………………………………………………………………………………5分(3)过点作于点,,,,设,设,则,,解得,……………………………………………………………………………………5分28.(本题满分12分)12,(4)12AF DF AB DE a a =∴=-= 6a =2a =-C 642DE DC E ∴=-=-=4CE EF ==12DF AF ∴===∴=÷=BC AD AF DF ∴==+=+=AB BC ∴==N NG BF ⊥G 11,22NF AN FD NF AD BC =+∴== 1,2BC BF NF BF =∴= ,90NFG AFB NGF BAF ︒∠=∠∠=∠= 1,,2NG FG FN NFG BFA AB FA BF ∴∴=== ∽AN x = ,,,BN ABF AN AB NG BF ∠⊥⊥ 平分,2,AN NG x AB BG x ∴====FG y =2AF y =222,AB AF BF += 222(2)(2)(2)x y x y ∴+=+43y x =4102,33BF BG GF x x x ∴=+=+=23.1053AB AB x BC BF x ∴===解:(1)根据题意第一象限内的抛物线的顶点坐标为(1,2.25),A (0,1.25),设第一象限内的抛物线解析式为,将点代入物线解析式,,解得,第一象限内的抛物线解析式为;…………………………………………………3分(2)根据题意,令,即,解得,,抛物线开口向下,当时,,的取值范围为;……………………………………………………………………………4分(3)过抛物线上点作,垂足为点,过点作轴,交BP 于点,如图所示,由题意可知:为等腰直角三角形,.设,则,轴,即当时,有最小值,此时.米.……………………………………………………5分2(1) 2.25y a x =-+(0,1.25)A 21.25(01) 2.25a =-+1α=-∴2(1) 2.25y x =--+1.76y =2(1) 2.25 1.76x --+=120.3, 1.7x x ==10-< ∴0.3 1.7x << 1.76y >d ∴0.3 1.7d <<D DE BP ⊥E D //DF x F DEF DF =()2,2 1.25,(,4)D m m m F m n m n -+++--+DF n =//DF x 22 1.254m m m n ∴-++=--+2213 2.75( 1.5)2n m m m ∴=-+=-+1.5m =n 1211,22DF DE DF ====∴。

江苏省2021届中考数学二模试卷含答案解析

江苏省2021届中考数学二模试卷含答案解析

中考数学二模试卷一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)22.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABC D是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=.8.(4分)在实数范围内分解因式:4a2﹣3=.9.(4分)方程=1的根是.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=(用、的式子表示).15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为.(用锐角α的三角比表示)17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2022﹣2cos45°+8.20.(10分)解方程组:21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?23.(12分)如图,已知在△ABC中,∠BAC=2∠C,∠BAC的平分线AE与∠ABC 的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.中考数学二模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.(4分)在下列各式中,二次单项式是()A.x2+1 B.xy2C.2xy D.(﹣)2【解答】解:由题意可知:2xy是二次单项式,故选:C.2.(4分)下列运算结果正确的是()A.(a+b)2=a2+b2B.2a2+a=3a3C.a3•a2=a5 D.2a﹣1=(a≠0)【解答】解:(A)原式=a2+2ab+b2,故A错误;(B)2a2+a中没有同类项,不能合并,故B错误;(D)原式=,故D错误;故选:C.3.(4分)在平面直角坐标系中,反比例函数y=(k≠0)图象在每个象限内y 随着x的增大而减小,那么它的图象的两个分支分别在()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限【解答】解:∵反比例函数y=(k≠0)图象在每个象限内y随着x的增大而减小,∴k>0,∴它的图象的两个分支分别在第一、三象限.故选:A.4.(4分)有9名学生参加校民乐决赛,最终成绩各不相同,其中一名同学想要知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.平均数B.中位数C.众数D.方差【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.5.(4分)已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形B.当AC⊥BD时,四边形ABCD是菱形C.当∠ABC=90°时,四边形ABCD是矩形D.当AC=BD时,四边形ABCD是正方形【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故本选项错误;B、根据对角线互相垂直的平行四边形是菱形知:当AC⊥BD时,四边形ABCD 是菱形,故本选项错误;C、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D、根据对角线相等的平行四边形是矩形可知:当AC=BD时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D选项;故选:D.6.(4分)点A在圆O上,已知圆O的半径是4,如果点A到直线a的距离是8,那么圆O与直线a的位置关系可能是()A.相交B.相离C.相切或相交D.相切或相离【解答】解:∵点A在圆O上,已知圆O的半径是4,点A到直线a的距离是8,∴圆O与直线a的位置关系可能是相切或相离,故选:D.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)计算:|﹣1|+22=5.【解答】解:原式=1+4=5,故答案为:58.(4分)在实数范围内分解因式:4a2﹣3=.【解答】解:4a2﹣3=.故答案为:.9.(4分)方程=1的根是1.【解答】解:两边平方得2x﹣1=1,解得x=1.经检验x=1是原方程的根.故本题答案为:x=1.10.(4分)已知关于x的方程x2﹣3x﹣m=0没有实数根,那么m的取值范围是m.【解答】解:∵关于x的方程x2﹣3x﹣m=0没有实数根,∴△<0,即(﹣3)2﹣4(﹣m)<0,解得m<﹣,故答案为:m<﹣.11.(4分)已知直线y=kx+b(k≠0)与直线y=﹣x平行,且截距为5,那么这条直线的解析式为y=﹣x+5.【解答】解:∵直线y=kx+b平行于直线y=﹣x,∴k=﹣.又∵截距为5,∴b=5,∴这条直线的解析式是y=﹣x+5.故答案是:y=﹣x+5.12.(4分)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.13.(4分)已知一个40个数据的样本,把它分成六组,第一组到第四组的频数分别为10,5,7,6,第五组的频率是0.10,则第六组的频数为8.【解答】解:根据题意,得:第一组到第四组的频率和是=0.7,又∵第五组的频率是0.10,∴第六组的频率为1﹣(0.7+0.10)=0.2,∴第六组的频数为:40×0.2=8.故答案为:8.14.(4分)如图,已知在矩形ABCD中,点E在边AD上,且AE=2ED.设=,=,那么=﹣(用、的式子表示).【解答】解:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD=BC,AD∥BC,∴==,==,∵AE=2DE,∴=,∵=+.∴=﹣,故答案为﹣.15.(4分)如果二次函数y=a1x2+b1x+c1(a1≠0,a1、b1、c1是常数)与y=a2x2+b2x+c2(a2≠0,a2、b2、c2是常数)满足a1与a2互为相反数,b1与b2相等,c1与c2互为倒数,那么称这两个函数为“亚旋转函数”.请直接写出函数y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.【解答】解:∵y=﹣x2+3x﹣2中a=﹣1,b=3,c=﹣2,且﹣1的相反数是1,与b 相等的数是3,﹣2的倒数是﹣,∴y=﹣x2+3x﹣2的“亚旋转函数”为y=x2+3x﹣.故答案是:y=x2+3x﹣.16.(4分)如果正n边形的中心角为2α,边长为5,那么它的边心距为cotα(或).(用锐角α的三角比表示)【解答】解:如图所示:∵正n边形的中心角为2α,边长为5,∵边心距OD=(或),故答案为:(或),17.(4分)如图,一辆小汽车在公路l上由东向西行驶,已知测速探头M到公路l的距离MN为9米,测得此车从点A行驶到点B所用的时间为0.6秒,并测得点A的俯角为30o,点B的俯角为60o.那么此车从A到B的平均速度为17.3米/秒.(结果保留三个有效数字,参考数据:≈1.732,≈1.414)【解答】解:在Rt△AMN中,AN=MN×tan∠AMN=MN×tan60°=9×=9.在Rt△BMN中,BN=MN×tan∠BMN=MN×tan30°=9×=3.∴AB=AN﹣BN=9﹣3=6.则A到B的平均速度为:==10≈17.3(米/秒).故答案为:17.3.18.(4分)在直角梯形ABCD中,AB∥CD,∠DAB=90°,AB=12,DC=7,cos∠ABC=,点E在线段AD上,将△ABE沿BE翻折,点A恰巧落在对角线BD上点P处,那么PD=12﹣12.【解答】解:过点C作CF⊥AB于点F,则四边形AFC D为矩形,如图所示.∵AB=12,DC=7,∴BF=5.又∵cos∠ABC=,∴BC=13,CF==12.∵AD=CF=12,AB=12,∴BD==12.∵△ABE沿BE翻折得到△PBE,∴BP=BA=12,∴PD=BD﹣BP=12﹣12.故答案为:12﹣12.三、解答题:(本大题共7题,满分78分)19.(10分)计算: +(﹣1)2022﹣2cos45°+8.【解答】解:原式=﹣1+1﹣2×+2=﹣+2=2.20.(10分)解方程组:【解答】解:由②得:(x﹣2y)(x+y)=0x﹣2y=0或x+y=0…………………………………………(2分)原方程组可化为,………………………………(2分)解得原方程组的解为,…………………………………(5分)∴原方程组的解是为,……………………………………(6分)21.(10分)已知一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,以AB为边在第一象限内作直角三角形ABC,且∠BAC=90°,tan∠ABC=.(1)求点C的坐标;(2)在第一象限内有一点M(1,m),且点M与点C位于直线AB的同侧,使=S△ABC,求点M的坐标.得2S△ABM【解答】解:(1)令y=0,则﹣2x+4=0,解得x=2,∴点A坐标是(2,0).令x=0,则y=4,∴点B 坐标是(0,4).∴AB===2.∵∠BAC=90°,tan ∠ABC==,∴AC=AB=. 如图1,过C 点作CD ⊥x 轴于点D ,∠BAO +∠ABO=90°,∠BAO +∠CAD=90°,∵∴∠ABO=∠CAD ,,∴△OAB ∽△DAC . ∴===,∵OB=4,OA=2,∴AD=2,CD=1,∴点C 坐标是(4,1).(2)S △ABC =AB•AC=×2×=5.∵2S △ABM =S △ABC ,∴S △ABM =.∵M (1,m ),∴点M 在直线x=1上;令直线x=1与线段AB 交于点E ,ME=m ﹣2;如图2,分别过点A 、B 作直线x=1的垂线,垂足分别是点F 、G ,∴AF +BG=OA=2;∴S △ABM =S △BME +S △AME =ME•BG +ME•AF=ME (BG +AF ) =ME•OA=×2×ME=,∴ME=,m ﹣2=, m=,∴M (1,).22.(10分)为了响应上海市市政府“绿色出行”的号召,减轻校门口道路拥堵的现状,王强决定改父母开车接送为自己骑车上学.已知他家离学校7.5千米,上下班高峰时段,驾车的平均速度比自行车平均速度快15千米/小时,骑自行车所用时间比驾车所用时间多小时,求自行车的平均速度?【解答】解:设自行车的平均速度是x 千米/时. 根据题意,列方程得﹣=,解得:x 1=15,x 2=﹣30.经检验,x 1=15是原方程的根,且符合题意,x 2=﹣30不符合题意舍去. 答:自行车的平均速度是15千米/时.23.(12分)如图,已知在△ABC 中,∠BAC=2∠C ,∠BAC 的平分线AE 与∠ABC的平分线BD相交于点F,FG∥AC,联结DG.(1)求证:BF•BC=AB•BD;(2)求证:四边形ADGF是菱形.【解答】证明:(1)∵AE平分∠BAC,∴∠BAC=2∠BAF=2∠EAC.∵∠BAC=2∠C,∴∠BAF=∠C=∠EAC.又∵BD平分∠ABC,∴∠ABD=∠DBC.∵∠ABF=∠C,∠ABD=∠DBC,∴△ABF∽△CBD.…………………………………………………(1分)∴.………………………………………………………(1分)∴BF•BC=AB•B D.………………………………………………(1分)(2)∵FG∥AC,∴∠C=∠FGB,∴∠FGB=∠FAB.………………(1分)∵∠BAF=∠BGF,∠ABD=∠GBD,BF=BF,∴△ABF≌△GBF.∴AF=FG,BA=BG.…………………………(1分)∵BA=BG,∠ABD=∠GBD,BD=BD,∴△ABD≌△GBD.∴∠BAD=∠BGD.……………………………(1分)∵∠BAD=2∠C,∴∠BGD=2∠C,∴∠GDC=∠C,∴∠GDC=∠EAC,∴AF∥DG.……………………………………(1分)又∵FG∥AC,∴四边形ADGF是平行四边形.……………………(1分)∴AF=FG.……………………………………………………………(1分)∴四边形ADGF是菱形.……………………………………………(1分)24.(12分)如图,已知在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)求证:∠DAB=∠ACB;(3)点Q在抛物线上,且△ADQ是以AD为底的等腰三角形,求Q点的坐标.【解答】解:(1)把B(1,0)和C(0,3)代入y=ax2﹣2x+c中,得,解得,∴抛物线的解析式是:y=﹣x2﹣2x+3,∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点坐标D(﹣1,4);(2)令y=0,则﹣x2﹣2x+3=0,解得x1=﹣3,x2=1,∴A(﹣3,0),∴OA=OC=3,∴∠CAO=∠OCA,在Rt△BOC中,tan∠OCB==,∵AC==3,DC==,AD==2,∴AC2+DC2=20=AD2;∴△ACD是直角三角形且∠ACD=90°,∴tan∠DAC===,又∵∠DAC和∠OCB都是锐角,∴∠DAC=∠OCB,∴∠DAC+∠CAO=∠BCO+∠OCA,即∠DAB=∠ACB;(3)令Q(x,y)且满足y=﹣x2﹣2x+3,A(﹣3,0),D(﹣1,4),∵△ADQ是以AD为底的等腰三角形,∴QD2=QA2,即(x+3)2+y2=(x+1)2+(y﹣4)2,化简得:x﹣2+2y=0,由,解得,.∴点Q的坐标是(,),(,).25.(14分)如图,已知在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点F在线段AB上,以点B为圆心,BF为半径的圆交BC于点E,射线AE交圆B于点D(点D、E不重合).(1)如果设BF=x,EF=y,求y与x之间的函数关系式,并写出它的定义域;(2)如果=2,求ED的长;(3)联结CD、BD,请判断四边形ABDC是否为直角梯形?说明理由.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,∠ACB=90°∴AB=10,如图1,过E作EH⊥AB于H,在Rt△ABC中,sinB=,cosB=在Rt△BEH中,BE=BF=x,∴EH=x,EH=x,∴FH=x,在Rt△EHF中,EF2=EH2+FH2=(x)2+(x)2=x2,∴y=x(0<x<8)(2)如图2,取的中点P,联结BP交ED于点G∵=2,P是的中点,EP=EF=PD.∴∠FBE=∠EBP=∠PBD.∵EP=EF,BP过圆心,∴BG⊥ED,ED=2EG=2DG,又∵∠CEA=∠DEB,∴∠CAE=∠EBP=∠ABC,又∵BE是公共边,∴△BEH≌△BEG.∴EH=EG=GD=x.在Rt△CEA中,∵AC=6,BC=8,tan∠CAE=tan∠ABC=,∴CE=AC•tan∠CAE==∴BE=8﹣=∴ED=2EG=x=,(3)四边形ABDC不可能为直角梯形,①当CD∥AB时,如图3,如果四边形ABDC是直角梯形,只可能∠ABD=∠CDB=90°.在Rt△CBD中,∵BC=8.∴CD=BC•cos∠BCD=,BD=BC•sin∠BCD==BE.∴=,;∴.∴CD不平行于AB,与CD∥AB矛盾.∴四边形ABDC不可能为直角梯形,②当AC∥BD时,如图4,如果四边形ABDC是直角梯形,只可能∠ACD=∠CDB=90°.∵AC∥BD,∠ACB=90°,∴∠ACB=∠CBD=90°.∴∠ABD=∠ACB+∠BCD>90o.与∠ACD=∠CDB=90°矛盾.∴四边形ABDC不可能为直角梯形.即:四边形ABDC不可能是直角梯形。

江苏省扬州市2021年中考数学二模试卷 (II)卷

江苏省扬州市2021年中考数学二模试卷 (II)卷

江苏省扬州市2021年中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)下列语句中,正确的是()A . 平方等于它本身的数只有1.B . 倒数等于它本身的数只有1.C . 相反数等于它本身的数只有0.D . 绝对值等于它的本身的数只有0.2. (2分)三明市地处福建省中西部,面积为22900平方千米,将22900用科学记数法表示为()A . 229×102B . 22.9×103C . 2.29×104D . 0.229×1053. (2分)如图,AB∥CD,直线EF分别交AB、CD于E、F两点,若∠FEB=110°,则∠EFD等于()A . 50°B . 60°C . 70°D . 110°4. (2分)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A .B .C .D .5. (2分) (2019七下·兰州月考) 化简的结果是()A .B .C .D .6. (2分)下列平面图形中,既是中心对称图形,又是轴对称图形的是()A . 等腰三角形B . 等边三角形C . 等腰梯形D . 菱形7. (2分) (2018八上·龙岗期末) 如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1 ,则的值为()A . 1B . -1C . 0D . 28. (2分)小颖与两位同学进行象棋比赛时,决定用“手心、手背”游戏确定出场顺序.设每人每次出手心、手背的可能性相同.若有一人与另外两人不同,则此人最后出场,三人同时出手一次,小颖最后出场比赛的概率为()A .B .C .D .9. (2分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)计算﹣的结果是()A .B .C .D .11. (2分)(2018·湘西) 如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O的半径为5,CD=8,则弦AC的长为()A . 10B . 8C . 4D . 412. (2分)(2018·桂林) 已知关于x的一元二次方程有两个相等的实根,则k的值为()A .B .C . 2或3D . 或13. (2分) (2017七上·东台月考) 一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是()A .B .C .D .14. (2分) (2017九上·江都期末) 若是方程的一个解,则的值为()A .B .C .D .15. (2分) (2017七下·东明期中) 小华家距离县城15km,星期天8:00,小华骑自行车从家出发,到县城购买学习用品,小华与县城的距离y(km)与骑车时间x(h)之间的关系如图所示,给出以下结论:①小华骑车到县城的速度是15km/h;②小华骑车从县城回家的速度是13km/h;③小华在县城购买学习用品用了1h;④B点表示经过 h,小华与县城的距离为15km(即小华回到家中),其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)16. (2分)计算:÷(﹣)﹣1﹣()0=________ ,2÷(﹣)=________ .17. (1分)分解因式:x3-9x=________18. (1分)若关于x的方程 = +1无解,则a的值是________19. (1分) (2017八下·卢龙期末) 对于数据:2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别是________20. (1分) (2019九下·东台月考) 如图所示,点A是反比例函数y= 图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k的值是________.21. (1分)(2016·泰州) 二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2 个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为________.三、解答题 (共8题;共80分)22. (15分) (2019八下·郑州月考) 已知方程组的解满足x为非正数,y为负数.(1)求m的取值范围;(2)化简:|m﹣3|﹣|m+2|;(3)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.23. (10分)如图,在▱ABCD中,点E、F分别是AD、BC的中点,分别连接BE、DF、BD.(1)求证:△AEB≌△CFD(2)若四边形EBFD是菱形,求∠AB D的度数24. (5分)如图,海中有一个小岛C,今有一货船由西向东航行,在A处测得小岛C在北偏东60°方向,货船向正东方向航行16海里到达B处,在B处测得小岛C在北偏东15°方向,求此时货船与小岛C的距离.(结果精确到0.01海里)25. (10分) (2019七下·昌平期中) 2019年4月23日,是第23个世界读书日.为了推进中华传统文化教育,营造浓郁的读书氛围,我区某学校举办了“让读书成为习惯,让书香飘满校园”主题活动,为此,特为每个班级订购了一批新的图书.初一年级两个班订购图书情况如下表:老舍文集(套)四大名著(套)总费用(元)初一(1)班22330初一(2)班32380(1)求老舍文集和四大名著每套各多少元?(2)学校准备再购买老舍文集和四大名著共10套,总费用超过500元而不超过800元,问学校有哪几种购买方案?26. (10分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.27. (10分)(2017·北区模拟) 如图,直线y= x+2与双曲线y= 相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.28. (10分)(2017·莒县模拟) 如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.29. (10分)(2017·滨湖模拟) 已知:如图,已知⊙O是△ABC的外接圆,AB为⊙O的直径,AC=6cm,BC=8cm.(1)求⊙O的半径;(2)请用尺规作图作出点P,使得点P在优弧CAB上时,△PBC的面积最大,请保留作图痕迹,并求出△PBC 面积的最大值.参考答案一、选择题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共6题;共7分)16-1、17-1、18-1、19-1、20-1、21-1、三、解答题 (共8题;共80分)22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、29-1、29-2、。

2021年江苏省扬州市中考数学第二次联合测评试卷附解析

2021年江苏省扬州市中考数学第二次联合测评试卷附解析

2021年江苏省扬州市中考数学第二次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,AC是⊙O的直径,∠BAC=20°,P是弧AB的中点,则∠PAB=()A.35°B.40°C.60°D.70°2.如果三角形的每条边都扩大为原来的5倍,那么三角形的每个角()A.扩大为原来的5倍B.扩大为原来的10倍C.都扩大为原来的25倍D.与原来相等3.已知圆锥的高为3,底面半径为1,则圆锥侧面展开图的面积是()A.π B.2πC.3π234.下列图形中,阴影部分面积为 1 的是()A.B.C.D.5.对任意实数x,点P(x,22-)一定不在()x xA.第一象限B.第二象限C.第三象限D.第四象限6.为了估计湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群中之后,再捕捞第二次,鱼共200条,有10条做了记号,则估计湖里有()条鱼A.400条 B.500条 C.800条 D.1000条7.如图,下列说法中错误的是()A.∠l与∠2是同位角B.∠4与∠5是同旁内角C.∠2与∠4是对顶角D.∠l与∠2是同旁内角8.用科学记数法表示0.000 302 5为()A.3.025×10-4B.3025×10-4C.3.025×10-5D.3.025×10-69.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次的训练成绩分别用实线和虚线连接,如图所示,则下面的结论中,错误的是()A.乙的第二次成绩与第五次成绩相同B.第三次测试甲的成绩与乙的成绩相同C.第四次测试甲的成绩比乙的成绩多 2分D.五次测试甲的成绩都比乙的成绩高10.关于x的方程2(1)0x a--=的解是3,则a的值是()A.4 B.-4 C.5 D.-511.|3.14|ππ--的值是()A.3.142π-B.3.14 C.-3.14 D.无法确定12.一个数的绝对值是正数,则这个数是()A.不等于0 的有理数 B.正数 C.任何有理数 D.非负数二、填空题13.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于.14.如图所示,是一个几何体的俯视图和左视图,则这个几何体是.15.太阳光形成的投影是,手电筒、台灯发出的光线形成的投影是.16.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点E,交AB 于点F,F为垂足,连接DE,则∠CDE=_________度.解答题17.在一次班长选举中,甲得了50票中的45票,这个事件中,频数是 ,频率是 . 18.若去分母解方程3233x x x=---时,出现增根,则增根为 . 19.如图,有6张纸牌,从中任意抽取两张,点数和为奇数的概率是 .20.下图是把一个长为3 cm 、宽为1 cm 的长方形绕某点旋转90°后所得,则阴影部分的面积为 .21.如图所示,点P 关于OA 、OB 的对称点分别是P 1,P 2,P 1P 2分别交OA ,OB 于C ,D 两点, P 1P 2=6 cm ,则△PCD 的周长为 .解答题22.某教室要换新桌椅,教室中共有(1n +)行桌椅,其中每行 7 人的有n 行,另有一行有 8 人,共需 套新桌椅;当6n =时,共需 套新桌椅.23.比较下列各组数的大小:(1) -22 (-2)2;(2)(-3)3 -33. 三、解答题24.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线21855y x x =-+,其中y (m )是球的飞行高度,x (m )是球飞出的水平距离,结果球离球洞的水平距离还有2m .(1)请写出抛物线的开口方向、顶点坐标、对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.25. 已知△ABC 中,AB=1,142BC =,11255CA =. (1)分别化简142,11255的值; (2)试在4×4的方格纸上画出△ABC ,使它的顶点都在方格的顶点上(每个小方格的边长为 1).26.衢州市总面积8837平方千米,总人口 247万人(截目 2006年底),辖区有 6 个县(市、区),各县(市、区)的行政区域面积及平均每万人拥有面积统计如图①、图②所示: (1)行政区域面积最大的是哪个县(市、区)?这个县(市、区)约有多少面积(精确到 1平 方千米)?(2) 衢州市的人均拥有面积是多少(精确到 1平方米)?6个县(市、区)中有哪几个县 (市、区)的人均拥有面积超过衢州市人均拥有面积?(3)江山市约有多少入(精确到 1万人)?县(市、区)衢州市各县(市、区)平均每万人拥有面积统计图 面积(平方千米) 0 10 20 30 40 50 60 70 衢江江山常山开化柯城龙游14.85 43.7 34.79 33.3 63.54 28.4827.比较下面 4 个算式结果的大小(在横线上填“>”“<”或“=”).2245+ 245⨯⨯;22(1)2-+ 2(1)2⨯-⨯;221(3)()3+ 1233⨯⨯; 2233+ 233⨯⨯.通过观察归纳,写出反映这种规律的一般结论.28.尺规作图:把图(实线部分)补成以虚线l 为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法,保留作图痕迹).29.有一批型号相同的陶瓷杯子共1000个,其中有一等品700个,二等品200个,三等品100个,从中任选1个杯子,求下列事件发生的概率:(1)选到一等品的概率;(2)选到二等品的概率;(3)选到三等品的概率.30.如图,过圆上两点AB 作一直线,点M 在圆上,点P 在圆外,且点M ,P•在AB 同侧,∠AMB=50°,设∠APB=x ,当点P 移动时,求x 的变化范围,并说明理由,当点P 移至圆内时,x有什么变化?(直接写出结果)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.D3.B4.D5.C6.D7.A8.A9.D10.A11.C12.A二、填空题13.2414.圆柱15.平行投影,中心投影16.6017.45,0.918.3=x 19.158 20. 1 cm 221.6 cm22.78n +,5023.(1)<;(2)=三、解答题24.解:(1)21855y x x =-+2116(4)55x =--+, ∴抛物线21855y x x =-+开口向下,顶点为1645⎛⎫ ⎪⎝⎭,,对称轴为4x =. (2)令0y =,得:218055x x -+=,解得:10x =,28x =. ∴球飞行的最大水平距离是8m .(3)要让球刚好进洞而飞行最大高度不变,则球飞行的最大水平距离为10m ,∴抛物线的对称轴为5x =,顶点为1655⎛⎫ ⎪⎝⎭,. 设此时对应的抛物线解析式为216(5)5y a x =-+, 又点(00),在此抛物线上,162505a ∴+=,16125a =-. ∴21616(5)1255y x =--+ ,即2163212525y x x =-+. 25.(1)14222=,112555= (2)略 26.(1)开化县,2224、平方千米 (2)3578平方米/人,衢江区和开化县的人均拥有面积超过衢州市人均拥有面积 (3)约有58万人27.>,>,>,= 一般结论:设两数为a,b ,则a 2+b 2≥2ab(当a=b 时,等号成立)28.如图:29.(1)107;(2)51;(3)101. 30.解:设BP 交⊙O 于C ,连接AC ,∵∠ACB>∠P ,∠ACB=∠AMB ,∴∠AMB>∠P , ∴50°>x ,∴0°<x<50°,当点P 移至圆内时,50°<x<180°.。

江苏省扬州市2021版数学中考二模试卷D卷

江苏省扬州市2021版数学中考二模试卷D卷

江苏省扬州市2021版数学中考二模试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)下列实数中是无理数的是()A .B .C . πD . ()02. (2分) (2018七上·北京月考) 中新社北京11月10日电,中组部负责人近日就做好中共十九大代表选举工作有关问题答记者问时介绍称,十九大代表名额共2300名,将2300用科学记数法表示应为()A .B .C .D .3. (2分)(2013·衢州) 下列计算正确的是()A . 3a+2b=5abB . a•a4=a4C . a6÷a2=a3D . (﹣a3b)2=a6b24. (2分) (2019八下·太原期末) 已知一个多边形内角和是外角和的4倍,则这个多边形是()A . 八边形B . 九边形C . 十边形D . 十二边形5. (2分)(2017·大连) 同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率为()A .B .C .D .6. (2分)(2017·椒江模拟) 如图,Rt△AOB∽△DOC,∠AOB=∠COD=90°,M为OA的中点,OA=6,OB=8,将△COD绕O点旋转,连接AD,CB交于P点,连接MP,则MP的最大值()A . 7B . 8C . 9D . 107. (2分)(2020·遵义模拟) 某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.成绩人数(频数)百分比(频率)50.2105150.42050.1根据表中已有的信息,下列结论正确的是()A . 共有40名同学参加知识竞赛B . 抽到的同学参加知识竞赛的平均成绩为10分C . 已知该校共有800名学生,若都参加竞赛,得0分的估计有100人D . 抽到同学参加知识竞赛成绩的中位数为15分8. (2分) (2017八上·路北期末) 下列平面图形中,不是轴对称图形的是()A .B .C .D .9. (2分) (2017九下·盐都期中) 一个几何体的三视图如图所示,则这个几何体是()A .B .C .D .10. (2分)(2019·广西模拟) a,b,c 是△ABC的∠A,∠B,∠C的对边,且a:b:c=1::,则cosB的值为()A .B .C .D .11. (2分)如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0③a+b+c>0 ④当﹣1<x<3时,y>0其中正确的个数为()A . 1B . 2C . 3D . 4二、填空题 (共6题;共6分)12. (1分)计算:=________;=________;=________.13. (1分)(2017·贵港) 方程的解是x=________.14. (1分)因式分解:64﹣4x2=________.15. (1分) (2016八上·江阴期末) 已知一个等腰三角形的顶角为100°,则它的底角为________.16. (1分) (2019九上·西安月考) 如图,线段两个点的坐标分别为,,以原点为位似中心,将线段缩小得到线段,若点的坐标为,则点的坐标为________.17. (1分)(2019·宜兴模拟) 如图坐标系中,O(0,0) ,A(6,6 ),B(12,0).将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=,则CE : DE的值是________.三、解答题 (共8题;共80分)18. (10分) (2019九上·天心开学考) 计算:|﹣(﹣3)2|+19. (5分)(2017·曹县模拟) 解不等式.20. (5分)(2018·秀洲模拟) 已知:如图,Rt△ABC中,∠ACB=90°(1)用直尺和圆规作∠ABC的平分线,交AC于点O;(2)在(1)的条件下,若BC=3,AC=4,求点O到AB的距离。

江苏省扬州市2021年中考数学二模试卷A卷

江苏省扬州市2021年中考数学二模试卷A卷

江苏省扬州市2021年中考数学二模试卷A卷姓名:________ 班级:________ 成绩:________一、填空题 (共6题;共6分)1. (1分) (2019七上·吉木乃月考) 的倒数的相反数是________。

2. (1分) =1,则x的值是________.3. (1分)若x,y为实数,且y=++.求x+y的值________.4. (1分) (2018八上·番禺期末) 2013年,我国上海和安徽首先发现“H7N9”新型禽流感病毒,此病毒颗粒呈多边形,其中球形病毒的最大直径为米,这一直径用科学计数法表示为________ 米.5. (1分)(2020·南宁模拟) 如图,在矩形中,,,以点为圆心,的长为半径作交于点;以点为圆心,的长为半径作交于点,则图中阴影部分的面积为________.6. (1分)计算:2﹣3+4﹣5+…+2016﹣2017=________.二、选择题 (共8题;共16分)7. (2分)(a﹣b)2=()A . a2﹣2ab﹣b2B . a2+2ab+b2C . a2﹣b2D . a2﹣2ab+b28. (2分) (2015七上·句容期末) 如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于()A . 48B . 24C . 8D . 169. (2分)(2020·淄博) 下列图形中,不是轴对称图形的是()A .B .C .D .10. (2分)不等式3(x﹣2)<7的正整数解有()A . 2个B . 3个C . 4个D . 5个11. (2分) (2016七下·迁安期中) 如图,AB∥CD,那么∠A,∠P,∠C的数量关系是()A . ∠A+∠P+∠C=90°B . ∠A+∠P+∠C=180°C . ∠A+∠P+∠C=360°D . ∠P+∠C=∠A12. (2分) (2018八上·沈河期末) 在一次13人参加的歌咏比赛中,预赛成绩各不同,要取前7名参加决赛,小丽已经知道自己的成绩,她想知道自己是否能进入决赛,只需要再知道这13名同学成绩的()A . 平均数B . 众数C . 方差D . 中位数13. (2分)(2018·遵义模拟) 如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A . 30°B . 45°C . 50°D . 70°14. (2分) (2018九上·濮阳月考) 如图,平面直角坐标系中,点A是x轴上任意一点,BC平行于x轴,分别交y= (x>0)、y= (x<0)的图象于B,C两点,若△ABC的面积为2,则k值为()A . ﹣1B . 1C .D .三、解答题 (共9题;共82分)15. (5分)(2019·黄冈) 先化简,再求值.其中16. (5分) (2018八下·永康期末) 如图,▱ABCD中,,,垂足分别是E,求证:.17. (5分)(2017·株洲) 如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2 ,无人机的飞行高度AH为500 米,桥的长度为1255米.①求点H到桥左端点P的距离;②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.18. (5分)(2017·临高模拟) 一列火车匀速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.求这列火车的长度.19. (10分)(2019·凤翔模拟) 某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.(1)求从这五名翻译中随机挑选一名会翻译英语的概率;(2)若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.20. (7分)(2017·冷水滩模拟) 在读书月活动中,某校号召全体师生积极捐书,为了解所捐书籍的种类,图书管理员对部分书籍进行了抽样调查,根据调查数据绘制了如下不完整的统计图表.请你根据统计图表所提供的信息回答下面问题:某校师生捐书种类情况统计表种类频数百分比A.科普类1230%B.文学类n35%C.艺术类m20%D.其它类615%(1)统计表中的n=________,并补全条形统计图________;(2)本次活动师生共捐书2000本,请估计有多少本科普类图书?21. (15分)(2017·随州) 某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为整数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间x(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80﹣3x120﹣x储存和损耗费用(元)40+3x3x2﹣64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?22. (15分)(2017·黑龙江模拟) 如图,已知抛物线y=﹣x2+bx+c与x轴交于A,B与y轴交于C,过C作x 轴的平行线交抛物线于点D,过点D作x轴的垂线交x轴于E,点D的坐标为(2,3)(1)求抛物线的解析式;(2)点P为第一象限直线DE右侧抛物线上一点,连接AP交y轴于点F,连接PD、DF,设点P的横坐标为t,△PFD的面积为S,求S与t的函数关系式;(3)在(2)的条件下,点P向下平移3个单位得到点Q,连接AQ、EQ,若∠AQE=45°,求点P的横坐标.23. (15分) (2016九上·宜昌期中) 如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们定义:这样的两条抛物L1 , L2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.(1)如图2,已知抛物线L3:y=2x2﹣8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的点D的坐标;(2)请求出以点D为顶点的L3的友好抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物y=a1 (x﹣m)2+n的任意一条友好抛物线的解析式为y=a2 (x﹣h)2+k,请写出a1与a2的关系式,并说明理由.参考答案一、填空题 (共6题;共6分)1-1、2-1、3-1、4-1、5-1、6-1、二、选择题 (共8题;共16分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共9题;共82分)15-1、16-1、17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、。

江苏省扬州市四校联考2021年中考数学第二次质检试卷

江苏省扬州市四校联考2021年中考数学第二次质检试卷

2021年江苏省扬州市四校联考中考数学第二次质检试卷一.选择题(满分24分,每小题3分)1.下列各数中,最大的数是()A.﹣πB.﹣3 C.0 D.12.下列运算正确的是()A.3a×2a=6a B.a8÷a4=a2C.D.﹣3(a﹣1)=3﹣3a3.某次校运会共有13名同学报名参加百米赛跑,他们的预赛成绩各不相同,现取其中前6名参加决赛,小勇同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的()A.平均数B.众数C.中位数D.方差4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s 与t之间的关系的大致图象是()A.B.C.D.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70 B.150 C.90 D.1006.如图,∠1的正切值为()A.B.C.3 D.27.将一个边长为4的正方形ABCD分割成如图所示的9部分,其中△ABE,△BCF,△CDG,△DAH全等,△AEH,△BEF,△CFG,△DGH也全等,中间小正方形EFGH 的面积与△ABE面积相等,且△ABE是以AB为底的等腰三角形,则△AEH的面积为()A.2 B.C.D.8.在平面直角坐标系中,平行四边形ABCD的顶点A在y轴上,点C坐标为(﹣4,0),E为BC上靠近点C的三等分点,点B、E均在反比例函数y=(k<0,x<0)的图象上,若tan∠OAD=,则k的值为()A.﹣2 B.﹣2C.﹣6 D.﹣4二.填空题(满分30分,每小题3分)9.分解因式:6xy2﹣8x2y3=.10.如果10m=12,10n=3,那么10m+n=.11.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是.12.人的血管首尾相连的长度大约可达96000千米,96000千米用科学记数法表示为米.13.已知点A(a,2),B(3,b)关于y轴对称:则ab=.14.已知x﹣2y=1,则代数式3x﹣6y+2020的值是.15.用一个半径为30,圆心角为120°的扇形围成一个圆锥,这个圆锥的底面半径是.16.已知二次函数y=4x2﹣mx+5,当x≤﹣2时,y随x的增大而减小;当x≥﹣2时,y随x的增大而增大,则当x=1时,y的值为.17.如图,点E为正方形ABCD的边DA的延长线上一点,以BE为边在BE的另一侧作正方形BEFG,连接CG,若AB=12,BE=13,则△BCG的面积为.18.如图,抛物线y=﹣x﹣的图象与坐标轴交于A、B、D,顶点为E,以AB为直径画半圆交y轴的正半轴于点C,圆心为M,P是半圆AB上的一动点,连接EP,N 是PE的中点,当P沿半圆从点A运动至点B时,点N运动的路径长是.三.解答题(共10小题,满分96分)19.(8分)(1)计算:|﹣1|+(2021﹣1)0﹣(﹣)﹣1﹣3tan30°.(2)解方程:2(x﹣3)﹣(x+3)(x﹣3)=0.20.(8分)已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.21.(8分)某厂生产A,B两种产品,其单价随市场变化而相应调整,营销人员根据前三次单价变化的情况,绘制了如下统计表:第一次第二次第三次A产品单价(元/件) 6 5.2 6.5B产品单价(元/件) 3.5 4 3并求得了A产品三次单价的平均数和方差:=5.9;S A2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]=(1)求B产品三次单价的方差,并比较哪种产品的单价波动小;(2)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.22.(8分)甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.23.(10分)有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?24.(10分)如图将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,(1)求证:△AME∽△BEC.(2)若△EMC∽△AME,求AB与BC的数量关系.25.(10分)如图是某货站传送货物的平面示意图,为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4m.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出5m的通道,试判断距离B点4m的货物MNQP是否需要挪走,并说明理由.26.(10分)已知:点D是△ABC的边AC上一点,tan C=1,cos∠ADB=,⊙O 经过B,C,D三点.(1)若BD=4,求阴影部分图形的面积;(2)若AD=2CD=4,求证:AB为⊙O的切线.27.(12分)河上有一座桥孔为抛物线形的拱桥,水面宽为6米时,水面离桥孔顶部3米.把桥孔看成一个二次函数的图象,以桥孔的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图所示的平面直角坐标系.(1)请求出这个二次函数的表达式;(2)因降暴雨水位上升1米,此时水面宽为多少?28.(12分)请认真阅读下列材料:如图①,给定一个以点O为圆心,r为半径的圆,设点A是不同于点O的任意一点,则点A的反演点定义为射线OA上一点A',满足OA×OA'=r2.显然点A也是点A′的反演点,即点A与点A'互为反演点,点O为反演中心,r称为反演半径,这种从点A到点A'的变换或从点A'到点A的变换称为反演变换.例如:如图②,在平面直角坐标系中,点A(6,0),以点O为圆心,AO为半径画圆,交y轴的正半轴于点B;C为线段OA的中点,P是AB上任意一点,点D的坐标为(0,5);若C关于⊙O的反演点分别为C'.(1)求点C'的坐标;(2)连接DP、PC,求DP+2PC的最小值.解:(1)由反演变换的定义知:OC×OC'=r2,其中OC=OA=3,r=6.∴OC′===12,故点C'的坐标为(12,0);(2)如图③,连接OP、PC',由反演变换知OC×OC'=r2=OP2,即=,而∠POC=∠C′OP,∴△POC∽△C'OP.∴===,即2PC=PC'.∴DP+2PC=DP+PC′≥DC′==13.故DP+2PC的最小值为13.请根据上面的阅读材料,解决下列问题:如图④,在平面直角坐标系中,点A(6,0),以点O为圆心,AO为半径画圆,交y 轴的正半轴于点B,C为线段OA的中点,P是上任意一点,点D的坐标为(0,5).(1)点D关于⊙O的反演点D'的坐标为;(2)连接DP、PC,求2DP+PC的最小值;(3)如图⑤,以OA为直径作⊙C,那么⊙C上所有的点(点O除外)关于⊙O的反演点组成的图形具有的特征是.。

扬州市广陵区2021-2022学年中考联考数学试题含解析

扬州市广陵区2021-2022学年中考联考数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.112.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )A.30°B.36°C.54°D.72°3.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是()A.12B .23C.25D.7104.如果关于x的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.95.已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣36.如图,函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,点C在第一象限,AC⊥AB,且AC=AB,则点C 的坐标为()A.(2,1)B.(1,2)C.(1,3)D.(3,1)7.下列事件中,必然事件是()A.若ab=0,则a=0B.若|a|=4,则a=±4C.一个多边形的内角和为1000°D.若两直线被第三条直线所截,则同位角相等8.在数轴上表示不等式组10240xx+≥⎧⎨-<⎩的解集,正确的是()A.B.C.D.9.一个数和它的倒数相等,则这个数是()A.1 B.0 C.±1 D.±1和010.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.25πcm B.210πcm C.215πcm D.220πcm11.某公园有A、B、C、D四个入口,每个游客都是随机从一个入口进入公园,则甲、乙两位游客恰好从同一个入口进入公园的概率是()A.12B.14C.16D.1812.下列各式计算正确的是()A.a2+2a3=3a5B.a•a2=a3C.a6÷a2=a3D.(a2)3=a5二、填空题:(本大题共6个小题,每小题4分,共24分.)1382=_______________.14.如图,点A 是反比例函数y=﹣4x(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.15.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.1cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是16.可燃冰是一种新型能源,它的密度很小,3__________.17.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”18.如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设DA=a,DC=b,那么向量DF用向量a、b表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:根据统计图所提供的信息,解答下列问题:(1)本次抽样调查中的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.20.(6分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE平分∠BAC时,求证:∠BEF=∠BFE;(2)当E运动到BC中点时,若BE=2,BD=2.4,AC=5,求AB的长.21.(6分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=﹣的图象上的概率.22.(8分)为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?(3)在(2)的条件下,根据市场调查,每套乙种套房的提升费用不会改变,每套甲种套房提升费用将会提高a万元(a>0),市政府如何确定方案才能使费用最少?23.(8分)已知,如图1,直线y=34x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为94,抛物线经过A、B、C三点.点D是直线AC上方抛物线上任意一点.(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且S△PCD=2S△PAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AM⊥OD,CN⊥OD,垂足分别为M、N.当AM+CN的值最大时,求点D的坐标.24.(10分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?25.(10分)如图,Rt ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线交CB的延长线于点E,交AC于点F.(1)求证:点F是AC的中点;(2)若∠A=30°,326.(12分)如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)27.(12分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:已知一个正多边形的一个外角为,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.2、B【解析】在等腰三角形△ABE中,求出∠A的度数即可解决问题.【详解】解:在正五边形ABCDE中,∠A=15×(5-2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=12(180°-108°)=36°.故选B.【点睛】本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.3、D【解析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况,因此两个球中至少有一个红球的概率是:7 10.故选:D.【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.4、D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即52x=-,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即32x=-,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即12x=-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.5、A【解析】根据一元二次方程根与系数的关系和整体代入思想即可得解.【详解】∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x1x2=﹣3,∴x1+x2﹣3x1x2=﹣b+9=5,解得b=4.故选A.【点睛】本题主要考查一元二次方程的根与系数的关系(韦达定理),韦达定理:若一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2,那么x1+x2=,x1x2=.6、D【解析】过点C作CD⊥x轴与D,如图,先利用一次函数图像上点的坐标特征确定B(0,2),A(1,0),再证明△ABO≌△CAD,得到AD=OB=2,CD=AO=1,则C点坐标可求.【详解】如图,过点C作CD⊥x轴与D.∵函数y=﹣2x+2的图象分别与x轴,y轴交于A,B两点,∴当x=0时,y=2,则B (0,2);当y=0时,x=1,则A(1,0).∵AC⊥AB,AC=AB,∴∠BAO+∠CAD=90°,∴∠ABO=∠CAD.在△ABO 和△CAD中,,∴△ABO≌△CAD,∴AD=OB=2,CD=OA=1,∴OD=OA+AD=1+2=3,∴C点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。

江苏省扬州市广陵区2020~2021学年 中考模拟试卷 九年级数学

江苏省扬州市广陵区2020~2021学年 中考模拟试卷 九年级数学

扬州市广陵区2020~2021学年度中考模拟试卷九年级数学一.选择题(共8小题,满分24分,每小题3分)1.某桑蚕丝的直径约为0.000016米,则这种桑蚕丝的直径用科学记数法表示约为( ) A .1.6×10﹣6米B .1.6×106米C .1.6×10﹣5米D .1.6×105米2.有人预测2020年东京奥运会上中国女排夺冠的概率是80%,对这个说法正确的理解应该是( ) A .中国女排一定会夺冠B .中国女排一定不会夺冠C .中国女排夺冠的可能性比较大D .中国女排夺冠的可能性比较小3.如图,每个小三角形都是等边三角形,再将1个小三角形涂黑,使4个小三角形构成轴对称图形.不同涂法有( ) A .2种B .3种C .4种D .6种4.如图所示几何体的左视图正确的是( ) A .B .C .D .5.下列计算正确的是( ) A .x 2+x 2=x 4 B .(x ﹣y )2=x 2﹣y 2C .(x 2y )3=x 6y 3D .(﹣x )2•x 3=x 66.如图,已知⊙O 的半径为3,弦AB 、CD 所对的圆心角分别是∠AOB 、∠COD ,若∠AOB 与∠COD 互补,弦CD =4,则弦AB 的长为( ) A .24B . 33C . 52D . 627.如图,在△ABC 中,AB =6,将△ABC 绕点A 逆时针旋转40°后得到△ADE ,点B 经过的路径为弧BD .则图中阴影部分的面积是( ) A .4π B .34π C .32π D .条件不足,无法计算第3题第6题第7题8.如图,等边三角形ABC 的边长为2,点O 为AC 中点,点D 在射线上运动,以AD 为边向右作等边三角形ADE ,连接OE ,则线段OE 的最小值是( )A .21 B .23 C .1D .3二.填空题(共10小题,满分30分,每小题3分) 9.因式分解:3x 2﹣12= . 10.已知m 与﹣10互为相反数,则m = .11.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160kPa 时,气球将爆炸,为了安全,气球的体积V 的范围是 .12.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼 条.13.圆锥形的烟囱冒的底面直径是80cm ,母线长是50cm ,制作100个这样的烟囱冒至少需 要 ㎡的铁皮(结果保留π).14.如图,直角坐标系中,直线y =x +2和直线y =ax +c 相交于点P (m ,3),则方程组⎩⎨⎧+=+=2x y cax y 的解为 .第13题第14题第11题15.如图,在菱形ABCD中,若AC=24cm,BD=10cm,则菱形ABCD的高为cm.16.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则OB的长为.17.如图,直线AB交双曲线y=xk于A、B两点,交x轴于点C,且B恰为线段AC的中点,连接OA.若S△OAC=27,则k的值为.18.如图,抛物线y=21x2﹣2与x轴交于A,B两点,与y轴交于点C,M为第一象限抛物线上一点,∠BCM=15°,则点M的坐标为.三.解答题(共10小题,满分96分)19.(8分)(1)计算:|2﹣tan60°|﹣(π﹣3.14)0+2)21(--+12.(2)解方程:2x(x﹣1)=3(x﹣1).20.(8分)先化简13)1217(22-+÷+--+aaaaaa:,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.第15题第16题第17题第18题21.(8分)为庆祝“五四”青年节,某中学举行了一场书法比赛.比赛结束后,书法老师随机抽取了部分参赛学生的成绩x(x取整数,满分100分)作为样本,整理并绘制成如图不完整的统计图表.分数段频数频率60≤x<70300.1570≤x<80m0.4580≤x<9060n90≤x≤100200.1请根据以上图表提供的信息,解答下列问题:(1)表格中m=,n=,并补全频数分布直方图;(2)这次抽取的比赛成绩的中位数落在分数段;(3)全校共有600名学生参加比赛,请你估计成绩不低于80分的学生人数.22.(8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.(1)从中随机抽出一张牌,牌面数字是偶数的概率是;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.23.(10分)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.24.(10分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)若商场为增加效益最大化,求每件衬衫应降价多少元时,商场平均每天盈利最多?每天最多盈利多少元?25.(10分)如图,地面上小山的两侧有A、B两地,为了测量A、B两地的距离,让一热气球从小山西侧A地出发沿与AB成30°角的方向,以每分钟50m的速度直线飞行,8分钟后到达C处,(sin20°此时热气球上的人测得CB与AB成70°角,请你用测得的数据求A,B两地的距离AB长.取0.3,cos20°取0.9,tan20°取0.4,sin70°取0.9,cos70°取0.3,tan70°取2.7.)26.(10分)直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.27.(12分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.28.(12分)在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(2,0)和点(﹣1,2).(I)求抛物线的解析式;(II)P(m,t)为抛物线上的一个动点,点P关于原点的对称点为P'.当点P'落在该抛物线上时,求m的值;(III)P(m,t)(m<2)是抛物线上一动点,连接PA,以PA为边作图示一侧的正方形APFG,随着点P的运动,正方形的大小与位置也随之改变,当顶点F或G恰好落在y轴上时,求对应的P点坐标.。

2021年江苏省扬州市中考数学模拟试卷(二)(有答案)

2021年江苏省扬州市中考数学模拟试卷(二)(有答案)

2021年江苏省扬州市中考数学模拟试卷(二)一、选择题1.的相反数是()A.B. C.D.2.据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为10.4万人,居世界第一,这个数用科学记数法表示是()A.1.04×104B.1.04×105C.1.04×106D.10.4×1043.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)4.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.45.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2 B.3 C.4 D.56.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.7.如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm8.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5 D.9.已知实数x满足x2+=0,那么x+的值是()A.1或﹣2 B.﹣1或2 C.1 D.﹣210.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为()A.k1>k2>k3B.k3>k2>k1C.k2>k3>k1D.k3>k1>k211.我们知道,溶液的酸碱度由PH确定.当PH>7时,溶液呈碱性;当PH<7时,溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图象中,能反映HCl溶液的PH与所加水的体积(V)的变化关系的是()A.B.C. D.12.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()A.B.2 C.D.1二、填空:本大题共8小题;每小题4分,共32分.把答案填写在题中横线上.13.(4分)函数y=中,自变量x的取值范围是.14.(4分)已知二次函数:(1)图象不经过第三象限;(2)图象经过点(2,﹣5),请你写出一个同时满足(1)和(2)的函数关系式:.15.(4分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:.16.(4分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是.17.(4分)如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数,请用一个等式表示,a、b、c、d之间的关系.18.(4分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是cm.19.(4分)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.20.(4分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为米.三、解答题:(本题共8个小题,共82分)21.(8分)计算:﹣sin60°+(﹣)0﹣.22.(8分)如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.23.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.24.(10分)已知关于x的一元二次方程ax2+x﹣a=0(a≠0).(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根;(2)设x1、x2是该方程的两个根,若|x1|+|x2|=4,求a的值.25.(10分)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形.乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)(3)根据以上探索过程,提出你的猜想.(不必证明)26.(12分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)27.(12分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.(1)P点的坐标为多少;(用含x的代数式表示)(2)试求△MPA面积的最大值,并求此时x的值;(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.28.(14分)已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,﹣1)(1)求经过B、E、C三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.参考答案与试题解析一、选择题:本大题共12小题;每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.的相反数是()A.B. C.D.【解答】解:根据相反数的定义,得的相反数是.故选A.2.据有关资料,当前我国的道路交通安全形势十分严峻,去年我国交通事故的死亡人数约为10.4万人,居世界第一,这个数用科学记数法表示是()A.1.04×104B.1.04×105C.1.04×106D.10.4×104【解答】解:10.4万=104 000=1.04×105.故选B.3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(﹣1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣2,1)【解答】解:∵点P(1,﹣2)关于y轴对称,∴点P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2).故选A.4.不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4【解答】解:化简不等式组得,所以不等式组的解集为﹣<x≤4,则符合条件的最小整数解为0.故选B.5.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2 B.3 C.4 D.5【解答】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,连接OA,AM=AB=4,由勾股定理知,OM=3.故选:B.6.把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.7.如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm【解答】解:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵▱ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选:C.8.如图,△ABC中,∠A=30°,,AC=,则AB的长为()A.B.C.5 D.【解答】解:作CD⊥AB于D.在直角三角形ACD中,∠A=30°,AC=,∴CD=,AD=3.在直角三角形BCD中,,∴BD==2.∴AB=AD+BD=5.故选C.9.已知实数x满足x2+=0,那么x+的值是()A.1或﹣2 B.﹣1或2 C.1 D.﹣2【解答】解:∵x2+=0∴∴[(x+)+2][(x+)﹣1]=0∴x+=1或﹣2.∵x+=1无解,∴x+=﹣2.故选D.10.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为()A.k1>k2>k3B.k3>k2>k1C.k2>k3>k1D.k3>k1>k2【解答】解:由图知,y=的图象在第二象限,y=,y=的图象在第一象限,∴k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1.故选B.11.我们知道,溶液的酸碱度由PH确定.当PH>7时,溶液呈碱性;当PH<7时,溶液呈酸性.若将给定的HCl溶液加水稀释,那么在下列图象中,能反映HCl溶液的PH与所加水的体积(V)的变化关系的是()A.B.C. D.【解答】解:根据题意:若将给定的HCl溶液加水稀释,那么开始PH<7,随着慢慢加水,溶液的酸性越来越弱,且PH值逐渐增大.故选C.12.在矩形ABCD中,AB=3,AD=4,P是AD上的动点,PE⊥AC于E,PF⊥BD于F,则PE+PF的值为()A.B.2 C.D.1【解答】解:设AP=x,PD=4﹣x.∵∠EAP=∠EAP,∠AEP=∠ADC;∴△AEP∽△ADC,故=①;同理可得△DFP∽△DAB,故=②.①+②得=,∴PE+PF=.故选A.二、填空:本大题共8小题;每小题4分,共32分.把答案填写在题中横线上.13.(4分)函数y=中,自变量x的取值范围是x>﹣2 .【解答】解:根据题意得:x+2>0,解得x>﹣2.14.(4分)已知二次函数:(1)图象不经过第三象限;(2)图象经过点(2,﹣5),请你写出一个同时满足(1)和(2)的函数关系式:y=x2﹣5x+1(答案不唯一).【解答】解:此题答案不唯一,如:y=x2﹣5x+1.15.(4分)某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校这两年在实验器材投资上的平均增长率为x,则可列方程:2(1+x)+2(1+x)2=8 .【解答】解:∵去年对实验器材的投资为2万元,该校这两年在实验器材投资上的平均增长率为x,∴今年的投资总额为2(1+x);明年的投资总额为2(1+x)2;∵预计今明两年的投资总额为8万元,∴2(1+x)+2(1+x)2=8.16.(4分)如图所示,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形上的一个角沿折痕AE翻折上去,使AB与AD边上的AF重合,则四边形ABEF就是一个大的正方形,他判定的方法是有一组邻边相等的矩形是正方形.【解答】解:根据题意可得,其判定方法是:有一组邻边相等的矩形是正方形.17.(4分)如图是2003年11月份的日历,现用一矩形在日历中任意框出4个数,请用一个等式表示,a、b、c、d之间的关系a+d=b+c .【解答】解:a+d=b+c(形式不唯一).18.(4分)为了测量一个圆铁环的半径,某同学用了如下方法,将铁环平放在水平桌面上,用有一个角为30°的直角三角板和刻度尺按如图所示的方法得到相关数据,进而求出铁环半径,若测得PA=5cm,则铁环的半径是5cm.【解答】解:连接FA,FE,FP,∴∠APE=120°,∠FAP=∠FEP=90°.∵PA=PE,∴△FAP≌△FEP.∴∠APF=60°,∴AF=AP•tan60°=5.19.(4分)正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连接三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt△ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等如图.【解答】解:如图所示:20.(4分)小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为9.4 米.【解答】解:设这棵大树高为x,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例.可得树高比影长为=1.25,则有==0.8,解可得:x=9.4米.三、解答题:(本题共8个小题,共82分)21.(8分)计算:﹣sin60°+(﹣)0﹣.【解答】解:原式==2.22.(8分)如图所示,在菱形ABCD中,点E,F分别在CD,BC上,且CE=CF,求证:AE=AF.【解答】证明:∵四边形ABCD为菱形,∴AD=AB=CD=CB,∠B=∠D.又∵CE=CF,∴CD﹣CE=CB﹣CF,即DE=BF.∴△ADE≌△ABF.∴AE=AF.23.(8分)某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(2)假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额,并说明理由.【解答】解:(1)平均数是: =320(件),表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件),210出现了5次最多,所以众数是210;(2)不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.销售额定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.24.(10分)已知关于x的一元二次方程ax2+x﹣a=0(a≠0).(1)求证:对于任意非零实数a,该方程恒有两个异号的实数根;(2)设x1、x2是该方程的两个根,若|x1|+|x2|=4,求a的值.【解答】证明:(1)∵△=1+4a2.∴△>0.∴方程恒有两个实数根.设方程的两根为x1,x2.∵a≠0.∴x1•x2=﹣1<0.∴方程恒有两个异号的实数根;解:(2)∵x1•x2<0.∴|x1|+|x2|=|x1﹣x2|=4.则(x1+x2)2﹣4x1x2=16.又∵x1+x2=﹣.∴+4=16.∴a=±.25.(10分)某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,进行如下讨论:甲同学:这种多边形不一定是正多边形,如圆内接矩形.乙同学:我发现边数是6时,它也不一定是正多边形,如图1,△ABC是正三角形,,证明六边形ADBECF的各内角相等,但它未必是正六边形.丙同学:我能证明,边数是5时,它是正多边形,我想…,边数是7时,它可能也是正多边形.(1)请你说明乙同学构造的六边形各内角相等;(2)请你证明,各内角都相等的圆内接七边形ABCDEFG(如图2)是正七边形;(不必写已知,求证)(3)根据以上探索过程,提出你的猜想.(不必证明)【解答】解:(1)由图知∠AFC对,∵,而∠DAF对的,∴∠AFC=∠DAF.同理可证,其余各角都等于∠AFC,故图(1)中六边形各角相等;(2)∵∠A对,∠B对,又∵∠A=∠B,∴,∴,同理,.(3)猜想:当边数是奇数时(或当边数是3,5,7,9,时),各内角相等的圆内接多边形是正多边形.26.(12分)某中学为筹备校庆活动,准备印制一批校庆纪念册.该纪念册每册需要10张8K 大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张;印刷费与印数的关系见下表.1500 元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60000元,求印数的取值范围.(精确到0.01千册)【解答】解:(1)4×300+6×50=1500元;(2)若印制2千册,则印刷费为(2.2×4+0.7×6)×2000=26000(元)所以总费用为26000+1500=27500(元);(3)设印数为x千册,①若4≤x<5,由题意得1000×(2.2×4+0.7×6)x+1500≤60000解得x≤4.5∴4≤x≤4.5②若x≥5,由题意得1000×(2.0×4+0.6×6)x+1500≤60000解得x≤5.04∴5≤x≤5.04综上所述,符合要求的印数x(千册)的取值范围为4≤x≤4.5或5≤x≤5.04.27.(12分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8).动点M、N分别从O、B同时出发,以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于P,连接MP.已知动点运动了x秒.(1)P点的坐标为多少;(用含x的代数式表示)(2)试求△MPA面积的最大值,并求此时x的值;(3)请你探索:当x为何值时,△MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果.【解答】解:(1)由题意可知C(0,8),又A(6,0),所以直线AC解析式为:y=﹣x+8,因为P点的横坐标与N点的横坐标相同为6﹣x,代入直线AC中得y=,所以P点坐标为(6﹣x, x);(2)设△MPA的面积为S,在△MPA中,MA=6﹣x,MA边上的高为x,其中,0≤x<6,∴S=(6﹣x)×x=(﹣x2+6x)=﹣(x﹣3)2+6,∴S的最大值为6,此时x=3;(3)延长NP交x轴于Q,则有PQ⊥OA①若MP=PA,∵PQ⊥MA,∴MQ=QA=x,∴3x=6,∴x=2;②若MP=MA,则MQ=6﹣2x,PQ=x,PM=MA=6﹣x,在Rt△PMQ中,∵PM2=MQ2+PQ2,∴(6﹣x)2=(6﹣2x)2+(x)2,∴x=;③若PA=AM,∵PA=x,AM=6﹣x,∴x=6﹣x,∴x=,综上所述,x=2,或x=,或x=.28.(14分)已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,﹣1)(1)求经过B、E、C三点的二次函数的解析式;(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.【解答】解:(1)解法一:连接AC∵DE为⊙A的直径,DE⊥BC∴BO=CO∵D(0,3),E(0,﹣1)∴DE=|3﹣(﹣1)|=4,OE=1∴AO=1,AC=DE=2在Rt△AOC中,AC2=AO2+OC2∴OC=∴C (,0),B (,0)设经过B 、E 、C 三点的抛物线的解析式为,则﹣1=a (0﹣)(0+)解得a=∴y=(x ﹣)(x+)=x 2﹣1(2分).解法二:∵DE 为⊙A 的直径,DE ⊥BC ∴BO=CO ∴OC 2=OD •OE∵D (0,3),E (0,﹣1) ∴DO=3,OE=1 ∴OC2=3×1=3∴OC=∴C (,0),B (﹣,0)以下同解法一;(2)解法一:过点P 作PF ⊥y 轴于F ,过点Q 作QN ⊥y 轴于N ∴∠PFA=∠QNA=90°,F 点的纵坐标为t N 点的纵坐标为y ∵∠PAF=∠QAN ,PA=QA ∴△PFA ≌△QNA ∴FA=NA ∵AO=1 ∴A (0,1) ∴|t ﹣1|=|1﹣y|∵动切线PM 经过第一、二、三象限 观察图形可得1<t <3,﹣1<y <1. ∴t ﹣1=1﹣y . 即y=﹣t+2.∴y 关于t 的函数关系式为y=﹣t+2(1<t <3)(5分)解法二:(i )当经过一、二、三象限的切线PM 运动到使得Q 点与C 点重合时,y=0∵PC是直径∴∠PBC=90°∴PB⊥x轴,∴PB=t.∵PA=AC,BO=OC,AO=1,∴PB=2AO=2,∴t=2.即t=2时,y=0.(ii)当经过一、二、三象限的切线PM运动使得Q点在x轴上方时,y>0观察图形可得1<t<2过P作PS⊥x轴于S,过Q作QT⊥x轴于T则PS∥AO∥QT∵点A为线段PQ的中点∴点O为线段ST的中点∴AO为梯形QTSP的中位线∴AO=∴1=∴y=﹣t+2.∴y=﹣t+2(1<t<2).(iii)当经过一、二、三象限的切线PM运动使得Q点在x轴下方时,y<0,观察图形可得2<t<3过P作PS⊥x轴于S,过Q作QT⊥x轴于T,设PQ交x轴于R则QT∥PS∴△QRT∽△PRS∴设AR=m,则&amp;&amp;(1)又∵AO⊥x轴,∴△ROA∽△RSP∴∴&amp;&amp;(2)由(1)、(2)得y=﹣t+2∴y=﹣t+2(2<t<3)综上所述:y与t的函数关系式为y=﹣t+2(1<t<3)(5分)(3)解法一:当y=0时,Q点与C点重合,连接PB∵PC为⊙A的直径∴∠PBC=90°即PB⊥x轴∴s=﹣将y=0代入y=﹣t+2(1<t<3),得0=﹣t+2∴t=2∴P(﹣,2)设切线PM与y轴交于点I,则AP⊥PI∴∠API=90°在△API与△AOC中∵∠API=∠AOC=90°,∠PAI=∠OAC∴△API∽△AOC∴∴I点坐标为(0,5)设切线PM的解析式为y=kx+5(k≠0),∵P点的坐标为,∴2=﹣ 3 k+5.解得k=,∴切线PM的解析式为y=x+5(7分)设切线PM与抛物线y=x2﹣1交于G、H两点由=可得x1因此,G、H的横坐标分别为根据图象可得抛物线在切线PM下方的点的横坐标x的取值范围是(9分)解法二:同(3)解法一可得P(﹣,2)∵直线PM为⊙A的切线,PC为⊙A的直径∴PC⊥PM在Rt△CPM与Rt△CBP中cos∠PCM=∵CB=2,PC=4∴CM=设M点的坐标为(m,0),则CM=﹣m=∴m=﹣.即M(﹣,0).设切线PM的解析式为y=kx+b(k≠0),得k+b2=﹣k+b.解得∴切线PM的解析式为y=x+5(7分)以下同解法一.。

2021年江苏省扬州市广陵区树人学校中考数学二模试卷

2021年江苏省扬州市广陵区树人学校中考数学二模试卷

2021年江苏省扬州市广陵区树人学校中考数学二模试卷一.选择题(每小题3分,共24分)1.(3分)根据公布数据显示,2020年扬州市户籍人口约4550000人.数据“4550000”用科学记数法表示为()A.4.55×106B.4.55×107C.0.455×107D.455×1042.(3分)下列各式中,计算结果为a6的是()A.a2•a3B.a3+a3C.a12÷a2D.(a2)33.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.8004.(3分)如图所示物体的俯视图是()A.B.C.D.5.(3分)如图,数轴上的A、B两点所表示的数分别为a、b,则下列各数中()A.B.a+b C.a+b2D.a﹣b6.(3分)如图,AB是半圆的直径,点D是弧AC的中点,则∠B等于()A.30°B.50°C.60°D.70°7.(3分)如图,在△ABC中,∠ABC=90°,使点B的对应点E落在AC上,连接CD()A.15°B.20°C.30°D.45°8.(3分)如图,点A是反比例函数y=﹣图象上一动点,且AC=BC,当点A运动时的图象上运动.则∠CAB的正切值为()A.2B.3C.2D.2二.填空题(每小题3分,共30分)9.(3分)函数y=中,自变量x的取值范围是.10.(3分)甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米甲2=0.2,S乙2=0.08,成绩比较稳定的是(填“甲”或“乙”).11.(3分)分解因式:(a+b)2﹣4ab=.12.(3分)已知关于x的方程x(x﹣2)+3m=0有两个不相等的实数根,则m的取值范围是.13.(3分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元),则旅客可携带的免费行李的最大质量为kg.14.(3分)已知圆锥的底面圆半径是3,母线长是5,则它的侧面展开图的面积是.15.(3分)如果一个多边形的每个内角都等于140°,那么关于这个多边形是边形.16.(3分)如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,则长方形的长为厘米.17.(3分)如图,在平面直角坐标系中,以点O为圆心,交x轴于点M,交y轴于点N,大于MN的长为半径画弧(a+2b,a+1),则a+b=.18.(3分)如图,将等腰三角形纸片沿图中虚线剪成四块图形,用这四块图形进行拼接,则正方形的边长与等腰三角形的底边长的比为.三.解答题(本大题共10小题,共96分)19.(8分)(1)计算:()﹣1+|1﹣|﹣tan30°;(2)化简:(a﹣)÷.20.(8分)解不等式组:,并求它的整数解的和.21.(8分)今年3月,中共中央、国务院印发《关于全面加强新时代大中小学劳动教育的意见》,强调劳动教育是中国特色社会主义教育制度的重要内容,随机抽取该市部分九年级学生进行调查,并将调查数据绘制成如下两幅统计图.请根据图中提供的信息(1)样本容量为;(2)补全条形统计图,九年级学生劳动实践天数的中位数是天;(3)若该市共有九年级学生4500人,估计九年级学生劳动实践天数不少于5天的共有多少人.22.(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.23.(10分)某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题24.(10分)如图,在矩形ABCD中,点F是CD中点,连接AC,DE.(1)求证:四边形ACED为平行四边形.(2)若AB=1,DE=,求点D到AC的距离.25.(10分)已知:如图,在△ABC中,AB=BC,BE平分∠ABD交AC于点E,点O是AB上一点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=2,sin C=时,求⊙O的半径.26.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等)理解:(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,对角线BD平分∠ABC.请问BD是四边形ABCD的“相似对角线”吗?请说明理由;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30°.连接EG,求FH的长.27.(12分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(0,﹣4)和B(﹣2,2).(1)求c的值,并用含a的式子表示b;(2)当﹣2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,求a的取值范围.28.(12分)如图1,已知正方形ABCD的边长为4,以A为圆心,F,交对角线BD于点G、H,点P为弧,过点P作PM⊥BC于M,作PN⊥CD于N.设PM=m(1)如图2,当点p运动至G位置时,求m+n的值;(2)若四边形PMCN的面积为3.5,求四边形PMCN的周长;(3)求四边形PMCN面积的最小值,并说明此时点P的位置.2021年江苏省扬州市广陵区树人学校中考数学二模试卷参考答案与试题解析一.选择题(每小题3分,共24分)1.(3分)根据公布数据显示,2020年扬州市户籍人口约4550000人.数据“4550000”用科学记数法表示为()A.4.55×106B.4.55×107C.0.455×107D.455×104【解答】解:4550000=4.55×106.故选:A.2.(3分)下列各式中,计算结果为a6的是()A.a2•a3B.a3+a3C.a12÷a2D.(a2)3【解答】解:A、a2•a3=a2,故本选项不合题意;B、a3+a3=2a3,故本选项不合题意;C、a12÷a2=a10,故本选项不合题意;D、(a5)3=a6,故本选项符合题意;故选:D.3.(3分)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数100200300400500正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.800【解答】解:观察表格发现:随着试验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近1000×2.5=500次,故选:C.4.(3分)如图所示物体的俯视图是()A.B.C.D.【解答】解:从上面看该组合体的俯视图是一个矩形,并且被两条棱隔开,故选:C.5.(3分)如图,数轴上的A、B两点所表示的数分别为a、b,则下列各数中()A.B.a+b C.a+b2D.a﹣b【解答】解:方法一:由数轴可得:b<0<a,取a=0.4,b=﹣0.8,则==﹣0.25,a+b2=4.2+(﹣0.5)2=0.3+0.64=0.84,a﹣b=5.2﹣(﹣0.3)=0.2+6.8=1,最大的是4,故选项D正确,方法二:由数轴可得:b<0<a,因为<0,a+b3>0,a﹣b>06,所以a﹣b最大,故选:D.6.(3分)如图,AB是半圆的直径,点D是弧AC的中点,则∠B等于()A.30°B.50°C.60°D.70°【解答】解:连接BD.∵AB是直径,∴∠BDA=90°,∴∠A+∠ABD=90°,∵∠A=60°,∴∠ABD=30°,∵=,∴∠ABD=∠CBD=30°,∴∠CBA=60°,故选:C.7.(3分)如图,在△ABC中,∠ABC=90°,使点B的对应点E落在AC上,连接CD()A.15°B.20°C.30°D.45°【解答】解:∵∠ABC=90°,将△ABC绕点A顺时针旋转得到△AED,∴∠CAD=∠CAB,CA=AD,∴∠ACD=,∴∠CDE=90°﹣∠ACD=,∵∠CAD<90°,∴∠CDE不可能为45°,故选:D.8.(3分)如图,点A是反比例函数y=﹣图象上一动点,且AC=BC,当点A运动时的图象上运动.则∠CAB的正切值为()A.2B.3C.2D.2【解答】解:连接OC,过点A作AE⊥y轴于点E,如图所示:由直线AB与反比例函数y=﹣的对称性可知A,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴=,∵AE•OE=|﹣1|=5,CF•OF=8,∴AE=,CF=,∴==,∴=8,∴∠CAB的正切值为==2,故选:C.二.填空题(每小题3分,共30分)9.(3分)函数y=中,自变量x的取值范围是x≥2.【解答】解:根据题意得2x﹣4≥6解得x≥2.故答案为:x≥2.10.(3分)甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米甲2=0.2,S乙2=0.08,成绩比较稳定的是乙(填“甲”或“乙”).【解答】解:∵S甲2=0.3,S乙2=0.08,∴S甲5>S乙2,∴成绩比较稳定的是乙;故答案为:乙.11.(3分)分解因式:(a+b)2﹣4ab=(a﹣b)2.【解答】解:(a+b)2﹣4ab=a5+2ab+b2﹣6ab=a2+b2﹣6ab=(a﹣b)2.故答案为:(a﹣b)2.12.(3分)已知关于x的方程x(x﹣2)+3m=0有两个不相等的实数根,则m的取值范围是m<.【解答】解:方程化为x2﹣2x+2m=0,根据题意得△=(﹣2)3﹣4×3m>5,解得m<.故答案为m<.13.(3分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元),则旅客可携带的免费行李的最大质量为20kg.【解答】解:设y与x的函数关系式为y=kx+b,由题意可知:,解得:,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0.故答案为:20.14.(3分)已知圆锥的底面圆半径是3,母线长是5,则它的侧面展开图的面积是15π.【解答】解:圆半径是3,则底面周长=6π×6π×4=15π.15.(3分)如果一个多边形的每个内角都等于140°,那么关于这个多边形是九边形.【解答】解:由题意可得:180°•(n﹣2)=140°•n,解得n=9.故多边形是九边形.故答案为:九.16.(3分)如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,则长方形的长为20厘米.【解答】解:设长方形长的一半为x.∵tan30°==,∴x=,∴长方形长为20cm.17.(3分)如图,在平面直角坐标系中,以点O为圆心,交x轴于点M,交y轴于点N,大于MN的长为半径画弧(a+2b,a+1),则a+b=﹣.【解答】解:由题意知,点P在第二象限角平分线上,∴a+2b+a+1=4,则a+b=﹣,故答案为:﹣.18.(3分)如图,将等腰三角形纸片沿图中虚线剪成四块图形,用这四块图形进行拼接,则正方形的边长与等腰三角形的底边长的比为.【解答】解:如图,等腰三角形纸片沿图中虚线剪成四块图形,设a=1,根据题意,得(a+b)2=b(b+a+b),∵a=6,∴b2﹣b﹣1=2,解得b=或(负值舍去),∴b=,∴正方形的边长与等腰三角形的底边长的比为:(a+b):2b=(1+):(7×.故答案为:.三.解答题(本大题共10小题,共96分)19.(8分)(1)计算:()﹣1+|1﹣|﹣tan30°;(2)化简:(a﹣)÷.【解答】解:(1)原式=4+(﹣8)﹣3×=4+﹣1﹣3=.(2)原式=•=•=3﹣a.20.(8分)解不等式组:,并求它的整数解的和.【解答】解:由①得x>﹣2由②得x≤1∴不等式组的解集为﹣5<x≤1∴不等式组的整数解的和为﹣1+8+1=0.21.(8分)今年3月,中共中央、国务院印发《关于全面加强新时代大中小学劳动教育的意见》,强调劳动教育是中国特色社会主义教育制度的重要内容,随机抽取该市部分九年级学生进行调查,并将调查数据绘制成如下两幅统计图.请根据图中提供的信息(1)样本容量为200;(2)补全条形统计图,九年级学生劳动实践天数的中位数是5天;(3)若该市共有九年级学生4500人,估计九年级学生劳动实践天数不少于5天的共有多少人.【解答】解:(1)60÷30%=200(人),则样本容量为200;故答案为:200;(2)∵共抽取了200人,处于中间位置的是第100和101个数的平均数,∴九年级学生劳动实践天数的中位数是=5(天);故答案为:5;(3)根据题意得:4500×(2﹣10%﹣15%)=3375(天),答:九年级学生劳动实践天数不少于5天的共有3375人.22.(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.【解答】解:(1)根据题意画图如下:共有4种等可能的情况数,其中所选的2名医护人员性别相同的有7种,则所选的2名医护人员性别相同的概率是=;故答案为:;(2)将甲、乙两所医院的医护人员分别记为甲1、乙6,2表示女医护人员)共有12种等可能的结果,满足要求的有4种.则P(4名医生来自同一所医院的概率)==.23.(10分)某校九年级两个班在“慈善一日捐”活动中各捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少5人,请你根据上述信息提出一个用分式方程解决的问题【解答】问题:两班各有多少人?解:设2班有x人,则1班有(x+2)人,依题意得:﹣=4,依题意得:x6+5x﹣2250=0,解得:x5=45,x2=﹣50.经检验,x1=45,x6=﹣50是原方程的解,x1=45符合题意,x2=﹣50不符合题意,舍去,∴x+6=50(人).答:1班有50人,2班有45人.24.(10分)如图,在矩形ABCD中,点F是CD中点,连接AC,DE.(1)求证:四边形ACED为平行四边形.(2)若AB=1,DE=,求点D到AC的距离.【解答】(1)证明:∵F是CD中点,∴DF=CF,∵四边形ABCD是矩形,∴AD∥BC,即AD∥CE.∴∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(ASA),∴AD=CE,∴四边形ACED为平行四边形.(2)解:作DG⊥AC于G,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=1,由(1)得:四边形ACED为平行四边形,∴AC=DE=,由勾股定理得:AD===3,∵DG⊥AC,∴△ADC的面积=AC×DG=,∴DG===,即点D到AC的距离为.25.(10分)已知:如图,在△ABC中,AB=BC,BE平分∠ABD交AC于点E,点O是AB上一点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=2,sin C=时,求⊙O的半径.【解答】(1)证明:如图,连接OE.∵AB=BC且D是BC中点∴BD⊥AC∵BE平分∠ABD∴∠ABE=∠DBE∵OB=OE∴∠OBE=∠OEB∴∠OEB=∠DBE∴OE∥BD∴OE⊥AC∴AC与⊙O相切.(2)解:∵BD=2,sin C=∴BC=4∴AB=4设⊙O的半径为r,则AO=7﹣r∵AB=BC∴∠C=∠A∴sin A=sin C=.∵AC与⊙O相切于点E,∴OE⊥AC∴sin A==∴r=.26.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等)理解:(1)如图1,△ABC的三个顶点均在正方形网格中的格点上,若四边形ABCD是以AC 为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,对角线BD平分∠ABC.请问BD是四边形ABCD的“相似对角线”吗?请说明理由;运用:(3)如图3,已知FH是四边形EFGH的“相似对角线”,∠EFH=∠HFG=30°.连接EG,求FH的长.【解答】解:(1)如图1所示.AB=,∠ABC=90°,∵四边形ABCD是以AC为“相似对角线”的四边形,①当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴或,∴CD=4.5或CD=10,同理:当∠CAD=90°时,AD=2.7或AD=10,如图中,D1,D2,D2,D4即为所求.&nbsp;(2)如图2,当AB≠BD时,当AB=BD时,理由如下:∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°,∵∠ADC=140°,∴∠BDC+∠ADB=140°∴∠A=∠BDC,当AB≠BD时,△ABD∽△DBC,∴BD是四边形ABCD的“相似对角线”;当AB=BD时,△ABD≌△DBC,∴BD不是四边形ABCD的“相似对角线”;(3)如图6,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似.又∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE•FG,过点E作EQ⊥FG垂足为Q,可得,∵,∴,∴FG•FE=24,∴FH2=FG•FE=24,∴.27.(12分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象经过点A(0,﹣4)和B(﹣2,2).(1)求c的值,并用含a的式子表示b;(2)当﹣2<x<0时,若二次函数满足y随x的增大而减小,求a的取值范围;(3)直线AB上有一点C(m,5),将点C向右平移4个单位长度,得到点D,求a的取值范围.【解答】解:(1)把点A(0,﹣4)和B(﹣82+bx+c中,得c=﹣4,4a﹣2b+c=2.∴b=6a﹣3;(2)当a<0时,依题意抛物线的对称轴需满足,解得≤a<0.当a>2时,依题意抛物线的对称轴需满足,解得&nbsp;0<a≤.∴a的取值范围是≤a<4或0<a≤;(3)设直线AB的表达式为:y=mx+n,则,解得:,故直线AB表达式为y=﹣6x﹣4,把C(m.∴C(﹣3,8),5).①当a>0时,若抛物线与线段CD只有一个公共点(如图7),y=ax2+bx+c=ax2+(4a﹣3)x﹣4,当x=2时,则抛物线上的点(1,3a﹣2)在D点的下方,∴a+2a﹣3﹣6<5.解得a<4.∴2<a<4;②当a<0时,若抛物线的顶点在线段CD上,则抛物线与线段只有一个公共点(如图7),∴.即.解得(舍去)或.综上,a的取值范围是0<a<5或a=﹣3﹣.28.(12分)如图1,已知正方形ABCD的边长为4,以A为圆心,F,交对角线BD于点G、H,点P为弧,过点P作PM⊥BC于M,作PN⊥CD于N.设PM=m(1)如图2,当点p运动至G位置时,求m+n的值;(2)若四边形PMCN的面积为3.5,求四边形PMCN的周长;(3)求四边形PMCN面积的最小值,并说明此时点P的位置.【解答】解(1)如图2,∵四边形ABCD是正方形,∴∠DBC=∠CDB=45°.∵PM⊥BC,∴△PMB为等腰直角三角形.∴BM=PM=m.∵PM⊥BC,PN⊥DC,∴四边形PMCN为矩形.∴CM=PN=n.∵CM+BM=BC=4,∴m+n=7.同理,当点P运动至H位置时.(2)延长MP,NP,AD于Q,R,如图1,∵PM⊥BC,PN⊥CD,∴四边形PRAQ为矩形.∴AQ=PR=4﹣m,PQ=7﹣n.∵AQ2+PQ2=AP4,∴(4﹣m)2+(5﹣n)2=35.∴16﹣8m+m2+16﹣5n+n2=9.∴(m+n)6﹣2mn﹣8(m+n)+32=5.∵四边形PMCN的面积为3.5,∴mn=5.5.∴(m+n)2﹣2(m+n)﹣7+32﹣9=5.∴(m+n﹣4)2=3.∴m+n=4.∴四边形PMCN的周长=2(m+n)=8.(3)如图1,由(2)知:(4﹣m)5+(4﹣n)2=32.即:16﹣8m+m6+16﹣8n+n2=8.∴m2+n2﹣7(m+n)+23=0.∴m2+3mn+n2﹣8(m+n)+23=3mn∴2mn=(m+n)2﹣3(m+n)+23.∵S矩形PMCN=mn,∴=(.∵,∴当m+n=8时,S矩形PMCN有最小值为.由(1)知,当m+n=5时、H位置.∴此时点P的位置在G或H处.。

扬州市2021年中考数学二模试卷(I)卷

扬州市2021年中考数学二模试卷(I)卷

扬州市2021年中考数学二模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·吉林模拟) 的倒数为().A .B .C .D . 20202. (2分)若(x+y)2=9,(x﹣y)2=5,则xy的值为()A . ﹣1B . 1C . ﹣4D . 43. (2分)如图,一个空心圆柱体,其主视图正确的是()A .B .C .D .4. (2分)(2020·长春模拟) 不等式组的解集在数轴上表示为A .B .C .D .5. (2分)四川雅安发生地震灾害后,某中学九(1)班学生积极捐款献爱心,如图是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是()A . 20,10B . 10,20C . 16,15D . 15,166. (2分)(2014·宁波) 如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA 的面积比为()A . 2:3B . 2:5C . 4:9D . :7. (2分) (2020八下·甘州期中) 如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF=;④S△AEF= .其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为A .B .C .D .二、填空题 (共8题;共12分)9. (1分) (2019八上·沛县期末) 把﹣0.0002019用科学记数法可表示为________.10. (5分)已知 a,b,c 为△ABC 的三条边的长.试判断代数式(a2-2ac+c2)-b2 的值的符号,并说明理由.11. (1分)关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是________.12. (1分)(2016·竞秀模拟) 如图,四边形ABCD,∠C=90°,E在BC上,F在CD上,将△EFC沿EF折叠,得到△EFM,则图中∠1+∠2=________度.13. (1分) (2016八上·遵义期末) 如图,已知△ABC是等边三角形,点D、E在BC的延长线上,G是AC上一点,且CG=CD,F是GD上一点,且DF=DE,则∠E=________度.14. (1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数★=________.15. (1分)(2018·安徽模拟) 如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为________.16. (1分) (2020八下·武汉期中) 如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠OAE=15°,则∠AEO的度数为________.三、解答题 (共2题;共25分)17. (5分) (2016九上·鄞州期末) 计算:2sin245°+()0﹣| ﹣1|18. (20分)(2017·怀化模拟) 如图,已知直线y=﹣x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c 经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.(1)求抛物线的解析式;(2)问:当t为何值时,△APQ为直角三角形;(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥P Q时,求点F的坐标;(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.四、综合题 (共8题;共92分)19. (17分)(2019·吉林模拟) 调查作业:了解你所住小区家庭3月份用气量情况小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2~5之间,这300户家庭的平均人数约为3.3.小天、小东、小芸各自对该小区家庭3月份用气量情况进行了抽样裯查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1抽样调查小区4户家庭3月份用气量统计表(单位:m3)家庭人数2345用气量14192126表2抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭人数22233333333334用气量1011151314151517171818182022表3抽样调查小区15户家庭3月份用气量统计表(单位:m3)家庭222333333444455人数用气101213141717182020212226312831量根据以|材料回答问题:(1)小天、小东和小芸三人中,哪位同学抽样调查的数据能较好地反映出该小区家庭3月份用气量情况?请简要说明其他两位同学抽样调查的不足之处.(2)在表3中,调查的15个家庭中使用气量的中位数是________m3 ,众数是________m3 .(3)小东将表2中的数据按用气量x(m3)大小分为三类.①节约型:10≤x≤13,②适中型:14≤x≤17,③偏高型:18≤x≤22,并绘制成如图扇形统讣图,请帮助他将扇形图补充完整.(4)小芸算出表3中3月份平均每人的用气量为6m3 ,请估计该小区3月份的总用气量.20. (9分)(2018·十堰) 今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:等级成绩(s)频数(人数)A90<s≤1004B80<s≤90xC70<s≤8016D s≤706根据以上信息,解答以下问题:(1)表中的x=________;(2)扇形统计图中m=________,n=________,C等级对应的扇形的圆心角为________度;(3)该校准备从上述获得A等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a1 , a2表示)和两名女生(用b1 , b2表示),请用列表或画树状图的方法求恰好选取的是a1和b1的概率.21. (10分) (2016八上·南宁期中) 某商店需要购进一批电视机和洗衣机共90台,根据市场调查,电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)18001500售价(元/台)20001600(1)若商店最多可筹集资金144600元,则最多可以购进电视机多少台?(不考虑除进价之外的其它费用)(2)在(1)的条件下,若要求购进电视机的数量不少于洗衣机的一半,则有几种进货方案,哪种方案获利最大,最大利润是多少?(利润=售价-进价)22. (10分) (2016九上·石景山期末) 如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.23. (10分) (2019八下·江城期末) 如图,在矩形ABCD中,AB=4,BC=5(1)请用尺规作图法,在矩形ABCD中作出以BD为对角线的菱形EBFD,且点E、F分别在AD、BC上(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求菱形EBFD的边长。

2021年江苏省扬州市中考数学真题模拟试卷附解析

2021年江苏省扬州市中考数学真题模拟试卷附解析

2021年江苏省扬州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.抛物线y =(x -1)2+3的对称轴是( )A .直线x =1B .直线x =3C .直线x =-1D .直线x =-3 2.抛物线2y ax =和22y x =的形状相同,则 a 的值是( )A .2B .-2C .2±D . 不确定3. 如果a<b<0,下列不等式中错误..的是( ) A . ab >0 B . a+b<0 C . b a <1 D . a-b<04.如图所示,把直线1l 沿箭头方向平移2.5 cm ,得直线2l , 则这两条直线之间的距离是( )A .等于 2.5 cmB .小于2.5 cmC .大于2.5 cmD . 以上都不对5.如图所示,下列说法中错误的是 ( )A .∠C 和∠3是同位角B .∠A 和∠3是内错角C .∠A 和∠B 是同旁内角D .∠l 和∠3是内错角6.如果2(1)(3)x x x mx n -+=++,那么m ,n 的值分别是( )A .1m =,3n =B .4m =,5n =C .2m =,3n =-D .2m =-,3n = 7.AD 是△ABC 中BC 边上的中线,若AB =4,AC =6,则AD 的取值范围是( ) A .AD >1B .AD <5C .1<AD <5 D .2<AD <10 8.不改变分式y x x 7.0213.1--的值,把它的分子、分母的系数化为整数,其结果正确的是( )A .y x x 72113--B .y x x 721013--C .y x x 7201013--D .yx x 720113-- 9.已知a 、b 两数在数轴上的对应点如图所示,则下列结论正确的是( )A . a b <B . 0ab <C . 0b a -<D . 0a b +>10. 过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°,则此钝角为( )A .140°B .160°C .120°D .110° 11.下列方程中属于一元一次方程的是( ) A .x-y=3 B .-x+1=1 C .11x x += D .2210x x -+= 二、填空题12.已知3x=4y ,则yx =________. 13.若△ABC ∽△A ′B ′C ′,且∠A =450,∠B =300,则∠C ′= .14.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x15. 如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= .16.已知P 为□ABCD 内一点,100ABCD S =,则PAB PCD S S ∆∆+= .17.判断线段相等的定理(写出2个)如: .18.判断下列各方程后面的两个数是不是都是它的解(是的打“√”,不是的打“×”)(1)2670x x --=;(-1,7) ( )(2)23520x x +-=;(53,23-) ( )(3)22310x x -+=;(3, 1) ( )(4)2410x x -+=;(23-,23- ( )19.在△ABC 中,AB=AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC= .20.为了了解某小区居民的用水情况,随机抽查了l0户家庭的用水量,结果如下表所示月用水量(t) 4 5 6 9 户数 3 4 2 1 则关于这l0户家庭的用水量的众数是 t 21.相似变换后得△DEF ,若对应边AB=3DE ,则△ABC 的周长是△DEF 的周长的 倍.22.不改变分式的值. 使分子、分母都不含不含负号:(1)23x -= ;(2)x yz -- = ;(3)2ab ---;(4)5y x--- = .23.71()4的底数是 ,指数是 ,表示的意义是 . 三、解答题24.有一个抛物线的拱形隧道,隧道的最大高度为 6m ,跨度为 8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数解析式;(2)若要在隧道壁上 P 点处 (如图 )安装一盏照明灯,灯离地面高 4.5 m ,求灯与点B 的距离.25.推动信息技术的发展,举行了电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理然后分成五组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:(1)参加比赛学生的总人数是多少?(2)80.5~90.5这一分数段的频数、频率是多少?(3) 根据统计图,请你也提出一个问题,并做出回答.26.如图所示,架在消防车上的云梯 AB 的坡比为 1:0.8,已知云梯 AB 的长为 l6m ,云梯底部离地面 1.5m(即 BC= 1.5 m). 求云梯顶端离地面的距离. (精确到 1 m)27.代数式1324x xx x++÷++有意义,求x的取值范围.28.如图,若∠l与∠2互补,且∠l=60°,求∠3、∠4、∠5、∠6、∠7、∠8的度数.29.“五一”期间,两家商场都在对某品牌电脑实行打折销售.已知电脑原价为a元,甲商场的打折方案是:先打八折,再降m元;乙商场的打折方案是:先降m元,再打八折.如果去甲商场买来回要付20元车费,如果去乙商场买来回要付10元车费.现在王阿姨想买一台该品牌的电脑,你会对她提些什么建议呢?30.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费:月用水量不超过20 m3时,按2元/m3计费;月用水量超过20 m3时,其中的20 m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭月用水量为x(m3)时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.B5.B6.C7.C8.C9.C10.A11.B二、填空题12.4313. 105°14.15.316.5017.略18.(1)√(2)×(3)× (4)×19.82.5°20.521.322. (1)23x -;(2)x yz ;(3)2ab -;(4)5y x+ 23.14-,7,7 个(14-)相乘三、解答题24.(1)由题意,设26(0)y ax a =+<,∵ 点 A(—4,0)和点 B(4,0)在抛物线上,∴20(4)6a =⋅-+,得38a =-. 所求函数解析式是2368y x =-+ (2)将y=4. 5 代入2368y x =-+中,得2x =±,∴P(-2,4. 5). 作 PQ ⊥AB ,连接 PB ,则 Q(—2,0),∴ PQ= 4.5 , BQ= 6.∴7.5PB ==,即灯与B 的距离是7. 5 m .25.⑴52人;(2)80.5~90.5这一分数段的频数为10,频率是265 ;(3)答案不唯一,提问题举例: 90.5~100.5分数段内的学生与50.5~60.5分数段内的学生哪一个多?答:在90.5~100.5分数段内的学生多.26.l4m27.2x ≠-,3x ≠-且4x ≠-28.∠3=∠4=∠2=∠7=120°,∠1=∠5=∠6=∠8=60°29.甲:0.8a-m+20 乙:0.8(a-m)+10,甲与乙之差为-O .2m+10,∴m=50时,甲、乙商场一样;m<50时,去乙商场;m>50时,去甲商场30.(1)y=2x ,y=2.6x-12;(2)53 m 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使 ?若存在,求点Q的坐标;若不存在,请说明理由.
17.如图,菱形OABC中点A的坐标是(2,1),点B的横坐标是3,则点C的坐标是____.
18.如图,将直线y=x向下平移b个单位长度后得到直线 , 与反比例函数 (k>0,x>0)的图象相交于点A,与x轴相交于点B,且 ,则k的值是____.
三、解答题
19.(1)计算: ;
(2)解不等式: .
20.先化简再求值: ,其中 是方程 的一个根.
13.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°
14.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是______;
15.如图,⊙O的内接四边形ABCD中,∠BOD=100°,则∠BCD=________.
16.计算:40382-4×2018×2020=____.
21.为了解某校初二学生每周上网的时间,两位学生进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间;小杰从全校400名初二学生中随机抽取了40名学生,调查了每周上网的时间.小丽与小杰整理各自样本数据,如下表所示:
时间段
(小时/周)
小丽抽样
人数
小杰抽样
人数
0~1
6
Байду номын сангаас22
1~2
10
10
2~3
(2)为了兼顾电影的收视需求,一种新的屏幕的长宽比诞生了.如图②,这种屏幕(矩形ABCD)恰好包含面积相等且长宽比分别为4︰3的屏幕(矩形EFGH)与2.4︰1的屏幕(矩形MNPQ).求这种屏幕的长宽比.(参考数据: ≈2.2,结果精确到0.1)
27.如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 中, , ,问四边形 是垂美四边形吗?请说明理由;
二、填空题
9.我国最大的领海南海总面积有3500 000平方公里,将数3500 000用科学记数法表示应为_____.
10.若2x=3y,且x≠0,则 的值为____.
11.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.
12.如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为.
(1)由上图分析,甲同学的游戏规则是:从袋子中随机抽出一张卡片后(填"放回"或"不放回"),再随机抽出一张卡片;
(2)帮甲同学完成树状图;
(3)求甲同学两次抽到的数字之和为偶数的概率.
23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)在图中找出一对相似三角形,并说明理由;
(2)性质探究:如图1,四边形 的对角线 、 交于点 , .试证明: ;
(3)解决问题:如图3,分别以 的直角边 和斜边 为边向外作正方形 和正方形 ,连结 、 、 .已知 , ,求 的长.
28.如图,抛物线 过点 ,且与直线 交于B、C两点,点B的坐标为 .
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线 上方的一点,过点D作 轴交直线 于点E,点P为对称轴上一动点,当线段 的长度最大时,求 的最小值;
2021年江苏省扬州市广陵区中考数学二模试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.-2的倒数是()
A.-2B. C. D.2
2.函数y= 中自变量x的取值范围是( )
A.x>2B.x≤2C.x≥2D.x≠2
3.下列计算正确的是( )
16
6
3~4
8
2
(每组可含最低值,不含最高值)
(1)你认为哪位同学抽取的样本不合理?请说明理由;
(2)根据合理抽取的样本,把上图中的频数分布直方图补画完整;
(3)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,估计该校全体初二学生中有多少名同学应适当减少上网的时间?
22.在不透明的袋子中有四张标着数字 , , , 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.下图是他所画的树状图的一部分.
A.m>nB.m<nC.m=nD.无法确定
8.两块等腰直角三角形纸片AOB和COD按图1所示放置,直角顶点重合在点O处,其中AB=3 ,CD=6.保持纸片AOB不动,将纸片COD绕点O逆时针旋转α(0°<α<90°),如图2所示.当BD与CD在同一直线上(如图3)时,tanα的值等于()
A. B. C. D.
(2)若AB=8,AD= ,AF= ,求AE的长.
24.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.
请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
25.如图,AB是⊙O的直径,BC交⊙O于点D,E是 的中点,连接AE交BC于点F,∠ACB =2∠EAB.
A.2a+3b=5abB.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x5
4.下列水平放置的四个几何体中,主视图与其它三个不相同的是()
A. B. C. D.
5.已知正多边形的一个内角是140°,则这个正多边形的边数是()
A.九边形B.八边形C.七边形D.六边形
6.丽华根据演讲比赛中九位评委所给的分数作了如下表格:
平均数
中位数
众数
方差
8.5
8.3
8.1
0.15
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数B.众数C.方差D.中位数
7.在二次函数y=﹣x2+bx+c中,函数y与自变量x的部分对应值如表:
x
﹣3
﹣2
﹣1
1
2
3
4
5
y
﹣14
﹣7
﹣2
2
m
n
﹣7
﹣14
则m、n的大小关系为()
(1)求证:AC是⊙O的切线;
(2)若 , ,求BF的长.
26.如图①,老旧电视机屏幕的长宽比为4︰3,但是多数电影图像的长宽比为2.4︰1,故在播放电影时电视机屏幕的上方和下方会有两条等宽的黑色带子.
(1)若图①中电视机屏幕为20寸(即屏幕对角线长度):
①该屏幕的长=寸,宽=寸;
②已知“屏幕浪费比=黑色带子的总面积:电视机屏幕的总面积”,求该电视机屏幕的浪费比.
相关文档
最新文档