中考数学二模试题(含解析)
2024年广东省深圳市34校初三二模联考数学试题含答案解析
2024年广东省深圳市34校中考二模联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某运动项目的比赛规定,胜一场记作“+1”分,平局记作“0”分,如果某队得到“-1”分,则该队在比赛中()A.与对手打成平局B.输给对手C.打赢了对手D.无法确定【答案】B【分析】根据正负数的概念即可得出答案.【详解】解:由题意可知:胜一场记作“+1”分,平局记作“0”分,∴某队得到“-1”分,则球队比赛输给了对手.故选:B.【点睛】本题考查了正数和负数的概念,解题的关键是理解正数和负数的意义.2.花窗是中国古代园林建筑中窗的一种装饰和美化的形式.下列花窗图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形和中心对称图形的定义判断即可.【详解】∵不是轴对称图形,也不是中心对称图形,∴不符合题意;∵ 是轴对称图形,也是中心对称图形,∴符合题意;∵不是轴对称图形,也不是中心对称图形,∴不符合题意;∵不是中心对称图形,∴不符合题意;故选B .【点睛】本题考查了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.3.中国海关总署于2024年1月12日发布消息称:2023年我国汽车出口量为522万辆,同比增加57.4%.数据“522万”用科学记数法表示应为( )A .75.2210⨯B .65.2210⨯C .452210⨯D .70.52210⨯【答案】B【分析】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.科学记数法的表现形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正整数,当原数绝对值小于1时,n 是负整数;由此进行求解即可得到答案.【详解】解:522万65220000 5.2210==⨯.故选:B .4.下图是深圳市2024年4月7~11日的天气情况,这5天中最低气温(单位:℃)的中位数与众数分别是( )A .19,19B .19,18C .18,19D .20,19【答案】A【分析】本题考查众数和中位数,解答本题的关键是明确题意,利用众数和中位数的知识解答.根据这5天的最低气温,先按照从低到高排列,然后即可得到这组数据的中位数和众数,本题得以解决.【详解】解:这5天中最低气温从低到高排列是:18,19,19,20,23,故这组数据的中位数是19,众数是19,故选:A .5.如图是某款婴儿手推车的平面示意图,若1130335AB CD ∠=︒∠=︒∥,,,则2∠的度数为( )A .75°B .80°C .85°D .90°【答案】C【分析】本题考查了平行线的性质,关键是由平行线的性质推出335ABC ∠=∠=︒,由三角形外角的性质即可求出2∠的度数.由平行线的性质推出,由邻补角的性质得到418013050∠=︒-︒=︒,由三角形外角的性质即可求出2485ABC ∠=∠+∠=︒.【详解】解:如图,∵AB CD ,∴335ABC ∠=∠=︒,∵1130∠=︒,∴418013050∠=︒-︒=︒,∴2485ABC ∠=∠+∠=︒.故选:C .6.下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .()22343218ab ab a b -⋅=-D .()32623ab ab b÷-=-【答案】D【分析】本题主要考查了单项式乘以单项式,单项式除以单项式,同底数幂乘法和合并同类项等计算,熟知相关计算法则是解题的关键.【详解】解:A 、235a a a ⋅=,原式计算错误,不符合题意;B 、a 与22a 不是同类项,不能合并,原式计算错误,不符合题意;C 、()2223422322198a b ab ab ab a b -⋅⋅==,原式计算错误,不符合题意;D 、()32623ab ab b ÷-=-,原式计算正确,符合题意;故选:D .7.如图是一款桌面可调整的学习桌,桌面宽度AB 为60cm ,桌面平放时高度DE 为70cm ,若书写时桌面适宜倾斜角ABC ∠的度数为α,则桌沿(点A )处到地面的高度h 为( )A .()60sin 70cm α+B .(60cos 70)cm α+C .(60tan 70)cm α+D .130cm【答案】A【分析】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.根据题意可得:AC CB ⊥,然后在Rt ACB △中,利用锐角三角函数的定义求出AC 的长,从而利用线段的和差关系进行计算,即可解答.【详解】解:由题意得:AC CB ⊥,在Rt ACB △中,60cm AB =ABC α∠=,∴sin 60sin AC AB αα=⋅=,∵70cm DE =,∴桌沿(点A )处到地面的高度()60sin 70cm h AC DE α=+=+.故选:A .8.在同一直角坐标系中,一次函数1212(0)2y x y kx b k =+=+<,的图象如图所示,则下列结论错误的是( )A .2y 随x 的增大而减小B .3b >C .当120y y <<时,12x -<<D .方程组24x y kx y b -=-⎧⎨-=-⎩的解为23x y =⎧⎨=⎩【答案】C9.下图是明代数学家程大位所著的《算法统宗》中的一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.设共有银子x 两,共有y 人,则所列方程(组)错误的是( )隔壁听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.《算法统宗》注:明代时1斤=16两,故有“半斤八两”这个成语A .7498y y +=-B .4879x x -+=C .7498y x y x =-⎧⎨=+⎩D .7498y x y x=+⎧⎨-=⎩【答案】D【分析】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.10.如图(a ),A ,B 是⊙O 上两定点,90AOB ∠=︒,圆上一动点P 从点B 出发,沿逆时针方向匀速运动到点A ,运动时间是()s x ,线段AP 的长度是()cm y .图(b )是y 随x 变化的关系图象,其中图象与x 轴交点的横坐标记为m ,则m 的值是( )A .8B .6C .D .143【答案】B【分析】本题考查了动点问题的函数图形,合理分析动点P 的运动时间是解题关键.根据AP 最长时经过的路程所用的运动时间,求出总路程所用的时间是之前的三倍,即可解答.【详解】解:如图,当点P 运动到PA 过圆心O ,即PA 为直径时,AP 最长,由图(b )得,AP 最长时为6,此时2x =,90AOB ∠=︒Q ,90POB ∴∠=︒,∴此时点P 路程为90度的弧,点P 从点B 运动到点A 的弧度为270度,∴运动时间为236⨯=,故选:B .二、填空题11= .12.若关于x 的一元二次方程()222420a x x a a -+-+=有一个根为0,则=a .【答案】0【分析】本题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握一元二次方程解的意义是解本题的关键.把0x =代入一元二次方程()222420a x x a a -+-+=中求出a 的值,再根据一元二次方程的定义判断即可.【详解】解:把0x =代入方程()222420a x x a a -+-+=得:220a a -+=,解得0a =或2a =,∵方程()222420a x x a a -+-+=是关于x 的一元二次方程,∴20a -≠,∴2a ≠.∴a 的值为0.故答案为:0.13.老师为帮助学生正确理解物理变化与化学变化,将4种生活现象制成如图所示的4张无差别的卡片A ,B ,C ,D .将卡片背面朝上,小明同学从中随机抽取2张卡片,则所抽取的2张卡片刚好都是物理变化的概率是 .A 冰化成水B 酒精燃烧C 牛奶变质D衣服晾干共有12种等可能的结果,其中所抽取的2张卡片刚好都是物理变化的结果有:共2种,∴所抽取的2张卡片刚好都是物理变化的概率为14.如图,正比例函数()0y ax a =>的图象与反比例函数()0ky k x=>的图象交于A ,B 两点,过点A 的直线分别与x 轴、y 轴交于C ,D 两点.当2AC AD =,18BCD S =△时,则k =.15.如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为 .三、解答题16.(1)计算:()02120248cos603π-⎛⎫--︒+- ⎪⎝⎭;(2)化简:22211121a a a a -⎛⎫-⋅ ⎪+-+17.在直角坐标系中,将ABC 进行平移变换,变换前后点的坐标的情况如下表:变换前ABC ()1,1A ()4,1B ()4,5C 变换后A B C ''' ()6,3A '()9,3B 'C '(1)平移后点C '的坐标是______,并在直角坐标系中画出A B C ''' ;(2)若(),P m n 是ABC 内一点,通过上述平移变换后,点P 的对应点P '的坐标可表示为______;(3)连接BB ',CC ',则四边形BB C C ''的形状是______,其面积为______.【答案】(1)()9,7,画图见解析(2)()5,2m n ++;(3)平行四边形,20【分析】本题主要考查了坐标与图形变化—平移,平移的性质,平行四边形的性质与判定等等:(1)根据()1,1A ,()6,3A '可得平移方式为向右平移5个单位长度,向上平移2个单位长度,据此求出C '的坐标,再描出A B C '''、、,然后顺次连接A B C '''、、即可;(2)根据(1)所求的平移方式即得到答案;(3)根据平移的性质得到BB CC BB CC ''''=,∥,则四边形BB C C ''的形状是平行四边形,则4520BB C C S ''=⨯=四边形.【详解】(1)解:∵A B C ''' 是ABC 平移得到的()1,1A ,()6,3A ',∴平移方式为向右平移5个单位长度,向上平移2个单位长度,∵()4,5C ,∴()45,52C +'+,即()9,7C ',故答案为:()9,7C '如图所示,A B C ''' 即为所求;(2)解:∵A B C ''' 是ABC 向右平移5个单位长度,向上平移2个单位长度得到的,(),P m n 是ABC 内一点,∴点P 的对应点P '的坐标可表示为()5,2m n ++,故答案为:()5,2m n ++;(3)解:由平移的性质可得BB CC BB CC ''''=,∥,∴四边形BB C C ''的形状是平行四边形,∴4520BB C C S ''=⨯=四边形.故答案为:平行四边形,20.18.某校学生的上学方式分为“A 步行、B 骑车、C 乘公共交通工具、D 乘私家车、E 其它”,该校数学兴趣小组成员在全校随机抽取了若干名学生进行抽样调查,并整理样本数据,得到如下两幅不完整的统计图:(1)本次抽样调查的人数为______人,并补全条形统计图;(2)扇形统计图中“A 步行”上学方式所对的圆心角是______度;(3)若该校共2000名学生,请估计该校“B骑车”上学的人数约是______人;(4)该校数学兴趣小组成员结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生超过全校学生总人数的30%,建议学校合理安排自行车停车场地.请你结合上述统计的全过程,再提出一条合理化建议.故答案为:150;(2)扇形统计图中“A步行”上学方式所对的圆心角是故答案为:36;(3)估计该校“B骑车”上学的人数约是故答案为:680;(4)为了节约和保护环境请同学们尽量不要乘坐私家车(答案不唯一).19.为培养学生的阅读能力,深圳市某校八年级购进《朝花夕拾》和《西游记》两种书籍,分别花费了14000元和7000元,已知《朝花夕拾》的订购单价是《西游记》的订购单价的1.4倍.并且订购的《朝花夕拾》的数量比《西游记》的数量多300本.(1)求该校八年级订购的两种书籍的单价分别是多少元;(2)该校八年级计划再订购这两种书籍共100本作为备用,其中《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元,请求出再订购这两种书籍的最低总费用的方案及最低费用为多少元?答:《朝花夕拾》的订购单价是14元,《西游记》的订购单价是10元;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据题意得:301410(100)1200m m m ≥⎧⎨+-≤⎩,解得:3050m ≤≤.设该校八年级再次订购这两种书籍共花费为w 元,则1410(100)w m m =+-,即41000w m =+,40> ,w ∴随m 的增大而增大,∴当30m =时,w 取得最小值,最小值为43010001120⨯+=(元),此时1001003070m -=-=(本).答:当再次订购30本《朝花夕拾》,70本《西游记》时,总费用最低,最低费用为1120元.20.如图,以ABC 的边AB 为直径作O 分别交AC ,BC 于点D ,E ,过点E 作EF AC ⊥,垂足为F ,EF 与AB 的延长线交于点G .(1)以下条件:①E 是劣弧BD 的中点:②CF DF =;③AD DF =.请从中选择一个能证明EF 是O 的切线的条件,并写出证明过程:(2)若EF 是是O 的切线,且46AF AB ==,,求BG 的长.【答案】(1)详见解析(2)6BG =∴∠=∠,12,OA OD=,∠+∠=∠+∠A123A∴∠=∠=∠=∠,123∴∥,OE AC,EF AC⊥OE AC∴∥,∴∠=∠=︒,90OEG AFE的切线.∴是OEFDE OE,方法2:证明:连接,,=⊥,CF DF EF AC∴垂直平分线段CD,EF∴=,CE DE四边形ADEB为圆内接四边形,∴∠=∠,1CDE,OB OE=∴∠=∠,12∴∠=∠,C2∴∥,OE ACOEG AFE∴∠=∠=︒,90的切线.∴是OEF∥,(2)由(1)可知OE AC90,∴∠=∠=︒∠=∠,OEG AFE GOE GAF∴△∽△,GOE GAF21.【项目化学习】项目主题:从函数角度重新认识“阻力对物体运动的影响”.项目内容:数学兴趣小组对一个静止的小球从斜坡滚下后,在水平木板上运动的速度、距离与时间的关系进行了深入探究,兴趣小组先设计方案,再进行测量,然后根据所测量的数据进行分析,并进一步应用.实验过程:如图(a )所示,一个黑球从斜坡顶端由静止滚下沿水平木板直线运动,从黑球运动到点A 处开始,用频闪照相机、测速仪测量并记录黑球在木板上的运动时间x (单位:s )、运动速度v (单位:cm /s )、滑行距离y (单位:cm )的数据.任务一:数据收集记录的数据如下:运动时间/t x0246810L 运动速度()/cm /s v 1098765L 滑行距离/cm y 01936516475L根据表格中的数值分别在图(b )、图(c )中作出v 与x 的函数图象、y 与x 的函数图象:(1)请在图(b)中画出v与x的函数图象:任务二:观察分析(2)数学兴趣小组通过观察所作的函数图象,并结合已学习过的函数知识,发现图(b)中v与x的函数关系为一次函数关系,图(c)中y与x的函数关系为二次函数关系.请你结合表格数据,分别求出v与x的函数关系式和y与x的函数关系式:(不要求写出自变量的取值范围)任务三:问题解决(3)当黑球在水平木板停下来时,求此时黑球的滑行距离:n处有一辆电动小车,以2cm/s的速(4)若黑球到达木板点A处的同时,在点A的前方cm度匀速向右直线运动,若黑球不能撞上小车,则n的取值范围应为______.(2)由(b )中图象可知:v 与x 的函数关系为一次函数关系,∴设v kx c =+,代入(0,10),(2,9)得:1029c k c =⎧⎨+=⎩,解得:1210k c ⎧=-⎪⎨⎪=⎩,v ∴与x 的函数关系为1102v x =-+;设2y ax bx =+代入(2,19),(4,36)得:22.综合与探究.【特例感知】(1)如图(a ),E 是正方形ABCD 外一点,将线段AE 绕点A 顺时针旋转90︒得到AF ,连接DE ,BF .求证:DE BF =;【类比迁移】(2)如图(b ),在菱形ABCD 中,4AB =,=60B ∠︒,P 是AB 的中点,将线段PA ,PD 分别绕点P 顺时针旋转90︒得到PE ,PF ,PF 交BC 于点G ,连接CE ,CF ,求四边形CEGF 的面积;【拓展提升】(3)如图(c ),在平行四边形ABCD 中,12AB =,10AD =,B ∠为锐角且满足4sin 5B =.P 是射线BA 上一动点,点C ,D 同时绕点P 顺时针旋转90︒得到点C ',D ',当BC D ''△为直角三角形时,直接写出BP 的长.线段AE 绕点A 顺时针旋转90︒得到AF ,AE AF ∴=,90EAF ∠=︒,EAF BAD ∴∠=∠,EAF DAF BAD DAF ∴∠-∠=∠-∠,DAE BAF ∴∠=∠,(SAS)ADE ABF ∴ ≌,DE BF ∴=;(2)如图1,连接AC ,作FH PC ⊥,交PC 的延长线于H ,作GQ PC ⊥于Q ,四边形ABCD 是菱形,AB BC ∴=,AB CD ,60B ∠=︒ ,ABC ∴ 是等边三角形,AC BC = ,P 是AB 的中点,CP AB ∴⊥,122AP PB AB ===,PC CD ∴⊥,4sin 60PC =⋅︒=PF PD ∴==90DPF DCP ∠=∠=︒ ,90DPC CPF DPC PDC ∴∠+∠=∠+∠=︒,CPF PDC ∴∠=∠,90H DCP ∠=∠=︒ ,(AAS)PHF DCP ∴△≌△,FH PC ∴==211622PCF S PC FH ∴=⋅=⨯=△,设QG x =,则CQ =,90PQG DCP ∠=∠=︒ ,PQG DCP ∴△∽△,∴PQ QG CD PC =,∴4PQ =PQ ∴,由PQ CQ PC +=得,=,65x ∴=,116622255PEG S PE QG ∴=⋅=⨯⨯=△,624655CEFG S ∴=-=四边形;(3)如图2,以点B 为坐标原点,BC 所在的直线为x 轴,建立坐标系,作PF AD ⊥,交DA 的延长线于点F ,作D G PF '⊥于G ,作CV x ⊥轴,过点P 作PV CV ⊥于V ,作C W PV '⊥于W ,4sin 5B =Q ,∴直线AB 的解析式为43y x =,设4(,)3P m m ,90F G ∠=∠=︒ ,90PDF DPF ∴∠+∠=︒,90DPD '∠=︒ ,90DPF GPD '∴∠+∠=︒,PDF GPD '∴∠=∠,PD D P '= ,(AAS)PDF D PC '∴△≌△,PF GD '∴=,PG DF =,12AB = ,4sin sin 5DCE B ∠==,4481255DE ∴=⨯=,3361255CE =⨯=,364810,55D ⎛⎫∴+ ⎪⎝⎭,即:8648,55D ⎛⎫⎪⎝⎭,865PG DF m ∴==-,48453GD PF m '==-,484486,()5335D m m m m ⎛⎫'∴+--- ⎪⎝⎭,即481786,5335m m ⎛⎫-- ⎪⎝⎭,222248178650260()(388533593BD m m m m '∴=-+-=-+,同理可得:43PW CV m ==,10C W PV m '==-,44,(10)33C m m m m ⎛⎫'∴--- ⎪⎝⎭,即:17,1033m m ⎛⎫-- ⎪⎝⎭,22221750140()(10)1003393BC m m m m '∴=+-=-+,当90BC D ''∠=︒时,12C D CD ''== ,2225014050260121003889393m m m m ∴+-+=-+,185m ∴=,563BP m ∴==,当90BD C ''∠=︒时,2225014050260100388129393m m m m -+=-++,545m ∴=,5183BP m ∴==,当90C BD ''∠=︒时,2225014050260100388129393m m m m -++-+=,m ∴5103BP m ∴==。
2024年江苏省无锡市天一实验学校中考二模数学试题(解析版)
2023-2024学年第二学期适应性练习初三数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1. 5的相反数是( )A. B. 5 C. D. 【答案】C【解析】【分析】本题考查了相反数.相反数的定义:只有符号不同的两个数叫做互为相反数,据此判断即可得结果.【详解】解:5的相反数是,故选:C .2. 全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,2023年完成造林约3990000公顷.用科学记数法表示3990000是( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.【详解】解:,故选:C .3. 分式中x 的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】本题考查分式有意义的条件,根据分式的分母不为0时,分式有意义,进行求解即可.【详解】解:由题意,得:,∴;故选:A .4. 下列运算正确的是( )155-15-5-73.9910⨯60.39910⨯63.9910⨯70.39910⨯10n a ⨯110a ≤<n a n 63990000 3.9910=⨯11x-1x ≠1x ≠-1x ≤-1x ≤10x -≠1x ≠A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算,根据合并同类项,积的乘方,同底数幂的乘法和除法法则,进行计算即可.【详解】解:A 、,原选项计算错误;B 、,原选项计算错误;C 、,原选项计算正确;D 、,原选项计算错误;故选C .5. 正五边形的每一个外角是( )A. B. C. D. 【答案】D【解析】【分析】本题考查正多边形的外角,根据多边形的外角和等于360度,进行求解即可.【详解】解:由题意,得:正五边形的每一个外角是;故选D .6. 整数a 满足则a 的值为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】本题考查了估算无理数的大小,熟练掌握夹逼法是解题的关键.根据夹逼法估算无理数的大小即可求出a的值.,∴,故选:B .7. 圆锥的展开图的面积为,圆锥母线与底面圆的半径之比为,则母线长为( ).A. 10B. 20C.D. 2221a a -=()224ab ab =235a a a ⋅=842a a a ÷=2222a a a -=()2224ab a b =235a a a ⋅=844a a a ÷=360︒108︒40︒72︒360725=︒a <<<<4a =2200πcm 2:1cm【答案】B【解析】【分析】本题考查圆锥的侧面积,设圆锥的底面圆的半径为,根据圆锥的侧面积公式列出方程进行求解即可.【详解】解:设圆锥的底面圆的半径为,则:母线长为,由题意,得:,∴(负值舍去),∴母线长为;故选:B .8. 如图,是等边三角形,点P 是边上的一个动点,点P 关于的对称点分别为,,连接,,,点P 从点A 运动到点B 的过程中,的面积变化情况为( )A. 保持不变B. 一直变小C. 先变大再变小D. 先变小再变大【答案】D【解析】【分析】本题考查等边三角形的性质,等腰三角形的判定和性质,含30度角的直角三角形的性质,连接,对称易证是顶角为120度的等腰三角形,腰长为的长,根据腰长先变小后变大,即可得出结果.【详解】解:∵是等边三角形,∴,∵点P 关于的对称点分别为,,∴,,∴,∴,r rcm 2rcm 12π2200π2r r ⨯⋅=10r =21020cm ⨯=AOB AB ,OA OB 1P 2P 1OP 2OP 12PP 12OPPOP 12OPP OP AOB 60AOB ∠=︒,OA OB 1P 2P 12OP OP OP ==21,AOP AOP BOP BOP ∠=∠∠=∠()212122120P OP AOP AOP BOP BOP AOP BOP AOB ∠=∠+∠+∠+∠=∠+∠=∠=︒122130OPP OP P ∠=∠=︒过点作,则:,,∴,∴的面积随着的变化而变化,∵为上的一个动点,∴当时,的面积最小,此时点为的中点,∴点P 从点A 运动到点B 的过程中,的面积先变小后变大,故选D .9. 若,,三点在同一函数图像上,则该函数图像可能是( )A. B. C. D.【答案】B【解析】【分析】考查正比例函数、反比例函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.由点,的坐标特点,可知函数图象关于y 轴对称,再根据,的特点和函数的性质,可知在对称轴左侧y 随x 的增大而增大,由此得出答案.【详解】解: ,,∴点C 与点B 关于y 轴对称;由于A 、C 的图象关于原点对称,因此选项A 、C 错误;,O 12OD PP ⊥21122OD OP OP ==1222PP DP ===12212111222OP P S PP OD OP =⋅=⨯= 12OPP OP P AB OP AB ⊥12OPP P AB 12OPP ()4,2A m --()2,B m -()2,C m ()2,B m -()2,C m ()4,2A m --()2,B m -()2,B m - ()2,C m 2m m >-Q由,可知,在对称轴的左侧,y 随x 的增大而增大,对于二次函数只有时,在对称轴的左侧,y 随x 的增大而减小,选项不正确,故选:B .10. 如图,在平面直角坐标系中,,B 为x 轴正半轴上的动点,以为边在第一象限内作使得,,连接,则长的最大值为( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】过点作,交过点平行于轴的直线于点,证明,得到,进而求出的长,取的中点,连接,斜边上的中线求出的长,勾股定理求出,根据,进行求解即可.【详解】解:过点作,交过点平行于轴的直线于点,则:,,,∴,∵,∴,∴,∴,∴,()4,2A m --()2,B m -0a >D ∴()0,4A AB ABC 90BAC ∠=︒12ABC S =△OC OC C CE AC ⊥A x E ACE AOB ∽24AE AO ⋅=AE AE F ,OF CF CF OF OC OF CF ≤+C CE AC ⊥A x E 90ACE AOB ∠=︒=∠ABO EAB ∠=∠90OAE ∠=︒90OBA OAB ∠+∠=︒90BAC ∠=︒90BAE CAE ∠+∠=︒CAE BAO ∠=∠ACE AOB ∽AC AE OA AB=∴,∵,∴,∴,∵,∴,∴,取的中点,连接,则:,∵,∴,在中,由勾股定理,得:;∵,∴长的最大值为8;故选C .【点睛】本题考查坐标与图形,勾股定理,斜边上的中线,相似三角形的判定和性质,熟练掌握相关知识点,添加辅助线,构造相似三角形,是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分.)11. 因式分解:______.【答案】【解析】【分析】先提公因式m ,再利用平方差公式分解即可.【详解】解:.故答案为:.【点睛】本题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.AC AB OA AE ⋅=⋅1122ABC S AB AC =⋅=△24AB AC ⋅=24OA AE ⋅=()0,4A 4OA =6AE =AE F ,OF CF 132AF EF AE ===90ACE ∠=︒132CF AE ==Rt OAF△5OF ==8OC OF CF ≤+=OC 3m m -=(1)(1)m m m +-32(1)(1)(1)m m m m m m m -=-=+-(1)(1)m m m +-12. 若x ,y 满足方程组,则______.【答案】1【解析】【分析】本题考查解二元一次方程组,将两个方程进行相加,即可得出结果.【详解】解:,,得:;∴;故答案为:1.13. 抛物线与y 轴交点的坐标为______.【答案】【解析】【分析】本题考查二次函数与坐标轴的交点问题,令,求出值,即可得出结果.【详解】解:∵,∴当时,,∴抛物线与y 轴交点的坐标为;故答案为:.14. 若关于的一元二次方程的一个根为1,则另一个根为______.【答案】-3【解析】【分析】根据根与系数的关系可得出两根之和为-2,从而得出另一个根.【详解】解:设方程的另一个根为m ,则1+m=-2,解得m=-3.故答案为:-3.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,,x 1•x 2=.232323x y x y +=⎧⎨+=⎩x y +=232323x y x y +=⎧⎨+=⎩①②+①②555x y +=1x y +=()212y x =-+()0,30x =y ()212y x =-+0x =()20123y =-+=()212y x =-+()0,3()0,3x 220x x k +-=12b x x a+=-c a15. 如图,平行于y 轴的直尺(部分)与反比例函数的图象交于A ,C 两点,与x 轴交于B ,D 两点,连结,点A ,B 对应直尺上的刻度分别为5,2,直尺的宽度,,则点C 的坐标是_________.【答案】【解析】【分析】根据点A 、B 对应直尺上的刻度分别为5、2,OB =2.即可求得A 的坐标,进而求出反比例函数解析式,直尺的宽度,可得C 点横坐标,代入解析式可求坐标.【详解】解:∵直尺平行于y 轴,A 、B 对应直尺的刻度为5、2,∴AB=3,∵ OB =2,∴A 点坐标为:(2,3),把(2,3)代入得,,解得,m=6,反比例函数解析式为,∵直尺的宽度BD =2,OB =2.∴C 的横坐标为4,代入得,,∴点C 的坐标是(0)m y x x=>AC 2BD =2OB =34,2⎛⎫ ⎪⎝⎭2BD =m y x=32m =6y x=6y x =6342y ==34,2⎛⎫ ⎪⎝⎭故答案为:【点睛】本题考查了坐标与图形性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.16. 一次函数图象经过点,当时,,则k 的值可以是___________.(写出一个即可)【答案】7(答案不唯一,满足即可)【解析】【分析】本题考查一次函数的性质,将代入得,可知当时,,由此可得,求解即可,根据一次函数的性质得是解决问题关键.【详解】解:将代入得:,即,亦即:,当时,,∵,即,∴,故答案为:7(答案不唯一,满足即可).17. 如图,在四边形中,,,,点为的中点,射线交的延长线于点,连接.若,,求的长为______.【答案】【解析】【分析】先证明得,再证明四边形菱形,由菱形性质得,则,再由勾股定理求出的长,然后由勾股定理求出的长即可.【详解】证明:,,的342⎛⎫ ⎪⎝⎭,y kx b =+()1,12x =59y <<48k <<()1,1y kx b =+1y kx k =-+2x =1y k =+519k <+<519k <+<()1,1y kx b =+1k b +=1b k =-1y kx k =-+2x =211y k k k =-+=+59y <<519k <+<48k <<48k <<ABCD AD BC ∥90A ∠=︒BD BC =E CD BE AD F CF 1AD =2CF =BF ()BCE FDE ASA ≌BC FD =BCFD 2BD DF CF ===3AF AD DF =+=AB BF AD BC ∥ FDE BCE ∴∠=∠点为的中点,,在与中,,,,,四边形为平行四边形,又,平行四边形是菱形;,,,,,即的长为故答案为:【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质以及勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.18. 如图,在中,,将沿翻折得到,若经过的内心I ,则的长为______.【答案】2 E CD DE EC ∴=BCE FDE BCE FDE CE DEBEC FED ∠=∠⎧⎪=⎨⎪∠=∠⎩()BCE FDE ASA ∴ ≌BC FD ∴=AD BC ∥ ∴BCFD BD BC = ∴BCFD 2BD DF CF ∴===3AF AD DF ∴=+=90A ∠=︒ AB ∴===BF ∴===BF ABCD Y 3,5AB AD ==ABD △BD A BD ' A D 'CBD △DI【解析】【分析】翻折,结合内心是三角形三条角平分线的交点,以及平行线的性质,推出,,证明,求出的长,再根据等积法结合角平分线的性质,得到,进行求解即可.【详解】解:∵翻折,∴,∵,∴,,∴,∴,∴,∵点I 是的内心,∴平分,平分,∴,∴,∵,∴,∴,∴,即:,∴,∴,∵平分,∴到的距离相等,∴又∵(同高三角形的面积比等于底边比),CDE DBC ∠=∠BE DE =CDE CBD ∽,CE BE CD DI CE IE=ADB BDE ∠=∠ABCD Y AD BC ∥3,5CD AB BC AD ====ADB DBE ∠=∠BDE DBE ∠=∠BE DE =CBD △CI DCE ∠DI BDC ∠BDE CDE ∠=∠CDE DBC ∠=∠DCE DCB ∠=∠CDE CBD ∽CD CE BC CD=2CD BC CE =⋅95CE =95CE =165ED BE BC CE ==-=CI DCE ∠I ,CE CD ::CDI CEI S S CD CE= ::CDI CEI S S DI IE =∴,即:,∴,∴;故答案为:2.【点睛】本题考查平行四边形的性质,三角形的内心,折叠的性质,相似三角形的判定和性质,角平分线的性质等知识点,熟练掌握相关知识点,并灵活运用,是解题的关键.三、解答题.(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)计算:;(2)化简:.【答案】(1(2)【解析】【分析】本题考查特殊角的三角函数值,零指数幂,整式的运算:(1)先进行特殊角的三角函数值,零指数幂和去绝对值运算,再进行加减运算;(2)先根据平方差公式和单项式乘以多项式的法则,进行计算,再合并同类项即可.【详解】解:(1)原式;(2)原式.20. (1)解方程:;(2)解不等式组:.【答案】(1)(2)【解析】【分析】本题考查解分式方程,求不等式组的解集:(1)将分式方程转化为整式方程,求解后检验即可;(2)分别求出每一个不等式的解集,找到它们的公共部分,即为不等式组的解集.CD DI CE IE =35935DI IE ==58DI DE =55162885DI DE ==⨯=()02cos 45π33︒---()()()2222x y x y x x y +---4-22y xy-+()02cos 45π332134=︒---=--=-22224422x y x xy y xy =--+=-+2111x x x =+++()312213a a a ⎧+->⎨-≤⎩12x =524a <≤【详解】解:(1),∴,解得:;经检验,是原方程的解;∴方程的解为:.(2)由①,得:;由②,得:,∴不等式组的解集为:.21. 如图,已知为平行四边形的对角线上的两点,且.(1)求证:;(2)若,求证:四边形为矩形.【答案】(1)见解析(2)见解析【解析】【分析】本题考查了矩形的判定、平行四边形的判定与性质、全等三角形的判定与性质等知识,熟练掌握矩形的判定,证明三角形全等是解题的关键.(1)由证明即可;(2)由全等三角形性质得,.再证,则四边形为平行四边形.然后由矩形的判定即可得出结论.【小问1详解】证明:四边形是平行四边形,,,,的2111x x x =+++21x x =++12x =12x =12x =()312213a a a ⎧+->⎨-≤⎩①②54a >2a ≤524a <≤E F 、ABCD BE DF =ABE CDF △≌△90AEC ∠=︒AECF SAS ABE CDF △≌△AE CF =AEB CFD ∠=∠AE CF AECF ABCD AB CD ∴=AB CD ABE CDF ∴∠=∠在和中,,;【小问2详解】如图,由(1)可知,,,.,,四边形为平行四边形.又,平行四边形矩形.22. 为了解学生对校园安全知识的掌握情况,现从九年级随机选取甲、乙两组各20名同学组织一次测试,并对本次测试成绩(满分为分)进行统计学处理:【收集数据】甲组名同学的成绩统计数据:(单位:分)乙组名同学中成绩在分之间数据:(满分为分,得分用x 表示,单位:分)【整理数据】(得分用表示)(1)完成下表分数/班级甲班(人数)乙班(人数) 【分析数据】请回答下列问题:(2)填空:平均分中位数众数为ABE CDF AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CDF ∴≌△△ABE CDF △≌△AE CF ∴=AEB CFD ∠=∠180AEB AEO CFD CFE ∠+∠=∠+∠=︒AED CFE ∴∠=∠AE CF ∴∥∴AECF 90AEC =︒∠ ∴AECF 100208790607792835676857195959068788068958581207080x ≤<100707275767678787879x 060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤13466114甲班 乙班 (3)若成绩不低于分为优秀,请以甲组、乙组共人为样本估计全年级人中优秀人数为多少?【答案】(1),(2),(3)人【解析】【分析】(1)根据数据统计的方法以及各组数据之和等于样本容量可得答案;(2)根据中位数、众数的定义可求出、的值;(3)求出样本中甲乙两个班“优秀”所占的百分比,进而估计总体中“优秀”所占的百分比,再乘总人数即可.【小问1详解】解:由题意可知,乙班在的数据有个,在的有,个,故答案为:,;【小问2详解】甲班人中得分出现次数最多的是分,共出现次,因此甲班学生成绩的众数,将乙班名学生的成绩从小到大排列,处在中间位置的两个数的平均数为,因此中位数,故答案为:,;【小问3详解】(人),答:甲班、乙班共人为样本估计全年级人中优秀人数约为人.【点睛】本题考查中位数、众数,频数分布表,掌握中位数、众数以及“频率”是正确解答的前提.23. 如图,在电路AB 中,有三个开关:S 1、S 2、S 3.80.682=a 80.35b =7880401600959578.5840a b 7080x ≤<98090x ≤<2011945----=952095395a =20787978.52+=78.5b =9578.5665416008402020+++⨯=+401600840=频数总数(1)当开关S 1已经是闭合状态时,开关S 2、S 3的断开与闭合是随机的,电路AB 能正常工作的概率是 ;(2)若三个开关S 1、S 2、S 3的断开与闭合都是随机的,求电路AB 能正常工作的概率.【答案】(1);(2)【解析】【分析】先画树状图展示出所有等可能结果,从中找到使电路AB 正常工作的情况数,在根据概率公式计算即可;【详解】(1)画树状图如下:由树状图知,共有4种等可能结果,其中电路AB 能正常工作的有3种结果,∴电路AB 能正常工作的概率是;故答案是.(2)画树状图如下:34383434由树状图知,共有8种等可能结果,其中电路AB 能正常工作的有3种结果,∴电路AB能正常工作的概率是;【点睛】本题主要考查了画树状图求概率,准确分析计算是解题的关键.24. 尺规作图在中,,,若点D 是斜边上一个动点,点K 在上,点B 、点D 、点K 组成的三角形为等腰三角形,(1)连接,使,请用尺规作图的方法,作出点K ,点D 的具体位置.(2)在(1)的条件下,求此时的面积.【答案】(1)图见解析(2)【解析】【分析】本题考查复杂作图,等腰三角形的判定和性质,勾股定理,解直角三角形等知识点,熟练掌握相关知识点,正确的作图,是解题的关键.(1)以为圆心,的长为半径化弧,交于点,作的中垂线交于点,即为所求;(2)过点作,设,勾股定理求出的值,利用,求出的长,再利用三角形的面积公式进行求解即可.【小问1详解】如图,即为所求;38Rt ABC △90ACB ∠=︒6,9AC BC ==AB BC ,CD KD CD DK ⊥BDK 7526C AC ABD BD BC K ,D K D DE BC ⊥BK DK x ==x 5sin 13DE DK DCK CD CK ∠===DE ,D K由作图可知:,,∴为等边三角形,,∵,∴,∴,即:,故点即为所求;【小问2详解】过点作,设,则:,由(1)知,由勾股定理,得:,即:,解得:,∴,∵,∴,∴的面积为.25. 如图,在一块长为,宽为矩形地面上,要修建两条同样宽且互相垂直的平行四边形道路,平行四边形道路与矩形边所夹锐角,剩余部分(图中①②③④部分)种上草坪,使草坪面积为,求图中x 的值.的DK BK ∠=AC CD =△BKD ,B BDK A ADC ∠=∠∠=∠90B A ∠+∠=︒90BDK ADC ∠+∠=︒90CDK ∠=︒CD DK ⊥,D K D DE BC ⊥BK DK x ==9CK BC BK x =-=-6CD AC ==222CD DK CK +=()22269x x +=-52x =5513,9222DK BK CK ===-=5sin 13DE DK DCK CD CK ∠===5301313DE CD ==BDK 11530752221326BK DE ⋅=⨯⨯=22m 17m 160∠=︒2299m【答案】2【解析】【分析】本题考查了平行四边形的性质、矩形的面积公式以及三角函数的应用,找到正确的数量关系是解题的关键.先利用三角函数求出道路的宽度,然后根据矩形面积两条道路的面积 + 两条道路重合部分的面积 = 草坪面积列出方程即可.【详解】作平行矩形的长,则,又两条平行四边形互相垂直,.由题意可知:米,米,米,矩形面积两条道路的面积 + 两条道路重合部分的面积 = 草坪面积,根据题意得,可列方程为:,解得:,(不合题意,舍去)图中x 的值为2.26. 如图,四边形为正方形,点E 为中点,连接,将纸片折叠,使点C 落在上的点G 处,折痕为;展平后进行第二次折叠,使落在上,上的点H 与点G 重合,折痕为,展平后进行第三次折叠,使点A 落在上点Q 处,折痕为.-AC 60ACB ∠=︒ ∴90ABC ∠=︒AC x =1cos 602BC x x =︒=sin 60AB x x =︒= -∴222172217299x x x ⎫⨯--+=⎪⎪⎭12x =250x =∴ABCD CD BE BE EF BC BE BC BI BE BP(1)写出和的关系,并说明理由.(2)求证:H 为的黄金分割点.(3)以下结论:①P 是的黄金分割点;②P ,Q ,I 三点共线;③,正确的是______(请在横线上填写序号)【答案】(1),,理由见解析(2)证明见解析(3)①②③【解析】【分析】(1)正方形性质,得到,进而得到,折叠,得到,进而得到,即可得出结论;(2)设,得到,,进而得到,进而得到(3)连接,证明,得到,得到,判断②,设,则:,,勾股定理求出的值,进而求出的值,解直角三角形,求出的值,进而求出的长,判断①③即可.【小问1详解】解:,理由如下:∵四边形为正方形,∴,,,∴,∵折叠,∴,的EF PB BC AD DE EQ PQ +=EF PB ∥2PB EF =AB CD CEB ABE ∠=∠11,22BEF BEC PBE ABE ∠=∠∠=∠PBE BEF ∠=∠CE a =2BC a =,EG CE a BE ===)1BG BH a ==-BH BC =QI QBI CBI ≌90,IQB C IQ IC ∠=∠=︒=180BQP IQP ∠+∠=︒,CE DE CI IQ x α====2AB BC BQ AD a ====IE a x =-x ,DI IQ DP AP PQ ,EF PB ∥ABCD AB CD AB CD =90A C ∠=∠=︒CEB ABE ∠=∠11,22CEF BEF BEC ABP PBE ABE ∠=∠=∠∠=∠=∠∴,∴;∵,,∴,∴,∴;【小问2详解】证明:设,则:,∵折叠,∴,∵四边形为正方形,∴,∴,∴,∴∴H 为的黄金分割点;【小问3详解】连接,∵正方形,∴,∵翻折,∴,,CEF ABP PBE BEF ∠=∠=∠=∠EF PB ∥CEF ABP ∠=∠90A C ∠=∠=︒BAP ECF ∽2PB AB CD EF CE CE===2PB EF =CE α=2CD α=,EG CE a BG BH ===ABCD 90,2BCD BC CD a ∠=︒==BE ==)1BH BG BE EG a ==-=-BH BC ==BC QI ABCD ,90AB BC BAP C =∠=∠=︒,90AB BQ BC BQP A ==∠=∠=︒QBI CBI ∠=∠∵,∴,∴,∴,∴三点共线,故②正确;设,则:,,∴,∴,由勾股定理,得:,∴,解得:,∴,∴,∵,∴,∴,∴,∵,∴,故③正确;∵,∴P 是的黄金分割点;故①正确;BI BI =QBI CBI ≌90,IQB C IQ IC∠=∠=︒=180BQP IQP ∠+∠=︒,,P Q I ,CE DE CI IQ x α====2AB BC BQ AD a ====IE a x =-BE =)2EQ a =-222IE EQ IQ =+())2222a x a x ⎡⎤-=+⎣⎦)22x a =-()(145IE a a =-+=-(6DI DE IE a =+=-tan QE PD DIP IQ DI∠==12PD DI ==(132PD DI a ==()231PQ AP AD DP a a ==-=-+=))21DE EQ a a a +=+-=-DE EQ PQ +=PD AP ==AD综上:正确的有①②③;故答案为:①②③.【点睛】本题考查正方形的折叠问题,勾股定理,黄金分割,解直角三角形,相似三角形的判定和性质等知识点,熟练掌握正方形的性质,折叠的性质,利用勾股定理和直角三角形的性质求值,是解题的关键.27. 如图,为的直径,点C 是上任意一点,过点C 作于G ,交于D ,,连接.分别交于F 、H .(1)如图1,求证:.(2)如图1,若,,求的长.(3)当点C 在圆上运动的过程中,试判断之间的数量关系,并说明理由.【答案】(1)见解析 (2)6(3),理由见解析【解析】【分析】(1)根据垂径定理,圆周角定理,得到,即可得出结论;(2)根据,求出的长,进而求出的长,圆周角定理,得到,求出的长,进而求出的长,利用三角函数求出的长,再利用三角函数求出的长即可;(3)将沿着翻折,使点于上的点重合,得到,进而推出,三线合一,得到,根据,即可得出结论.【小问1详解】解:为的直径,,∴,∵,AB O O CD AB ⊥O AC EC=AE CD BC 、AF CF =4AG =3tan 4EAB ∠=EH AG BG BE 、、BG AG BE =+CAF ACF ∠=∠3tan 4FG EAB AG ∠==FG ,AF CG tan tan ACG ABC ∠=∠BG AB BE EH BEC BC E AB M ,BE BM CE CM ==AC CM =AG GM =BG BM MG =+AB O CD AB ⊥ AC AD = AC EC=∴,∴,∴;【小问2详解】∵,,∴,∴,∴,∴,∴,∵为的直径,∴∵,∴,∴,∴,,∴,∵,∴设,则:,∴,∴,∴;【小问3详解】,理由如下:∵, AC CE=CAF ACF ∠=∠AF CF =CD AB ⊥4AG =3tan 4FG EAB AG ∠==3FG=5AF ==5CF AF ==8CG CF FG =+=AB O 90AEB ∠=︒AC CE AD ==ACG CBG EBC ∠=∠=∠41tan tan tan 82CG EH AG ACG CBG EBC BG BE CG ∠=∠=∠=====216BG CG ==12HE BE =20AB AG BG =+=3tan 4BE EAB AE ∠==3,4BE x AE x ==520AB x ==4x =12BE =162HE BE ==BG AG BE =+ AC CE=∴,,∴平分,∵为直径,∴,将沿着翻折,使点于上的点重合,则:,∴,∵,∴,∵,∴,∴.【点睛】本题考查圆周角定理,垂径定理,解直角三角形,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质,熟练掌握相关知识点,从复杂图形中有效的获取信息,是解题的关键.28. 如图,一次函数与二次函数的图像交于A 、D 两点(点A 在点D 左侧),与二次函数的图象交于B 、C 两点(点B 在点C 左侧).(1)如图1,若,,请求出的值.(2)如图1,若,点B 与A 横坐标之差为1,试探究的值是否为定值?如果是,请求出这个比值:如果不是,请说明理由.AC CE =ABC EBC ∠=∠BC ABE ∠AB AB BE >BEC BC E AB M BEC BMC ≌,BE BM CE CM ==AC CE =AC CM =CG AM ⊥AG MG =BG BM MG BE AG =+=+()0,0y mx n m n =+≠>2y x =22y x =1m =1n =:AB CD 1m =:AB CD(3)如图2,若,求的值.【答案】(1(2)(3)【解析】【分析】(1)分别求出点A、B、C、D的坐标,再根据两点之间的距离公式,求出,即可解答;(2)先求出点A、B、C、D的横坐标,过点A、B、C、D分别作x轴的垂线,垂足分别为点E、F、G、H;过点A作于点P,过点C作于点Q,易证,则,根据点B与A横坐标之差为1,德吹,,进而得出,再求出(3)先求出点A、B、C、D的横坐标,由(2)同理可得:,,推出,进而求出,即可解答.【小问1详解】解:若,,则一次函数为,联立和得:,解得,,联立和得:,:2AB CD=:BC AD231310,AB CDAP BF⊥CQ DH⊥ABP CDQ∽::AB CD AP CQ=1AP=1B Ax x-=5=D CCQ x x=-=:2B AD Cx xAB CDx x-==-:C BD Ax xBC ADx x-=-3m=-26nm=1m=1n=1y x=+1y x=+2y x=21y xy x=+⎧⎨=⎩xy⎧=⎪⎪⎨⎪=⎪⎩xy⎧=⎪⎪⎨⎪=⎪⎩A∴D1y x=+22y x=212y xy x=+⎧⎨=⎩解得或,,,【小问2详解】解:当时,一次函数为,联立和得:,解得,联立和得:,解得:,过点A 、B 、C 、D 分别作x 轴的垂线,垂足分别为点E 、F 、G 、H ;过点A 作于点P ,过点C 作于点Q ,∵轴,轴,∴,∴,又,,1212x y ⎧=-⎪⎪⎨⎪=⎪⎩12x y =⎧⎨=⎩11,22B ⎛⎫∴ ⎝-⎪⎭()1,2C AB ∴==CD ==:AB CD ∴==1m =y x n =+y x n =+2y x =2y x n y x=+⎧⎨=⎩A D x x ==y x n =+22y x =22y x n y x =+⎧⎨=⎩B C x x ==AP BF ⊥CQ DH ⊥BF x ⊥DH x ⊥BF DH ∥ABP CDQ ∠=∠AP BF ⊥CQ DH ⊥∴,∴,∵点B 与A 横坐标之差为1,∴,,整理得:,∵,∴.【小问3详解】解:联立和得:,解得联立和得:,解得:由(2)可得:,ABP CDQ ∽::AB CD AP CQ =1AP =1B A x x -=1=5=32D C CQ x x =-===32::1:23AB CD AP CQ ===y mx n =+2y x =2y m n y x =+⎧⎨=⎩A D x x ==y mx n =+22y x =22y mx n y x =+⎧⎨=⎩B C x x ==:2B A D Cx x AB CD x x -==-,整理得:,由图可知:一次函数图象经过二、四象限,则,两边同时除以m 得:,令,则,解得:,∴,,同理可得:.【点睛】本题考查了二次函数与一次函数综合,解题的关键是熟练掌握求二次函数和一次函数交点的方法和步骤.2=3m =-0m <3=2n t m =3=6t =26n m=15==13:110C BD A x x BC AD x x -====+=-。
2024年中考数学二模试卷(上海卷)(全解全析)
2024年中考第二次模拟考试(上海卷)数学·全解全析第Ⅰ卷一、选择题(本大题共6个小题,每小题4分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.在下列图形中,为中心对称图形的是()A .等腰梯形B .平行四边形C .正五边形D .等腰三角形【答案】B【分析】根据中心对称与轴对称的概念和各图形的特点即可求解.【详解】中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A 、C 、D 都不符合;是中心对称图形的只有B .故选B .2.下列方程有实数根的是A .4x 20+=B 2x 21-=-C .2x +2x −1=0D .x 1x 1x 1=【答案】C【详解】A .∵x 4>0,∴x 4+2=0无解,故本选项不符合题意;B .∵22x -≥0,∴22x -=−1无解,故本选项不符合题意;C .∵x 2+2x −1=0,∆=8>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x =1,经检验x =1是分式方程的增根,故本选项不符合题意.故选C .3.计算:AB BA += ()A .AB ;B .BA ;C .0 ;D .0.【答案】C【分析】根据零向量的定义即可判断.【详解】AB BA += 0 .故选C .4.在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠BAC=∠BCDC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC【答案】C【分析】根据正方形的判定:对角线互相垂直平分且相等的四边形是正方形进行分析从而得到最后的答案.【详解】解:A,不能,只能判定为矩形,不符合题意;B,不能,只能判定为平行四边形,不符合题意;C,能,符合题意;D,不能,只能判定为菱形,不符合题意.故选C.5.下列命题中,假命题是()A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦;B.如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C.如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.【答案】C【分析】利用垂径定理及其推论逐个判断即可求得答案.【详解】A.如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦,正确,是真命题;B.如果一条直线平分弦所对的两条弧,那么这条直线一定经过圆心,并且垂直于这条弦,正确,是真命题;C.如果一条直线经过圆心,并且平分弦,那么该直线不一定平分这条弦所对的弧,不一定垂直于这条弦,例如:任意两条直径一定互相平分且过圆心,但不一定垂直.错误,是假命题;D.如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧,正确,是真命题.故选C.【点睛】本题考查了垂径定理及其推论,对于一个圆和一条直线来说如果一条直线具备下列,①经过圆心,②垂直于弦,③平分弦(弦不是直径),④平分弦所对的优弧,⑤平分弦所对的劣弧,五个条件中的任何两个,那么也就具备其他三个.6.如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP 相切,半径长为5的⊙B与⊙A内含,那么OB的取值范围是()A .4<OB <7B .5<OB <7C .4<OB <9D .2<OB <7【答案】A 【分析】作⊙A 半径AD ,根据含30度角直角三角形的性质可得4OA =,再确认⊙B 与⊙A 相切时,OB 的长,即可得结论.【详解】解:设⊙A 与直线OP 相切时的切点为D ,∴AD OP ⊥,∵∠POQ =30°,⊙A 半径长为2,即2AD =,∴24OA AD ==,当⊙B 与⊙A 相切时,设切点为C ,如下图,∵5BC =,∴4(52)7OB OA AB =+=+-=,∴若⊙B 与⊙A 内含,则OB 的取值范围为47OB <<.故选:A .【点睛】本题主要考查了圆与圆的位置关系、切线的性质、含30度角的直角三角形的性质等知识,熟练掌握圆与圆内含和相切的关系是解题关键.二、填空题(本大题共12个小题,每小题4分,共48分)7.分解因式:2218m -=.【答案】()()233m m +-/()()233m m -+【分析】原式提取2,再利用平方差公式分解即可.【详解】解:2218m -=2(m 2-9)=2(m +3)(m -3).故答案为:2(m +3)(m -3).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.8.2x x +=-的解是.【答案】x =﹣1.【分析】把方程两边平方后求解,注意检验.【详解】把方程两边平方得x +2=x 2,整理得(x ﹣2)(x +1)=0,解得:x =2或﹣1,经检验,x =﹣1是原方程的解.故本题答案为:x =﹣1.【点睛】本题考查无理方程的求法,注意无理方程需验根.9.函数2x y x =-中自变量x 的取值范围是.【答案】0x ≥且2x ≠【分析】根据二次根式中被开方数大于等于0及分母不为0即可求解.【详解】解:由题意可知:020x x ≥⎧⎨-≠⎩,解得:0x ≥且2x ≠,故答案为:0x ≥且2x ≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.△ABC 中,AD 是中线,G 是重心,,AB a AD b == ,那么BG =(用a b 、表示).【答案】23a b -+ .【详解】试题分析:∵在△ABC 中,点G 是重心,AD b = ,∴23AG b =,又∵BG AG AB =- ,AB a = ,∴2233BG b a a b =-=-+ ;故答案为23a b -+ .考点:1.平面向量;2.三角形的重心.11.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是.【答案】13【详解】解:列树状图得共有12种情况,两张图案一样的有4种情况,所以概率是13.12.在方程224404x x x x +-+=中,如果设y=x 2﹣4x ,那么原方程可化为关于y 的整式方程是.【答案】2430y y ++=【分析】先把方程整理出含有x 2-4x 的形式,然后换成y 再去分母即可得解.【详解】方程2234404x x x x +-+=-可变形为x 2-4x+214x x -+4=0,因为24y x x =-,所以340y y++=,整理得,2430y y ++=13.如果⊙O 1与⊙O 2内含,O 1O 2=4,⊙O 1的半径是3,那么⊙O 2的半径r 的取值范围是.【答案】7r >/7r<【分析】由题意,⊙O 1与⊙O 2内含,则可知两圆圆心距d r r <-小大,据此代入数值求解即可.【详解】解:根据题意,两圆内含,故34r ->,解得7r >.故答案为:7r >.【点睛】本题主要考查了两圆位置关系的知识,熟练掌握由数量关系判断两圆位置关系是解题关键.14.某单位10月份的营业额为100万元,12月份的营业额为200万元,假设该公司11、12两个月的增长率都为x ,那么可列方程是.【答案】100(1+x )2=200【分析】根据题意,设平均每月的增长率为x ,依据10月份的营业额为100万元,12月份的营业额为200万元,即可列出关于x 的一元二次方程.故答案为:100(1+x )2=200【详解】设平均每月的增长率为x ,根据题意可得:100(1+x )2=200.故答案为:100(1+x )2=200.【点睛】此题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出方程是解题关键.15.菱形ABCD 中,已知AB =4,∠B :∠C =1:2,那么BD 的长是.【答案】43【分析】根据题意画出示意图(见详解),由菱形的性质可得BO =12BD ,BD ⊥AC ,在Rt △ABO 中,由cos ∠ABO 即可求得BO ,继而得到BD 的长.【详解】解:如图,∵四边形ABCD 为菱形,∴AB CD ∥,∴∠ABC +∠BCD =180°,∵∠ABC :∠BCD =1:2,∴∠ABC =60°,∴∠ABD =12∠ABC =30°,BO =12BD ,BD ⊥AC .在Rt △ABO 中,cos ∠ABO =BO AB =32,∴BO=AB⋅cos∠ABO=4×32=23.∴BD=2BO=43.故答案为:43.【点睛】本题考查菱形的性质,熟知菱形的对角线互相垂直,利用垂直构造直角三角形,再利用三角函数求解线段长度是解题的关键.16.如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD=4,AB=16,那么OC=.【答案】10【分析】根据垂径定理求出AD的长,设半径OC=OA=r,则OD=r-4,再根据勾股定理列出关于r的方程,解出即可得出OC的长.【详解】设半径OC=OA=r,则OD=OC-CD=r-4半径OC垂直于弦AB,垂足为点D,AB=16∴AD=12AB=8,在Rt△AOD中,OD2+AD2=OA)即(r-4)2+82=r2解得:r=10故答案为10.【点睛】本题考查了垂径定理,勾股定理,熟练掌握定理是解题的关键.17.新定义:有一组对角互余的凸四边形称为对余四边形.如图,已知在对余四边形ABCD中,10AB=,12BC=,5CD=,3tan4B=,那么边AD的长为.【答案】9【分析】连接AC,作AE BC⊥交BC于E点,由3tan4B=,10AB=,可得AE=6,BE=8,并求出AC的长,作CF AD ⊥交AD 于F 点,可证B DCF ∠=∠,最后求得AF 和DF 的长,可解出最终结果.【详解】解:如图,连接AC ,作AE BC ⊥交BC 于E 点,3tan 4B =,10AB =,∴3tan 4AE B BE ==,设AE=3x ,BE=4x ,∴222AE BE AB +=,则()()2223425100x x x +==,解得x=2,则AE=6,BE=8,又 12BC =,∴CE=BC-BE=4,∴22213AC AE CE =+=,作CF AD ⊥交AD 于F 点,+=90B D ∠∠︒,90D DCF ∠+∠=︒,∴B DCF ∠=∠,3tan 4B ==tan DCF ∠=DF CF ,又 5CD =,∴同理可得DF=3,CF=4,∴226AF AC CF =-=,∴AD=AF+DF=9.故答案为:9.【点睛】本题考查四边形综合问题,涉及解直角三角形,勾股定理,有一定难度,熟练掌握直角三角形和勾股定理知识点,根据题意做出正确的辅助线是解决本题的关键.18.如图,在Rt ∆ABC 中,∠ACB =90°,BC =4,AC =3,⊙O 是以BC 为直径的圆,如果⊙O 与⊙A 相切,那么⊙A 的半径长为.【答案】132±【分析】分两种情况:①如图,A 与O 内切,连接AO 并延长交A 于E ,根据AE AO OE =+可得结论;②如图,A 与O 外切时,连接AO 交A 于E ,同理根据AE OA OE =-可得结论.【详解】解:有两种情况,分类讨论如下:①如图1,A 与O 内切时,连接AO 并延长交O 于E ,O 与A 相内切,E ∴为切点,122OE BC ∴==,90ACB ∠=︒ ,根据勾股定理得:22222313OA OC AC =+=+=,132AE OA OE ∴=+=+;即A 的半径为132+;②如图2,A 与O 外切时,连接AO 交O 于E ,同理得132AE AO OE =-=-,即A 的半径为132-,综上,A 的半径为132+或132-.故答案为:132±.【点睛】本题考查了相切两圆的性质、勾股定理,解题的关键是通过作辅助线得出AE 是A 的半径.第Ⅱ卷三、解答题(本大题共7个小题,共78分.解答应写出文字说明,证明过程或演算步骤)19.(10()()()20220118cot 45233sin 30π--︒+-+--︒.【答案】223+【分析】先化简各式,然后再进行计算即可解答.【详解】解:20220118(cot 45)|23|(3)(sin 30)π-+-︒+-+--︒20221132(1)321()2-=+-+-+-3213212=++-+-223=+.【点睛】本题考查了实数的运算,零指数幂,负整数指数幂、绝对值,特殊角的三角函数值,解题的关键是准确熟练地化简各式.20.(10分)如图,AH 是△ABC 的高,D 是边AB 上一点,CD 与AH 交于点E .已知AB =AC =6,cos B =3,AD ∶DB =1∶2.(1)求△ABC 的面积;(2)求CE ∶DE .【答案】解:(1)85;(2)31.【详解】试题分析:(1)根据题意和锐角三角函数可以求得BH 和AH 的长,从而可以求得△ABC 的面积;(2)根据三角形的相似和题意可以求得CE :DE 的值.试题解析:解:(1)∵AB =AC =6,cos B =23,AH 是△ABC 的高,∴BH =4,∴BC =2BH =8,AH =226425-=,∴△ABC 的面积是;2BC AH ⋅=8252⨯=85;(2)作DF ⊥BC 于点F .∵DF ⊥BH ,AH ⊥BH ,∴DF ∥AH ,∴AD HF CE CH AB HB DE HF ==,.∵AD :DB =1:2,BH =CH ,∴AD :AB =1:3,∴13HF HB =,∴31CE CH BH DE HF HF ===,即CE :DE =3:1.点睛:本题考查了解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(10分)如图,在平面直角坐标系xOy 中,点A 是反比例函数y =x的图象与正比例函数y =kx 的图象在第一象限内的交点,已知点A 的纵坐标为2.经过点A 且与正比例函数y =kx 的图象垂直的直线交反比例函数y =k x的图象于点B (点B 与点A 不是同一点).(1)求k的值;(2)求点B的坐标.【答案】(1)2 (2)(4,12)【分析】(1)根据题意得到22kk=,解方程求得k=2;(2)先求得A的坐标,根据正比例函数的解析式设直线AB的解析式为y12=-x+b,把A的坐标代入解得b52=,再与反比例函数的解析式联立成方程组,解方程组即可求得点B的坐标.【详解】(1)解:∵点A是反比例函数ykx=的图象与正比例函数y=kx的图象在第一象限内的交点,点A的纵坐标为2,∴22k k=,∴2k=4,解得k=±2,∵k>0,∴k=2;(2)∵k=2,∴反比例函数为y2x=,正比例函数为y=2x,把y=2代入y=2x得,x=1,∴A(1,2),∵AB⊥OA,∴设直线AB的解析式为y12=-x+b,把A 的坐标代入得2112=-⨯+b ,解得b 52=,解21522y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得12x y =⎧⎨=⎩或412x y =⎧⎪⎨=⎪⎩,∴点B 的坐标为(4,12).【点睛】本题是反比例函数与一次函数的交点问题,考查了一次函数、反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式,解题的关键是求出直线AB 的解析式,本题属于中等题型.22.(10分)图1是某区规划建设的过街天桥的侧面示意图,等腰梯形ABCD 的上底BC 表示主跨桥,两腰AB ,CD 表示桥两侧的斜梯,A ,D 两点在地面上,已知AD =40m ,设计桥高为4m ,设计斜梯的坡度为1:2.4.点A 左侧25m 点P 处有一棵古树,有关部门划定了以P 为圆心,半径为3m 的圆形保护区.(1)求主跨桥与桥两侧斜梯的长度之和;(2)为了保证桥下大货车的安全通行,桥高要增加到5m ,同时为了方便自行车及电动车上桥,新斜梯的坡度要减小到1:4,新方案主跨桥的水平位置和长度保持不变.另外,新方案要修建一个缓坡MN 作为轮椅坡道,坡道终点N 在左侧的新斜梯上,并在点N 处安装无障碍电梯,坡道起点M 在AP 上,且不能影响到古树的圆形保护区.已知点N 距离地面的高度为0.9m ,请利用表中的数据,通过计算判断轮椅坡道的设计是否可行.表:轮椅坡道的最大高度和水平长度坡度1:201:161:121:101:8最大高度(m )1.200.900.750.600.30水平长度(m )24.0014.409.00 6.002.40【答案】(1)主跨桥与桥两侧斜梯的长度之和为26.6m(2)轮椅坡道的设计不可行,理由见解析【分析】(1)根据斜坡AB的坡度以及天桥的高度可求出AE,由勾股定理求出AB,进而求出EF=BC的长,再计算主跨桥与桥两侧斜梯的长度之和;(2)根据坡度的定义求出新方案斜坡A B''的水平距离A E'进而求出点M到点G的最大距离,再由表格中轮椅坡道的最大高度和水平长度的对应值进行判断即可.【详解】(1)解:如图,作直线AD,则AD过点A'和点D',过点B、C分别作BE⊥AD,CF⊥AD,垂足为E、F,延长EB,延长FC,则射线EB过点B',射线FC过点C',由题意得,BE=CF=4m,AP=25m,B'E=5m,∵斜坡AB的坡度为1:2.4,即BEAE=1:2.4,∴AE=4×2.4=9.6(m),又∵四边形ABCD是等腰梯形,∴AE=DF=9.6m,∴BC=AD﹣AE﹣DF=5.8(m),AB=22AE BE+=229.64+=10.4(m)=CD,∴主跨桥与桥两侧斜梯的长度之和为AB+BC+CD=10.4+5.8+10.4=26.6(m),答:主跨桥与桥两侧斜梯的长度之和为26.6m.(2)解:∵斜坡A B''的坡度为1:4,即B EA E''=1:4,∴A'E=5×4=20(m),∴A A'=20﹣9.6=11.4(m),A'G=4NG=4×0.9=3.6(m),∴AG=11.4﹣3.6=7.8(m),点M到点G的最多距离MG=25﹣7.8﹣3=14.2(m),∵14.2<14.4,∴轮椅坡道的设计不可行.【点睛】本题主要考查了解直角三角形的应用,根据坡度和坡角构造直角三角形,然后分别用解直角三角形的知识坡道的水平距离是解答本题的关键.23.(12分)已知:如图,在梯形ABCD 中,//AD BC ,90B Ð=°,E 是AC 的中点,DE 的延长线交边BC 于点F.(1)求证:四边形AFCD 是平行四边形;(2)如果22AE AD BC =⋅,求证四边形AFCD 是菱形.【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质可知DAE FCE =∠∠,ADE CFE ∠=∠.再由E 是AC 中点,即AE =CE .即可以利用“AAS ”证明AED CEF ≌,得出AD CF =,即证明四边形AFCD 是平行四边形.(2)由22AE AD BC =⋅和E 是AC 中点,即可推出AE AD CB AC=.又因为DAE FCE =∠∠,即证明ADE CAB ∽△△,即可推出DF AC ⊥.即四边形AFCD 是菱形.【详解】(1)∵//AD BC ,∴DAE FCE =∠∠,ADE CFE ∠=∠.又∵E 是AC 中点,∴AE =CE ,∴在AED △和CEF △中ADE CFE DAE FCE AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AED CEF AAS ≌,∴AD CF =,∴四边形AFCD 是平行四边形.(2)∵//AD BC ,∴DAE FCE =∠∠.∵22AE AD BC =⋅,∴AE AC AD BC ⋅=⋅,∴AE AD CB AC=,∴ADE CAB ∽△△,∴90AED ABC ∠=∠=︒,即DF AC ⊥.∴四边形AFCD 是菱形.【点睛】本题考查梯形的性质,平行四边形的判定,菱形的判定,全等三角形的判定和性质以及相似三角形的判定和性质.掌握特殊四边形的判定方法是解答本题的关键.24.(12分)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD =,联结AD ,将线段AD 绕着点D 顺时针旋转90︒,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求抛物线的表达式;(2)联结DF ,求cot ∠EDF 的值;(3)点P 在直线l 上,且∠EDP =45°,求点P 的坐标.【答案】(1)2312355y x x =-++;(2)cot 2EDF ∠=;(3)(4,6)或3(4,)2-.【分析】(1)利用待定系数法即可解决问题;(2)证明()OAD HDE AAS ∆∆≌,再根据全等三角形的性质得1EH OD ==,3DH OA ==,可得(4,1)E ,(4,3)F ,求出3FH DH ==,则45DFH ∠=︒,32DF =,过点E 作EK DF ⊥于K ,根据等腰直角三角形的性质可得2KF KE ==,则22DK DF KF =-=,在Rt DKE ∆中,根据余切的定义即可求解;(3)分两种情形①点P 在点E 的上方时;②点P 在点E 的下方时,根据相似三角形的判定和性质即可解决问题.【详解】(1)解:把点(0,3)A ,点(5,0)B 代入235y x bx c =-++,得:15503b c c -++=⎧⎨=⎩,解得:1253b c ⎧=⎪⎨⎪=⎩,∴抛物线的解析式为2312355y x x =-++;(2)解:如图:90AOD ADE DHE ∠=∠=∠=︒ ,90ADO OAD ∴∠+∠=︒,90ADO EDH ∠+∠=︒,OAD EDH ∴∠=∠,AD DE = ,()OAD HDE AAS ∴∆∆≌,1EH OD ∴==,3DH OA ==,(4,1)E ∴,过点E 作直线l x ⊥轴,垂足为H ,交抛物线2312355y x x =-++于点F .(4,3)F ∴,3FH ∴=,3FH DH ∴==,90DHE ∠=︒ ,45DFH ∴∠=︒,32DF =,过点E 作EK DF ⊥于K ,312EF =-= ,2KF KE ∴==,22DK DF KF ∴=-=,在Rt DKE ∆中,22cot 22DK EDF KE ∠===;(3)解:①当点P 在点E 的上方时,45EDP DFH ∠=∠=︒ ,DEP ∠是公共角,EDF EPD ∴∆∆∽,∴EF ED ED EP=,2ED EF EP ∴=⋅,设(4,)P y ,则1EP y =-,又2EF = ,223110ED =+=,102(1)y ∴=-,解得6y =,∴点P 的坐标为(4,6);②当点P 在点E 的下方时,45EDP DFP ∠=∠=︒ ,DPF ∠是公共角,PED PDF ∴∆∆∽,∴PE DP PD FP=,2DP PE PF ∴=⋅,设(4,)P y ,则1EP y =-,3FP y =-,223DP y =+,29(1)(3)y y y ∴+=--,解得32y =-,∴点P 的坐标为3(4,)2-;综上所述,当45EDP ∠=︒时,点P 的坐标为(4,6)或3(4,)2-.【点睛】本题是二次函数综合题,考查二次函数的应用、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是熟练掌握二次函数的图象及性质,三角形相似的判定及性质.25.(14分)如图,半径为1的⊙O 与过点O 的⊙P 相交,点A 是⊙O 与⊙P 的一个公共点,点B 是直线AP 与⊙O 的不同于点A 的另一交点,联结OA ,OB ,OP .(1)当点B 在线段AP 上时,①求证:∠AOB =∠APO ;②如果点B 是线段AP 的中点,求△AOP 的面积;(2)设点C 是⊙P 与⊙O 的不同于点A 的另一公共点,联结PC ,BC .如果∠PCB =α,∠APO =β,请用含α的代数式表示β.【答案】(1)①见解析;②74(2)β=60°﹣23β【分析】(1)①利用圆的半径相等可得∠OAB =∠OBA =∠AOP ,则∠AOB =∠APO ;②首先利用△AOB ∽△APO ,得OA AB AP OA=,可得AP 的长,作AH ⊥PO 于点H ,设OH =x ,则PH =2﹣x ,利用勾股定理列方程求出OH的长,从而得出AH,即可求得面积;(2)联结OC,AC,利用圆心角与圆周角的关系得∠ACB=12∠AOB=12β,∠ACO=12∠APO=12β,再利用SSS说明△OAP≌△OCP,得∠OAP=∠OCP,从而解决问题.【详解】(1)①证明:∵OA=OB,∴∠OAB=∠OBA,∵PA=PO,∴∠BAO=∠POA,∴∠OAB=∠OBA=∠AOP,∴∠AOB=∠APO;②解:∵∠AOB=∠APO,∠OAB=∠PAO,∴△AOB∽△APO,∴OA AB AP OA=,∴OA2=AB•AP=1,∵点B是线段AP的中点,∴AP=2,作AH⊥PO于点H,设OH=x,则PH=2﹣x,由勾股定理得,12﹣x2=(2)2﹣(2x-)2,解得x=2 4,∴OH=2 4,21由勾股定理得,AH =2221()4-=144,∴△AOP 的面积为11142224OP AH ⨯⨯=⨯⨯=74;(2)解:如图,联结OC ,AC ,∵∠AOB =∠APO ,∴∠AOB =β,∴∠ACB =12∠AOB =12β,∠ACO =12∠APO =12β,∴∠OCP =β+α,∵OA =OC ,AP =PC ,OP =OP ,∴△OAP ≌△OCP (SSS ),∴∠OAP =∠OCP =β+α,在△OAP 中,2(α+β)+β=180°,∴β=60°﹣23β.【点睛】本题是圆的综合题,主要考查了圆的性质,圆心角与圆周角的关系,相似三角形的判定与性质,全等三角形的判定与性质等知识,求出大圆半径是解题的关键.。
2024年中考数学二模试卷(徐州卷)(全解全析)
2024年中考第二次模拟考试(徐州卷)数学·全解全析注意事项:1.本试卷共6页.全卷满分140分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.第Ⅰ卷一、选择题(本大题共8个小题,每小题3分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2024年夏季奥运会将在法国巴黎举行,平移如图所示的巴黎奥运会图标可以得到的图形是()A.B.C.D.【答案】D【解析】解:由图形可知,选项D与原图形完全相同.故选:D2.8-的倒数是()A.8B.18C.18-D.8-【答案】C【解析】解:∵1818⎛⎫-⨯-= ⎪⎝⎭,∴8-的倒数为18-,故选:C .3.餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约1700万吨.将数据1700万用科学记数法表示为()A .71.710⨯B .80.1710⨯C .81.710⨯D .71710⨯【答案】A【解析】解:将数据1700万用科学记数法表示为71.710⨯.故选:A .4.下列运算正确的是()A .()325a a -=-B .3515a a a ⋅=C .22321a a -=D .()22346a b a b -=【答案】D【解析】解:A 、()326a a -=-,故A 不正确,不符合题意;B 、358a a a ⋅=,故B 不正确,不符合题意;C 、22232a a a -=,故C 不正确,不符合题意;D 、()22346a b a b -=,故D 正确,符合题意;故选:D .5.一个含45︒的三角板和一个直尺按如图所示方式叠合在一起,若1123=︒∠,则2∠的度数是()A .67︒B .68︒C .77︒D .78︒【答案】D【解析】解:1=123∠︒ ,123EFB ∴∠=︒,EF BD ∥,123EFB ∠=︒,18012357ABD ∴∠=︒-︒=︒,又90ABC ∠=︒ ,905733DBC ∴∠=︒-︒=︒,2453378C DBC ∠=∠+∠=︒+︒=︒.故选:D .6.如图,,OA OB 是O 的两条半径,点C 在O 上,连接,AC BC ,若36C ∠=︒,则AOB ∠的度数为()A .72︒B .62︒C .54︒D .36︒【答案】A 【解析】解:∵36C ∠=︒,∴272AOB C ∠︒=∠=,故选:A .7.某校射击比赛所用的靶子有8环,9环,10环三个环次,每一环又有10个小环,小新、小华、小宇三人每人射击三次,成绩如图所示,则射击成绩的平均数约为9.0环的是()A .小新B .小宇C .小华D .三人都有可能【答案】C 【解析】解:由图可知:小新的成绩2个在10环上,一个在9环上,平均成绩不可能为9.0环;小宇的成绩一个在10环,一个接近10环,一个接近9环,平均数不可能为9.0环;小华的成绩均在9环附近,射击成绩的平均数约为9.0环;故选C .8.如图,在平面直角坐标系中,矩形ABOC 的顶点C 在y 轴上,A 在x 轴上,把矩形ABOC 沿对角线BO 所在的直线翻折,点A 恰好落在反比例函数()0k y k x=≠的图象上点D 处,BD 与y 轴交于点E ,点D 恰好是BE 的中点.已知A 的坐标为()4,0,则反比例函数的表达式为()A .232y =B .43y =C .4y x =D .1633y x=【答案】B 【解析】解:∵矩形ABOC ,A 的坐标为()4,0,∴4OA =,点B 的横坐标为4,∵折叠,∴4OD OA ==,∵E 在y 轴上,D 为BE 的中点,∴点D 的横坐标为2,过点D 作DF OA ⊥,∴2OF =,∴2223DF OD OF =-,∴(2,23D ,∴22343k =⨯=∴反比例函数的表达式为43y =故选B .第Ⅱ卷二、填空题(本大题共10个小题,每小题3分,共30分)9.0.0081的平方根是.【答案】0.09±【解析】解:因为20.090.0081()±=,所以0.0081的平方根是0.09±;故答案为:0.09±.10.当x =时,分式43xx --无意义.【答案】3【解析】 分式43xx --无意义30x ∴-=3x ∴=.故答案为:3.11.如图,由三个正方形拼成的图形中,字母B 所代表的正方形面积是.【答案】144【解析】解:由勾股定理得,字母B 所代表的正方形面积16925144=-=.故答案为:144.12.如图,第4套人民币中菊花1角硬币采用“外圆内凹正九边形”设计,则内凹正九边形的外角的度数为.【答案】40︒【解析】解:内凹正九边形的外角的度数为360940︒÷=︒,故答案为:40︒.13.若分式方程12x x a +=+的解是3x =,则=a .【答案】1-【解析】解:分式方程去分母得:122x x a +=+,由分式方程的解为3x =,代入整式方程得:31232a +=⨯+,解得:1a =-,故答案为:1-.14.某节活动课上,安安用一张半径为18cm 的扇形纸板做了一个圆锥形帽子(如图,接缝处忽略不计).若圆锥形帽子的半径为10cm ,则这张扇形纸板的面积为cm².【答案】180π【解析】解:解:这张扇形纸板的面积为121018180cm²2ππ⨯⨯⨯=,故答案为:180π.15.已知20ax bx c ++=的两根为2,3,则20cx bx a -+=的两个根分别为.【答案】121123x x =-=-,【解析】解:∵20ax bx c ++=的两根为2,3,∴235236bca a -=+==⨯=,,∴56b a c a =-=,,∴方程20cx bx a -+=即为2560a ax x a ++=,∴26510x x +=+,∴()()21310x x ++=,解得121123x x =-=-,,故答案为:121123x x =-=-,.16.如图,边长为1的正方形ABCD 绕点A 逆时针旋转60︒得到正方形AEFG ,连接CF ,则CF 的长是.2【解析】解:如图所示,连接AC 、AF ,∵四边形AEFD 是四边形ABCD 逆时针旋转60︒,∴AC AF =,60CAF ∠=︒,∴ACF △是等边三角形,∴AC CF AF ==,在Rt ABC △中,222AC AB BC =+=∴2AC CF =2.17.如图,在矩形ABCD 中,4AB =,2AD =,点E 是AD 边的中点,连接,AC BE 交于点,F CAD ∠的平分线AG 交CD 边于点G ,点A 关于过点E 的某条直线的对称点H 恰好在AG 上,且点H 不与点A 重合,连接FH ,则FH 的长为.46363【解析】解:∵在矩形ABCD 中,4AB =,42AD =E 是AD 边的中点,∴90BAD ∠=︒,122AE ED AD ===∴222tan 42AE ABE AB ∠==,2tan 242CD CAD AD ∠=,∴tan tan ABE CAD ∠=∠,∴ABE CAD ∠=∠,∴90ABE BAF CAD BAF BAD ∠+∠=∠+∠=∠=︒,∴90BFA ∠=︒,即BE AC ⊥,∵在矩形ABCD 中,4AB =,22AE =∴()224226BE =+AE BC ∥,∴AEF CBF ∽△△,∴12EF AE BF BC ==,∴12633EF BE =,连接EH ,∵点A 关于过点E 的某条直线的对称点H 恰好在AG 上,∴2AE EH ==∴EAH EHA ∠=∠,∵AG 是CAD ∠的平分线,∴EAH CAH ∠=∠,∴EHA CAH ∠=∠,∴HE AC ∥,∵BE AC ⊥,∴BE EH ⊥,即90FEH ∠=︒,∴()222224622633FH EF EH ⎛⎫=+=+= ⎪⎝⎭463.18.如图,在矩形ABCD 中,6,10AB BC ==,点E 是AD 边的中点,点F 是线段AB 上任一点,连接EF ,以EF 为直角边在AD 下方作等腰直角EFG ,FG 为斜边,连接DG ,则DEG 周长最小值为.【答案】555【解析】解:如图,过点G 作GH AD ⊥于点H ,∵四边形ABCD 是矩形,∴90,6,10A AB CD AD BC ∠=︒====,∴5AE ED ==,∵90A FEG GHE ∠∠∠===︒,∴90,90AEF GEH GEH EGH ∠∠∠∠+=︒+=︒,∴AEF EGH ∠∠=,∵EF EG =,∴(AAS)AEF GHE ≌ ,∴5GH AE ==,过点G 作直线l AD ∥,∵5GH =,GH AD ⊥,∴点G 在直线l 上运动,作点D 关于直线l 的对称点T ,连接ET ,在Rt EDT 中,90,5,10DET DE DT ∠=︒==,∴2255ET DE DT +=∵GD GT =,∴GE GD EG GT ET +=+≥,∴55GE GD +≥,∴GE GD +的最小值为55,∴DEG 周长最小值为555,故答案为:555.三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)19.计算.(1)()()220240221π433-⎛⎫-+--- ⎪⎝⎭;(2)21111x x x ⎛⎫-÷ ⎪+-⎝⎭.【解析】(1)解:原式411199=+--39=13=;(2)原式21111x x x x+--=⨯+(1)(1)1x x x x x+-=⨯+1x =-.20.解方程或方程组:(1)解方程:2450x x --=;(2)解不等式组:()432123x x x x ⎧+≤+⎪⎨-<⎪⎩①②.【解析】(1)解:因式分解得,(5)(1)0x x -+=,∴10x +=或50x -=,∴15=x ,21x =-;(2)解:解不等式①得,1x ≥-,解不等式②得,3x <,∴不等式组的解集为:13x -≤<.21.一个不透明的笔袋里装有若干支黑色、红色和蓝色这三种颜色的中性笔(除笔芯颜色外,其余都相同),其中黑色中性笔有2支,红色中性笔有1支,从中任意摸出的一支笔是黑色中性笔的概率为12.(1)求笔袋中蓝色中性笔有多少支?(2)第一次任意摸出一支笔(不放回),第二次再摸出一支笔,请用树状图或列表法求出两次摸到的都是黑色中性笔的概率.【解析】(1)解:122112÷--=(支),答:笔袋中蓝色中性笔有1支.(2)解:解法一:树状图法由树状图可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.解法二:列表法第一次第二次黑1黑2红蓝黑1(黑1,黑2)(黑1,红)(黑1,蓝)黑2(黑2,黑1)(黑2,红)(黑2,蓝)红(红,黑1)(红,黑2)(红,蓝)蓝(蓝,黑1)(蓝,黑2)(蓝,红)由列表可知,共有12种等可能的结果,其中两次摸到的都是黑色中性笔的情形有2种,∴两次摸到的都是黑色中性笔的概率为21126=.22.某市教育局为了解“双减”政策落实情况,随机抽取几所学校部分初中生进行调查、统计他们平均每天完成作业的时间,并根据调查结果绘制如下不完整的统计图:请根据图表中提供的信息,解答下面的问题:(1)在调查活动中,教育局采取的调查方式是(填写“普查”或“抽样调查”);(2)教育局抽取的初中生有人,扇形统计图中m的值是;(3)若该市共有初中生12000人,则平均每天完成作业时长在“7080t≤<”分钟的初中生约有多少人.【解析】(1)解:抽查方式为随机抽取几所学校部分初中生进行调查,则在调查活动中,教育局采取的调查方式是抽样调查,故答案为:抽样调查;(2)解:4515%300÷=人,∴教育局抽取的初中生有300人,∴每天完成作业时长在“7080t≤<”分钟的初中生人数有3004513521990----=人,∴90%100%30%300m=⨯=,∴30m=,故答案为:300;30;(3)解:1200030%3600⨯=人,∴平均每天完成作业时长在“7080t≤<”分钟的初中生约有3600人.23.新能源汽车因其废气排放量比较低,被越来越多的家庭所喜爱,老疆车行销售甲、乙两种型号的新能源汽车,十月的第一周售出1辆甲型车和3辆乙型车,销售额为65万元;第二周售出4辆甲型车和5辆乙型车,销售额为155万元.(1)求每辆甲型车和乙型车的售价各为多少万元?(2)茅溪科技发展有限公司准备向老疆车行购买甲、乙两种型号的新能源汽车共8辆,其购车费用不少于145万元,且不超过153万元,问有哪几种购车方案?【解析】(1)解:设每辆甲型车的售价为x 万元,每辆乙型车的售价为y 万元,根据题意得:36545155x y x y +=⎧⎨+=⎩解得:2015x y =⎧⎨=⎩,答:每辆甲型车的售价为20万元,每辆乙型车的售价为15万元;(2)解:设购买甲型车a 辆,则购买乙型车为()8a -辆,依题意得:()14520158153a a ≤+-≤,解得:5 6.6a ≤≤∵a 为正整数,∴a 取5或6.∴有两种购车方案:方案一:购买甲型车5辆,购买乙型车3辆,此时的费用是145万元,;方案二:购买甲型车6辆,购买乙型车2辆,此时的费用是150万元;24.如图,AC 是菱形ABCD 的对角线.(1)在AC 上求作一点E ,使得BEC BCD ∠=∠(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若140D ∠=︒,求CBE ∠的度数.【解析】(1)解:如图,点E 即为所求;(2)解: 四边形ABCD 是菱形,AD CB ∴∥,ACD ACB ∠=∠,180D BCD ︒∴∠+∠=,18014040BCD ∴∠=︒-︒=︒,20ACD ACB ∴∠=∠=︒,又∵40BEC BCD ∠=∠=︒,1801802040120CBE ACB BEC ∴∠=︒-∠-∠=︒-︒-︒=︒.25.如图,CD 是O 的直径,点B 在O 上,点A 为DC 延长线上一点,过点O 作OE BC ∥交AB 的延长线于点E ,且D E∠=∠(1)求证:AE 是O 的切线;(2)若线段OE 与O 的交点F 是OE 的中点,O 的半径为3,求阴影部分的面积.【解析】(1)证明:连接OB ,∵CD 是O 的直径,∴BC BD ⊥,即90CBD ∠=︒,∵OE BC ∥,∴90DGO CBD ∠=∠=︒,∴90BGE DGO ∠=∠=︒,90D DOG ∠+∠=︒,∵D E ∠=∠,∴DOE DBE ∠=∠,∵OD OB =,∴D OBD ∠=∠,∴90OBD DBE D DOG ∠+∠=∠+∠=︒,∴90OBE ∠=︒,∵OB 是O 的半径,∴AE 是O 的切线;(2)解:连接BF ,∵90OBE ∠=︒,F 是OE 的中点,∴BF OF =,∵O 的半径为3,90∠=︒DGO ,∴3BF OF OB ===,18090BGO DGO ∠=︒-∠=︒,∴OBF 是等边三角形,∴60BOF ∠=︒,∴9030OBG BOF ∠=︒-∠=︒,∴1322OG OB ==,2222333322BG OB OG ⎛⎫=-=-= ⎪⎝⎭,∴阴影部分的面积为:2603133339336022228OBG OBF S S ⨯π⨯π-=-⨯=-扇形△,∴阴影部分的面积为39328π26.如图,山区某教学楼后面紧邻着一个土坡,坡面BC 平行于地面AD ,斜坡AB 的坡比为51:12i =,且26AB =米.为了防止山体滑坡,保障安全,学校决定对该土坡进行改造.经地质人员勘测,当坡角不超过53︒时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离BE 的长.(2)为了消除安全隐患,学校计划将斜坡AB 改造成AF (如图所示),那么BF 至少是多少米?(结果精确到1米)(参考数据:sin530.8︒≈,cos530.6︒≈,tan 53 1.33︒≈,cot 530.75)︒≈.【解析】(1)解: 斜坡AB 的坡比为51:12i =,:12:5BE EA ∴=,设12BE x =,则5EA x =,由勾股定理得,222BE EA AB +=,即222(12)(5)26x x +=,解得,2x =,则1224BE x ==,510AE x ==,答:改造前坡顶与地面的距离BE 的长为24米;(2)解:作FH AD ⊥于H ,则tan FH FAH AH ∠=,24181.33AH ∴=≈,18108BF ∴=-=,答:BF 至少是8米.27.如图,在ABC 中,10AB AC ==,45BC =AD BC ⊥于点D ,点P 从点A 出发,沿折线AC CD →向终点D 运动,点P 在AC 上以每秒5个单位长度的速度匀速运动,在CD 5匀速运动,当点P 不与点A 、D 重合时,作PQ AB ∥,PQ 与射线AD 交于点Q ,以PQ 为一边向左侧作正方形PQMN .设点P 的运动时间为()s t .(1)直接写出AD =______.(2)求sin BAC ∠的值.(3)当正方形PQMN 与ABC 重叠部分图形是四边形时,直接写出t 的取值范围.(4)连接BM ,直接写出BM AB ⊥时t 的值.【解析】(1)解:∵,=⊥AB AC AD BC ,∴1145522BD BC ==⨯=在Rt △ABD 中,根据勾股定理得:2245AD AB BD -=故答案为:45(2)解:如图1,作CE AB ⊥于点E .分别以AB BC 、为底表示ABC 的面积两式相等,可得:8BC ADCE AB ⋅==;∴4sin 5CEBAC AC ∠==;(3)解:正方形PQMN 与ABC 重叠部分图形随着t 的变化而变化.①如图2,当Q 点与D 点重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为五边形.∵PQ AB ∥,∴1APBDPC DC ==,∴此时:1215ACt ==.②如图3:当MQ 经过B 点时,正方形PQMN 与ABC重叠部分图形,由五边形变为四边形.∵4sin 5BAC ∠=,∴243cos 155BAC ⎛⎫∠=-= ⎪⎝⎭;∵,PQ AB PN PQ ⊥∥,∴PN AB ⊥.∴此时,cos AP BAC PQ AB ⋅∠+=,即355105t t ⨯+=,解得:54t =.如图4:当P 与C 重合时,正方形PQMN 与ABC 重叠部分图形,由四边形变为三角形.此时,1025t ==.综上:t 的取值范围为:01t <≤或524t ≤<;(4)解:由(3)可知54t =时,MQ 经过点B 时BM AB ⊥;另外当P 在DC 上时,也会出现BM AB ⊥,如图5.∵,PQ AB MQ PQ ⊥∥;∴MQ AB ⊥,∴ABD BQD QPD ∽∽ .∴::::::AB BQ PQ AD BD QD BD QD PD ==,即10::45225:BQ PQ QD QD PD ==;得:52PD =∴535452522CP BC PD BD =--=-=;∴3572225t ==.故BM AB ⊥时t 的值为:54,72.28.如图,抛物线2y x bx c =-++交x 轴于A 、B 两点(点A 在点B 的左侧)坐标分别为()2,0-,()4,0,交y 轴于点C .(1)求出抛物线解析式;(2)如图1,过y 轴上点D 作BC 的垂线,交直线BC 于点E ,交抛物线于点F ,当355EF =F 的坐标;(3)如图2,点H 的坐标是()0,2,点Q 为x 轴上一动点,点()2,8P 在抛物线上,把PHQ 沿HQ 翻折,使点P 刚好落在x 轴上,请直接写出点Q 的坐标.【解析】(1)解:将()2,0-,()4,0代入表达式得:4201640b c b c --+=⎧⎨-++=⎩,解得:28b c =⎧⎨=⎩,∴抛物线解析式为228y x x =-++;(2)过点F 作x 轴的垂线交BC 于N ,交x 轴于M ,∵FNE BNM ∠=∠,90FNE EFN BNM MBN ∠+∠=∠+∠=︒,∴EFN MBN ∠=∠,在Rt BOC 中,90BOC ∠=︒,由勾股定理得:22224845BC OB OC =+=+=∴cos cos OB EF EFN MBN BC FN ∠=∠=35545FN =,∴3FN =,∵()4,0B ,()0,8C ,∴直线BC :28y x =-+,设()2,28F m m m -++,(),28N m m -+,∴()228283m m m -++--+=或()28²283m m m -+--++=,∴243m m -+=或243m m -+=-,解得:11m =,23m =,327m =427m =,∴()1,9F 或()3,5或(27,17-或()27,271其中()1,9F 和(27,17-两点所对应的E 点不在线段BC 上,所以舍去,∴点F 的坐标为()3,5或()27,271;(3)分两种情况讨论:①如图所示,当点Q 位于x 轴负半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,则四边形OMPN 为矩形,∵()2,8P ,∴2NP OM ==,8ON PM ==,∵()0,2H ,∴826NH =-=,∴222226210PH NP NH =+=+=,由折叠可知:210PH HP '==QP QP '=,∴()222221026OP P H OH =--'=',设OQ x =,∴6QP QP x '==+,2QM x =+,∵222P M Q M P Q +=,∴()()222826x x ++=+,∴4x =,∴Q 点的坐标为()4,0-;②如图所示,当点Q 位于x 轴正半轴时,过点P 作PM y ∥轴交x 轴于点M ,作PN x ∥轴交y 轴于点N ,由①得:210PH P H '==,P Q PQ '=,∴()222221026OP P H OH =--'=',设OQ m =,则6P Q PQ m '==+,2QM m =-,∵222P M Q M P Q +=,∴()()222286m m -+=+,∴2m =,∴Q 点的坐标为()2,0,综上所述,Q 点的坐标为()4,0-或()2,0.。
2024年湖南省长沙市雅礼实验中学中考二模数学试题(含答案)
2024年长沙市雅礼实验中学初三二模试卷数学科目考生注意:本试卷共3道大题,25道小题,满分120分,时量120分钟一、选择题(本大题共10个小题,每小题3分,共30分)1.下列各数为无理数的是()A.3 B.3.14 C.D2.为弘扬优秀传统文化,继承和发扬民间剪纸艺术,某中学开展了“剪纸进校园非遗文化共传承”的项目式学习,下列剪纸作品的图案既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A B.C.D.4.中科院国家天文台基于我国郭守敬望远镜和美国APOGEE巡天的观测数据,精确测量了距离银河系中心1.6万光年至8.1万光年范围内的恒星运动速度,并估算出银河系的“体重”约为8050亿个太阳质量.其中数据“8050亿”用科学记数法可表示为()A.B.C.D.5.将直尺和三角板进行如图摆放,,则的度数为()A.B.C.D.6.不等式组的解集表示在数轴上正确的是()A.B.C.D.7.二十四节气是中华民族农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小鹏购买了四张形状、大小、质地均相同的“二十四节气”主题邮票,正面分别印有“立春”“立夏”“秋分”“大暑”四种不同的图案,背面576=437a b ab+=22(1)1x x+=+326x x x⋅=980510⨯118.510⨯108.0510⨯118.0510⨯142∠=︒2∠42︒45︒48︒52︒15112x xx+<-+⎧⎪⎨-≥⎪⎩完全相同,他将四张邮票洗匀后正面朝下放在桌面上.从中随机抽取两张邮票,恰好抽到“立春”和“立夏”的概率是()A.B .C .D .8.若反比例函数的图象在第二、四象限内,则m 的取值范围是( )A .B .C .D .9.如图,已知四边形ABCD 内接于,,则的度数为()A .B .C .D .10.某校ABCDE 五名学生参加投篮比赛,其中有3人进入了决赛.A 说:“如果我进入,那么B 也进入.”B 说:“如果我进入,那么C 也进入.”C 说:“如果我进入,那么D 也进入.”D 说:“如果我进入,那么E 也进入,”大家都没有说错,则进入决赛的三个人是( )A .A ,B ,CB .B ,C ,DC .C ,D ,ED .D ,E ,A二、填空题(本大题共6个小题,每小题3分,共18分)11有意义,则x 的取值范围是________.12.在平面直角坐标系中,点A (,3)到y 轴的距离为________.13.如图的弦,半径ON 交AB 于点M ,M 是AB 的中点,且,则MN 的长为________.14.若a 是一元二次方程的一个根,则的值为________.15.将圆心角为,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆半径为________.16.如图,在中,,.用直尺和圆规在边AB 上确定一点D .则的度数为________.131416122m y x+=2m >-2m <-2m >2m <O 110BDC ∠=︒BOC ∠110︒120︒70︒140︒4-O 8AB =3OM =2230x x +-=224a a +90︒ABC △45A ∠=︒30B ∠=︒ACD ∠三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分)17.计算:.18.先化简,再求值:,其中.19.风力发电作为一种清洁能源、可再生能源,已成为我国重要的能源结构之一.某研学小组到风力发电厂参观学习,发现一如图所示的风力发电机,在A 处测得,向前120米到达B 处,测得,其中A ,B ,C 在同一条直线上,点D 为发电机顶端处.若风轮叶片的长度为30米,则风力)20.为了解学生的课外阅读情况,某校随机抽取了部分学生进行调查,对他们每周的课外阅读时间x (单位:小时)进行分组整理并绘制了如图所示的频数分布直方图和扇形图:(1)请补全频数分布直方图;(2)扇形图中m 的值为________;D 等级所对应的扇形圆心角度数为________;(3)若该校总共有2000名学生,每周的课外阅读时间不多于4小时的学生大约有多少人.21.如图,D ,E 为中GF 边上两点,过D 作交CE 的延长线于点A ,.(1)求证:;(2)若,,,求CF 的长.01122024)3tan 30(3--π-+︒-2(2)4(1)(1)3m m m m m +-+-+12m =30DAC ∠=︒60DBC ∠=︒ 1.73=GCF △AB CF ∥AE CE =ADE CFE ≌△△3BG =5BC =2BD =22.2023-2024赛季欧洲冠军杯决赛于6月2日在伦敦温布利大球场拉下帷幕,赛前某体育运动专卖店决定采购某款运动T 恤,最初用6000元购进一批该款T 恤,由于市场供不应求,该专卖店又用15000元购进了第二批该款T 恤,所购数量是第一批购进量的2倍,由于供货紧张,每件价格比第一次贵10元.(1)该专卖店购进第一批、第二批T 恤衫每件的进价分别是多少元?(2)如果两批T 恤衫按相同的标价销售,要使两批T 恤衫全部售完后利润不低于16800元,那么每件T 恤衫的标价至少是多少元?23.如图,平行四边形ABCD 中,AE ,CF 分别是,的平分线,且E 、F 分别在边BC ,AD 上,.(1)求证:四边形AECF 是菱形;(2)若,,求平行四边形ABCD 的面积.24.我们不妨约定:在平面直角坐标系中,如果函数图象上至少存在一个点的纵坐标是横坐标的3倍,则把该函数称之为“开心函数”,其图象上纵坐标是横坐标3倍的点叫做“开心点”.(1)判断以下函数上是否是“开心函数”,若是,则打√,若不是,则打“×”;①________ ②________ ③________(2)关于x 的函数(a 为常数)是“开心函数”吗?如果是,指出有多少个“开心点”,如果不是,请说明理由;(3)若抛物线(a 、b 、c 为常数),与x 轴分别交于A (,0),B (,0)两点,其中;与y 轴交于C 点(0,c ),抛物线顶点为P 点,点M 为第三象限抛物线上一动点,且点M 的横坐标为t ,连接AC ,BM 交于N 点,连接BC ,CM ,记,,若满足:①抛物线顶点P 为“开心点”;②;③是等边三角形;若,m 的值.25.如图,点C 在AB 为直径的圆O 上,连接AC ,BC ,的角平分线交AB 于点E ,交圆O 于点P .G是上一点,且,连接AG 并延长交CB 的延长线于点F ,连接EG .(1)求证:;(2)若,,求的面积.BAD ∠BCD ∠AE AF =60ABC ∠=︒4AB =y x =1y x=-2y x =2(4)24ay ax a x =++++2y ax bx c =++1x 2x 12x x <1MCN S S =△2BCN S S =△20b a -=ABP △625m t m ≤≤+12S S ACB ∠ BPPG BC =AC CF =6BC =8AC =AEG △(3)设,,求y 关于x 的函数表达式.2024年长沙市雅礼实验中学初三二模数学答案一、选择题题号12345678910答案DCADCBCBDC二、填空题11. 12.413.214.615.116.三、解答题17.解:原式18.解:原式当时,原式19.解:由题意得:,在中,,,∴,在中,∴∴,∵风轮叶片的长度为30米,∴叶片顶端离地面的最小距离米,APx BE=tan AGE y ∠=1x ≥-75︒(2133=++-0=22224(1)3m m m m=+--+24m =+12m =5=DC AC ⊥Rt DBC △60DBC ∠=︒BC x =tan 60CD BC =⋅︒=Rt ACD △30DAC ∠=︒3tan 30CDAC x==︒2120AB AC BC x =-==60BC =CD =3073.8≈答:叶片顶端离地面的最小距离约为73.8米.20.解:(1)∵,∴本次调查共抽取了100名学生,,∴D 组有25人,补全频数分布直方图如下:(2)∵,∴,D 等级所对应的扇形圆心角度数为(3)人答:每周的课外阅读时间不多于4小时的学生大约有620人;21.(1)证明:∵,∴,,在和中,,∴(AAS ).(2)解:∵,∴,∴,∵,,1010%100÷=100102140425----=4040%100=40m =2536090100⨯︒=︒10212000620100+⨯=AB CF ∥F ADE ∠=∠A ECF ∠=∠ADE △CFE △ADE CFE EAD ECF AE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩ADE CFE ≌△△AB CF ∥GBD GCF ∽△△GB BDGC CF=3BG =5BC =2BD =∴,∴,∴.22.解:(1)设该店铺购进第一批T 恤衫每件的进价是x 元,则购进第二批T 恤衫每件的进价是元,依题意有,解得,经检验,是原方程的解,且符合题意,.该店铺购进第一批T 恤衫每件的进价是40元,购进第二批T 恤衫每件的进价是50元;(2)件,件,设每件T 恤衫的标价是a 元,依题意有:,解得.答:每件T 恤衫的标价至少是84元.23.(1)证明:∵四边形ABCD 是平行四边形,∴,,∵AE 、CF 分别是、的平分线,∴,,∴,∵,∴,∴,∴,∴四边形AECF 是平行四边形,∵,∴四边形AECF 是菱形;(2)解:连接AC ,∵四边形ABCD 是平行四边形,∴,8CG =4210CF =328CF=163CF =(10)x +600015000210x x ⨯=+40x =40x =10401050x +=+=600040150÷=1500050300÷=150(40)300(50)16800a a -+-≥84a =BAD BCD ∠=∠AD BC ∥BAD ∠BCD ∠12BAE DAE BAD ∠=∠=∠12BCF DCF BCD ∠=∠=∠DAE BCF ∠=∠AD BC ∥DAE AEB ∠=∠BCF AEB ∠=∠AE FC ∥AE AF =AD BC ∥∴,∵AE 平分,∴,∴,∴,∵,∴是等边三角形,∴,BE 边上的高为由(1)知四边形AECF 是菱形,∴,∴平行四边形ABCD 的面积为24.解:(1)√,×,√;(2)联立,得到:,整理,得:,第一种情况:当时,,,所以函数是开心函数,有1个开心点;第二种情况:当时,,∴时,;时,;时,综上所述:当或时,函数是开心函数,有1个“开心点”;当且时,函数是开心函数,有2个“开心点”;当时,函数不是开心函数(3)∵,∴,∴抛物线的对称轴为:,∴顶点的横坐标为,∵抛物线顶点为“开心点”,∴顶点的纵坐标为:,∴二次函数的解析式为:,∵三角形ABP 是等边三角形,∴,∴,DAE AEB ∠=∠BAD ∠BAE DAE ∠=∠BAE AEB ∠=∠AB EB =60ABC ∠=︒ABE △4AB AE BE ===h =4AE CE ==8BC=8S BC h =⋅=⨯=2(4)24ay ax a x =++++3y x =23(4)24ax ax a x =++++2(1)204aax a x ++++=0a =20x +=2x =-0a ≠2(1)4(2)614aa a a ∆=+-+=-+0∆>16a <0∆=16a =0∆<16a >0a =16a =16a <0a ≠16a >20b a -=2b a =12bx a=-=-1-133-⨯=-22(1)323y a x ax ax a =+-=++-2(2)4(3)1212a a a a ∆=--==1a =∴二次函数的解析式为:,当时,;当时,,解得:∴A (,0),B (0),C (0,),设直线AC 的解析式为:(),则:,解得:,∴;过点M 作x 轴的垂线交AC 于点D ,过点B 作x 轴的垂线交AC 于点E ,∵点M (t ,),则D (t ,),E ()∴,.∴,即∴是关于t 的二次函数,且对称轴:又∵,∴随t 的增大而减小,∴当时,,解得或(舍去).∴222y x x =+-0x =2y =-0y =2220x x +-=11x =-21x =-1-1-2-y kx b =+0k ≠0(12k b b ⎧=--+⎪⎨-=⎪⎩12k b ⎧=-⎪⎨=-⎪⎩(12y x =-222t t +-(12t --1-+62(1MD t t =--+6BE =-12S MN MD S BN BE ==12S S =12S S t =6225m m +≥65m ≥-12S S t m =12S S =1m =-m =1m =-25.(1)证明:∵AB 是的直径,∴,∵CP 平分,∴,∵,∴,∵,∴,∴,∴,∴,∴,∴;(2)解:①如图,连接PB ,∵AB 是的直径,∴,,∴,∵CP 平分,∴,∴∵,,∴,∴,∴连接BG ,AG 与CP 交于HO 90ACB ∠=︒ACB ∠1452PCA PCB ACB ∠=∠=∠=︒ PBPB =45PAB PAB ∠=∠=︒PG BC = PGBC =PAG BAC ∠=∠PAG BAG BAC BAG ∠+∠=∠+∠45CAG PAB ∠=∠=︒F CAG ∠=∠AC CF =O 90ACB APB ∠=∠=︒8AC =6BC =10AB =AP =ACB ∠43AE AC EB BC ==44077AE AB ==CAB PAF ∠=∠APG ABC ∠=∠PAG EAC ∽△△AG APAC AE=AG =∵AB 是的直径,∴,,,∵,,∴,∴,;(3)解:如图,连接PB ,PG ,∵CP 平分,∴,∴,∵AB 是的直径,∴,∴,∵,∴,∴,∵CP 平分,∴,∴,O90BGF AGB ∠=∠=︒2BF CF BC =-=BG =EAH BAG ∠=∠90AHC AGB ∠=∠=︒AEH ABG ∽△△AE EH AB BG=EH =11422S EH AG =⋅==ACB ∠AP BP =AP BP =O 90APB ∠=︒AB =AP x BE=AP BE x =⋅1AE AB BE BE BE -====-AP BE x AE AB BE ⋅====-ACB ∠1AC AE CB BE==-1)AC BC =-不妨设,则,,∴,由(2)知:∴,∴,∴,∴,∴∴.2BC PG a ==PH GH==1)2AC a =-⋅1)(2AH CH AC x a ===⋅-=AEC APG ∽△△PG AP CE AE=2aCE =CE =(2EH CH CE x a =-=-=tan EH y AGE GH =∠===。
2024年上海市虹口区中考二模数学试题(解析版)
虹口区2023学年度初三年级第二次学生学习能力诊断练习数学 练习卷(满分150分,考试时间100分钟)注意:1.本练习卷含三个大题,共25题.答题时,请务必按答题要求在答题纸规定的位置上作答,在草稿纸、本练习卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.]1. 下列各数中,无理数是( )A. B. 3.14159 C. D. 【答案】C【解析】【分析】本题主要考查的是对无理数定义的应用,熟练掌握理解无理数的定义是解此题的关键.根据无理数的定义(无理数是指无限不循环小数)判断即可.【详解】解:A、是分数,不是无理数,故本选项错误;B 、3.14159是小数,不是无理数,故本选项错误;C 是无理数,故本选项正确;D 、是循环小数,不是无理数,故本选项错误;故选C .2. 关于一元二次方程无实数根,则实数的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】根据一元二次方程判别式与根情况的关系,列代数式求解即可.【详解】解:一元二次方程无实数根,的211 1.22111.2x 220x x m -+=m 1m <1m £m 1≥1m >220x x m -+=则判别式解得,故选:D .【点睛】此题考查了一元二次方程判别式与根情况的关系,解题的关键是掌握相关基础知识,一元二次方程的判别式,当时有两个不相等的实数根,当时,有两个相等的实数根,当时,无实数根.3. 已知二次函数,如果函数值随自变量的增大而减小,那么的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】本题考查二次函数的性质,熟练掌握二次函数的增减性是解题关键.根据二次函数,可得函数图象开口向下,对称轴为,函数值随自变量的增大而减小,则,得以解答.【详解】解:二次函数,,函数图象开口向下,对称轴为,时,函数值随自变量的增大而减小,故选:A .4. 下列事件中,必然事件是( )A. 随机购买一张电影票,座位号恰好是偶数B. 抛掷一枚质地均匀的硬币,落地后反面朝上C. 在只装有2个黄球和3个白球的盒子中,摸出一个球是红球D. 在平面内画一个三角形,该三角形的内角和等于【答案】D【解析】【分析】本题考查是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.根据事件发生的可能性大小判断.的()224240b ac m ∆=-=--<1m >()200ax bx c a ++=≠24b ac ∆=-0∆>Δ0=Δ0<()24y x =--y x x 4x ≥4x ≤4x ≥-4x ≤-()24y x =--()24y x =--4x =y x 4x ≥()24y x =--10-< ∴()24y x =--4x =∴4x ≥y x 180︒【详解】解:A 、随机购买一张电影票,座位号是偶数,是随机事件;B 、抛掷一枚质地均匀的硬币,反面朝下,是随机事件;C 、在只装有2个黄球和3个白球的盒子中,摸出一个球是红球,是不可能事件;D 、在平面内画一个三角形,该三角形的内角和等于,是必然事件;故选D .5. 如图,在正方形中,点、分别在边和上,,,如果,那么的面积为( )A. 6B. 8C. 10D. 12【答案】B【解析】【分析】本题主要考查了正方形的性质,平行四边形的性质与判定,先根据正方形的性质得到,进而证明四边形是平行四边形,得到,则,最后根据三角形面积计算公式求解即可.【详解】解:∵四边形是正方形,∴,∵,∴四边形是平行四边形,∴,∴,∴,故选:B .6. 在中,,.如果以顶点为圆心,为半径作,那么与边所在直线的公共点的个数是( )A. 3个B. 2个C. 1个D. 0个.180︒ABCD E F BC AD 2BE =6AF =AE CF ABE 90AD BC AB CD ABE =∠=︒∥,,AECF 6AF CE ==8AB BC BE CE ==+=ABCD 90AD BC AB CD ABE =∠=︒∥,,AE CF AECF 6AF CE ==8AB BC BE CE ==+=1128822ABE S AB BE =⋅=⨯⨯=△ABCD Y 5BC =20ABCD S = C BC C C AD【答案】B【解析】【分析】本题考查了平行四边形的面积,直线与圆的位置关系d 、r 法则,熟练掌握法则是解题的关键.根据面积公式计算点C 到的距离d ,比较d 与半径的大小判断即可.【详解】解:如图,∵在平行四边形中,,,设点C 到的距离为d ,∴点C 到的距离,∴直线与圆C 相交,即有2个交点,故选:B .二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.=___.【答案】﹣2【解析】【分析】根据立方根的定义,求数a 的立方根,也就是求一个数x ,使得x 3=a ,则x 就是a 的立方根.【详解】∵(-2)3=-8,,故答案为:-28. 分解因式:_______.【答案】【解析】【分析】根据平方差公式因式分解即可求解.【详解】解:AD BC ABCD 5BC =20ABCD S = AD AD 2054d =÷= 45BC<=AD 2-229a b -=()()33a b a b +-229a b -=()()33a b a b +-故答案为:.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.9. 解不等式:,的解集为________.【答案】【解析】【分析】本题主要考查的是解一元一次不等式;按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式即可求解.【详解】解:去括号,移项,合并同类项,化系数为1,故答案为:.10. 函数的定义域是 【答案】>【解析】【分析】定义域是指该函数的自变量的取值范围,根据二次根号下被开方数≥0;分式中分母不为0;即可解答.【详解】定义域是指该函数的自变量的取值范围,二次根号下被开方数≥0;分式中分母不为0;∴∴故答案为11. 将抛物线先向右平移3个单位,再向下平移4个单位后,所得到的新抛物线的表达式为________.【答案】【解析】【分析】本题主要考查的是二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并()()33a b a b +-()5232x x +≤+2x ≤()5232x x +≤+5263+≤+x x5362x x -≤-24x ≤2x ≤2x≤y =10x +>1x >-1x >-()221y x =-+()253y x =--用规律求函数解析式.根据平移规律“左加右减,上加下减”写出新抛物线解析式.【详解】解:抛物线先向右平移3个单位,再向下平移4个单位后,所得到的新抛物线的表达式为,即.故答案为:.12. 在一个不透明袋子中,装有2个红球和一些白球,这些球除颜色外其他都一样,如果从袋中随机摸出一个球是红球的概率为,那么白球的个数是________.【答案】6【解析】【分析】本题考查了概率的定义.解题的关键与难点在于理解概率的定义,求出球的总数.随机摸出一个球是红球的概率是,可以得到球的总个数,进而得出白球的个数.【详解】解:设红、白球总共n 个,记摸出一个球是红球为事件A ,,白球有个故答案为:.13. 某校为了解该校1200名学生参加家务劳动的情况,随机抽取40名学生,调查了他们的周家务劳动时间并制作成频数分布直方图,那么估计该校周家务劳动时间不少于2小时的学生大约有________名.【答案】780【解析】【分析】本题主要考查了用样本估计总体,根据条形统计图获取信息是解题的关键.根据条形统计图直接得出家务劳动时间不少于2小时的学生有26名,进而估计该校1200名学生参加家务劳动时间不少于2小时的学生人数即可求解.()221y x =-+()22314y x =--+-()253y x =--()253y x =--0.2520.25n=()20.25P A n==8n ∴=∴826-=6【详解】解:由题意得:被调查的40人中,家务劳动时间不少于2小时的学生有26名,该校周家务劳动时间不少于2小时的学生大约有(名),故答案为:780.14. 一根蜡烛长30厘米,点燃后匀速燃烧,经过50分钟其长度恰为原长的一半.在燃烧的过程中,如果设蜡烛的长为(厘米),燃烧的时间为(分钟),那么关于的函数解析式为________(不写定义域).【答案】【解析】【分析】本题主要考查由实际问题列一次函数的解析式,解题的关键是理解题意.根据题意先求出蜡烛燃烧的速度为(厘米/分),即可直接进行求解.【详解】解:由题意可得:蜡烛长30厘米,经过50分钟其长度恰为原长的一半,经过50分钟蜡烛燃烧的长度为15厘米,蜡烛燃烧的速度为(厘米/分),蜡烛的长为蜡烛燃烧前长度减去燃烧的长度,,故答案为:.15. 如图,正六边形螺帽的边长是,那么这个扳手的开口的值是______.【答案】【解析】【分析】本题考查解直角三角形,等腰三角形的性质,含角的直角三角形的性质.由螺帽是正六边形,可得是含角的直角三角形,再根据即可求出和.【详解】解:如图,连接,则,过点作于∴26120078040⨯=y t y t 300.3y t=-15500.3÷=∴∴15500.3÷=300.3y t \=-300.3y t =-4cm a 30︒ACD 30︒4AC =AD AB AB a AB =C CD AB ⊥D螺帽是正六边形,,.故答案为:16. 如图,在梯形中,,,点、分别是边、的中点,连接,设,,那么用向量、表示向量________.【答案】【解析】【分析】本题考查了平面向量的问题,熟练掌握三角形法则是解题的关键,根据梯形的中位线定理及向量的三角形法则解答即可.【详解】解:,,,,, 120ACB ∴∠=︒CD AB ⊥AC BC=1120602ACD ∴∠=⨯︒=︒AD BD =4AC = 4AD AC ∴===22a AB AD ∴===⨯=ABCD AD BC ∥2BC AD =E F AB CD AC AB a =AC b = a b EF = 3344a b -+ AB a = AC b =BC BA AC a b \=+=-+ ,2AD BC BC AD = ∥111222AD BC a b \==-+,点、分别是边、的中点,,,,故答案为:.17. 如图,在中,,,.点在边上,,以点为圆心,为半径作.点在边上,以点为圆心,为半径作.如果和外切,那么的长为________.【答案】##【解析】【分析】本题考查的是圆和圆的位置关系、解直角三角形的知识,作于点H ,连接,先求出,设,在中,根据勾股定理列方程即可解决.【详解】解:作于点H ,连接,,,,在中,,11112222DC DA AC AD AC a b b a b \=+=-+=-+=+ E F AB CD 111222EA BA AB a \==-=- 111244DF DC a b \==+ 11111332224444EF EA AD DF a a b a b a b æöæöç÷ç÷\=++=-+-+++=-+ç÷ç÷èøèø3344a b -+ ABCD Y 7AB =8BC =4sin 5B =P AB 2AP =P AP P Q BC Q CQ Q P Q CQ 37149214PH BC ⊥PQ 43PH BH ==,CQ a =Rt QPH △PH BC ⊥PQ 7AB = 2AP =725BP \=-=Rt BPH 4sin 5B =,,设,和外切,半径为2,,在中,,,解得:,故答案为:.18. 如图,在扇形中,,,点在半径上,将沿着翻折,点的对称点恰好落在弧上,再将弧沿着翻折至弧(点是点A 的对称点),那么的长为________.【答案】##【解析】【分析】本题考查翻折性质,圆的基本性质,等边三角形判定与性质、勾股定理的应用,连接,由翻折得,证出是等边三角形,设,在中,根据勾股定理列方程并解出进而求出结论.【详解】解:连接,455PH \=43PH BH \==,CQ a =P Qe Q P 2PQ a \=+Rt QPH △4,835PH HQ a a ==--=-()()222452a a ∴+-=+3714a =3714AOB 105AOB ∠=︒8OA =C OA BOC BC O D AB AD CD 1A D 1A 1OA 8-8-+OD 1105OB BD AC A C BOC BDC ==∠=∠=︒,,OBD AC a =Rt COD AC OD由翻折得:,,,是等边三角形,,,设,则,在中,,,解得:(舍去),,故答案为:.三、解答题:(本大题共7题,满分78分)19.先化简,再求值:,其中.【答案】【解析】【分析】本题主要考查分式的化简求值,分母有理化,掌握分式的基本性质与运算法则是解题的关键,注意化简过程中能因式分解要先因式分解.先算括号内的减法,把除法变成乘法,算乘法,最后代入求值即可.【详解】解:1105OB BD AC A C BOC BDC ==∠=∠=︒,,OC CD =OB OD = OBD ∴△60OBD ∴∠=︒3601051056090OCD \Ð=°-°-°-°=°AC a =1882OC a CD A O a =-==-,Rt COD 8OC CD a ==-()()222888a a ∴-+-=12888a a =-=+>(128288OA OA AC ∴=-=--=8-22214133m m m m m -+⎛⎫÷- ⎪++⎝⎭m 1m m -22214133m m m m m -+⎛⎫÷- ⎪++⎝⎭()()2134333m m m m m m -+⎛⎫=÷- ⎪+++⎝⎭;当.20. 解方程组:【答案】【解析】【分析】将第二个方程进行因式分解得到,然后令因式和因式分别为0即可求解.【详解】解:由题意可知: 对方程②进行因式分解得:即或∴原方程组化为 或 解得或故原方程组的解为:或.【点睛】本题考查了因式分解的方法及二元方程组,熟练掌握常见的二元一次方程组的解法是解决此类题的关键.21. 如图,一次函数图像在反比例函数图像相交于点和点,与轴交于点.点在反比例函数图像上,过点作轴的垂线交一次函数图像于点.()()21133m m m m m --=÷++()()21331m m m m m -+=⨯+-1m m-=m =1m m -222-620x y x xy y =⎧⎨--=⎩121242,22x x y y ==⎧⎧⎨⎨==-⎩⎩()(2)0+-=x y x y 2x y -x y +222-620x y x xy y =⎧⎨--=⎩①②()(2)0+-=x y x y 20x y -=0x y +=2620x y x y -=⎧⎨-=⎩260x y x y -=⎧⎨+=⎩1142x y =⎧⎨=⎩2222x y =⎧⎨=-⎩1142x y =⎧⎨=⎩2222x y =⎧⎨=-⎩(),2A m ()2,4B -y C ()1,D n -D x E(1)求反比例函数和一次函数的解析式;(2)求面积.【答案】(1)反比例函数为,一次函数解析式 (2)【解析】【分析】此题考查了反比例函数综合题,涉及的知识有:待定系数法确定反比例函数和一次函数解析式,三角形面积.()利用待定系数法求解即可;()先分别求出、、的坐标,进而利用三角形面积公式解答即可.【小问1详解】解:设反比例函数为,把点代入得,,∴反比例函数为,把点,点代入,得,,∴,,∴点,点,设一次函数解析式,的CDE 8y x=-2y x =--9212C D E k y x=()2,4B -k y x=428k =-⨯=-8y x=-(),2A m ()1,D n -8y x =-82m =-881n =-=-4m =-8n =()4,2A -()1,8D -y cx d =+把点,点代入得,解得,∴一次函数解析式;【小问2详解】∵一次函数解析式,∴把点代入,得,∴,∴点,∵轴,∴点横坐标为,把代入得,∴∴,∴22. 根据以下素材,完成探索任务.探究斜坡上两车之间距离素材1图①是某高架入口的横断面示意图.高架路面用表示,地面用表示,斜坡用表示.已知,高架路面离地面的距离为25米,斜坡长为65米.素如图②,矩形为一辆大巴车的侧面示意图,长为10米,长为的()4,2A -()2,4B -4224c d c d-=+⎧⎨=-+⎩12c d =-⎧⎨=-⎩2y x =--2y x =--()0,2C -,()1,D n -8y x =-881n =-=-8n =()1,8D -DE x ⊥E 1-1x =-2y x =--121y =-=-()1,1E --,189DE =+=119191222CDE S DE =⋅=⨯⨯= .BM AN AB BM AN ∥BM BH AB ECKG CK EC 3.5材2米.如图③,该大巴车遇堵车后停在素材1中的斜坡上,矩形的顶点与点重合,点与指示路牌底端点之间的距离为米,且.小张驾驶一辆小轿车跟随大巴车行驶,小张的眼睛到斜坡的距离为1米.任务一如图①,求斜坡的坡比.问题解决任务二如图③,当小张正好可以看到整个指示路牌(即、、在同一条直线上)时,试求小张距大巴车尾的距离.【答案】任务一:斜坡的坡比;任务二:米【解析】【分析】本题考查的是解直角三角形坡度坡角问题及相似三角形判定与性质,矩形判定与性质,任务一:根据勾股定理求出第三边进而求出坡度;任务二:作交延长线于点O ,作于点Q ,交于点R ,通过解直角三角形结合矩形判定与性质求出相关线段长度,再证明,根据性质求出结论即可.【详解】解:任务一:如图①,由题意得:在中,25米,斜坡长为65米,(米),斜坡的坡比;任务二:如图③,作交延长线于点O ,作于点Q ,交于点R ,为ECKG K B B P BP 6.5BP BM ⊥FD AB P E F EC CD AB 1:2.4i =12.5PO DB ⊥DB FQ PO ^CE FER FPQ ∽Rt ABH △BH AB 60AH \=∴AB 251:2.460BH i AH ===PO DB ⊥DB FQ PO ^CE则四边形为矩形,四边形为矩形,米,米,,为米,,解得:米,米,米,米,,,,,,解得:,经检验,是原方程的解,米.23. 如图,在中,,延长至点,使得,过点、分别作,,与相交于点,连接.CRQO FDCR,1RQ CO FR DC FD CR OQ\=====,3.51 2.5ER\=-=,90ABH PBO O HÐ=ÐÐ=Ð=°BP 6.525cos cos6.565BOPBO ABH\Ð==Ð=2.5BO=6PO\==615PQ∴=-=10 2.512.5RQ CO==+=,EC AB PQ AB^^ER PQ\∥FER FPQ\∽ER FRPQ FQ\=2.5512.5FRFR\=+12.5FR=12.5FR=12.5CD FR\==Rt ABC△90C∠=︒CB D DB CB=A DAE BC∥DE BA∥AE DE E BE(1)求证:;(2)连接交于点,连接交于点.如果,求证:.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查平行四边形的判定与性质,矩形的判定与性质,勾股定理等,解题的关键是掌握平行四边形和矩形的判定方法.(1)先证四边形是平行四边形,得出从而证出四边形是矩形,即可证明结论;(2)设,算出,证明,求出 ,进而证出结论;【小问1详解】证明:,,四边形是平行四边形,,,,又,点D 在的延长线上,,四边形是平行四边形,又,四边形是矩形,;【小问2详解】解:如图,BE CD ⊥AD BE F CE AD G FBA ADB ∠=∠AG AB =AEDB AE CB =AEBC EF BF a ==AE =AEG DCG V ∽△AGAB = AE BD DE BA ∥∴AEDB ∴AE BD = BD CB =∴AE CB = AE BD CB ∴AE CB ∥∴AEBC 90C ∠=︒∴AEBC ∴BE CD ⊥四边形是平行四边形,,设,,,,,,,,,,,在中,,,,在中,,AEDB ,EF BF AF DF \==EF BF a ==FBA ADB Ð=Ð tan tan FBA ADB \Ð=ÐAE BF BE BD\=AE BD = 222AE a \=AE ∴=BD BC AE \==AE CD AEG DCG \ ∽12AE AG CD DG \==Rt DBF △DF ==AD \=AG \=Rt ABC △AB ==.24. 新定义:已知抛物线(其中),我们把抛物线称为的“轮换抛物线”.例如:抛物线的“轮换抛物线”为.已知抛物线:的“轮换抛物线”为,抛物线、与轴分别交于点、,点在点的上方,抛物线的顶点为.(1)如果点的坐标为,求抛物线的表达式;(2)设抛物线的对称轴与直线相交于点,如果四边形为平行四边形,求点的坐标;(3)已知点在抛物线上,点坐标为,当时,求的值.【答案】(1) (2) (3)或【解析】【分析】本题考查的是二次函数综合题,重点考查二次函数的性质、平行四边形性质及相似三角形性质,(1)将点代入表达式,求出m 的值,根据“轮换抛物线”定义写出即可;AG AB \=AG AB \=2y ax bx c =++0abc ≠2y cx ax b =++2y ax bx c =++2231y x x =++223y x x =++1C ()2445y mx m x m =+-+2C 1C 2C y E F E F 2C P E ()0,12C 2C 38y x =+Q PQEF E ()4,M n -2C N 12,72⎛⎫-- ⎪⎝⎭PMN PEF △∽△m 241y x x =+-20,3E ⎛⎫- ⎪⎝⎭1m =-1732()0,1E(2)根据轮换抛物线定义得出抛物线表达式及点E 、F 坐标,并求出P 、Q 坐标,根据平行四边形性质得出列方程并解出m 值,进而解决问题;(3)先求,结合求出的点P 、E 、F 坐标得出及,根据相似三角形性质得出关于m 的方程,解方程即可解决.【小问1详解】解:抛物线:与轴交于点坐标为,当,代入,得,,抛物线表达式为,抛物线的“轮换抛物线”为表达式为;【小问2详解】解:抛物线:,当时,,即与y 轴交点为,抛物线:的“轮换抛物线”为,抛物线表达式为,同理抛物线与y 轴交点为,抛物线对称轴为直线,当时,,抛物线的顶点坐标为,当时,,抛物线的对称轴与直线交点,点在点的上方,,解得:,2C PQ EF =()4,45M m --2PN 2PF 1C ()2445y mx m x m =+-+y E ()0,10x =1y =1m =451m \-=-∴1C 241y x x =-+∴1C 2C 241y x x =+-1C ()2445y mx m x m =+-+0x =y m =()0,E m 1C ()2445y mx m x m =+-+2C ∴2C ()2445y mx mx m =++-2C ()0,45F m -2C 422m x m=-=-2x =-5y =-∴2C ()25P --,2x =-382y x =+=∴2C 38y x =+()2,2Q - E F 45m m \>-53m <,四边形为平行四边形,,即,解得:,;【小问3详解】解:点在抛物线上,当时,,即,点坐标为,,,,,,,,,,解得:.25. 在梯形中,,点在射线上,点在射线上,连接、相交于点,.()4553EF m m m \=--=- PQEF PQ EF \=()2553m --=-23m =-20,3E ⎛⎫∴- ⎪⎝⎭ ()4,M n -2C 4x =-()244545y mx mx m m =++-=-()4,45M m -- N 12,72⎛⎫-- ⎪⎝⎭()25P --,()0,E m ()0,45F m -()222125225724PN æöç÷\=-++-+=ç÷èø()()22222455416PF m m =-+-+=+()115325322PEF P S EF x m m =×=-´=- ()111557242222PMN M P S PN x x æöç÷=×-=´-+´-+=ç÷èø PMN PEF ∽222PEF PMN S PF PF S PN PN æöç÷\==ç÷èø 25341652524m m -+\=12171,32m m =-=ABCD AD BC ∥E DA F AB CE DF P EPF ABC ∠=∠(1)如图①,如果,点、分别在边、上.求证:;(2)如图②,如果,,,.在射线的下方,以为直径作半圆,半圆与的另一个交点为点.设与弧的交点为.①当时,求和的长;②当点为弧的中点时,求的长.【答案】(1)见解析(2)①;;②【解析】【分析】(1)根据等腰梯形的性质可得,,,根据三角形的外角性质得出,进而可得,即可证明,根据相似三角形的性质,即可求解;(2)①同(1)证明,如图所示,过点作于点,连接,得出,,解直角三角形,分别求得,,进而根据相似三角形的性质求得的长;②根据题意画出图形,根据垂径定理得出,根据题意可设,,则,得出,设,则,则,在中,得出,根据得出,即可求解.【小问1详解】证明:∵梯形中,,,∴,,,又∵,∴AB CD =E F ADAB AF DF DE CE =AD CD ⊥5AB =10BC =3cos 5ABC ∠=DA DE O O CE G DF EG Q 6DE =EG AF Q EG AF EG =215AF =15B DCB DCE BCE ∠=∠=∠+∠A EDC ∠=∠DEC BCE ∠=∠FPE CED EDP ∠=∠+∠ADF DCE ∠=∠ADF DCE ∽ADF PDE ∽A AM BC ⊥M DG cos DEC ∠=sin DEC ∠=EG EP AF OQ EQ ⊥EPF ABC α∠=∠=ODQ OQD β∠=∠=90αβ+=︒43tan tan 34αβ==12FR a =9AR a =15AF a =Rt DFR 16DR a =1697AD DR AR a a a =-=-=1a =ABCD AD BC ∥AB CD =B DCB DCE BCE ∠=∠=∠+∠A EDC ∠=∠DEC BCE ∠=∠FPE CED EDP ∠=∠+∠EPF ABC∠=∠ADF DCE∠=∠∴,∴;【小问2详解】解:∵,∵,则∴∴∵∴又∵∴,如图所示,过点作于点,连接,∵,∴,则,,∵∴∵∴又∵∴,在中,∴∴,ADF DCE ∽AF DF DE CE=EPF ABC ∠=∠DPC EPF∠=∠180FPC DPC ∠+∠=︒180FPC B ∠+∠=︒180ECB PFB ∠+∠=︒ECB AFD∠=∠AD BC∥ECB DEC∠=∠EDP FDA∠=∠ADF PDE ∽A AM BC ⊥M DG 5AB =3cos 5ABC ∠=3BM =4AM =4sin 5AM ABC AB ∠==,AD BC AD CD⊥∥4CD AM==10BC =1037AD MC BC BM ==-=-=6DE =1AE=Rt EDC 6,4ED CD ==EC ===cos DE DEC EC ∠===sin DC DEC EC ∠===∵为直径∴∴,∴,∵∴∴②过点作于点,∵∴∵∴设,,则ED 90DGE ∠=︒cos 6EG ED DEC =⨯∠==sin 6DG ED DEC =∠==sin sin DG DG PD DPG ABC ====∠∠3cos 5PG PD DPG =∠==EP EG PG =-=ADF PDE∽AF AD PE PD=215D A PE AF PD ⋅===F FR AD ⊥R EQGQ =OQ EQ⊥OQ OD=ODQ OQD∠=∠EPF ABC α∠=∠=ODQ OQD β∠=∠=90αβ+=︒∵,则设,则∴∵∴设,则,∴,在中,∴又∵∴∴【点睛】本题考查了解直角三角形,等腰梯形的性质,相似三角形的性质与判定,垂径定理,熟练掌握以上知识是解题的关键.3cos os cos 5DPG EPF ABC ∠=∠=∠=35PG PD =3,5PG k PD k ==4GD k =43tan tan 34αβ==AD BC∥RAF α∠=12FR a =9AR a =15AF a =Rt DFR 3tan 4RF DR β==16DR a=1697AD DR AR a a a =-=-=7=1a =15AF =。
2024年广东省深圳市宝安区初三二模数学试题含答案解析
2024年广东省深圳市宝安区中考二模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在3-,0,23-四个数中,最小的是( )A .3-B .0C .23-D2.如图的正方体纸盒,只有三个面上印有图案,下面四个平面图形中,经过折叠能围成此正方体纸盒的是( )A .B .C .D . 【答案】B【分析】四个选项中的图都是正方体展开图的“141--”结构.由正方体可以看出,有图案的三个面两两相邻.【详解】解:四个选项中的图都是正方体展开图的“141--”结构.由正方体可以看出,有图案的三个面两两相邻;A 、C 、D 选项折成正方体后有图案的面有两个相对,不符合题意;B 选项折成正方体后,有图案的三个面两两相邻;的展开图是故选:B .【点睛】正方体展开图“1−4−1”结构,折成正方体后,两个“1”相对,“4”组成侧面,间隔面相邻.关键是明白有图案的三个面两两相邻.3.下列计算正确的是( )A .426a a a +=B .527a a a ⋅=C .5210()ab ab =D .1025a a a ÷=【答案】B【分析】根据合并同类项法则、幂的运算法则逐项计算即可判断.【详解】解:A. 42a a 、不是同类项,不能合并,不符合题意;B. 527a a a ⋅=,符合题意;C. 52210()ab a b =,不符合题意;D. 1028a a a ÷=,不符合题意;故选:B .【点睛】本题考查了合并同类项和幂的运算,掌握相关法则是解题关键.4.如图,12l l ∥,135∠=︒,250∠=︒,则∠3的度数为( )A .85︒B .95︒C .105︒D .115︒【答案】B 【分析】首先根据平行线的性质可得出231180∠+∠+∠=︒,据此可得出∠3的度数.【详解】解:∵12l l ∥,∴231180∠+∠+∠=︒,∵135∠=︒,250∠=︒,∴()()318021*********∠=︒-∠+∠=︒-︒+︒=︒.故选:B .【点睛】本题考查平行线的性质,解题的关键是准确识图,熟练掌握两直线平行,同旁内角互补.5.某次射击训练中,一小组的成绩如表所示,已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )环数789人数2?3A .4人B .5人C .6人D .7人A B C D7.如图,在O 中,弦AB ,CD 相交于点P ,则一定与A ∠相等的是( )A .B∠B .C ∠C .D ∠D .APD∠【答案】C 【分析】根据圆周角定理得出即可.【详解】解:根据圆周角定理得:∠A =∠D ,故选:C .【点睛】本题考查了圆周角定理,能熟记圆周角定理是解此题的关键,注意:在同圆或等圆中,同弧所对的圆周角相等.8.一艘轮船在静水中的最大航速为50km /h ,它以最大航速沿河顺流航行80km 所用时间和它以最大航速沿河逆流航行60km 所用时间相等,设河水的流速为xkm /h ,则可列方程( )A .8050x +=6050x -B .8050x -=6050x +C .8050x +=6050x -D .8050x -=6050x+【答案】C9.如图,将一张矩形纸片按图①,图②所示方法折叠,得到图③,再将图③按虚线剪裁得到图④,将图④展开,则展开图是()A.B.C.D.【答案】D【分析】对于此类问题,亲自动手操作,即可得出答案.【详解】严格按照图中的顺序向右翻折,向下翻折,按按虚线剪裁,展开得到结论,故选:D.【点睛】本题考查了剪纸问题,此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①b=2a;②c﹣a=n;③抛物线另一个交点(m,0)在﹣2到﹣1之间;④当x<0时,ax2+(b+2)x<0;⑤一元二次方程ax2+)x+c=0有两个不相等的实数根其中正确结论的个数是( )(b﹣12A.1个B.2个C.3个D.4个二、填空题11.分解因式3818x y xy -= .【答案】()()22323xy x x +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据题中所给多项式的结构特征,先提公因式,再由平方差公式因式分解即可得到答案,灵活应用提公因式法及公式法因式分解是解决问题的关键.【详解】解:3818x y xy-()2249xy x =-()()22323xy x x =+-,故答案为:()()22323xy x x +-.12.今年春节电影《第二十条》、《热辣滚烫》、《飞驰人生2》、《熊出没•逆转时空》在网络上持续引发热议,根据猫眼专业版数据显示,截至2月17日21时,2024年春节档新片总票房突破80.23亿元,创造了新的春节档票房纪录,则其中数据80.23亿用科学记数法表示为 .13.有一纸箱装有除颜色外都相同的散装塑料球共100个,小明将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.4,由此可以估计纸箱内红球的个数约是 个.系.14.新冠疫情期间,同学们都在家里认真的进行了网课学习,小明利用平板电脑学习,如图是他观看网课时的侧面示意图,已知平板宽度即20cm AB =,平板的支撑角60ABC ∠=︒,小明坐在距离支架底部30cm 处观看(即30cm DB =),点E 是小明眼睛的位置,ED DC ⊥垂足为D .EF 是小明观看平板的视线,F 为AB 的中点,根据研究发现,当视线与屏幕所成锐角为80︒时(即80AFE ∠=︒),对眼睛最好,那么请你求出当小明以此视角观看平板时,他的眼睛与桌面的距离DE 的长为 cm .(结果精确到1cm )(参考数据:1.73,tan 400.84,sin 400.64,cos400.77︒≈︒≈︒≈≈)∵20cm AB =,F 为AB 的中点,∴11201022BF AB ==⨯=,∵FT DC ∥,60ABC ∠=︒,∴60HFB ABC ∠=∠=︒,∵180HFB HFE EFA ∠+∠+∠=15.如图,正方形ABCD的边长为12,⊙B的半径为6,点P是⊙B上一个动点,则12 PD PC+的最小值为.【答案】15三、解答题16.计算:6023112)cos 45()2---︒-︒+-.17.先化简,再求值:21221121x x x x x --⎛⎫+÷ ⎪+++⎝⎭,再从1,-1,2中选一个合适的数作为x 的值代入求值.18.为进一步提高学生学习数学的兴趣,3月14日(国际数学日)当天,某校开展了一次数学趣味知识竞赛(竞赛成绩为百分制),并随机抽取了部分学生的竞赛成绩,经过整理数据得到以下信息(单位:分):信息一:所抽取学生成绩分组整理成如图所示的扇形统计图,其中第Ⅰ组5060x ≤<,第Ⅱ组6070x ≤<,第Ⅲ组7080x ≤<,第Ⅳ组8090x ≤<,第Ⅴ组90100x ≤<;信息二:第Ⅲ组的成绩为747173747976777676737275,,,,,,,,,,,.根据信息解答下列问题:(1)本次抽取的学生人数为________人,第Ⅱ组所在扇形的圆心角度数为:________;(2)第Ⅲ组竞赛成绩的众数是________分,本次抽取的所有学生竞赛成绩的中位数是________分;(3)若该校共有1500名学生参赛,请估计该校参赛学生成绩不低于80分的学生人数.【答案】(1)50,72︒(2)76,77.5(3)720【分析】(1)根据第Ⅲ组人数及第Ⅲ组所占的百分数可得到抽样总人数,第Ⅱ组的所占百分数为20%即可解答;(2)根据第Ⅲ组的成绩及中位数和众数的定义即可解答;(3)根据样本成绩不低于80分的学生人数即可解答.【详解】(1)解:∵第Ⅲ组7080x ≤<为12人,第Ⅲ组所占的百分数为24%,∴本次抽取的学生人数为1224%50÷=(人),∵第Ⅰ组所占百分数为8%,第Ⅲ组所占百分数24%,第Ⅳ组所占百分数40%,第Ⅴ组所占百分数8%;∴第Ⅱ组的所占百分数为100%8%24%40%8%20%----=,∴第Ⅱ组所在扇形的圆心角度数为36020%72︒⨯=︒,故答案为:50,72︒;(2)解:∵第Ⅲ组的成绩为747173747976777676737275,,,,,,,,,,,,∴第Ⅲ组竞赛成绩的众数是76分,∵第Ⅰ组人数为508%4⨯=(人),第Ⅲ组人数为5024%12⨯=(人),第Ⅴ组的人数为19.2024年4月18日上午10时08分,华为70Pura 系列正式开售,华为70Pura Ultra 和70Pura Pro 已在华为商城销售,约一分钟即告售罄.“4G 改变生活,5G 改变社会”,不一样的5G 手机给人们带来了全新的体验,某营业厅现有A 、B 两种型号的5G 手机出售,售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元.(1)求A 、B 两种型号的手机每部利润各是多少元;(2)某营业厅再次购进A 、B 两种型号手机共20部,其中B 型手机的数量不超过A 型手机数量的23,请设计一个购买方案,使营业厅销售完这20部手机能获得最大利润,并求出最大利润.【答案】(1)A 种型号手机每部利润是200元,B 种型号手机每部利润是400元.(2)营业厅购进A 种型号手机12部,B 种型号手机8部时获得最大利润,最大利润是5600元.【分析】本题考查的是二元一次方程组的解法,一次函数的应用,一元一次不等式的应用:(1)设A 种型号手机每部利润是x 元,B 种型号手机每部利润是y 元,由售出1部A 型、1部B 型手机共获利600元,售出3部A 型、2部B 型手机共获利1400元,再建立方程组即可;(2)设购进A 种型号的手机a 部,则购进B 种型号的手机()20a -部,获得的利润为w 元,2008000w a =-+,再利用一次函数的性质可得答案.【详解】(1)解:设A 种型号手机每部利润是x 元,B 种型号手机每部利润是y 元,20.如图,在ABCD Y 中,O 为线段AD 的中点,延长BO 交CD 的延长线于点E ,连接AE BD 、,=90BDC ∠︒.(1)求证:四边形ABDE 是矩形;(2)连接OC ,若2AB =,BD =,求OC 的长.∵四边形ABDE是矩形,∴2==,ODDE AB=,∴OD OE∵OF DE⊥,21.定义:如图1,在平面直角坐标系中,点P 是平面内任意一点(坐标轴上的点除外),过点P 分别作x 轴、y 轴的垂线,若由点P 、原点O 、两个垂足AB 、为顶点的矩形OAPB 的周长与面积的数值相等时,则称点P 是平面直角坐标系中的“美好点”.【尝试初探】(1)点()23C ,______ “美好点”(填“是”或“不是”);【深入探究】(2)①若“美好点”()6(0)E m m >,在双曲线k y x =(0k ≠,且k 为常数)上,则k =______;②在①的条件下,()2F n ,在双曲线k y x=上,求EOF S △的值;【拓展延伸】(3)我们可以从函数的角度研究“美好点”,已知点()P x y ,是第一象限内的“美好点”.①求y 关于x 的函数表达式;②对于图象上任意一点()x y ,,代数式()()22x y -⋅-是否为定值?如果是,请求出这个定值,如果不是,请说明理由.∴11155956222EOF FOG EOG S S S =-=⨯⨯-⨯⨯= ;(3)①∵点()P x y ,是第一象限内的“美好点”,22.如图,(1)如图①,等腰ACB △,90ACB∠=︒,D 为AB 的中点,90MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),写出线段、、CF CE BC 之间的数量关系,并证明你的结论;(2)如图②,等腰ACB △,120ACB ∠=︒,D 为AB 的中点,60MDN ∠=︒,将MDN ∠绕点D 旋转,旋转过程中,MDN ∠的两边分别与线段AC 、线段BC 交于点E 、F (点F 与点B 、C 不重合),直接写出线段、、CF CE BC 之间的数量关系为 ;(3)如图③,在四边形ABCD 中,AC 平分BCD ∠,120BCD ∠=︒,60DAB ∠=︒,过点A 作AE AC ⊥,交CB 的延长线于点E ,若6CB =,2DC =,则BE 的长为 .【答案】(1)CF CE BC +=,理由见解析∵等腰ACB △中,ACB ∠∴CD AB ⊥,即CDB ∠∵在Rt CDB △中,点G ∵AE AC ⊥,。
湖南省郴州市2024届中考二模 数学试题(含解析)
初中学业水平质量监测九年级数学一、选择题(共10小题,每小题3分,共30分.在每小题的选项中,选出符合题目的一项)1.下列是无理数的是?()A.12024 B.0 C. D.3.14-【答案】C【解析】【分析】本题考查了无理数的定义,根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可,解题的关键是掌握无理数的几种形式.A、12024是有理数,不符合题意;B、0是整数,属于有理数,不符合题意;CD、 3.14-是有理数,不符合题意;故选:C.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【解析】【分析】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念是解答本题的关键.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合,结合选项分析即可.A、两部分经折叠后可以重合,其旋转180度后为,与原图不重合,是轴对称图形而不是中心对称图形,不符合题意;B 、两部分经折叠后可以重合,其旋转180度后为与原图重合,既是轴对称图形又是中心对称图形,符合题意;C 、两部分经折叠后可以重合,其旋转180度后为,与原图不重合,是轴对称图形而不是中心对称图形,不符合题意;D 、两部分经折叠后可以重合,其旋转180度后为,与原图不重合,是轴对称图形而不是中心对称图形,不符合题意;故选B .3.下列运算中,正确的是()A.22a a ÷= B.()326a a -=C.235a a a ⋅= D.()2224a a -=-【答案】C【解析】【分析】此题考查了同底数幂的除法、幂的乘方、同底数幂的乘法的运算法则,完全平方公式等知识,根据以上知识正确化简计算是解题的关键.根据同底数幂的除法、幂的乘方、同底数幂的乘法的运算法则,以及完全平方公式解答即可.解:A .2a a a ÷=,原计算错误,故此选项不符合题意;B .()326a a -=-,原计算错误,故此选项不符合题意;C .235a a a ⋅=,原计算正确,故此选项符合题意;D .()22244a a a -=-+,原计算错误,故此选项不符合题意.故选:C .4.2024年1月26日,湖南省文化和旅游厅发布,2023年湖南全省接待旅游总人数约658000000人次.其中658000000用科学记数法表示为()A.865810⨯B.765.810⨯C.96.5810⨯D.86.5810⨯【答案】D【解析】【分析】本题考查了用科学记数法表示绝对值大于10的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数位数减,据此即可解答.解:8658000000 6.5810=⨯.故选:D5.如图,直线AB CD ,AC DE ∥,47A ∠=︒,则D ∠的度数是()A 47︒B.53︒C.133︒D.43︒【答案】A【解析】【分析】本题考查了平行线的性质等知识,根据AB CD 得到47ACD A ∠=∠=︒,根据AC DE ∥,即可求出47D ACD ∠=∠=︒.解:∵AB CD ,47A ∠=︒,∴47ACD A ∠=∠=︒,∵AC DE ∥,∴47D ACD ∠=∠=︒.故选:A6.某校足球队20名队员年龄分布情况如下表:年龄(岁)12131415人数(人)3872则该队队员年龄的众数、中位数分别是()A.15,13.5B.15,13C.13,13.5D.13,13【答案】D【解析】【分析】本题主要考查了求一组数据的中位数和众数,把一组数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个,据此求解即可.解:把这20名队员的年龄从低到高排列,处在第10名和第11名的年龄分别为13岁,13岁,∴中位数为1313132+=,∵年龄为13岁的人数最多,∴众数为13,故选:D .7.关于x 的一元二次方程230x kx --=(k 为常数)根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【答案】A【解析】【分析】本题主要考查了一元二次方程根的判别式等知识点,先计算判别式的值,再利用非负数的性质得到0∆>,然后根据判别式的意义判断方程根的情况.∵()()2Δ43k =--⨯-2120k =+>,∴方程有两个不相等的实数根,故选:A .8.对于某个二次函数,两位同学探究了它的图像和性质,下图为两位同学的对话,如果两位同学的判断都是正确的,设这个二次函数的解析式为2(0)y ax bx c a =++≠,则下列结论中错误的是()A.0a > B.0b > C.0c > D.240b ac ->【答案】B【解析】【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.根据图象经过()0,2可判断C ,结合抛物线顶点在第四象限可判断A ,B ,D .解:∵图象经过()0,2,∴20c =>,故C 正确;∵抛物线顶点在第四象限,∴0a >,240b ac ->,02b a->,故A ,D 正确;∴0b <,故B 不正确.故选C .9.如图,在菱形ABCD 中,120BAD ∠=︒.若8AC =,则菱形ABCD 的周长为()A.32B.C.16D.【答案】A【解析】【分析】本题主要考查了菱形的性质,等边三角形的性质与判定,只需要证明ABC 是等边三角形求出8AB AC ==即可得到答案,证明ABC 是等边三角形是解题的关键.∵四边形ABCD 是菱形,∴AD BC ∥,AB BC CD AD ===,∴180B BAD ∠+∠=°,∵120BAD ∠=︒,∴=60B ∠︒,∴ABC 是等边三角形,∴8AB AC ==,∴菱形ABCD 的周长432AB ==,故选:A .10.如图所示为雷达图,规定:个单位长度代表100m ,以点O 为原点,过数轴上的每一刻度点两同心圆,并将同心圆平均分成十二等分.一艘海洋科考船在点O 处用雷达发现A ,B 两处鱼群,那么A ,B 两处鱼群的距离是()A.5mB.400mC.500mD.300m【答案】C【解析】【分析】本题考查的知识点是勾股定理的应用,解题关键是熟练掌握勾股定理.根据题意得出90AOB ∠=︒及OA 、OB 后即可根据勾股定理求解.解:如图,连接AB ,数轴交点为O ,由题意得,同心圆平均分成十二等分,则每三等分即为36012390︒÷⨯=︒,90AOB ∴∠=︒,又个单位长度代表100m ,300m OA ∴=,400m OB =,∴根据勾股定理可得,Rt AOB ∴ 中,22500m AB OA OB =+=.故选:C .二、填空题(共8小题,每小题3分,共24分)11.函数y =x 的值___________.【答案】2(答案不唯一,满足1x >的实数即可)【解析】【分析】本题主要考查了求函数自变量的取值范围,熟练掌握二次根式和分式有意义的条件是解题的关键.根据二次根式和分式有意义的条件,求出x 的取值范围,即可求解.解:根据题意得:10x ->,解得:1x >,∴一个符合条件整数x 的值是2.故答案为:2(答案不唯一,满足1x >的实数即可)12.计等:202413tan 30-+︒=___________.【答案】1-+【解析】【分析】本题考查特殊角的三角函数,是基础知识比较简单,熟记特殊角的三角函数值是解题的关键.首先利用乘方、特殊角的三角函数值对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:202413tan30︒-+3133=-+⨯1=-故答案为:1-+13.如图,ABC 中,边AB ,BC ,AC 的中点分别为D ,E ,F ,设DEF 和ABC 的而积分别为1S ,2S ,则12S S =_____.【答案】1:4【解析】【分析】本题考查了相似三角形的判定与性质,中位线性质,根据中位线可得12DE DF EF AC BC AB ===,从而DEF CBA ∽,根据相似三角形的性质即可求解,熟练掌握知识点的应用是解题的关键.∵边AB ,BC ,AC 的中点分别为D ,E ,F ,∴DE ,EF ,DF 是ABC 的中位线,∴12DE AC =,12EF AB =,12DF BC =,∴12DE DF EF AC BC AB ===,∴DEF CBA ∽,∴2121124S S ⎛⎫== ⎪⎝⎭,故答案为:1:4.14.为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每瓶零售价由200元降为162元,求平均每次降价的百分率,设平均每次降价的百分率为x ,则可列方程为___________.【答案】2200(1)162x -=【解析】【分析】本题考查了一元二次方程的应用;设平均每次降价的百分率是x ,结合题意,通过列一元二次方程并求解,即可得到答案.设平均每次降价的百分率是x ,根据题意,得:根据题意,得:2200(1)162x -=,故答案为:2200(1)162x -=.15.如图,CD 为O 的直径,点D 平分 AB .若28C ∠=︒,则CDB ∠=___________度.【答案】62【解析】【分析】本题考查圆周角定理,直角三角形的特征,连接BC ,根据点D 平分 AB ,得到 AD BD=,由同弧所对圆周角相等得到28BCD ACD ∠=∠=︒,根据CD 为O 的直径,得90CBD ∠=︒,由直角三角形的特征即可求解.解:连接BC ,点D 平分 AB ,28C ∠=︒,∴ AD BD=,∴28BCD ACD ∠=∠=︒,CD 为O 的直径,∴90CBD ∠=︒,9062CDB BCD ∴∠=︒-∠=︒,故答案为:62.16.为践行《环保宣言》,某校开展中小学生主题演讲比赛,如图是7位评委对甲、乙两位参赛选手的打分情况,通过折线图发现7位评委对___________选手在演讲比赛中的表现评价更一致.(填“甲”或“乙”)【答案】乙【解析】【分析】本题主要考查了折线统计图、方差等知识点,根据方差的意义求解即可,熟练掌握方差的意义是解决此题的关键.由折线统计图可知,乙组数据的波动比甲组的小,所以7位评委评价更“一致”的是乙组,故答案为:乙.17.一个几何体的三视图如图所示,则这个几何体的侧面积是___________2cm (结果保留π).【答案】24π【解析】【分析】本题考查了圆锥成面积公式,利用圆锥侧面积公式πS rl =侧(其中r 是底面圆半径,l 是母线)求解即可.解:根据题意,得几何体的侧面积是26824πcm 2π⨯⨯=,故答案为:24π.18.如图,点(3,)A a -在双曲线6(0)y x x =-<上,作直线OA 交双曲线(0)k y x x =<于点B ,过点A 作AC x ⊥轴于点C ,连接BC .已知ABC 的面积为1,那么k =________.【答案】323-【解析】【分析】本题考查已知图形的面积求k 值,先求出A 点坐标进而求出OA 的解析式,过点B 作BD y ⊥轴,延长CA 交BD 于点E ,根据三角形的面积公式,求出B 点坐标,即可得出k 值.解:点(3,)A a -在双曲线6(0)y x x =-<上,∴36a -=-,∴2a =,∴(3,2)A -设直线OA 的解析式为y mx =,则:23m =-,∴23m =-,∴23y x =-,设2,3B n n ⎛⎫- ⎪⎝⎭,过点B 作BD y ⊥轴,延长CA 交BD 于点E ,则:∵AC x ⊥轴,∴CE BD ⊥,∴四边形OCED 为矩形,∵(3,2)A -,∴2AC =,3DE OC ==,∵112122ACB S AC BE BE =⋅=⨯= ,∴1BE =,∴4BD =,∴n =-4,∴84,3B ⎛⎫- ⎪⎝⎭,∴832433k =-⨯=-.故答案为:323-.三、解答题(本大题共8小题,第19−20题每小题6分,第21−22题每小题8分,第23−24题每小题9分,第25−26题每小题10分,共66分)19.解方程:()()135x x -+=【答案】124, 2.x x =-=【解析】【分析】把一元二次方程化为方程的一般形式,再按因式分解的方法解方程即可.解:()()135x x -+= ,2280x x ∴+-=(4)(2)0,x x ∴+-=124, 2.x x ∴=-=【点睛】本题考查的是一元二次方程的解法,掌握利用十字乘法分解因式是解题的关键.20.先化简,再求值:22341244x x x x -⎛⎫-÷ ⎪+++⎝⎭,其中2x =【答案】12x x --;222【解析】【分析】本题主要考查了分式化简求值,二次根式化简计算,根据分式混合运算法则进行化简,然后代入数据进行求值即可.解:22341244x x x x -⎛⎫-÷ ⎪+++⎝⎭223(2)2(2)(2)x x x x x +-+=⋅++-21(2)2(2)(2)x x x x x -+=⋅++-12x x -=-,当2x =+时,上式22+==.21.某校为摸底九年级学生排球垫球成绩,现从九年级学生中这机抽取若下名学生进行调查,以下是根据调查数据绘制的不完整的统计图表,根据信息回答下列问题:等级排球垫球数(次)人数A 30x >20B20x30<≤40C1020x<≤mD010x≤≤8(1)m=______,扇形统计图中,“B”所对应的扇形圆心角的度数为______度;(2)若该校九年级共有1200名学生,请你估计垫球数超过20次的学生人数.(3)从垫球成绩优秀的两男两女4名学生中,随机抽取2名学生为九年级学生演示垫球动作,请用树状图法或列表法求选中的两名学生恰好是一男一女的概率.【答案】(1)32,144(2)720人(3)2 3【解析】【分析】本题考查了扇形统计图基础及其应用,样本估计总体,根据表格获取信息是解题的关键,(1)用A 组的人数除以该组所占的百分比,求得九年级学生中随机抽取的学生人数,再用总人数减去其他组的人数即可求解;(2)根据样本估计总体的定义,结合统计表即可求解;(3)根据题意列出表格,再根据概率的计算公式,即可得到答案.【小问1】解:由题可得:从九年级学生中随机抽取的学生人数为:2020%100÷=(人),∴1002040832m=---=,∵等级B的人数为:40100%40% 100⨯=∴40%360144⨯︒=︒,故答案为:32,144.【小问2】解:4020 1200720100+⨯=(人)答:排球垫球数超过20次的学生人数是720人.【小问3】解:设两名男生分别为A ,B ,两名女生分别为a ,b ,则用列表法表示为:A B a b A AB Aa AbB BA Ba Bba aA aB abb bA bB ba∴P (两名学生恰好是一男一女)82123==.22.在矩形ABCD 中.(1)尺规作图:作对角线AC 的垂直平分线,分别交AD BC ,于点E ,F (保留作图痕迹,不要求写作法).(2)已知3AB =,4BC =,求CF 的长.【答案】(1)见解析(2)258CF =【解析】【分析】本题考查了作线段垂直平分线,矩形的性质,勾股定理.(1)根据题意作出图形即可;(2)在Rt ABF 中,利用勾股定理列式即可求解.【小问1】解:所作图形如图所示,;【小问2】解:连接AF .设CF x =,则4BF x=-EF 是AC 的垂直平分线,FA CF x ∴==.在Rt ABF 中,由勾股定理得:222AB BF AF +=,2223(4)x x +-=,解得258x =.258CF ∴=.23.小明一家为践行“低碳生活,绿色出行”,决定以骑行的方式去湖边游玩.已知小明骑单人自行车的速度比爸爸妈妈骑双人自行车速度快3km/h ,小明骑行12km 与爸爸妈妈骑行10km 的时间相同.(1)小明骑单人自行车的速度是多少km/h ?(2)某自行车租赁商店计划购买单人自行车和双人自行车共40辆,已知每辆单人自行车和双人自行车的单价分别为200元、360元,若总费用不超过10000元,则该商店最多..可购买多少辆双人自行车?【答案】(1)18km /h(2)12辆【解析】【分析】本题考查分式方程的应用、一元一次不等式的应用,理解题意,正确列出方程和不等式是解答的关键.(1)设小明骑单人自行车的速度是km /h x ,根据“小明骑行12km 与爸爸妈妈骑行10km 的时间相同”列分式方程求解即可;(2)设该商店购买m 辆双人自行车,根据“总费用不超过10000元”列不等式求解即可.【小问1】解:设小明骑单人自行车的速度是km /h x ,12103x x ∴=-,18x ∴=经检验:18x =是原方程的解且符合题意;答:小明骑单人自行车的速度是18km /h ;【小问2】解:设该商店购买m 辆双人自行车,则200(40)36010000m m -+≤,12.5m ∴≤m 是正整数,m ∴最大值为12,答:该商店最多可购买12辆双人自行车.24.某校综合实践小组为测量学校国旗旗杆的高度,甲、乙两名同学设计了不同的测量方案.请阅读材料,完成下列问题.甲同学用量角器和铅垂线自制了一个简易测角仪(如图1)如图2,甲同学目高AB (眼睛到地面距离)1.60米,站在距离旗杆CD 底部(0)m m >米处,用简易测角仪测量观察旗杆顶点C 的仰角()090αα︒<<︒,通过计算求出旗杆CD 的高度.(1)请用含有m ,α的代数式表示旗杆CD 的高度=________米.为了减少误差,该同学进行了五次测量并计算,统计的数据如下表.序号离旗杆CD 底部距离(单位:米)仰角旗杆CD 的高度(单位:米)①1050︒13.52②1539︒13.75③2041︒1899.④2526︒1379.⑤3022︒13.72(2)观察上表数据并判定第_________组数据测量有误.(从“①,②,③,④,⑤”中选填)(3)乙同学计划用自制的立角三角板AFG (两锐角大小不确定)和卷尺测量.如图3,乙同学目高AB (1.60米),他调整位置,设法使斜边AG 保持水平,边AF 与旗杆顶点C 在同一直线上.请你帮助乙同学确定哪些线段需要用卷尺测量,将测量得到的长度用字母a ,b ,c …表示,求旗杆CD 的高度(用含有a ,b ,c …的代数式表示).【答案】(1)tan 1.6m α⋅+(2)③(3)1.6bc a +【解析】【分析】本题主要考查了解直角三角形的应用,相似三角形的应用,解题的关键是数形结合,作出相应的辅助线.(1)过点A 作AE CD ⊥于点E ,解直角三角形,求出CE 即可得出答案;(2)根据表格中的数据进行判断即可;(3)证明AFG AEC ∽,得出AF FG AE CE =,bc CE a=米,即可得出答案.【小问1】解:过点A 作AE CD ⊥于点E ,如图所示:根据题意可知,四边形ABDE 为矩形,∴AE BD m ==米,16.DE AB ==米,在Rt ACE 中,tan CE AEa =,∴tan ·tan CE AE m αα=⨯=米,∴()·tan 1.6CD CE DE m α=+=+米;【小问2】解:因为距离旗杆底部越远,α的度数越小,所以根据表格中的数据可知,第③组数据测量有误;【小问3】解:需测量的线段AF a =米,FG b =米,BD c =米,由题可知,四边形ABDE 是矩形,AE BD c ==米,90AFG AEC ︒∠=∠= ,CAE GAF ∠=∠,AFG AEC ∴△∽△,AF FG AE CE ∴=,a b c CE ∴=,bc CE a∴=(米),1.6 1.6bc CD CE a∴=+=+(米)答:旗杆CD 的高度为 1.6bc a ⎛⎫+⎪⎝⎭米.25.如图,ABC 内接于O ,AB 为直径,OF AC ⊥于点F ,延长OF 交O 于点E ,过E 作O 的切线ED ,与BC 的延长线交于点D ,连接EB 交AC 于点G ,连接CE .(1)求证:四边形EFCD 为矩形;(2)求证:2CE EG EB =⋅;(3)若2CG GF m=(m 为常数),求sin CEB ∠(用含m 的代数式表示).【答案】(1)见解析(2)见解析(3)1sin 1CEB m ∠=+【解析】【分析】(1)根据三个角是直角的四边形是矩形证明即可;(2)由垂径定理得 AE CE=,从而ACE EBC ∠=∠,然后证明GCE CBE △∽△即可证明结论成立;(3)证明GCB GFE △∽△得2CG BC GF EF m==,设2BC a =,EF ma =,由三角形中位线的性质得12FO BC a ==,可求(1)AO OE a m ==+,求出1sin 1FO A AO m ==+,再证明CEB A ∠=∠即可.【小问1】OF AC ⊥ 于点F ,90EFC ∴∠=︒(垂直的性质).AB 为直径,90ACB ∴∠=︒(直径所对的圆周角是直角),90DCF ∠=︒.ED 为O 的切线,90DEO ∴∠=︒.(切线垂直于过切点的半径)90EFC DCF DEO ︒∠=∠=∠= ,∴四边形EFCD 为矩形.(三个角是直角的四边形是矩形);【小问2】OF 过圆心,OF AC ⊥于点F ,AE CE∴=,(垂径定理)ACE EBC ∴∠=∠.(等弧所对的圆周角相等)而BEC BEC ∠=∠,GCE CBE ∴△∽△,(有两组角对应相等的两个三角形相似)GE CE CE BE∴=(相似三角形对应边成比例)2CE GE BE∴=⋅【小问3】四边形EFCD 为矩形,OE BD ∴∥,GCB GFE ∴△∽△,(平行于三角形一边的直线与其他两边相交,截得的三角形与原三角形相似)∴2CG BC GF EF m==.(相似三角形对应边成比例)设2BC a =,EF ma =;AF FC = ,AO BO =,FO ∴是ABC 的中位线,12FO BC a ∴==.(三角形中位线性质)在Rt AOF 中,(1)AO OE ma a a m ==+=+1sin (1)1FO a A AO a m m ===++.又A ∠和CEB ∠都是 BC所对的圆周角,CEB A ∴∠=∠.(同弧所对的圆周角相等)1sin 1CEB m ∴∠=+【点睛】本题考查了切线的性质,圆周角定理,矩形的判定与性质,垂径定理,相似三角形的判定与性质,解直角三角形,三角形中位线的性质,熟练掌握圆的性质是解答本题的关键.26.二次函数223y x tx =--(t 为常数且0t >)的图像与x 轴相交于点A ,B (点A 在点B 的左边),与y 轴相交于点C .(1)当1t =时,①求A ,B 两点的坐标;②如图1,点M 是线段AB 上的动点,求22CM BM +的最小值.(2)若点(4,)D m a -,(3,)E b ,(,)F m a 都在这个二次函数的图像上,且3a b <<-,求m 的取值范围.【答案】(1)①(1,0)A -,(3,0)B ②32(2)7m >【解析】【分析】本题主要考查了二次函数的图象与性质,三角函数,勾股定理等知识点,(1)当1t =时,二次函数为2=23y x x --,①当0y =时,解方程得两根,进而即可得解;②如图,以BM为斜边,构造Rt BMG ,得2BM MG =,然后求出CM MG +最小值即可得解;(2)由(4,)D m a -,(,)F m a 的坐标求出对称轴方程,(i )当点E 在对称轴左边时,(ii )当点E 在对称轴右边时,分类讨论即可得解;熟练掌握其性质,合理作出辅助线是解决此题的关键.【小问1】当1t =时,二次函数为2=23y x x --,①当0y =时,2230x x --=,解得,11x =-,23x =.(1,0)A ∴-,(3,0)B .②如图,以BM 为斜边,构造Rt BMG ,使得2sin 2MBG ∠=,即45MBG ∠=︒,再连接BC .点(0,3)C -,OC OB ∴=,45OBC ∴∠=︒,90CBG ∴∠=︒,即CB BG ⊥.在Rt BMG 中,2sin 2BM MBG BM MG ⋅∠==,∴要求22CM BM +的最小值,即求CM MG +的最小值,由于垂线段最短得,CM MG +的最小值为CB 的长,∴在Rt BOC 中,由勾股定理得,BC ==.22CM BM ∴+的最小值为小问2】点(4,)D m a -,(,)F m a 关于对称轴对称∴对称轴42m m x t -+==,即2t m =-,且点D 在对称轴左侧,点F 在对称轴右侧. 点(0,3)C -关于对称轴的对称点为(24,3)C m '--,3a b <<- 且0t >,40243m m ->⎧∴⎨->⎩,解得4m >.(i )当点E 在对称轴左边时,3a b <<- ,34m ∴<-,解得7m >,7m ∴>,(ii )当点E 在对称轴右边时,3a b <<- ,∴点E 在C '下方,点F 上方,2433m m ->⎧∴⎨<⎩,723m m ⎧>⎪∴⎨⎪<⎩,m ∴不存在,综上所述:m 的取值范围是7m >.。
2024年广东省深圳市龙华区中考二模数学试题(解析版)
龙华区2023-2024学年第二学期九年级调研测试试题数学试卷说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.全卷共6页,考试时间90分钟,满分100分.3.作答选择题1~10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其他答案,作答非选择题11~22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内,写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 为打造极具辨识度的城市环保新名片,深圳市清洁能源环卫作业车辆的外观、标识正逐步改为统一标准.下列四个图标是深圳环卫车身上的环保符号,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】D【解析】【分析】本题主要考查了轴对称图形和中心对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形是解题的关键.根据轴对称图形和中心对称图形的定义,逐项判断即可求解.【详解】解:A、该图形是轴对称图形,不是中心对称图形,故本选项不符合题意;B、该图形既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;C、该图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D、该图形既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.2. 深圳图书馆北馆是深圳首批建设并完工的新时代重大文化设施,其建筑面积约7.2万平方米,设计藏书量800万册,其中800万用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题考查科学记数法,科学记数法的表示形式为的形式,其中,n 为整数,解题关键是确定a 和n .根据科学记数法定义进行表示即可得到答案.【详解】解:∵800万,∴科学记数法表示:,故选:C .3. 下列运算正确是( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了合并同类项,整式乘法以及完全平方公式,平方差公式,熟记相关公式与运算法则是解答本题的关键,分别根据合并同类项法则,单项式乘以多项式运算法则,以及完全平方公式、平方差公式逐一判断即可.【详解】A 、,故本选项不合题意; B 、,故本选项不符合题意;C 、,故本选项不符合题意;D 、,故本选项符合题意;故选:D .4. 小文根据“赵爽弦图”设计了一个如图所示的的正方形飞镖盘,则飞镖落在阴影区域的概率为( )为的2810⨯5810⨯6810⨯70.810⨯10n a ⨯110a ≤<8000000=68.010⨯224m m m +=()11m n mn +=+()222m n m n +=+()()22m n m n m n+-=-22242m m m m +=≠()11m n mn m mn +=+≠+()222222m n m mn n m n +=++≠+()()22m n m n m n +-=-33⨯A.B.C.D.【答案】B 【解析】【分析】此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.根据概率公式直接求解即可.【详解】解:∵阴影部分的面积占总面积的,∴飞镖落在阴影区域的概率为.故选:B .5. 一元一次不等式组的解集在数轴上表示正确的是( )A. B. C. D.【答案】A 【解析】【分析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:由得:,由得:,则不等式组的解集为,故选:A .6. 某一时刻在阳光照射下,广场上的护栏及其影子如图1所示,将护栏拐角处在地面上的部分影子抽象成图2,已知,,则的大小为( )1349592349491024x x +≥⎧⎨<⎩10x +≥1x ≥-24x <2x <12x -≤<22MAD ∠=︒23FCN ∠=︒ABC ∠A. B. C. D. 【答案】B 【解析】【分析】本题考查平行投影,熟练掌握平行投影的性质是解题的关键.根据平行线的性质及角的和差即可求得.【详解】解:∵某一时刻在阳光照射下,,且,,∴,,∴.故选:B .7. 数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x 人,则可列方程为( )A.B.C.D.【答案】C 【解析】【分析】设第一次分钱的人数为x 人,则第二次分钱的人数为(x +6)人,根据两次每人分得的钱数相同,即可得出关于x 的分式方程,此题得解.【详解】解:设第一次分钱的人数为x 人,则第二次分钱的人数为(x +6)人,依据题意,可得.故选:C .【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.8. 数学活动课上,小亮同学用四根相同的火柴棒,,,在桌面上摆成如图所示的图形,其中点A ,C ,E 在同一直线上,,若,则点B ,D 到直线的距离之和为( )44︒45︒46︒47︒AD BE FC ∥∥22MAD ∠=︒23FCN ∠=︒22MAD ABE ∠=∠=︒23EBC FCN ∠=∠=︒45ABC ABE EBC ∠=∠+∠=︒10406x x =-40106x x =-10406x x =+40106x x =+10406x x =+AB BC CD DE BC CD ⊥10AE =AEA. 5B.C.D. 10【答案】A 【解析】【分析】本题考查全等三角形的判定和性质,等腰三角形的性质,点到直线的距离,过于M ,于N ,由等腰三角形的性质推出,,由余角的性质推出,由证明,得到,,于是得到.【详解】解:过于M ,于N ,∵,∴,同理:,∵,∴,∴,∵,∴,∵,∵,∴,∴,,∴,∴点B ,D 到直线的距离之和为5.故选:A .9.小明在科普读物中了解到:每种介质都有自己的折射率,当光从空气射入该介质时,折射率为入射角正BM AE ⊥DN AE ⊥12CM AC =12CN CE =DCN CBM ∠=∠AAS DCN CBM ≌DN CM =BM CN =()111105222BM DN CM CN AC CE AE +=+=+==⨯=BM AE ⊥DN AE ⊥AB BC =12CM AC =12CN CE =BC CD ⊥90BCD ∠=︒1809090DCN BCM ∠+∠=︒-︒=︒90BCM CBM ∠+∠=︒DCN CBM ∠=∠90DNC BMC ∠=∠=︒DC BC =()AAS DCN CBM ≌DN CM =BM CN =()111105222BM DN CM CN AC CE AE +=+=+==⨯=AE弦值与折射角正弦值之比,即折射率(为入射角,为折射角).如图,一束光从空气射向横截面为直角三角形的玻璃透镜斜面,经折射后沿垂直边的方向射出,已知,,,则该玻璃透镜的折射率为( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了三角函数,余角性质,利用余角性质可得,进而得,再根据折射率计算即可求解,由余角性质推导出是解题的关键.【详解】解:由题意可得,,∵光线经折射后沿垂直边的方向射出,∴,∴,∵,∴,∴,∵,∴,∴,故选:.10. 如图,在菱形中,,E 是对角线上一点,连接,作交sin sin in r=i r AC 30i =︒15cm AB =5cm =BC n 1.8 1.6 1.5 1.4r A ∠=∠1sin sin 3r A ==sin sin in r=r A ∠=∠190r ∠+∠=︒AC 190A ∠+∠=︒r A ∠=∠90C ∠=︒51sin 153BC A AB ===1sin sin 3r A ==30i =︒1sin sin 302i =︒=1sin 21.51sin 3i n r ===C ABCD 60ABC ∠=︒AC BE 120BEF ∠=︒边于点F,若,则的值为( )A.B.C.D.【答案】D 【解析】【分析】本题考查相似三角形的判定和性质,菱形的性质,等边三角形的判定和性质,由菱形的性质推出,,判定,是等边三角形,得到,,求出,而,得到,即可证明,推出,令,则,得出,得到,即可求出答案.【详解】解:∵四边形是菱形,∴,,∴,是等边三角形,∴,,∴,∵,∴,∴,∵,∴,CD 12AE EC =DF FC4354AB BC CD AD ===60D ABC ∠=∠=︒ABC ACD 60BCE ACD ∠=∠=︒BC AC =18060120CBE BEC ∠+∠=︒-︒=︒120CEF BEC ∠+∠=︒CEF CBE ∠=∠CEF CBE ∽△△::CF CE CE BC =AE x =2EC x =43CF x =45333DF x x x =-=ABCD AB BC CD AD ===60D ABC ∠=∠=︒ABC ACD 60BCE ACD ∠=∠=︒BC AC =18060120CBE BEC ∠+∠=︒-︒=︒120BEF ∠=︒120CEF BEC ∠+∠=︒CEF CBE ∠=∠ECF BCE ∠=∠CEF CBE ∽△△∴,∵,∴令,则,∴,∴,∴,∴,∴,∴.故选:D .第二部分(非选择题,共70分)二、填空题(本题共5小题,每小题3分,共15分)11. 化简分式:=___.【答案】1【解析】【分析】利用同分母分式的加减法则计算即可求出值.【详解】解:原式,,,.故答案为:1.【点睛】此题考查了分式加减法,解题的关键熟练掌握分式的加减法的运算法则.12. 若a 是一元二次方程的一个根,则的值是___________.【答案】6【解析】【分析】将a 代入,即可得出,再把整体代入,即可得的::CF CE CE BC =12AE EC =AE x =2EC x =23AC x x x =+=3BC AC x ==:22:3CF x x x =43CF x =45333DF x x x =-=54DF FC =1211x x x-+++1211x x x -=+++121x x -+=+11x x +=+1=2230x x +-=224a a +2230x x +-=223a a +=223a a +=224a a +出答案.【详解】∵a 是一元二次方程的一个根,∴,∴,∴,故答案为:6.【点睛】本题考查了一元二次方程的根的定义,整体思想是本题的关键.13. 如图,点A ,B ,C 在⊙上,平分,若,则____°.【答案】70【解析】【分析】本题考查圆周角定理及其推论,解答中涉及角平分线定义,三角形外角的性质,能准确作出辅助线,掌握圆周角定理及其推论是解题的关键.延长交于点E ,连接,由已知条件求出,由角平分线定义,可得到,最后根据“三角形的一个外角等于和它不相邻的两个内角的和”可求出的度数.【详解】解:延长交于点E ,连接,则,∵,∴,∴,∵平分,∴,∴,2230x x +-=2230a a +-=223a a +=()222422236a a a a +=+=⨯=O AC OAB ∠40OAB ∠=︒CBD ∠=AO O BE 50C E ∠=∠=︒1202CAB OAB ∠=∠=︒CBD ∠AO O BE 90ABE ∠=︒40OAB ∠=︒9050E OAB ∠=︒-∠=︒50C E ∠=∠=︒AC OAB ∠1202CAB OAB ∠=∠=︒205070CBD CAB C ∠=∠+∠=︒+︒=︒故答案为:70.14. 如图1是某种呼气式酒精测试仪的电路原理图,电源电压保持不变,为气敏可变电阻,定值电阻.检测时,可通过电压表显示的读数换算为酒精气体浓度,设,电压表显示的读数与之间的反比例函数图象如图2所示,与酒精气体浓度的关系式为,当电压表示数为时,酒精气体浓度为______.【答案】##0.5【解析】【分析】本题考查了反比例函数和一次函数的实际应用等知识.先求出与之间的反比例函数为,再根据求出,代入即可求出.【详解】解:设电压表显示的读数与之间的反比例函数为,∵反比例函数图象经过点,∴,∴与之间的反比例函数为,当时,∵,,∴,把代入得,解得.故答案为:,1R 030R =Ω()U V ()3mg /m p 10R R R =+()U V ()ΩR 1R p 16060R p =-+ 4.5V 3mg m 12()U V ()ΩR 270U R =10R R R =+130R =Ω16060R p =-+12p =()U V ()ΩR kU R=()45,6645270k =⨯=()U V ()ΩR 270U R=4.5V =270604.5R ==Ω10R R R =+030R =Ω10603030R R R =-=-=Ω130R =Ω16060R p =-+306060p =-+12p =1215. 如图,在矩形中,,P 是边上一点,将沿折叠,若点D 的对应点E 恰好是的重心,则的长为_______.【答案】【解析】【分析】此题主要考查了矩形的性质,三角形的重心,图形的折叠变换及其性质,勾股定理,延长交于F ,在的延长线上取一点H ,使,连接,,,连接并延长交于点T ,连接,由折叠的性质得P ,,根据点E 是的重心,得是边上的中线,是边上的中线,则,,先证四边形是平行四边形得,进而得是的中位线,则,进而得,在中,由勾股定理得,再判定,得,进而得【详解】解:延长交于F ,在的延长线上取一点H ,使,连接,,,连接并延长交于点T ,连接,如下图所示:∵四边形为矩形,,∴,,,由折叠的性质得:,,,∵点E 是的重心,∴是边上的中线,是边上的中线,即,,又∵,ABCD 6AB =AD PCD CP ABC PD CE AB EF FH FE =AH BH PF AE BC BE PD PE =6CE CD ==ABC AT BC CF AB 132AF BF AB ===CT BT =AEBH BH AE ∥ET CBH 6EH CE ==3FH FE ==Rt BCF BC ==()Rt Rt HL PAF PEF ≌PA PE =12PD PA AD ===CE AB EF FH FE =AH BH PF AE BC BE ABCD 6AB =90BAD D ∠=∠=︒6CD AB ==AD BC =PD PE =6CE CD ==90PEC D ∠=∠=︒ABC AT BC CF AB 132AF BF AB ===CT BT =FH FE =∴四边形是平行四边形,∴,即,∴,∵,∴,∴是的中位线,∴,∴,∴,在中,由勾股定理得:,∴,∵,,∴,∵,,∴,在和中,,∴,∴,∴故答案为:三、解答题(本题共7小题,共55分)16. 计算:.【答案】【解析】【分析】此题考查了实数的混合运算能力,关键是能准确确定运算顺序和方法,并能进行正确地计算.先AEBH BH AE ∥BH ET ∥CT CE BT EH=CT BT =CE EH =ET CBH 6EH CE ==3FH FE ==639CF CE FE =+=+=Rt BCF BC ==AD BC ==3FE =3AF =AF FE =90PEC ∠=︒90BAD ∠=︒90BAD PEF ∠=∠=︒Rt PAF △Rt PEF △AF FE PF PF =⎧⎨=⎩()Rt Rt HL PAF PEF ≌PA PE =12PD PA AD ===()10120242cos 602π-⎛⎫-+︒ ⎪⎝⎭计算零次幂、负整数指数幂、算术平方根和特殊角的三角函数值,再计算乘法,最后计算加减.【详解】解:原式.17. 如图,在平面直角坐标系中,将直线向右平移5个单位长度得到直线.(1)直接画出直线;(2)的解析式为______;(3)直线与之间的距离为______个单位长度.【答案】(1)见解析(2) (3【解析】【分析】(1)根据平移的性质画出直线;(2)利用平移的规律求得直线的解析式;(3)根据三角形面积公式即可得到结论.【小问1详解】如图,112422=+-+⨯341=-+0=11:22l y x =+2l 2l 2l 1l 2l 1122y x =-2l 2l【小问2详解】将直线向右平移5个单位长度得到直线为;故答案为:;【小问3详解】如图,过O 作于C ,反向延长交于D ,∵与x 轴交于,与y 轴交于,与x 轴交于,与y 轴交于,∵,∴,∵,∴∵,,11:22l y x =+2l ()11152222y x x =-+=-1122y x =-OC AB ⊥OC EF 122y x =+()4,0A -()0,2B 1122y x =-()1,0E 10,2F ⎛⎫- ⎪⎝⎭AB EF ∥CD EF ⊥4,2OA OB =====AB 1OE =12OF =∴∵,∴,∵,∴,∴∴直线与【点睛】此题考查了一次函数图象与几何变换,勾股定理,一次函数与坐标轴的交点,正确把握变换规律是解题关键.18. 随着人们环保意识的增强,电动汽车作为一种绿色交通工具越来越受到消费者的青睐.小明打算从某汽车租赁公司租一辆纯电动汽车使用一天,预计总行程约为.该汽车租赁公司有A ,B ,C 三种型号纯电动汽车,每天的租金分别为300元/辆,380元/辆,500元/辆.为了选择合适的型号,小明对三种型号的汽车满电续航里程进行了调查分析,过程如下:【整理数据】EF ===1122EF OD OE OF ⋅=⋅OA OB OC AB ⋅===1122EF OD OE OF ⋅=⋅OD ==CD =1l 2l 420km(1)小明共调查了_____辆A 型纯电动汽车,并补全上述的条形统计图;(2)在A 型纯电动汽车满电续航里程扇形统计图中,“”对应的圆心角度数为_______°;【分析数据】型号平均里程(km )中位数(km )众数(km )A400400410B432m 440C 453450n(3)由上表填空:_______,_______;【判断决策】(4)结合上述分析,你认为小明选择哪个型号的纯电动汽车较为合适,并说明理由.【答案】(1)20,图见解析;(2);(3)430;450;(4)选择B 型,见解析【解析】【分析】(1)用“”的数量除以其占比可得A 型纯电动汽车的样本容量,再用样本容量分别减去其它续航里程的数量可得“”的数量,再补全条形统计图即可;(2)用360°乘续航里程为390km 的占比即可;(3)分别根据中位数和众数的定义解答即可;(4)结合平均里程、中位数、众数以及每天的租金解答即可.【详解】解:(1)(辆),的数量为:(辆),补全条形统计图如下:的390km m =n =72︒410km 400km 630%20÷=400km 2034625----=故答案为:20;(2)在A 型纯电动汽车满电续航里程的扇形统计图中,“”对应的圆心角度数为:,故答案为:72;(3)由题意得,.故答案为:430,450;(4)小明打算从某汽车租赁公司租一辆纯电动汽车使用一天,预计总行程约为,故A 型号的平均数、中位数和众数均低于420,不符合要求;B 、C 型号符合要求,但B 型号的租金比C 型号的租金优惠,所以选择B 型号的纯电动汽车较为合适.【点睛】本题考查的是条形统计图,扇形统计图,众数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;一组数据中出现次数最多的数据叫做众数.掌握定义是解题的关键.19. 投壶是中国古代的一种弓箭投掷游戏,弓箭投入壶内、壶耳会得到不同的分数,落在地上不得分.小龙与小华每人拿10支箭进行游戏,游戏结果如下:投入壶内投入壶耳落在地上总分小龙3支4支3支27分390km 43607220︒⨯=︒,4304304304502m n +===420km小华3支3支4支24分(1)求一支弓箭投入壶内、壶耳各得几分?(2)小丽也加入游戏,投完10支箭后,有2支弓箭落到了地上,若小丽赢得了比赛,则她至少投入壶内几支箭?【答案】(1)一支弓箭投入壶内得5分,投入壶耳得3分(2)她至少投入壶内2支箭【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,正确列出方程组和不等式是解答本题的关键.(1)设一支弓箭投入壶内得x 分,投入壶耳得y 分,根据小龙得了27分,小华得了24分列方程组求解即可;(2)根据小丽赢得了比赛列不等式求解即可.【小问1详解】设一支弓箭投入壶内得x 分,投入壶耳得y 分,根据题意得解得答:一支弓箭投入壶内得5分,投入壶耳得3分;【小问2详解】设投入壶内m 支箭,根据题意可得解得:∵m 需取整数答:她至少投入壶内2支箭.20. 如图,以为直径的⊙交于点D ,,垂足为E .34273324x y x y +=⎧⎨+=⎩53x y =⎧⎨=⎩()5310227m m +-->32m >∴min 2m =AB O BC DE AC ⊥(1)在不添加新的点和线的前提下,请增加一个条件:______,使直线为⊙的切线,并说明理由;(2)在(1)的条件下,若,,求⊙的半径.【答案】(1)增加条件:,见解析(2)【解析】【分析】本题考查切线的判定,解直角三角形,圆周角定理等知识,解题的关键是掌握切线的判定方法,属于中考常考题型.(1)添加条件:(答案不唯一).证明,推出即可;(2)解直角三角形分别求出,,再证明,得出,进而可得答案.【小问1详解】增加条件:.证明:连接,∵为的直径,,∵,,,∵,,,又∵,,DE O 6DE =2tan 3ADE ∠=O AB AC =132AB AC =OD AC ∥OD DE ⊥AE EC C ABD ∠=∠13AB AC ==AB AC =OD AB O ∴90ADB ∠=︒AB AC =90ADB ∠=︒∴BD CD =AO BO =BD CD =∴OD AC ∥DE AC ⊥∴90ODE DEC ∠=∠=︒即,∵为半径,为的切线;【小问2详解】在中,,,, ∵,,∵,,,,,,又∵,,,,,即的半径为.21. 【项目式学习】项目主题:合理设计 智慧泉源项目背景:为加强校园文化建设,学校计划在原有的喷泉池内增设一块矩形区域,安装LED 发光地砖灯,用于展示校园文化标语,要求该矩形区域被喷泉喷出水柱完全覆盖,因此需要对原有喷泉的喷头竖直高度进行合理调整.围绕这个问题,某数学学习小组开展了“合理设计智慧泉源”为主题的项目式学习.任务一 测量建模(1)如图1,在水平地面上的喷泉池中心有一个可以竖直升降的喷头,它向四周喷出的水柱为抛物线.经过测量,水柱的落点均在水平地面半径为2米的圆上,在距池中心水平距离0.75米处,水柱达到最高,高度为1.25米.学习小组根据喷泉的实景进行抽象,以池中心为原点,水平方向为x 轴,竖直方向为y 轴建OD DE ⊥OD ∴DE O Rt ADE △6DE =2tan 3ADE ∠=∴2tan 643AE DE ADE =∠=⨯=90ADB ADC ∠=∠=︒∴90ADE EDC ∠+∠=︒DE AC ⊥∴90DEC ∠=︒∴90EDC C ∠+∠=︒∴C ADE ∠=∠∴692tan tan 3DE DE EC C ADE ====∠∠∴4913AC AE EC =+=+=C ADE ∠=∠ADE ABD ∠=∠∴C ABD ∠=∠∴13AB AC ==∴132AO OB ==O 132立平面直角坐标系,画出如图2所示的函数图象,求水柱所在抛物线(第一象限部分)的函数表达式(不需写自变量的取值范围);任务二 推理分析(2)学习小组通过进一步分析发现:当喷头竖直高度调整时,喷头喷出的水柱抛物线形状不发生改变,当喷头竖直高度增加h 米,水柱落点形成的圆半径相应增加d 米,h 与d 之间存在一定的数量关系,求出h 与d 之间的数量关系式;任务三 设计方案(3)现计划在原有喷水池内增设一块矩形区域,米,米,增设后的俯视图如图3所示,与原水柱落点形成的圆相切,切点为的中点P .若要求增设的矩形区域被喷泉喷出水柱完全覆盖,则喷头竖直高度至少应该增加______米.【答案】(1);(2);(3)【解析】【分析】本题考查二次函数的应用,简单几何体的三视图,掌握待定系数法求二次函数的关系式是正确解答的关键.(1)根据题意可得第一象限中的抛物线的顶点坐标为,且过点,设抛物线关系式的顶点式,代入计算即可;(2)根据抛物线的形状不变,即a 的值不变,顶点坐标变为,抛物线与x 轴的交点坐标变为,代入即可得出h 与d 的还是关系式;(3)根据勾股定理求出的长,进而得出d 的值,再代入h 与d 的函数关系式进行计算即可.【详解】(1)解:ABCD 1.4AB =0.4BC =AB AB ABCD 2435544y x ⎛⎫=--+ ⎪⎝⎭2425h d d =+ 1.2()0.75,1.25()2,0()0.75, 1.25h +()2,0d +OC由题意可知,第一象限中的抛物线的顶点坐标为,且过点,设抛物线的关系式为,将代入得,,解得,∴第一象限中抛物线的关系式为;(2)由于喷头喷出的水柱抛物线形状不发生改变,喷头竖直高度增加h 米,其抛物线的关系式为,过点,∴,即,(3)如图,延长交于点Q ,则米,米,米,连接,在中,米,米,∴(米),即水柱落点形成的圆半径相应增加0.5米,,将代入得,(米),故答案为:.22. 如图1,在正方形中,点E 是边上一点,F 为的中点,将线段绕点F 顺时针旋转至线段,连接.某数学学习小组成员发现线段与之间存在一定的数量关系,并运用“特殊到一般”的思想开展了探究.()0.75,1.25()2,0()20.75 1.25y a x =-+()2,0()220.75 1.250a -+=45a =-()2244350.75 1.255544y x x⎛⎫=--+=--+ ⎪⎝⎭()240.75 1.255y x h =--++()2,0d +()2420.75 1.2505d h -+-++=()22441.25 1.25255h d d d =+-=+OP CD 0.4PQ AD == 2.4OQ =10.72CQ AB ==OC Rt COQ △ 2.4OQ =0.7CQ =2.5OC ==0.5d =0.5d =()24 1.25 1.255h d =+-()240.5 1.25 1.25 1.25h =+-=1.2ABCD AB CE AF 90︒GF CG CE CG【特例分析】当点E 与点B 重合时,小组成员经过讨论得到如下两种思路:思路一思路二第一步如图2,连接,,证明;如图3,将线段绕点F 逆时针旋转至,连接,证明;第二步利用相似三角形的性质及线段与之间的关系,得到线段与之间的数量关系.利用全等三角形的性质及线段与之间的关系,得到线段与之间的数量关系.图形表达(1)①在上述两种思路中,选择其中一种完成其相应的第一步的证明:②写出线段与之间的数量关系式:______;【深入探究】(2)如图1,当点E 与点B 不重合时,(1)中线段与之间的数量关系还成立吗?若成立,请加以证明:若不成立,请说明理由;【拓展延伸】(3)连接,记正方形的面积为,的面积为,当是直角三角形时,请直接写出的值.AG AC ACG AEF △∽△CF 90 HF AH AFH GFC △≌△CE EF CE CG CE AH CE CG CE CG CE CG AG ABCD 1S AFG 2S △FCG 12S S【答案】(1)①选择思路一,证明见解析;选择思路二,证明见解析;②或;(2)成立,证明见解析;(3)4【解析】【分析】(1)①选择思路一:连接, 如图所示,根据正方形的性质得到,,由旋转的性质证明是等腰直角三角形,进而得到,即可推出,,据此可证明;选择思路二:将线段绕点F 逆时针旋转至,连接,如图所示,由旋转的性质可得,再证明,即可证明;②选择思路一:利用相似三角形的性质即可得到答案;选择思路二:由全等三角形的性质得到,过点H 作于M , 证明四边形是正方形,推出,进而得到,即可得到;(2)连接,同理可证明;得到;再由直角三角形的性质得到,则;(3)由于,则,进而得到 ,故当为直角三角形,不能作为斜边;当时,和共线,则E 和A 重合,G 和D 重合,由正方形的性质可得,则;当时,连接,过B 作于M ,如图:证明,设,则,,由勾股定理得,则;证明是等腰直角三角形,得到,则CE=CG =AC AG ,AC =45BAC ∠=︒AFG45FAGAG =︒=∠,AC AG AB AF==BAF CAG ∠=∠ABF ACG ∽△△CF 90︒HF AH 9090HF FC HFC AF FG AFG =∠=︒=∠=︒,,,AFH GFC ∠=∠()SAS AFH GFC ≌AH CG =HM AB ⊥MBFH AM MH =AH BC =CG CE =AC AG BF ,,ABF ACG ∽△△CG AC BF AB==12BF CE =CG CE =90AEC ∠≥︒AF EF >FG CF >△FCG CF FG CF ⊥AF CF 14AFG ABCD S S =△正方形124S S =CF CG ⊥AC AG BF ,,BM CE ⊥45EFB ∠=︒CF EF x ==CG =2CE x =FG =2221322S FG x ==BFM BM MF ===,由勾股定理得,则,据此可得【详解】解:(1)①选择思路一:证明:连接, 如图所示,∵四边形是正方形∴,,由旋转得,∴是等腰直角三角形 ,∴,∴,∵,,∴,∴;选择思路二:证明:将线段绕点F 逆时针旋转至,连接,如图所示,由旋转的性质可得,∴,∴,∴;CM CF MF x =+=(22222BC BM CM x =+=+(2212S BC x ==+12S S =AC AG ,ABCD AC =45BAC ∠=︒90AF FG AFG =∠=︒,AFG 45FAG AG =︒=∠,AC AG AB AF==45BAF BAC CAF CA =-=︒-∠∠∠∠45CAG FAG CAF CAF =-=︒-∠∠∠∠BAF CAG ∠=∠ABF ACG ∽△△CF 90︒HF AH 9090HF FC HFC AF FG AFG =∠=︒=∠=︒,,,AFG HFC ∠=∠AFH GFC ∠=∠()SAS AFH GFC ≌②思路一:由(1)①知,∴∵为的中点,∴ ∴,∴,即;思路二:由(1)①知,∴,如图所示,过点H 作于M ,则四边形是矩形,又∵,∴四边形是正方形,∴,∴,∴,∴,∴,即;ABF ACG ∽△△CG AG BF AF==F BC 12CF BC =12CG BC =CG BC =CG CE =()SAS AFH GFC ≌AH CG =HM AB ⊥MBFH BF CF HF ==MBFH 1122BM MH BF BC AB ====AM MH =AM MH AH ==AH =CG BC =CG CE =综上所述,;(2)如图所示,连接,∵四边形是正方形∴,,由旋转得,∴是等腰直角三角形 ,∴,∴,∵,,∴,∴;∴;∵在中,点F为的中点,∴,∴∴;CG CE =AC AG BF ,,ABCD AC =45BAC ∠=︒90AF FG AFG =∠=︒,AFG 45FAG AG =︒=∠,AC AG AB AF==45BAF BAC CAF CA =-=︒-∠∠∠∠45CAG FAG CAF CAF =-=︒-∠∠∠∠BAF CAG ∠=∠ABF ACG ∽△△CG AC BF AB==Rt EBC CE 12BF CE =12CG CE =CG CE =(3)∵E 在边上,∴,∴,∵,∴ ,∵为直角三角形,∴不能作为斜边,①当时,∵,∴和共线,∴E 和A 重合,G 和D 重合,如图:∴由正方形的性质可得,∴;当时,连接,过B 作于M ,如图:由(2)知,,∴,∵,AB 90AEC ∠≥︒AF EF >AF FG CF EF ==,FG CF >△FCG CF FG CF ⊥AF FG ⊥AF CF 14AFG ABCDS S =△正方形124S S =CF CG ⊥AC AG BF ,,BM CE ⊥ABF ACG ∽△△ABF ACG ∠=∠9090ACG ACE ABF FBC ∠+∠=︒∠+∠=︒,∴,∵,∴,设,则,,在中,由勾股定理得,∴;在中,F 是中点,∴,∵,∴是等腰直角三角形,∴,∴,在中,由勾股定理得,∴,∴;综上所述,或【点睛】本题主要考查了正方形的性质与判定,相似三角形的性质与判定,旋转的性质,全等三角形的性FBC ACE ∠=∠45ACB ACE BCE ACB ∠=︒∠+∠=∠,45EFB FBC FCB ACB ∠=∠+∠=∠=︒CF EF x ==CG =2CE x =Rt CFG △FG ==222113222S AF FG FG x =⋅==Rt BCE CE BF CF x ==45BFM ∠=︒BFM BM MF x ===CM CF MF x =+=Rt BCM △(222222122BC BM CM x x x =+=+=+(2212S BC x ==1232S S ==124S S =12S S =质与判定,等腰直角三角形的性质与判定,勾股定理等等,正确作出辅助线构造相似三角形和全等三角形是解题的关键.。
2024年安徽省亳州市谯城区中考二模数学试题(含答案)
亳州市2024年4月份九年级模拟考试数学(试题卷)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A ,B 、C ,D 四个选项,其中只有一个是正确的)1.12024-的相反数是( )A .-2024B .2024C .12024D .12024-2.2024年2月5日,据中安在线报道,2023年,安徽省全省生产总值47050.6亿元,按不变价格计算,比上年增长5.8%.将数据47050.6亿用科学记数法表示为( )A .130.47050610⨯B .124.7050610⨯C .1147.050610⨯D .134.7050610⨯3.如图所示的几何体的俯视图是()A .B .C .D .4.下列运算正确的是( )A .235a b ab +=B .2322332a b a b a b -=C .()325a a =D .84422a a a ÷=5.不等式1152x x +>-的解集在数轴上表示正确的是()A .B .C .D .6.中国结寓意团圆、美满,以独特的东方神韵体现中国人民的智慧和深厚的文化底蕴.如图,晓进家有一个菱形中国结装饰,对角线AC ,BD 相交于点O ,测得10cm AB =,16cm BD =,过点A 作AH BC ⊥于点H ,连接OH ,则OH 的长为()第6题图A .6cmB .8cmC .10cmD .12cm7.如图,EF ,CD 是⊙O 的两条直径,点A 是劣弧 DF 的中点.若32COF ∠=︒,则ADC ∠的度数是()第7题图A .47°B .74°C .53°D .63°8.黄山是我国四大名山之一.在学习了“概率初步”这章后,同桌的小明和小波两同学做了一个游戏:小明将分别标有“美”、“丽”、“黄”、“山”四个汉字的小球(除汉字外其余完全相同)装在一个不透明的口袋中搅拌均匀,然后小波同学从口袋中随机摸出一球,不放回.小明再搅拌均匀后,小波又随机摸出一球,两次摸出的球上的汉字组成“黄山”的概率是( )A .14B .16C .18D .5169.一次函数()0y bx a c =-≠和二次函数()20y ax x b a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .10.如图,在矩形ABCD 中,AD =,BAD ∠的平分线交BC 于点E ,DH AE ⊥于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,则下列结论中错误的是( )A .ED 平分AEC∠B .12OE DE=C .HE DF =D .BC CF -=二、填空题(本大题共4小题,每小题5分,满分20分)11=______.12.若关于x 的一元二次方程()21210k x x +-+=有两个实数根,则实数k 的取值范围是______.13.如图,一次函数123y x =-的图象分别交x 轴、y 轴于点A ,B ,P 为AB 上一点且PC 为AOB △的中位线,PC 的延长线交反比例函数()0k y k x =>的图象于点Q ,52OQC S =△,则PQ 的长是______.第13题图14.如图,在ABC △中,30A ∠=︒,90ACB ∠=︒,4BC =.请解决下列问题:(1)AC 的长是______;(2)若点D 是AC 边上的动点,连接DB ,以DB 为边在DB 的左下方作等边DBE △,连接CE ,则点D 在运动过程中,线段CE 的长的最小值是______.第14题图三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:()23223x x x x --⋅--,其中3x =.16.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.意思是:现有几个人共买一件物品,每人出8文钱多出3文钱;每人出7文钱,还差4文钱.求该物品的价格是多少文钱.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系xOy 中.(1)画出ABC △关于x 轴对称的111A B C △;(2)在y 轴上画出一点D ,使得BD DA +的值最小.(保留作图痕迹,不写作法)18.合肥骆岗中央公园中的一条小路使用六边形、正方形、三角形三种地砖按照如图方式铺设.已知图1中有1块六边形地砖,6块正方形地砖,6块三角形地砖;图2中有2块六边形地砖,11块正方形地砖,10块三角形地砖;….(1)按照以上规律可知,图4中有______块正方形地砖;(2)若铺设这条小路共用去n 块六边形地砖,分别用含n 的代数式表示用去的正方形地砖、三角形地砖的数量;(3)若50n =,求此时三角形地砖的数量.五、(本大题共2小题,每小题10分,满分20分)19.如图,小明同学为了测量塔DE 的高度,他在与山脚B 处同一水平面的A 处测得塔尖点D 的仰角为37°,再沿AC 方向前进30米到达山脚B 处﹐测得塔尖点D 的仰角为63.4°,塔底点E 的仰角为30°,求塔DE 的高度.(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈,sin 63.40.89cm ︒≈,cos 63.40.45︒≈,tan 63.4 2.00︒≈ 1.73≈,结果精确到0.1米)20.如图,在ABC △中;90ACB ∠=︒,以BC 为直径的⊙O 交AB 于点D ,连接CD ,⊙O 的切线DE 交AC 于点E .(1)求证:AE =CE ;(2)若10AB =,6BC =,连接OE ,与CD 交于点F ,求OF 的长.六、(本题满分12分)21.安全意识,警钟长鸣,某中学为提高学生的安全防范意识,组织七、八年级学生开展了一次安全知识竞赛.成绩分别为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为10分、9分、8分、7分.学校分别从七、八年级各抽取25名学生的竞赛成绩整理并绘制成如下统计图、表,请根据提供的信息解答下列问题:年级平均分中位数众数方差七年级8.76a 9 1.06八年级8.768b1.38(1)根据以上信息可知:a =______,b =______,并把七年级竞赛成绩,条形统计图补充完整;(2)根据数据分析表,你认为七年级和八年,级哪个年级的竞赛成绩更好,并说明理由;(3)若该校七、八年级共有1200人参加本次知识竞赛,且规定9分及以上的成绩为优秀,请估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有多少人?七、(本题满分12分)22.已知点C 为ABC △和CDE △的公共顶点,将CDE △绕点C 顺时针旋转()0360αα︒<<︒,连接BD ,AE .(1)问题发现:如图1,若ABC △和CDE △均为等边三角形,则线段BD 与线段AE 的数量关系是______;(2)类比探究:如图2,若90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,其他条件不变,请写出线段BD 与线段AE 的数量关系,并说明理由;(3)拓展应用:如图3,若90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==B ,D ,E 三点共线时,求BD 的长.八、(本题满分14分)23.在平面直角坐标系中,抛物线223y x x =--交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求点A ,B 的坐标;(2)如图1,若在x 轴上方的抛物线上存在一点D ,使得45ACD ∠=︒,求点D 的坐标;(3)如图2,平面上一点()3,2E ,过点E 作任意一条直线交抛物线于P ,Q 两点,连接AP ,AQ ,分别交y 轴于M ,N 两点,则OM 与ON 的积是否为定值?若是,求出此定值;若不是,请说明理由.亳州市2024年4月份九年级模拟考试·数学(参考答案)一、选择题(本大题共10小题,每小题4分,满分40分)1.C 2.B 3.B 4.D 5.B 6.A 7.C 8.B 9.A10.D 【解析】在矩形ABCD 中,∵AE 平分BAD ∠,∴45BAE DAE ∠=∠=︒,∴ABE △是等腰直角三角形,∴AE =.∵AD =,∴AE AD =,∴()11802ADE AED DAE ∠=∠=︒-∠()11804567.52=︒-︒=︒,∴18067.5CED AEB AED ∠=︒-∠-∠=︒,∴AED CED ∠=∠,即ED 平分AEC ∠,故选项A 正确,不符合题意;在ABE △和AHD △中,,90,,BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴()AAS ABE AHD ≌△△,∴BE DH =,∴AB BE AH HD ===,∴()()111801804522AHB ABH BAE ∠=∠=︒-∠=︒-︒67.5=︒.∵OHE AHB ∠=∠,∴OHE AED ∠=∠,∴OE OH =.∵DH AE ⊥,∴90DHE ∠=︒,∴9067.522.5OHD DHE OHE ∠=∠-∠=︒-︒=︒.∵67.54522.5ODH ADE ADH ∠=∠-∠=︒-︒=︒,∴OHD ODH ∠=∠,∴OH OD =,∴OE OD OH ==,∴12OE DE =,故选项B 正确;不符合题意;∵9067.522.5EBH ABE ABH ∠=∠-∠=︒-︒=︒,∴EBH OHD ∠=∠.在BEH △和HDF △中,,,45,EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩∴()ASA BEH HDF ≌△△,∴BH HF =,EH DF =,故选C 正确,不符合题意;综上所述,可得CD BE =,DF EH CE ==,CF CD DF =-,∴()()2BC CF CD EH CD EH EH -=+--=,故选项D 错误,符合题意.二、填空题(本大题共4小题,每小题5分,满分20分)11.-1 12.0k ≤且1k ≠- 13.8314.(1)2)2【解析】(1)∵30A ∠=︒,90ACB ∠=︒,4BC =,∴8AB =.在Rt ABC △中,由勾股定理得AC ===(2)如图,取AB 的中点Q ,连接CQ ,DQ ,则4BQ AQ ==.∵90ACB ∠=︒,30A ∠=︒,∴60CBQ ∠=︒.∵4BQ AQ ==,∴4CQ BQ AQ ===,∴BCQ △是等边三角形∴BC BQ =.∵60DBE CBQ ∠=∠=︒,∴EBC DBQ ∠=∠.在EBC △和DBQ △中,,,,EB DB EBC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴()SAS EBC DBQ ≌△△,∴EC DQ =,∴当QD AC ⊥时,线段QD 最短,即线段EC 的值最小,在Rt AQD △中,4AQ =,30A ∠=︒,∴122DQ AQ ==,∴线段CE 的长的最小值为2.三、(本大题共2小题,每小题8分,满分16分)15.解:原式()2321333x x x x x --=⋅=---.当3x =时,原式===16.解:设该物品的价格为x 文钱,根据题意,得3487x x +-=,解得53x =.答:该物品的价格是53文钱.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)如图,111A B C △即为所求.如图,点D 即为所求.18.解:(1)21【解析】由图形可知,图1中六边形地砖块数为1,正方形地砖块数为6151=⨯+,三角形地砖块数为6142=⨯+;图2中六边形地砖块数为2,正方形地砖块数为11251=⨯+,三角形地砖块数为10242=⨯+;图3中六边形地砖块数为3,正方形地砖块数为16351=⨯+,三角形地砖块数为14342=⨯+;…,由此可见,每增加1块六边形地砖,正方形地砖会增加5块,三角形地砖会增加4块,所以图4中正方形地砖块数为21块.(2)由(1)发现的规律可知,当铺设这条小路共用去n 块六边形地砖时,用去的正方形地砖的块数为()51n +块,三角形地砖的块数为()42n +块.(3)当50n =时,三角形地砖的块数为424502202n +=⨯+=(块).答:此时三角形地砖的数量为202块.五、(本大题共2小题,每小题10分,满分20分)19.解:设BC x =米.在Rt BDC △中,∵63.4DBC ∠=︒,∴tan 63.42DC BC x =⋅︒≈(米).∵30AB =米,∴()30AC AB BC x =+=+米.在Rt ADC △中,∵37A ∠=︒,∴2tan 370.7530DC xAC x ︒==≈+,解得18x =,∴18BC =米,236DC x ==米.在Rt EBC △中,30EBC ∠=︒,∴tan 3018EC BC =⋅︒==(米),∴3625.6225.6DE DC CE =-=-≈≈(米).答:塔DE 的高度约为25.6米.20.(1)证明:∵90ACB ∠=︒,BC 为⊙O 的直径,∴EC 为⊙O 的切线,90BDC ADC ∠=∠=︒.∵DE 为⊙O 的切线,∴CE DE =,∴ECD EDC ∠=∠.∵90A ECD ADE EDC ∠+∠=∠+∠=︒,∴A ADE ∠=∠,∴AE DE ∠=,∴AE CE =.(2)解:如图,连接OD .∵90ACB ∠=︒,BC 为⊙O 的直径,∴AC 为⊙O 的切线.∵DE 是⊙O 的切线,∴EO 平分CED ∠,∴OE CD ⊥,F 为CD 的中.∵AE CE =,BO CO =,∴OE 是ABC △的中位线,∴1110522OE AB ==⨯=,在Rt ACB △中,90ACB ∠=︒,10AB =,6BC =,在勾股定理得8AC ===.在Rt ADC △中,∵AE CE =,∴118422DE AC ==⨯=.在Rt EDO △中,116322DO BC ==⨯=,4DE =,由勾股定理得5OE ===.由三角形的面积公式,得1122EDO S DE DO OE DF =⋅=⋅△,即435DF ⨯=,解得 2.4DF =.在Rt DFO △中,由勾股定理得 1.8OF ===.21.解:(1)9 10七年级竞赛成绩条形统计图补充完整如下.七年级竞赛成绩条形统计图【解析】∵七年级竞赛成绩由高到低排在第13位的是B 等级9分,∴9a =;∵八年级A 等级人数最多,∴10b =;七年级竞赛成绩C 等级人数为2561252---=(人).(2)七年级的竞赛成绩更好.理由:七、八年级的竞赛成绩的平均分相同,七年级竞赛成绩的中位数大于八年级,七年级竞赛成绩的方差小于八年级竞赛成绩的方差,所以七年级的竞赛成绩更好.(3)()61244%4%2512007202525+++⨯⨯=+(人).答:估计该中学七、八年级参加本次知识竞赛的学生中成绩为优秀的共有720人.七、(本题满分12分)22.解:(1)BD AE=【解析】∵ABC △和CDE △都是等边三角形,∴AC BC =,DC EC =,60ACB ECD ∠=∠=︒,∴BCD ACE ∠=∠,∴()SAS BCD ACE ≌△△,∴BD AE =.(2)12BD AE =.理由:∵90ABC EDC ∠=∠=︒,60ACB ECD ∠=∠=︒,∴30BAC DEC ∠=∠=︒,∴12BC CD AC CE ==,BCD ACE ∠=∠.∴BCD ACE ∽△△,∴12BD AE =,∴12BD AE =.(3)当B ,D ,E 三点共线时,有以下两种情况:①如图1,当点D 在线段BE 上的时.∵90BAC DEC ∠=∠=︒,AB AC =,CE DE =,2BC CD ==,∴BC ==,CD ==∴2AC =,1CE DE ==.∵90E ∠=︒,∴BE ==,∴1BD BE DE =-=-;②如图2,当点E 在线段BD 上时,同理得1BD BE DE =+=+.综上所述,BD 1-1.八、(本题满分14分)23.解:(1)令0y =,则2230x x --=,解得11x =-,23x =.∵点A 在点B 的左侧,∴()1,0A -,()3,0B ,即点A 的坐标为()1,0-,点B 的坐标为()3,0.(2)由抛物线223y x x =--,得点()0,3C -.如图1,过点A 作AK AC ⊥交CD 于点K ,过点K 作KH x ⊥轴于点H .∵45ACD ∠=︒,∴CAK △是等腰直角三角形,∴AC AK =.又∵90AOC KHA ∠=∠=︒,90ACO OAC KAH ∠=︒-∠=∠,∴()AAS OAC HKA ≌△△,∴3AH CO ==,1KH OA ==,∴2OH =,∴()2,1K .设直线CD 的解析式为3y kx =-,则231k -=,解得2k =,∴直线CD 的解析式为23y x =-.联立,得223,23,y x x y x ⎧=--⎨=-⎩解得4x =或0x =(舍去),∴点D 的坐标为()4,5.(3)OM 与ON 的积是定值.设直线PQ 的解析式为y ax b =+,()11,P x y ,()22,Q x y .∵直线PQ 过点()3,2E 交抛物线于P ,Q 两点,∴23a b =+,即23b a =-,∴直线PQ 的解析式为23y ax a =+-,联立,得223,23,y x x y ax a ⎧=--⎨=+-⎩整理,得()22350x a x a -++-=,∴122x x a +=+,1235x x a ⋅=-.如图2,过点P 作PS x ⊥轴于点S ,过点Q 作QT x ⊥轴于点T ,则AMO APS ∽△△,∴MO PS AO AS=,即()()2111111132311x x x x MO AO x x +---==++.∵1AO =,∴13OM x =-.同理得()23ON x =--,∴()()1233OM ON x x ⋅=---⎡⎤⎣⎦()()121239353292x x x x a a =-⋅-++=---++=⎡⎤⎡⎤⎣⎦⎣⎦,即OM 与ON 的积为定值,此定值为2.。
2024年广东省深圳市中考二模数学试题(解析版)
2024年广东省深圳市中考数学二模练习试卷满分100分,考试时长90分钟第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A .【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】A 既是轴对称图形,又是中心对称图形;B 是轴对称图形,不是中心对称图形;C 既不是轴对称图形,也不是中心对称图形;D 既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!3. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 70.27210×B. 62.7210×C. 52.7210×D. 427210×【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:5272000 2.7210=×,故选:C .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值. 4. 如图.直线//a b ,将一块含有45°角的直角三角板的两个顶点放在直线a ,b 上,如果220∠°.那么1∠度数为( )A. 15°B. 20°C. 25°D. 30°【答案】C【解析】 【分析】根据平行线的性质即可得到结论.【详解】解:如图,过E 作EF ∥直线a ,则EF ∥直线b ,∴∠3=∠1,∠4=∠2=20°,∴∠1=45°-∠2=25°;故选:C .【点睛】本题考查了平行线的性质,熟记两直线平行内错角相等是解题的关键.5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是( )A. a c b >>B. c a b a −>−C. 0a b +<D. 22ac bc <【答案】D【解析】【分析】根据a b c ,,对应的点在数轴上的位置,利用不等式的性质逐一判断即可.【详解】解:由数轴得:0a c b <<<,a b <,故选项A 不符合题意;∵c b <,∴c a b a −<−,故选项B 不符合题意; ∵a b <,a b <,∴0a b +>,故选项C 不符合题意;∵a b <,0c ≠,∴22ac bc <,故选项D 符合题意;故选:D .【点睛】本题考查的是实数与数轴,绝对值的概念,不等式的性质,掌握以上知识是解题的关键. 6. 如图,点O 是ABC 的外接圆的圆心,若80A ∠=°,则BOC ∠为( )A. 100°B. 160°C. 150°D. 130°【答案】B【解析】 【分析】根据圆周角定理即可得到BOC ∠的度数.【详解】解:∵点O 是ABC 的外接圆的圆心,∴A ∠、BOC ∠同对着 BC, ∵80A ∠=°,∴2160BOC A ∠°=∠=,故选:B .【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.7. 《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为( )A. 2501030x y x y += +=B. -2501030x y x y = +=C. 2105030x y x y += +=D. 2103050x y x y += +=【答案】A【解析】 【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】设醇酒为x 斗,行酒为y 斗,由题意,则有2501030x y x y += +=, 故选A .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键. 8. 甲、乙两地相距120km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了30km /h ,并继续匀速行驶至乙地,汽车行驶的路程()km y 与时间()h x 之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A. 10:35B. 10:40C. 10:45D. 10:50【答案】B【解析】 【分析】根据路程、速度和时间的关系结合函数图像解答即可.【详解】解:∵汽车匀速行驶了一半的路程后将速度提高了30km /h ,甲、乙两地相距120km ,∴汽车1小时行驶了60km ,汽车的速度为60km /h ,∴1小时以后的速度为90km /h , 汽车行驶完后面的路程需要的时间为60604090×=分钟, 故该车到达乙地的时间是当天上午10:40;故选:B .【点睛】本题考查了函数的图像,正确理解题意、灵活应用数形结合思想是解题的关键.9. 如图,在ABC 中,90C ∠=°,30B ∠=°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,以下结论错误的是( )A. AD 是BAC ∠的平分线B. 60ADC ∠=°C. 点D 在线段AB 的垂直平分线上D. :1:2ABD ABC S S =△△【答案】D【解析】 【分析】本题考查的是角平分线的含义,线段的垂直平分线的判定,含30°的直角三角形的性质,A 根据作图的过程可以判定AD 是BAC ∠的角平分线;B 利用角平分线的定义可以推知30CAD ∠=°,则由直角三角形的性质来求ADC ∠的度数;C 利用等角对等边可以证得AD DB =,由线段垂直平分线的判定可以证明点D 在AB 的垂直平分线上;D 利用30°角所对的直角边是斜边的一半求出1122CD AD DB ==,进而可得:1:2DAC ABD S S =△△,则:2:3ABD ABC S S = . 【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确,不符合题意;∵9030C B ∠=°∠=°,,∴60CAB ∠=°,∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=°,∴60ADC ∠=°,故B 正确,不符合题意;∵3030B DAB ∠=°∠=°,,∴AD DB =,∴点D 在AB 的垂直平分线上,故C 正确,不符合题意;∵30CAD ∠=°, ∴12CD AD =, ∵AD DB =, ∴12CD DB =, ∴:1:2DAC ABD S S =△△,则:2:3ABD ABC S S = ,故D 错误,符合题意,故选:D .10. 定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y “倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q −−都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4;③抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB其中,正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点(),2A a a +,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点()2,23D t t t −−是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点(),B m n ,根据“倍增点”定义可得()21m n +=,根据两点间距离公式可得()22211PB m n =−+,把()21n m =+代入化简并配方,即可得出21PB 的最小值为165,即可判断. 【详解】解:①∵()11,0P ,()13,8Q ,的∴()()121282288103,x x y y +=+=++×==, ∴()12122x x y y +=+,则()13,8Q 是点1P 的“倍增点”;∵()11,0P ,()22,2Q −−,∴()()121222212202,x x y y +==−×−=−=−+, ∴()12122x x y y +=+,则()22,2Q −−是点1P 的“倍增点”;故①正确,符合题意;②设点(),2A a a +,∵点A 是点1P 的“倍增点”,∴()2102a a ×+=++,解得:0a =,∴()0,2A ,故②不正确,不符合题意;③设抛物线上点()2,23D t t t −−是点1P 的“倍增点”,∴()22123t t t +=−−,整理得:2450t t −−=, ∵()()24415360∆=−−××−=>,∴方程有两个不相等实根,即抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点(),B m n ,∵点B 是点1P 的“倍增点”,∴()21m n +=, ∵(),B m n ,()11,0P ,∴()22211PB m n =−+ ()()22121m m =−++2565m m =++2316555m =++, ∵50>,∴21PB 的最小值为165,∴1PB = 故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 若226m n −=−,且m ﹣n =﹣3,则m +n =_____.【答案】2【解析】【详解】解:∵()()226m n m n m n −=+−=−,m ﹣n =﹣3, ∴﹣3(m +n )=﹣6,∴m +n =2,故答案为:2【点睛】本题考查代数式求值,解题的关键是熟练运用平方差公式,本题属于基础题型.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是______. 【答案】6【解析】【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14,∴22n+=14,解得n=6,经检验n=6是原方程的根,故答案为:6【点睛】本题考查了概率公式,根据概率,运用公式建立起分式方程是解题的关键.13. 如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π【解析】【分析】延长F A交⊙A于G,如图所示:根据六边形ABCDEF是正六边形,AB=2,利用外角和求得∠GAB=360606°=°,再求出正六边形内角∠F AB=180°-∠GAB=180°-60°=120°,利用扇形面积公式代入数值计算即可.【详解】解:延长F A交⊙A于G,如图所示:∵六边形ABCDEF是正六边形,AB=2,∴∠GAB=360606°=°,∠F AB=180°-∠GAB=180°-60°=120°,∴2120443603603 FABn rSπππ××===扇形,故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.14. 如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.【答案】18y x= 【解析】【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m ×=+,得到3m =,推出18y x=. 【详解】解:∵四边形OABC∴3OC AB ==,设正方形CDEF 的边长为m ,∴CD CF EF m ===,∵2BC CD =,∴2BC m =,∴()3,2B m ,()3,E m m +,设反比例函数表达式为k y x=, ∴()323m m m ×=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,的∴3618=×=k , ∴这个反比例函数的表达式是18y x =, 故答案为:18y x=.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.15. 如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为______.【解析】【分析】设AD a =,AB b =,根据矩形性质和勾股定理可得AC =,再证得ADE BEF ∽,可得AD AE BE BF=,24b BF a =,进而可得24b CF a a =−,再由tan tan CDF CAD ∠=∠,可得CF CD CD AD =,得出2b CF a =,联立得224b b a a a −=,求得a =,再证得DGH DFE △∽△,即可求得答案. 【详解】解: 四边形ABCD 是矩形,设AD a =,AB b =,90BAD B ADC ∴∠=∠=∠=°,AD BC a ==,AB CD b ==,AC ∴==,EF DE ⊥ ,90DEF ∴∠=°,90ADE AED AED BEF ∴∠+∠=∠+∠=°,ADE BEF ∠∠∴=,ADE BEF ∴ ∽, ∴AD AE BE BF=, E 是AB 的中点, 1122AE BE AB b ∴===, 24b BF a∴=, 24b CF BC BF a a∴=−=−, DH AC ⊥ ,90ADH CAD ∴∠+∠=°,90ADH CDF ∠+∠=° ,CDF CAD ∴∠=∠,tan tan CDF CAD ∴∠=∠, ∴CF CD CD AD=,即CF b b a =, 2b CF a∴=, 224b b a a a∴−=,a ∴, 在Rt ADE △中,DE , DH AC AD CD ⋅=⋅ ,AD CD DH AC ⋅∴==, 90DHG DEF ∠=∠=° ,GDH FDE ∠=∠,DGH DFE ∴△∽△,∴GH DH EF DE ==. 【点睛】本题考查了矩形的性质,相似三角形的性质与判定,直角三角形的性质,勾股定理等知识的综合运用,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本题共7小题,共55分,解答应写出文字说明、证明过程或演算步骤.) 16. 计算:(1)()2014cos3032π− −+°−−− (2)()()()332a a a a +−−−.【答案】(1)3(2)29a −【解析】【分析】本题考查含特殊角三角函数值的混合运算和整式的乘法.(1)先计算负指数幂,零指数幂,特殊角的三角函数值和二次根式,再进行加减计算;(2)根据平方差公式和单项式乘多项式法则计算,再合并同类项即可.【小问1详解】解: ()2014cos3032π− −+°−−441=+−41=+−−3=【小问2详解】()()()332a a a a +−−−2292a a a −−+29=−a17. 某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A ,B ,C ,D 表示,并将测试结果绘制成如下两幅不完整的统计图.请根据统计图中信息解答以下问题;(1)本次抽取的学生共有_______人,扇形统计图中A 所对应扇形的圆心角是______°,并把条形统计图补充完整;(2)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,则抽取的这部分学生书写成绩的众数是_______分,中位数是_______分,平均数是_______分;(3)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有_____人:(4)A 等级的4名学生中有3名女生和1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.【答案】(1)40;36;见解析(2)70;70;66.5(3)280 (4)12【解析】【分析】(1)由C 等级人数及其所占百分比可得总人数,用360°乘以A 等级人数所占比例即可得; (2)由中位数,众数,平均数的定义结合数据求解即可;(3)利用总人数乘以样本中A 等级人数所占比例即可得;(4)列表或画树状图得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【小问1详解】本次抽取的学生人数是1640%40÷=(人), 扇形统计图中A 所对应扇形圆心角的度数是43603640°×=°, 故答案为40人、36°;B 等级人数为()40416146−++=(人),的补全条形图如下:【小问2详解】由条形统计图可知众数为:70由A 、B 、C 的人数相加得:4+6+16=26>20,所以中位数为:70平均数:4906801670145066.540×+×+×+×= 【小问3详解】 等级达到优秀的人数大约有4280028040×=(人); 【小问4详解】画树状图为:∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率为12.【点睛】本题考查了扇形统计图,条形统计图,中位数,众数,平均数,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.18. “母亲节”来临之际,某花店打算使用不超过30000元的进货资金购进百合与康乃馨两种鲜花共1200束进行销售.百合与康乃馨的进货价格分别为每束30元、18元,百合每束的售价是康乃馨每束售价的1.6倍,若消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束.(1)求百合与康乃馨两种鲜花的售价分别为每束多少元;(2)花店为了让利给消费者,决定把百合售价每束降低4元,康乃馨的售价每束降低2元.求花店应如何进货才能获得最大利润.(假设购进的两种鲜花全部销售完)为的【答案】(1)康乃馨的售价为每束40元,百合的售价为每束64元;(2)购进百合700束,购进康乃馨500束.【解析】【分析】本题考查了分式方程,一次函数的应用,解题的关键是读懂题意,列出方程和函数关系式. (1)设康乃馨的售价为每束x 元,根据消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束得:32002400101.6x x+=,解方程并检验可得答案; (2)设购进百合m 束,根据使用不超过30000元的进货资金购进百合与康乃馨两种鲜花,有()3018120030000m m +−≤,700m ≤,设花店获得利润为w 元,可得:()()()644304021812001024000w m m m =−−+−−−=+,再根据一次函数性质可得答案;【小问1详解】设康乃馨的售价为每束x 元,则百合的售价为每束1.6x 元; 根据题意得:32002400101.6x x+=, 解得:40x =,经检验,40x =是原方程的解,∴1.6 1.64064x =×=,答:康乃馨的售价为每束40元,百合的售价为每束64元;【小问2详解】设购进百合m 束,则购进康乃馨()1200−m 束,∵使用不超过30000元的进货资金购进百合与康乃馨两种鲜花,∴()3018120030000m m +−≤,解得700m ≤,设花店获得利润为w 元,根据题意得:()()()644304021812001024000w m m m =−−+−−−=+,∵100>,∴w 随m 的增大而增大,∴当700m =时,w 取最大值107002400031000×+=(元), 此时12001200700500m −=−=,答:购进百合700束,购进康乃馨500束.19. 如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=°,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使165BCD ∠°=,此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm 1.41≈ 1.73≈)【答案】(1)39.6cm(2)减少了3.2cm【解析】【分析】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. (1)如图2中,作BO DE ⊥于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP DF ⊥P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,求出DF ,再求出DF DE −即可解决问题.【小问1详解】如图2中,作BO DE ⊥于O .∵90OEA BOE BAE ∠=∠=∠=°,∴四边形ABOE 是矩形,∴90OBA ∠=°,∴1509060DBO °−°∠==°,∴)sin 60cm ODBD =⋅°=,∴()539.6cm DE OD OE OD AB =+=+=+≈.【小问2详解】作DF ⊥l 于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,∵6090CBH CHB ∠=°∠=°,,∴30BCH ∠=°,∵165BCD ∠=°,∴45DCP ∠=°, )sin 60cm CH BC ∴=⋅°=,)sin 45cm DPCD =⋅°=, ∴DF DP PG GF DP CH AB =++=++()()5cm =++,∴下降高度:55DE DF −=+−−− ()3.2cm =−≈.20. 如图,在ABC 中,90C ∠=°,O 是AB 上一点,以OA 为半径的O 与BC 相切于点D ,与AB 相交于点E .(1)求证:AD 是BAC ∠的平分线;(2)若2BE =,4BD =,求AE 的长.【答案】(1)见解析 (2)6【解析】【分析】(1)根据切线的性质得OD BC ⊥,再由90C ∠=°,得OD AC ∥,由平行线的性质得ODA DAC ∠=∠,又因为等腰三角形得ODA OAD ∠=∠,等量代换即可得证;(2)在Rt BOD 中222BD OD BO +=,由勾股定理即可求半径.【小问1详解】证明:连接OD ;∵O 与BC 相切于点D∴OD BC ⊥∴90ODB ∠=°∵90C ∠=°,∴ODB C ∠=∠∴OD AC ∥∴ODA DAC ∠=∠∵OD OA =∴ODA OAD ∠=∠∴OAD DAC ∠=∠∴AD 是BAC ∠的平分线;【小问2详解】解:∵90C ∠=°∴在Rt BOD 中222BD OD BO +=;∵2BE =,4BD =,设圆的半径为r ,∴()22242r r +=+解得3r =:,∴圆的半径为3∴6AE =.【点睛】本题考查了切线的性质、角平分线的性质、勾股定理,熟悉角平分线的定义与性质是解决本题的关键.21. 如图,BC 是O 的直径,点A 在O 上,OD AC ⊥于点G ,交O 于点D ,过点D 作EF AB ⊥,分别交BA ,BC 的延长线于点E ,F .(1)求证:EF 是O 的切线;(2)若2AE =,4tan 3B =,求O 的半径. 【答案】(1)见解析 (2)5【解析】【分析】(1)由BC 是O 的直径,点A 在O 上,可得90BAC ∠=°,证明EF AC ∥,则OD EF ⊥,进而结论得证;(2)证明四边形AGDE 是矩形,则2DG AE ==,由OD AB ∥,可得tan tan COG B ∠=∠,即43CG OG =,设4CG a =,则3OG a =,勾股定理得,5OC a =,由OG DG OD +=,可得325a a +=,解得1a =,则5OC =,进而可得结果.【小问1详解】证明:∵BC 是O 的直径,点A 在O 上,∴90BAC ∠=°,即AC AB ⊥,∵EF AB ⊥,∴EF AC ∥,∵OD AC ⊥,∴OD EF ⊥,又∵OD 是半径,∴EF 是O 的切线;【小问2详解】解:∵90BAC ∠=°,EF AB ⊥,OD EF ⊥, ∴四边形AGDE 是矩形, ∴2DG AE ==,∵OD AC ⊥,AC AB ⊥, ∴OD AB ∥, ∴COG B ∠=∠, ∴tan tan COG B ∠=∠,即43CG OG =, 设4CG a =,则3OG a =,由勾股定理得,5OC a =,∵OG DG OD +=, ∴325a a +=,解得1a =, ∴5OC =, ∴O 的半径为5.【点睛】本题考查了切线的判定,平行线的判定与性质,直径所对的圆周角为直角,勾股定理,正切,矩形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用.22. (1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF △处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF △处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,6AB =,E 为CD 边上的三等分点,60,D ∠=°将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.【答案】(1)见解析;(2)92;()CP 的长为32或65【解析】【分析】(1)根据将AEB ∆沿BE 翻折到∆BEF 处,四边形ABCD 是正方形,得AB BF =,90BFE A ∠=∠=°,即得90BFG C ∠=°=∠,可证()Rt BFG Rt BCG HL ≌;(2)延长BH ,AD 交于Q ,设FH HC x ==,在Rt BCH 中,有2228(6)x x +=+,得73x =,113DH DC HC =−=,由BFG BCH ∆∆∽,得6778633BG FG=+,254BG =,74FG =,而//EQ GB ,//DQ CB ,可得BC CH DQ DH =,即783763DQ =−,887DQ =,设AE EF m ==,则8DE m =−,因EQ EF BG FG =,有144725744m m −=,即解得AE 的长为92;(3)分两种情况:(Ⅰ)当123DE DC ==时,延长FE 交AD 于Q ,过Q 作QH CD ⊥于H ,设DQ x =,QE y =,则6AQ x =−,2CP x =,由AE 是AQF ∆的角平分线,有662x y−=①,在Rt ΔHQE中,2221(1))2x y −+=②,可解得34x =,322CPx ==; (Ⅱ)当123CE DC ==时,延长FE 交AD 延长线于Q ′,过D 作DN AB ⊥交BA 延长线于N ,同理解得125x =,65CP =.【详解】证明:(1) 将AEB ∆沿BE 翻折到∆BEF 处,四边形ABCD 是正方形,AB BF ∴=,90BFE A ∠=∠=°, 90BFG C ∴∠=°=∠,AB BC BF == ,BG BG =,()Rt BFG Rt BCG HL ∴ ≌;(2)解:延长BH ,AD 交于Q ,如图:设FH HC x ==,在Rt BCH 中,222BC CH BH +=,2228(6)x x ∴+=+,解得73x =, 113DH DC HC ∴=−=, 90BFG BCH ∠=∠=° ,HBC FBG ∠=∠,BFG BCH ∴∆∆∽,∴BF BG FG BC BH HC==,即6778633BG FG =+,254BG ∴=,74FG =,//EQ GB ,//DQ CB ,EFQ GFB ∴∆∆∽,DHQ CHB ∆∆∽,∴BC CH DQ DH =,即783763DQ =−, 887DQ ∴=,设AE EF m ==,则8DE m =−, 88144877EQ DE DQ m m ∴=+=−+=−, EFQ GFB ∆∆ ∽,∴EQ EF BG FG=,即144725744m m−=, 解得92m =,AE ∴的长为92;(3)(Ⅰ)当123DE DC ==时,延长FE 交AD 于Q ,过Q 作QH CD ⊥于H ,如图:设DQ x =,QE y =,则6AQ x =−, //CP DQ ,CPE QDE ∴∆∆∽,∴2CP CEDQ DE ==, 2CP x ∴=,ADE ∆ 沿AE 翻折得到AFE ∆,2EF DE ∴==,6AF AD ==,QAE FAE ∠=∠, AE ∴是AQF ∆的角平分线,∴AQ QEAF EF=,即662x y −=①, 60D ∠=° ,1122DH DQ x ∴==,122HE DE DH x =−=−,HQx =, 在Rt HQE △中,222HE HQ EQ +=,2221(1))2x y ∴−+=②, 联立①②可解得34x =, 322CP x ∴==; (Ⅱ)当123CE DC ==时,延长FE 交AD 延长线于Q ′,过D 作DN AB ⊥交BA 延长线于N ,如图:同理Q AE EAF ′∠=∠, ∴AQ Q EAF EF ′′=,即664x y +=,由222HQ HD Q D ′′+=得:2221)(4)2x y ++=, 可解得125x =, 1625CP x ∴==, 综上所述,CP 的长为32或65.【点睛】本题考查四边形的综合应用,涉及全等三角形的判定,相似三角形的判定与性质,三角形角平分线的性质,勾股定理及应用等知识,解题的关键是方程思想的应用.23. 如图,在平面直角坐标系中,经过点()4,0A 的直线AB 与y 轴交于点()0,4B .经过原点O 的抛物线2y x bx c =−++交直线AB 于点A ,C ,抛物线的顶点为D .(1)求抛物线2y x bx c =−++的表达式;(2)M 是线段AB 上一点,N 是抛物线上一点,当MN y ∥轴且2MN =时,求点M 的坐标;(3)P 是抛物线上一动点,Q 是平面直角坐标系内一点.是否存在以点A ,C ,P ,Q 为顶点的四边形是矩形?若存在,直接写出点Q 的坐标;若不存在,请说明理由. 【答案】(1)24y x x =−+(2)或()2,2或()3,1(3)存在,()5,1或()4,2−−或或【解析】【分析】(1)利用待定系数法求出抛物线的解析式;(2)求出直线AB 的表达式为4y x =−+,设(),4M t t −+,()2,4N t t t −+,分当M 在N 点上方时,()2244542MN t t t t t =−+−−+=−+=.和当M 在N 点下方时,()2244542MN t t t t t =−+−−+=−+−=,即可求出M 的坐标;(3)画出图形,分AC 是四边形的边和AC 是四边形的对角线,进行讨论,利用勾股定理、相似三角形的判定与性质、函数图像的交点、平移等知识点进行解答即可得出答案. 【小问1详解】解:∵抛物线2y x bx c =−++过点()4,0A ,()0,0O∴16400.b c c −++= = ,解得40b c = =,∴抛物线的表达式为24y x x =−+. 【小问2详解】设直线AB 的解析式为:y kx b =+′, ∵直线AB 经过()4,0A ,()0,4B ,∴404k b b +′=′= ,∴14k b =− ′=, ∴直线AB 的表达式为4y x =−+.∵MN y ∥轴,可设(),4M t t −+,()2,4N t t t −+,其中04t ≤≤.当M 在N 点上方时,()2244542MN t t t t t =−+−−+=−+=.解得1t =,2t =(舍去).∴1M . 当M 在N 点下方时, ()2244542MN t t t t t =−+−−+=−+−=.解得32t =,43t =. ∴()22,2M ,()33,1M .综上所述,满足条件的点M 的坐标有三个,()2,2,()3,1.【小问3详解】存在.满足条件的点Q 的坐标有4个.()5,1,()4,2−−,,. 理由如下:①如图,若AC 是四边形的边.当2x =时,242y =−+= ∴拋物线的对称轴与直线AB 相交于点()2,2R . 过点C ,A 分别作直线AB 的垂线交抛物线于点1P ,2P , ∵()1,3C ,()2,4D ,∴CD =,CR =2RD =.∵2222+=,∴222CD CR DR +=. ∴90RCD ∠=°. ∴点1P 与点D 重合.当1111CP AQ CP AQ =∥,时,四边形11ACPQ 是矩形. ∵()1,3C 向右平移1个单位,向上平移1个单位得到()12,4P . ∴()4,0A 向右平移1个单位,向上平移1个单位得到()15,1Q . 此时直线1PC 的解析式为2y x =+. ∵直线2P A 与1PC 平行且过点()4,0A , ∴直线2P A 的解析式为4y x =−.∵点2P 是直线4y x =−与拋物线24y x x =−+的交点, ∴244x x x −+=−.解得11x =−,24x =(舍去). ∴()21,5P −−.当2222AC P Q AC P Q ,∥=时,四边形22ACQ P 是矩形. ∵()4,0A 向左平移3个单位,向上平移3个单位得到()1,3C . ∴()21,5P −−向左平移3个单位,向上平移3个单位得到()24,2Q −−. ②如图,若AC 是四边形的对角线,当390APC ∠=°时.过点3P 作3P H x ⊥轴,垂足为H ,过点C 作3CK P H ⊥,垂足为K . 可得3390P KC AHP ∠=∠=°,33PCK AP H ∠=∠. ∴33PCK AP H ∽△△. ∴33P K AHCK P H=.∴2243414t t t t t t −+−−=−−+. ∵点P 不与点A ,C 重合, ∴1t ≠和4t ≠. ∴2310t t −+=.∴3,4t =.∴如图,满足条件的点P 有两个.即3P ,4P .当3333PC AQ PC AQ ∥=,时,四边形33APCQ是矩形.∵3P ()1,3C .∴()4,0A 3Q . 当4444P C AQ P C AQ ∥=,时,四边形44AP CQ 是矩形.∵4P 个单位得到()1,3C .∴()4,0A 个单位得到4Q .综上,满足条件的点Q 的坐标为()5,1或()4,2−−或或. 【点睛】本题主要考查的是二次函数的综合应用,本题主要涉及了待定系数法求函数的解析式、勾股定理,矩形的性质,相似三角形的判定与性质,点的平移等知识,根据题意画出符合条件的图形、进行分类讨论是解题的关键.第31页/共31页。
2024年河南省中考二模数学试题(解析版)
2024年河南省初中第二次学业水平测试数学(A )注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.请用蓝、黑色水笔或圆珠笔直接答在答题卡上.2.答卷前将装订线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确选项的代号字母填入题后括号内.1. 下列四个数中,最大的数是( )A. B. C. D. 【答案】A 【解析】【分析】本题考查实数的大小比较,根据两个负数比较大小,绝对值大的反而小求解即可.【详解】解:∵,∴,∴最大的数是,故选:A .2. 国家统计局1月30日发布,2023年,全国规模以上文化及相关产业企业实现营业收入129515亿元,比上年增长,文化企业发展持续回升向好.其中数据“129515亿”用科学记数法可表示为( )A. B. C. D. 【答案】B 【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.【详解】解:,1-3-2-321>>>321-<-<<-1-8.2%140.12951510⨯131.2951510⨯121.2951510⨯812951510⨯10n a ⨯1||10a ≤<n a n 10n a ⨯1||10a ≤<n n a n 10≥n 1<n 1312951500000000 1.2951510=⨯3. 如图,是由10个相同的小正方体搭成的几何体,它的主视图是( )A. B. C. D.【答案】A 【解析】【分析】根据三视图的画法,确定从正面看时每列正方形的个数,即可正确解答.【详解】从正面看易得第一列有3个正方形,第二列最下面一层有1个正方形,第三列有2个正方形,所以该几何体的主视图为选项A 所示图形.故选:A.【点睛】此题考查简单几何体的三视图.错因分析 容易题.失分的原因是:不会判断小正方体组合体的三视图.4. 下列运算正确的是( )A.B. C. D. 【答案】B 【解析】【分析】本题考查了二次根式的加法运算和乘法运算,幂的乘方,同底数幂的乘法,熟练掌握运算法则和公式是解题的关键.依次利用二次根式的加法,幂的乘方,同底数幂的乘法,二次根式的乘法运算进行化简即可.【详解】解:A不是同类二次根式,不能合并,故本选项不符合题意;B 、,故本选项符合题意;C 、,故本选项不符合题意;D 、,故本选项不符合题意.+=()5210x x =5630x x x ⋅==()5210x x =5611x x x ⋅=6a =5. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A. 66°B. 104°C. 114°D. 124°【答案】C 【解析】【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC=∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC ,∴∠BAC =∠ACD =∠B′AC =∠1=22°,∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°,故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.6. 甲,乙,丙,丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:甲乙丙丁平均数9.69.59.59.6方差0.270.250.270.25如果从这四人中选出一位成绩较好且状态稳定的选手参加比赛,那么应该选( )A 甲B. 乙C. 丙D. 丁【答案】D.1212【分析】本题考查平均数和方差,根据平均数越大,方差越小则成绩越好且状态越稳定求解即可.【详解】解:根据表格数据,甲和丁成绩的平均数为9.6,均高于乙和丙,说明甲和丁的成绩较好;又甲成绩的方差是0.27,大于丁成绩的方差0.25,说明丁的成绩较稳定,综上,丁的成绩较好且状态稳定,故应该选丁,故选:D .7. 下列方程中,无实数根的是( )A. B. C. D. 【答案】D 【解析】【分析】本题考查了根的判别式,牢记“当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根”是解题的关键.根据方程的系数结合根的判别式,可分别找出四个选项中方程的根的判别式△的值,取的选项即可得出结论.【详解】解:A 、,方程有两个不相等的实数根,故本选项不符合题意;B 、,方程有两个不相等的实数根,故本选项不符合题意;C 、,方程有两个相等的实数根,故本选项不符合题意;D 、,方程没有实数根,故本选项符合题意.故选:D .8. 如图,正方形的对角线相交于点O ,点E 在边上,点F 在上,过点E 作,垂足为点G ,若,,,则的长为( )230x x +=2210x x +-=2210x x ++=230x x -+=0∆>Δ0=Δ0<24b ac ∆=-Δ0< 2341090∆=-⨯⨯=>∴230x x += 2241(1)80∆=-⨯⨯-=>∴2210x x +-= 224110∆=-⨯⨯=∴2210x x ++= 2(1)413110∆=--⨯⨯=-<∴230x x -+=ABCD AB OD EG BD ⊥FE FC =EF FC ⊥3OF =BEA. 3B.C.D. 【答案】B 【解析】【分析】证明,可得,再利用等腰直角三角形即可解决问题.【详解】解:∵四边形是正方形,∴,,∵,∴,∴,∵,∴,在和中,,∴,∴,∵,∴是等腰直角三角形,∴故选:B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解决本题的关键是得到.9. 河南是中原粮仓,粮食的水分含量是评价粮食品质的重要指标,粮食水分检测对粮食的收购、运输、储存等都具有十分重要的意义.其中,电阻式粮食水分测量仪的内部电路如图甲所示,将粮食放在湿敏电阻上,使的阻值发生变化,其阻值随粮食水分含量的变化关系如图乙所示.观察图象,下列说法不正确的是( )()ASA EFG CFO ≌3EG OF ==ABCD AC BD ⊥=45ABC ∠︒EF CF ⊥90COF EFC ∠=∠=︒90EFG CFO FCO ∠=︒-∠=∠EG BD ⊥90EGF FOC ∠=∠=︒EFG FCO 90EGF FOC EFG FCO FE CF ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ASA EFG CFO ≌3EG OF ==45ABD ∠=︒EBG BE ==EFG CFO ≌1R 1RA. 当没有粮食放置时,的阻值为B.的阻值随着粮食水分含量的增大而减小C. 该装置能检测的粮食水分含量的最大值是D. 湿敏电阻与粮食水分含量之间是反比例关系【答案】D 【解析】【分析】本题考查了物理与数学的跨学科综合,成反比例关系的概念,从函数图象获取信息,是解题的关键.根据图象对每一个选项逐一判断即可.【详解】解:A 、当没有粮食放置时,即水分含量为0,由图象可知的阻值为,故本选项不符合题意;B 、由图象可知,的阻值随着粮食水分含量的增大而减小,故本选项不符合题意;C 、由图象可知,该装置能检测的粮食水分含量的最大值是,故本选项不符合题意;D 、如果两个变量的每一组对应值的乘积是一个不等于0的常数,那么就说这两个变量成反比例,从图象中得到当水分含量为0时,的阻值为,此时这水分含量的阻值为0,不符合成反比例关系的定义,故本选项符合题意.故选:D .10. 如图,平面直角坐标系中,的顶点O 为原点,,,分别以A ,B 为圆心,以大于的长为半径作弧,两弧交于P ,Q 两点,作直线,交于点C,交y 轴于点D ,交x 轴于点E ,点M 从点A 出发,沿x 轴负方向以每秒N 从点O 出发,沿以每秒1个单位长度的速度运动,当时,点M 的坐标为( )1R 40Ω1R 12.5%1R 1R 40Ω1R 12.5%1R 40Ω⨯1R Rt OAB )A()0,1B 12AB PQ AB OB MN CD ∥A. B. C. D. 【答案】B 【解析】【分析】本题考查了锐角三角函数,平行线的性质,线段的垂直平分线,熟练掌握知识点是解题的关键.先求出,再根据互余关系及平行关系得到,继而设运动时间为t ,则,由得,求出时间t ,即可求得坐标.【详解】解:如图所示,∵,,∴,∴在中,∴,由题意得垂直平分,∴,∴,⎛⎫ ⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭⎛⎫⎪ ⎪⎝⎭30A ∠=︒30MNO ODE ∠=∠=︒OM =ON t =ON =t =)A()0,1B 1OA OB ==Rt OAB tan OB BAO OA ∠==30A ∠=︒CD AB 90A CEA ODE OED ∠+∠=∠+∠=︒30A ODE ∠=∠=︒∵,∴,由得,设运动时间为t ,则,∴,解得:,∴∴,故选:B .二、填空题(每小题3分,共15分)11. 原价为m 元的商品,现打八折销售,售价为___元.【答案】0.8m 【解析】【分析】现价=原价×打折,从而可列出代数式.【详解】解:根据题意得:m •0.8=0.8m .故答案为:0.8m .【点睛】本题考查理解题意的能力,关键是知道现价=原价×打折.12. 不等式组的最大整数解是________.【答案】3【解析】【分析】分别求出两个不等式的解集,然后再求出不等式组的解集,最后求出最大整数解即可.详解】解:由,得:;由,得:,∴不等式组的解集为:;∴最大整数解是3;故答案为:3.【MN CD ∥30MNO ODE ∠=∠=︒tan 30OMON︒=ON =OM =ON t =t =35t =OM ==M ⎛⎫ ⎪ ⎪⎝⎭20260x x +>⎧⎨-≤⎩20x +>2x >-260x -≤3x ≤23x -<≤【点睛】本题主要考查了求不等式组的解集及其最大整数解,正确求出不等式组的解集是解题的关键.13. 春节前夕,哈尔滨旅游市场火爆全国,河南文旅局也及时调整政策,吸引全国游客入豫观光旅游.小明想在清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点中选择两个去旅游,则他刚好选到“清明上河园”和“龙门石窟”的概率是______.【答案】【解析】【分析】本题考查了列表法与树状图法:利用列表法或树状图展示所有可能的结果,再从中选出符合事件A 结果数目,然后利用概率公式求出事件A 的概率.用A 、B 、C 、D 分别表示清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点,画树状图表示出所有的等可能结果,再找出选到A 、B 的结果数,用概率公式即可求解.【详解】解:用A 、B、C 、D 分别表示清明上河园、龙门石窟、云台山和商丘芒砀山四个旅游景点,画树状图为:共有12种等可能的结果,其中选到A 、B 的结果数为2,∴他刚好选到“清明上河园”和“龙门石窟”的概率是,故答案:.14. 如图,在中,,,,以的中点O 为圆心,的长为半径作半圆交于点D ,再以点B 为圆心,以的长为半径作,交半圆于点D ,交于点E ,则图中阴影部分的周长为______.为1621126=16Rt ABC △90ABC ∠=︒6AB =BC =AB OA AC OB DEBC【答案】【解析】【分析】本题考查弧长公式、等边三角形的判定与性质,先证明是等边三角形,则,进而求得,,然后利用弧长公式求解即可.【详解】解:连接、,由题意知,,∴是等边三角形,∴,∵在中,,,∴,,∴图中阴影部分的周长为,故答案为:.15. 如图,中,,,点P 为边上不与端点重合的一个动点,点P 关于的对称点为点Q ,连接,射线与射线交于点M ,当为直角三角形时,的长为______.【答案】或##或【解析】【分析】本题考查了直角三角形的分类讨论,等腰三角形的性质,三角形内角和定理,轴对称图形的性质,3π32+BOD 60BOD OBD ∠=∠=︒30DBE ∠=︒3OBBD BE ===OD BD BE BD OB OD OA ====BOD 60BOD OBD ∠=∠=︒Rt ABC △90ABC ∠=︒6AB =906030DBE Ð=°-°=°3OB BD BE ===60π330π333π31801802⨯⨯++=+3π32+ABC 45A ∠=︒2AB AC ==AB BC CQ CP QB CQM BM 2-2-相似三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解题的关键.①当时,过点P 作交于点F ,即,先证明出,则设,那么,解得,先通过三角形内角和定理和轴对称的性质证出,那么可证明,再利用对应边成比例即可求解;②当,可得为等腰直角三角形,解即可.【详解】解:①当时,过点P 作交于点F ,即,∵,,∴,∵P 关于的对称点为点Q ,∴,∴,,∵,,∴,则为等腰直角三角形,∵,∴,∴,∴,设,则,,解得,∴ 90MCQ ∠=︒PF AP ⊥AC 90APF ∠=︒FPFC =FP FC AP x ===AF =2x +=2x =AC BM ∥APC BPM △∽△90Q ∠=︒PMB △PMB △90MCQ ∠=︒PF AP ⊥AC 90APF ∠=︒2AB AC ==45A ∠=︒1804567.52ACB ABC ︒-︒∠=∠==︒BC 45PCB QCB ∠=∠=︒67.5PBC QBC ∠=∠=︒67.54522.5PCF ∠=︒-︒=︒18067.567.545PBM ∠=︒-︒-︒=︒90APF ∠=︒45A ∠=︒45AFP ∠=︒FPA V AFP ACP FPC ∠=∠+∠4522.522.5FPC ∠=︒-︒=︒FPC PCF ∠=∠FP FC =FP FC AP x ===AF =2x +=2x =()224BP =--=-∵,∴,∴,∴,∴,解得:;②当,如图,∵P 关于的对称点为点Q,∴,由①得,∴,∴,∴,在中,,∴,∴在中,,综上所述,或,故答案为:.三、解答题(本大题8个小题,共75分)16. (145A PBM ∠=∠=︒AC BM ∥APC BPM △∽△BM BP AC AP=2BM =BM =90Q ∠=︒BC 90BPC Q BPM ∠=∠=∠=︒45PBM ∠=︒45M ∠=︒M PBM ∠=∠PB PM =Rt PAC △cos 45AP AC =⋅︒=2BP =Rt PBM △2sin PB BM M==-BM =2=BM 2-()0133π---+(2)化简:【答案】(1)(2)【解析】【分析】(1)根据立方根,零指数幂,负整数指数幂,实数的混合运算进行计算即可;(2)根据分式的混合运算进行求解即可.【详解】(1(2)解:【点睛】本题考查了立方根,零指数幂,负整数指数幂,实数的混合运算,分式的混合运算等,熟练掌握以上运算法则是解题的关键.17. 某校举行了“校园安全周”活动,并根据防火防溺水安全知识对全体学生进行了测试,校团委从八(1)班和八(2)班各随机抽取10份试卷进行统计分析,根据以下数据,请解决以下问题:收集数据:八(1)班 80 74 83 63 90 91 74 61 82 62八(2)班 74 61 83 91 60 85 46 84 74 82注:满分100分,90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.(1)整理数据:等级频数年级优秀良好及格不及格八(1)班23a 0八(2)班1441()22111x x x +⎛⎫+÷ ⎪⎝⎭1331x x +()0133π---+1413=-+133=()22111x x x +⎛⎫+÷ ⎪⎝⎭()2211x x x x +=⨯+1xx =+表中______.(2)分析数据:年级平均数众数中位数八(1)班b c 77八(2)班7474d表中______;______;______.(3)描述数据:①若该校八年级共600人,其中八(1)班和八(2)班各有50人,请估计八(1)班和八(2)以及整个八年级本次测试达到优秀的人数;②结合上述数据信息,你认为八(1)班和八(2)班中哪个班学生本次测试的成绩更好?并说明理由.【答案】(1)5 (2)76,74,78(3)①估计八(1)班本次测试达到优秀的人数约有10人,八(2)班本次测试达到优秀的人数约有5人,整个八年级本次测试达到优秀的人数约有90人;②八(1)班学生本次测试的成绩更好,理由见详解.【解析】【分析】本题考查众数、平均数及中位数、用样本估计总体,解答本题的关键是明确题意,熟练掌握知识点.(1)根据收集的数据求解即可;(2)根据众数、平均数及中位数的定义求解即可;(3)①用总人数乘以样本中七、八年级成绩合格的人数和所占比例即可;②比较平均数、优秀率,即可求解.【小问1详解】解:由表可知,八(1)班及格的人数为5,故答案为:5;【小问2详解】解:八(1)班的平均数;由表格知74出现了两次,因此八(1)班的众数;将八(2)班成绩从小到大排列46 60 61 74 74 82 83 84 85 91,因此八(2)班的中位数,=a b =c =d =1(80748363909174618262)7610b =⨯+++++++++=74c =7482782d +==故答案为:76,74,78;【小问3详解】解:①八(1)班本次测试达到优秀的人数约有(人,八(2)班本次测试达到优秀的人数约有(人,整个八年级本次测试达到优秀的人数约有(人;②八(1)班学生本次测试的成绩更好,理由:因为八(1)班的平均成绩高于八(2)班,八(1)班的优秀率高于八(2)班,所以八(1)班学生本次测试的成绩更好.18. 如图,矩形的顶点均在格点(网格线的交点)上,双曲线经过格点B .(1)求双曲线的解析式;(2)经过点B 的直线将矩形分为面积比为的两部分,求该直线的解析式.【答案】(1) (2)或【解析】【分析】此题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式.(1将点代入求解即可;(2)分为过点B 的直线与线段相交和过点B 的直线与线段相交,根据三角形的面积分两种情况求出交点的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.【小问1详解】解:根据题意得:,,,2501010⨯=)150510⨯=)36009020⨯=)OABC ()0k y x x=>()0k y x x=>y ax b =+OABC 1:2()180y x x=>3342y x =-113y x =+()6,3B ()0k y x x=>OA OC ()6,3B 36k ∴=18k ∴=双曲线的解析式为:;【小问2详解】解:如图,当过点B 的直线与线段相交时,设交点为F ,,由题意得:,∵矩形的面积分成的两部分,∴为或,∵,∴①若,解得:,,,此时点F 的坐标为,∴当时,解得:,此时直线的解析式为,②若,解得:,,此时,过点B 的直线与线段没有交点,如图,当过点B 的直线与线段相交时,设交点为F ,∴()180y x x=>OA 6318ABCD S =⨯=矩形OABC 1:2ABF S △11863⨯=218123⨯=()6,3B 1263AF ⨯=4AF =6OA = 642OF ∴=-=()2,0()()6,3,2,0B F 3602a b a b=+⎧⎨=+⎩3432a b ⎧=⎪⎪⎨⎪=-⎪⎩3342y x =-21132AF ⨯=8AF =68OA =< ∴OA OC∵矩形的面积分成的两部分,∴为或,∵,∴①若,解得:,,,此时点F 的坐标为,∴当时,解得:,此时直线的解析式为,②若,解得:,,此时,过点B 的直线与线段没有交点,综上,此时直线的解析式为或.19. 在一次课外实践活动中,九年级数学兴趣小组准备测量学校旁边的一座古塔的高度,同学们设计了两个测量方案如下:课题测量古塔的高度测量工具测角仪,1.5m 标杆,皮尺等测量小组第一组第二组OABC 1:2BCF S 11863⨯=218123⨯=()6,3B 1266CF ⨯=2CF =3OC = 321OF ∴=-=()0,1()()6,3,0,1B F 361a b b=+⎧⎨=⎩131a b ⎧=⎪⎨⎪=⎩113y x =+21162CF ⨯=4CF =34OC =< ∴OC 3342y x =-113y x =+()AB测量方案示意图说明点C 、E 、B 在同一直线上,、为标杆为古塔旁边的两层小楼测量数据从点D 处测得A 点的仰角为,从点F 处测得A 点的仰角为,=10m 从点D 处测得A 点的仰角为,=10m(1)根据以上数据请你判断,第______小组无法测量出古塔的高度?原因是____________;(2)请根据表格中的数据,依据正确的测量方案求出古塔的高度.(精确到0.1m ,参考数据:,,)【答案】(1)二;没有测量的长度;(2)古塔的高度为24.8m .【解析】【分析】(1)第二组没有测量有关线段长度;(2)根据第一组的测量数据,延长交于点,可得是等腰直角三角形,得,在中,由锐角三角函数定义求解即可.【小问1详解】第二组的数据无法算出大楼高度,理由如下:第二小组测量了从点D 处测得A 点的仰角为,=10m ,没有测量的长度,无法算出大楼高度.故答案为:二;没有测量的长度;【小问2详解】根据第一组测量的数据,CD EF CD 35︒45︒CE 35︒CD sin 350.57︒≈cos350.82︒≈tan 350.70︒≈BC DF AB G AFG AG FG =Rt ADG 35︒CD BC BC过点D 作交于点G ,m ,点F 在上,则m ,在中,,是等腰直角三角形,,设m ,则在中,m ,m ,,,解得:m ,m .故答案为:此古塔的高度为24.8m .【点睛】本题考查了解直角三角形的应用—仰角俯角问题中仰角问题,等腰直角三角形的判定与性质,解决本题的关键是熟练掌握仰角俯角定义,根据锐角三角函数解决实际问题.20. 开学初,某校准备购进一批白色无尘粉笔和彩色无尘粉笔用于教学,经市场调研,一箱彩色无尘粉笔的价格是一箱白色无尘粉笔价格的1.5倍,若花费9000元,则购买的白色无尘粉笔比彩色无尘粉笔多50箱.(1)求该校购买这两种无尘粉笔的单价;(2)该校计划购买这两种无尘粉笔共300箱,根据实际情况,其中彩色无尘粉笔的购买数量不少于50箱,且彩色无尘粉笔数量不超过白色无尘粉笔的,由于该校订购数量较多,厂家决定给予优惠,彩色无尘粉笔的价格在打七折的基础上再降低m 元(),求该校购买这两种无尘粉笔的总费用最低时m 的值.DG AB ⊥AB 1.5CD EF == ∴DG 1.5BG =Rt AGF 45AFG ∠=︒AGF ∴V AG FG ∴==AG FG x =Rt AGD AG x =()10DG DF FG x =+=+tan tan 350.70AG ADG DG∴∠==︒≈0.7010x x∴≈+23.3x ≈23.3 1.524.8AB AG BG ∴=+=+=1315m ≤≤【答案】(1)一箱白色无尘粉笔价格是60元,一箱彩色无尘粉笔的价格是90元;(2)当时,购买这两种无尘粉笔的最低费用为17850元【解析】【分析】本题考查分式方程的应用,一元一次不等式组的应用、一次函数的应用,理解题意,正确列出方程和函数关系式是解答的关键.(1)设一箱白色无尘粉笔价格是x 元,则一箱彩色无尘粉笔的价格是元,根据购买的白色无尘粉笔比彩色无尘粉笔多50箱列方程求解即可;(2)设购买彩色无尘粉笔a 箱,购买这两种无尘粉笔的总费用W 元,根据题意求得a 的取值范围和W 关于a 的一次函数关系式,根据一次函数的性质分、、分别求解即可.【小问1详解】解:设一箱白色无尘粉笔价格是x 元,则一箱彩色无尘粉笔的价格是元,根据题意,得,解得,经检验,是所列方程的解,,答:一箱白色无尘粉笔价格是60元,一箱彩色无尘粉笔的价格是90元;【小问2详解】解:设购买彩色无尘粉笔a 箱,则购买白色无尘粉笔箱,根据题意,得,解得,设该校购买这两种无尘粉笔总费用W 元,则,当时,W 随a 的增大而增大,∴当时,W 最小,最小值为;当时,;当时,W 随a 的增大而减小,∴当时,W 最小,最小值为;∴当时,W 最小,购买这两种无尘粉笔的最低费用为17850元.的5m = 1.5x 13m ≤<3m =35m <≤1.5x 90009000501.5x x-=60x =60x =1.5 1.56090x =⨯=()300a -()5013003a a a ≥⎧⎪⎨≤-⎪⎩5075a ≤≤()()()60300900.7318000W a m a m a =-+⨯-=-+13m ≤<50a =()35018000181505018000m m -⨯+=->3m =18000W =35m <≤75a =()37518000182257517850m m -⨯+=-≥5m =21. 《几何原本》是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,被广泛地认为是历史上最成功的教科书.欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品.欧几里得使用了公理化的方法,这一方法后来成了建立任何知识体系的典范,在差不多二千年间,被奉为必须遵守的严密思维的范例.这本著作是欧几里得几何的基础,在西方是仅次于《圣经》而流传最广的书籍.小明在研究《几何原本》时,对定理4.2展开分析研讨:定理4.2 在一个已知圆内作一个与已知三角形等角的内接三角形.原书作法如下:如图1,为已知三角形,为已知圆,过上一点P 作的切线,作,交于点F ,作,交于点E ,连接,即为所求.小明准备将原命题证明并进行拓展研究,请分析并帮助小明完成.(1)已知:直线切于点P ,点E ,F 为上一点,若______,求证:____________.请将已知和求证补充完整并证明.(2)若,,,求的半径.【答案】(1),,,证明过程见解析(2)【解析】【分析】本题考查了圆周角定理、垂径定理以及相似三角形的判定与性质等知识点,掌握相关几何结论是解题关键.(1)连接并延长交于点,连接,根据、即可求证;(2)连接交于点,连接,根据可得;根据题意推出即可求解.ABC O O O MN FPM ABC ∠=∠O EPN ACB ∠=∠O EF PEF !MN O O 5AB AC ==8BC =16EF =O FPM ABC ∠=∠EPN ACB ∠=∠ABC PEF ∽!253PO O Q ,QE QF 90PFQ PFE EFQ ∠=∠+∠=︒90QPN EPN EPQ ∠=∠+∠=︒PO EF D OE ABC PEF ∽!10PE PF ==1,82PD EF ED FD EF ⊥===【小问1详解】证明:连接并延长交于点,连接,如图所示:由题意得:∵为的直径∴∵∴∵∴同理可得∴【小问2详解】解:连接交于点,连接,如图所示:则∵,∴∵,,,∴由题意得:∵PO O Q ,QE QF 90QPN EPN EPQ ∠=∠+∠=︒PQ O 90PFQ PFE EFQ ∠=∠+∠=︒EPQ EFQ∠=∠EPN PFE∠=∠EPN ACB∠=∠PFE ACB∠=∠PEF ABC∠=∠ABC PEF∽!PO EF D OE 90OPM OPN ∠=∠=︒ABC PEF ∽!:::AB PE AC PF BC EF==5AB AC ==8BC =16EF =10PE PF ==EPN FPM∠=∠90OPM OPN ∠=∠=︒∴∴∴设的半径为,在中:,解得:22. 如图,矩形中,,,抛物线顶点为M .(1)若抛物线对称轴左侧部分图象交y 轴于点.①求此时抛物线的表达式;②设直线的解析式为,求当时x 的取值范围.(2)若矩形的边与抛物线恰好有2个交点,直接写出此时m 的取值范围.【答案】(1)①;②(2【解析】【分析】(1)把代入解方程即可;(2)先求直线表达式,再与二次函数解析式联立,求出交点坐标,再根据函数图像确定的解集;(3)找到两个临界状态,经过点C 时,代入点C 坐标,求出此时的m 值,随着m 的增大,当经过点B 时,代入点B 坐标,求出此时的m 值即可.【小问1详解】解:①把代入得:,EPO FPO∠=∠1,82PD EF ED FD EF ⊥===6PD ==O r Rt ODE △()22286r r =+-253r =ABCO ()8,0A ()0,4C 22444y x mx m =--+()0,12AC y kx b =+22444x mx m kx b --+>+ABCO 2812y x x =-+x <x >4m ≤≤()0,1222444y x mx m =--+AC 22444x mx m kx b --+>+()0,1222444y x mx m =--+21244m =-+解得:或,由题意得,对称轴在y 轴右侧,∴,即,∴,∴抛物线的表达式为;②将,代入得:,解得:,∴直线表达式为:,联立,可得,解得:,∴的解集为:;【小问2详解】解:,∴抛物线开口方向不变,且顶点在直线上运动,而对称轴为直线,随着m 的增大,当抛物线经过点C 时,代入点得:,解得:或(舍),此时,∴此时抛物线与边有两个交点,当抛物线经过点B 时,代入点得:,2m =2m =-4202m m --=>0m >2m =2812y x x =-+()8,0A ()0,4Cy kx b=+804kb b +=⎧⎨=⎩124k b ⎧=-⎪⎨⎪=⎩AC 142y x =-+2142812y x y x x ⎧=-+⎪⎨⎪=-+⎩2215160x x -+=x =22444x mx m kx b --+>+x <x >()22244424y x mx m x m =--+=--4y =-2x m =()0,4C 2444m -=m =m =48m BC =<=BC ()8,4B ()28244m --=解得:,∴时,矩形的边与抛物线恰好有2个交点.【点睛】本题是一道二次函数综合题,待定系数法求二次函数解析式,一次函数解析式,根据函数图像求不等式的解集,矩形的性质,熟练掌握知识点,正确理解题意是解题的关键.23. 中考前,复习完《四边形》后,刘老师给出一个问题情境让同学们探讨:问题情境:如图1,矩形中,,,点O 为对角线和的交点,点M 为上一个动点,连接并延长交于点N .小明:我可以得出.理由:∵,∴.又∵,,∴,∴.请仔细阅读问题情境及小明的研讨,完成下述任务.任务:(1)小明得出的依据是______(填序号).① ② ③ ④ ⑤小明得出的依据是______(填理由).(2)如图2,将四边形沿方向平移得到四边形,当点与点M 重合时,由(1)可得点与点D 重合,求证:四边形是平行四边形.(3)①如图3,将四边形沿折叠,当点B 与点D 重合时,求的长.②如图4,当点M 在直线上运动时,若交于点P ,连接,将三角形沿折叠,点C 的对应点为点Q ,连接,当为直角三角形时,直接写出线段的长.【答案】(1)④;对顶角相等(2)证明见解析(3)①;②或【解析】【分析】(1)根据所给证明过程结合对顶角相等即可得到答案;4m =4m =4m ≤≤-ABCO ABCD AB =2BC =AC BD BC MO AD BM ND =AD BC ∥OBM ODN ∠=∠BO DO =BOM DON ∠=∠BOM DON ≌△△BM DN =BOM DON ≌△△SSS SAS AAS ASA HLBOM DON ∠=∠ABMN BC A B M N ''''B 'N 'B M DN ''ABMN MN BM BC MN CD BP BCP BP DQ PQD △DP 222DM CM CD =+DP =DP =(2)由平移的性质可得,再由,即可证明四边形是平行四边形;(3)①由矩形的性质可得,由折叠的性质可得,设,则,在中,由勾股定理得,解方程即可得到答案;②如图所示,当点M 在延长线上时,可证明只存在这种情况,当点M 在延长线上时,可证明只存在这种情况,据此讨论求解即可.小问1详解】解:由证明过程可知,小明得出的依据是,其中小明得出的依据是对顶角相等,故答案为:④;对顶角相等;【小问2详解】证明:由平移的性质可得,又∵,∴四边形是平行四边形;【小问3详解】解:①∵四边形是矩形,∴,,由折叠的性质可得,设,则,在中,由勾股定理得,∴,解得,∴;②如图所示,当点M 在延长线上时,由折叠的性质可得,,,,【B M DN ''=B M DN ''∥B M DN ''==CD AB 90C ∠=︒BM DM =BM DM x ==2CM x =-Rt CDM △()2222x x =-+BC 90PQD ∠=︒CB 90QDP ∠=︒BOM DON ≌△△ASA BOM DON ∠=∠B M DN ''=B M DN ''∥B M DN ''ABCD ==CD AB 90C ∠=︒BM DM =BM DM x ==2CM x =-Rt CDM △222DM CM CD =+()2222x x =-+74x =74BM =BC 12QP CP CD DP =<<QPB CPB =∠∠90BQP BCP ==︒∠∠2BQ BC ==∴点Q 不可能落在上,即,∵,∴,∴,∴当为直角三角形时,只存在这种情况,∴,∴三点共线,在中,由勾股定理得∴,在中,,∴在中,∴如图所示,当点M 在延长线上时,由折叠的性质可得,∴,∴,同理可得,∴当为直角三角形时,只存在这种情况,∴此时点Q 落在上,AD 90PQD ≠︒∠BC CP >45QPB CPB CBP =>>︒∠∠∠90QPD <︒∠PQD △90PQD ∠=︒180PQD PQB +=︒∠∠B Q D 、、Rt DBC △BD ==2DQ BD BQ =-=-Rt DBC △cos CD BDC BD ==∠Rt PDQ △cos DQ QDP DP ==∠DP =CB 12PQ PC CD DP =>>QDP DQP >∠∠90DQP <︒∠90DPQ <︒∠PQD △90QDP ∠=︒AD在中,由勾股定理得,∴,设,则,在中,由勾股定理得,∴,解得,∴;综上所述,.【点睛】本题主要考查了矩形与折叠问题,勾股定理,解直角三角形,全等三角形的性质与判定,平移的性质,平行四边形的判定等等,熟练掌握相关知识是解题的关键.Rt ABQ1AQ ==1DQ =DP m =CP QP m ==-Rt PDQ △222QP DQ DP =+)2221m m =+m =DP =DP =DP =。
2024年天津市南开区中考二模数学试题(解析版)
2023~2024学年度第二学期九年级质量监测(二)数学试卷本监测分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.监测满分120分.时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 计算的结果是( )A. 6B. 4C.D. 【答案】B【解析】【分析】本题考查了有理数的减法运算,熟练掌握减去一个数等于加上这个数的相反数是解答本题的关键.根据减法法则计算即可.【详解】解:故选:B .2. 如图所示的几何体是由5个大小相同的小正方体组成的,它的主视图是( )A.B. C. D.【答案】A【解析】【分析】根据主视图是从正面看到的图形进行求解即可.【详解】解:从正面看该几何体,有三列,第一列有2层,第二和第三列都只有一层,如图所示:故选:A .【点睛】本题主要考查了简单几何组合体的三视图,熟知三视图的定义是解题的关键.()()15---4-6-()()()()()1515514---=-++=+-=3. 下列无理数中,大小在3与4之间的是( )A. B. C. D. 【答案】C【解析】【分析】本题考查无理数的估算,根据无理数的估算可得答案,熟练掌握无理数的估算方法是解题的关键【详解】解:∵,,故选:C .4. 我国民间,流传着许多含有吉祥意义的文字图案,表示对幸福生活的向往,良辰佳节的祝贺.比如下列图案分别表示“福”、“禄”、“寿”、“喜”,其中是中心对称图形的是( )A. ①③B. ①④C. ②③D. ②④【答案】D【解析】【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:①不是中心对称图形,故本选项不合题意;②是中心对称图形,故本选项符合题意;③不是中心对称图形,故本选项不合题意;④是中心对称图形,故本选项符合题意;故选:D .【点睛】本题考查了中心对称图形的定义,熟悉掌握概念是解题的关键5. 根据联通大数据,2024年清明假期3天,我市共接待游客710.21万人次,单日游客接待量创今年新高.其中数据“710.21万”用科学记数法表示为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了科学记数法,根据科学记数法的表示形式即可求解,熟练掌握科学记数法的表示形式:789111619<<<<<<<<<34<<<<97.102110⨯87.102110⨯77.102110⨯67.102110⨯“,其中a 的范围是,n 是正整数”是解题的关键.【详解】解:710.21万,故选:D .6. 计算的结果等于( )A. 0B. C. D. 【答案】B【解析】【分析】本题主要考查了异分母分式减法计算,先通分,再把分子合并同类项即可得到答案.【详解】解:,故选:B .7. 的值等于( )A. B. C. D. 【答案】A【解析】【分析】本题考查了特殊角的三角函数值的计算,熟知特殊角的三角函数值是解题关键,先计算特殊角的三角函数值,再进行二次根式计算即可求解.【详解】解:故选:A10n a ⨯110a ≤<671021007.102110==⨯211a -+11a a -+11a +1a a +211a -+1211a a a +=-++11a a -=+sin 45cos 60cos 45︒︒-︒sin 45cos 60cos 45︒︒-︒12=-==8. 若点,,都在反比例函数的图象上,则,,的大小关系是( )A. B. C. D. 【答案】D【解析】【分析】本题考查反比例函数图像上点的坐标特点,熟知反比例函数图像上各点的坐标一定适合此函数的解析式是解答此题的关键.先根据反比例函数的解析式判断出函数图像所在的象限,再根据反比例函数的性质即可得出结论.【详解】解:∵反比例函数中,,∴函数图像的两个分支分别位于二、四象限,且在每一象限内,随的增大而增大,∵,∴、B 两点在第四象限,C 点在第二象限,∴.故选D .9. 如果,是方程的两根,则的值为( )A. 4B. C. 2D. 【答案】C【解析】【分析】本题考查一元二次方程根与系数的关系.利用一元二次方程根与系数的关系即可解决问题.【详解】解:,是方程的两根,,,.故选:C .10. 如图1,在中,,,2,按照如下尺规作图步骤进行操作:的()1,2A x -()2,1B x -()3,1C x 21k y x+=-1x 2x 3x 132x x x <<123x x x <<321x x x <<312x x x <<21k y x +=-()210k -+<y x 2101-<-<<A 312x x x <<1x m =2x n =2240x x +-=mn m n +4-2-1x m = 2x n =2240x x +-=2m n ∴+=-4mn =-∴422mn m n -==+-Rt ABC △90ABC ∠=︒2BC =AB =①以点C 为圆心,以2为半径画弧,交边于点D ,连接;②以点B 为圆心,以2为半径画,交延长线于点E ,交边于点F ;③以E 为圆心,以长为半径画弧,交于点G ;④连接,,连接交于点H .则下列结论中正确的是( )A. 平分B.C. 四边形为菱形D. 四边形为菱形【答案】D【解析】【分析】本题是基本作图与四边形综合题,解题关键是清楚作图的过程和结果.由作法可知,,根据即可判定选项A 不正确,判定四边形为平行四边形,四边形为菱形,由勾股定理和解三角形求出、即可判定选项BC 错误,D 正确.【详解】解:∵,,.∴,由作法可知,.∴,∴,,故A 选项结论错误;∴,∴四边形为平行四边形,∴,,∴四边形菱形,故选项D 正确;∵,为AC BD E F CB AB BD E F BG EG DG AB BG ABE∠FH DH =BDGE BCDG CBD BEG △≌△GBE ACB ∠=∠45C A ∠≠∠≠︒BDGE BCDG FH DH 90ABC ∠=︒2BC=AB =45C A ∠≠∠≠︒2CD BC BE BG BF =====EG BD =CBD BEG △≌△45GBE ACB ∠=∠≠︒CBD BEG ∠=∠BD EG ∥BDGE DG BE ∥DG BE =BCDG 90ABC ∠=︒∴,,,∴,∴,∴,∵,故,故B 结论错误,∵∴,故不是菱形,故C 选项结论错误.故选D .11. 如图,在直角坐标系中,点A ,B 的坐标分别为,,将绕点O 顺时针旋转得到,若,则下列结论中错误的是( )A. 的面积为1B. C. 被平分D. 点到x【答案】C【解析】【分析】根据图形旋转的性质和三角形的面积公式可判断A ;根据同旁内角互补两直线平行可判断B ;证明90AHD ∠=︒3AC ==1AD AC BD =-=cos 1AH AD CAB =∠==22sin 133DH AD CAB =∠=⨯=BH AB AH =-=2FH BF BH =-=-FH DH ≠BD ===BD BE ≠BDGE ()0,2A ()1,0B -ABO 11A B O 1OB AB ⊥11A B O 1OA AB∥OA 11A B 1A,而可判断C ;过点作x 轴的垂线,垂足为H ,先求出,然后根据求出D .【详解】解:∵点A 坐标为,点B 坐标为,∴,∴.由旋转的性质可知,.故A 正确.令与轴的交点为M ,由旋转可知,,∵,∴,∴,∴.故B 正确.令与y 轴的交点为N ,∵,∴.由旋转可知,,∴,∴.1112ON A B =11A B AB AO =>1A sin ABO ∠=111sin A H A OH OA ∠=1A H =()02,()10-,2,1OA OB ==11212OAB S =⨯⨯=△111A B O OAB S S == 1OB AB 1190A OB AOB ∠=∠=︒1OB AB ⊥90AMO ∠=︒11180AMO A OB ∠+∠=︒1OA AB ∥11A B 11190BOB AOB BOB ABO ∠+∠=∠+∠=︒1ABO AOB ∠=∠1ABO B ∠=∠11B AOB ∠=∠1NO NB =又∵,∴,∴.即,∵,∴,则未平分.故C 错误.过点作x 轴的垂线,垂足为H ,∵,∴.在中,,∴,∴.在中,,∴,111190A B A ON B ON ∠+∠=∠+∠=︒11A A ON ∠=∠1A N ON =1112ON A B =11A B AB AO =>12ON AO ≠11A B AO 1A 1AB A O ∥1A OH ABO ∠=∠Rt ABO △AB ==sin AO ABO AB ∠===1sin A OH ∠=1Rt A OH 111sin A H A OH OA ∠=12A H =∴即点到x 轴的距离为D 正确.故选:C .【点睛】本题考查坐标与图形变化-旋转,坐标与图形的性质,平行线的判定,等角对等边,勾股定理,解直角三角形,熟知图形旋转的性质和锐角三角函数的知识是解题的关键.12. 已知某商品每件的进价为40元,售价为每件60元,每星期可卖出该商品300件.根据市场调查反映:商品的零售价每降价1元,则每星期可多卖出该商品20件.有下列结论:①当降价为3元时,每星期可卖360件;②每星期的利润为6120元时,可以将该商品的零售价定为42元或者43元;③每星期的最大利润为6250元.其中,正确结论的个数是( )A. 3B. 2C. 1D. 0【答案】C【解析】【分析】设降价x 元,则售价为元,每件的盈利元,每天可售出件,①当降价为3元时,每星期可卖件;正确;②根据题意,得,整理,得,解得,每星期的利润为6120元时,可以将该商品的零售价定为58元或者57元;错误;③设每星期的利润为y 元,根据题意,得,故每星期的最大利润为6125元.判断即可.利用每天销售获得的总利润=每件千克的销售利润×每天的销售量,构造二次函数,根据抛物线的最值,解之即可得出x 的值即可求得.本题考查了一元二次方程的应用,二次函数的最值,最大利润问题,熟练掌握一元二次方程的应用,二次函数的最值是解题的关键.1A H =1A ()60x -()()604020x x --=-()30020+x ()30020360x +=()()30020206120x x +-=2560x x -+=122,3x x ==()()3002020201006000y x x x x =+-=-++252061252x ⎛⎫=--+ ⎪⎝⎭【详解】设降价x 元,则售价为元,每件的盈利元,每天可售出件,①当降价为3元时,每星期可卖件;正确;②根据题意,得,整理,得,解得,每星期的利润为6120元时,可以将该商品的零售价定为58元或者57元;错误;③设每星期的利润为y 元,根据题意,得,故每星期的最大利润为6125元.错误.故选C .第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上)13. 在一只不透明的口袋中放入只有颜色不同的白球7个,黑球5个,黄球个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数__________.【答案】6【解析】【分析】利用概率公式,将黄球个数除以所有球总个数即可得出随机从中摸取一个恰好是黄球的概率.【详解】解:由题可知:,解得:,经检验,符合题意;故答案:6.【点睛】本题考查了随机事件的概率,解题的关键是牢记概率公式,正确列出方程并求解.为()60x -()()604020x x --=-()30020+x ()30020360x +=()()30020206120x x +-=2560x x -+=122,3x x ==()()3002020201006000y x x x x =+-=-++252061252x ⎛⎫=--+ ⎪⎝⎭n 13n =1753n n =++6n =14. 计算的结果等于_____.【答案】22【解析】【分析】直接利用平方差公式进行简便运算即可.【详解】解:,故答案为:22【点睛】本题考查的是二次根式的乘法运算,熟练的利用平方差公式进行简便运算是解本题的关键.15. 计算的结果为_______.【答案】##【解析】【分析】本题考查幂的乘方与合并同类项.根据幂的乘方与合并同类项法则进行解题即可.【详解】解:.故答案为:.16. 直线不经过第一象限,则b 的值可以为______.(写出一个即可).【答案】(答案不唯一)【解析】【分析】本题考查一次函数图象与系数的关系,根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k 的取值范围.由直线不经过第一象限,,可知,在范围内确定b 的值即可.【详解】解:∵直线不经过第一象限,∴,故答案为:(答案不唯一).17. 如图,,均为等腰直角三角形,其中,,点A ,E ,D 在同一直线,与相交于点F ,G 为的中点,连接,.)11-+)2211123122+=-=-=()2365x x x +-652x x -562x x -+()2365x x x +-665x x x =+-652x x =-652x x -4y x b =-+1-4y x b =-+0b ≤4y x b =-+0b ≤1-CAB △CDE AC BC =DC EC =AD BC AB BD EG(1)的度数为______.(2)若F 为的中点,且,则的长为______.【答案】①. ##90度 ②. 【解析】【分析】(1)先证得进而可求出的度数;(2)作于点H ,则,可证明,则,再由勾股定理求得,依据,解得,的长.【详解】解:(1)∵,均为等腰直角三角形,,,∴∴∴,∴∴,∴.故答案为;()作于点H ,则,,∴,∵F 为的中点,∴,在和中,ADB ∠BC 10AB =EG 90︒ACE BCD ≌,135CDB CEA ∠∠==︒ADB ∠CH AD ⊥12CH EH DH DE ===CHF BDF △≌△CH BD AE EH ===AF =12ACF ABC S S =△△C H =DH CH BD ===HB ==EG CAB △CDE AC BC =DC EC =90ACB DCE ∠=∠=︒45ACE BCE BCE BCD DEC EDC ∠∠∠∠∠∠+=+==︒,,ACE BCD ∠=∠ACE BCD ≌,18045135CDB CEA ∠∠==︒-︒=︒1354590ADB ∠=︒-︒=︒90︒2CH AD ⊥EH DH =90CHF BDF ∠=∠=︒12CH EH DH DE ===BC CF BF =CHF BDF V,∴,∴,∵,∴,∵G 为的中点,∴,∵,∴∴,∵,∴∵,∴,∴∴,∴∴.【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定与性质、直角三角形斜边上的中线等于斜边的一半、勾股定理、三角形的中位线定理等知识,正确地作出所需要的辅助线是解题的关键.18. 如图,在每个小正方形的边长为1的网格中,的顶点A ,C 均落在格点上,顶点B 落在格线CHF BDF CFH BFD CF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS CHF BDF ≌CH BD =AE BD =AE CH EH ==AB 12EG FB =10AB =AC BC ==12CF BC ==90ACF ∠=︒AF ==12ACF ABC S S =△△111222CH =⨯⨯C H =DH CH BD ===HB ==12EG =⨯=.ABC上,是的外接圆.(1)的面积等于______.(2)请用无刻度的直尺,在如图所示的网格中,画出直径,并在直径上找到点Q ,使得的面积等于5.简要说明点P ,Q 的位置是如何找到的(不要求证明)__________________________________________________________________________________________.【答案】 ①. 5 ②. 如图,取圆与格线的交点D ,E ,连接,,两条线段交于点O ;连接并延长,与圆交于点P ;取格点F ,G ,并连接,交于点M ,连接,并延长交格线于点H ,连接,并延长交于点Q ,点P ,Q 即为所求.【解析】【分析】本题主要考查了90度的圆周角所对的弦是直径,相似三角形的性质与判定,矩形的性质,全等三角形的性质与判定,全等三角形的性质与判定等等:(1)根据三角形面积计算公式结合网格的特点求解即可;(2)如图,取圆与格线的交点D ,E ,连接,,两条线段交于点O ;连接并延长,与圆交于点P ;取格点F ,G ,并连接,交于点M ,连接,并延长交格线于点H ,连接,并延长交于点Q ,点P ,Q 即为所求.【详解】解:(1)由题意得,,故答案为:5;(2)如图,取圆与格线的交点D ,E ,连接,,两条线段交于点O ;连接并延长,与圆交于点P ;取格点F ,G ,并连接,交于点M ,连接,并延长交格线于点H ,连接,并延长交于点Q ,点P ,Q 即为所求.由90度的圆周角所得的弦是直径,可得的交点O ,即为圆心,则即为直径;易知点M 分别为的中点,则易证明,进而证明,则由平行线的性质可得.故答案为:如图,取圆与格线的交点D ,E ,连接,,两条线段交于点O ;连接并延长,与圆O ABC ABC BP BP BCQ △AE CD BO FG AC BM HA HA BP AE CD BO FG AC BM HA HA BP 15252ABC S =⨯⨯= AE CD BO FG AC BM HA HA BP AE CD ,BP AC BH 、AHM CMB △≌△HA BC ∥5BCQ ABC S S ==△△AE CD BO交于点P ;取格点F ,G ,并连接,交于点M ,连接,并延长交格线于点H ,连接,并延长交于点Q ,点P ,Q 即为所求.三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程)19. 解不等式组,请按下列步骤完成解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为________.【答案】(1);(2);(3)见详解;(4)【解析】【分析】本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.(1)求出各不等式①的解集;(2)求出各不等式②的解集;(3)把不等式①和②的解集在数轴上表示出来即可;(4)求出原不等式组的解集即可.【小问1详解】解不等式①,得,故答案为:;【小问2详解】FG AC BM HA HA BP ()()21322110x x x x ⎧+>⎪⎨--≥+⎪⎩①②2x >-1x ≤-21x -<≤-2x >-2x >-解不等式②,得,故答案为:;【小问3详解】把不等式①和②的解集在数轴上表示出来;【小问4详解】原不等式组的解集为:,故答案为:.20. 在一次中学生田径运动会上,根据参加男子跳高初赛的a 名运动员的成绩(单位:m ),绘制出了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)填空:a 的值为________,图①中的m 值为________;(2)求统计的这组男子跳高初赛运动员成绩的数据的平均数、众数和中位数.【答案】(1)15,20;(2)这组数据的平均数为1.68,众数为1.70,中位数为1.70【解析】【分析】本题考查了众数、平均数和中位数的定义.(1)将各组人数相加即可求出a 的值,用1.75组的人数除以总数即可求出a ;(2)根据平均数、众数和中位数的定义分别进行解答即可;【小问1详解】解:,,故答案为:15,20;【小问2详解】1x ≤-1x ≤-21x -<≤-21x -<≤-12353115a =+++++=%31520%m =÷=解:这组数据的平均数为1.68,∵这组数据中,1.70出现了5次,出现次数最多,这组数据的众数为1.70,∵将这15个数据按从小到大的顺序排列,其中处于中间位置的数是1.70,这组数据的中位数为1.70.21. 已知,的半径为.在中,,,点在上.(1)如图,的顶点在上,,分别交于,两点,连接,.求的大小和的长;(2)如图,的顶点在外,且边与相切于点,边与相交于点,连接,,求和的长.【答案】(1),; (2);.【解析】【分析】(1)由等腰三角形及三角形的内角和定理得,点在上,且,在中,由勾股定理得:,从而得;然后利用圆内接四边形的性质及解直角三角形即可求解;(2)如图,连接,过点作于点,由切线性质得于点,即,证四边形为矩形,得,,即,又由垂径定理得,即;从而利用勾股定理即可得解.【小问1详解】解:∵,,,∵点在上,且, 1.501 1.602 1.653 1.705 1.753 1.801 1.68123531x ⨯+⨯+⨯+⨯+⨯+⨯==+++++∴∴∴O 5ABC 90ACB ∠=︒8AC BC ==A O 1ABC C O AB BC O D E AE DE DEB ∠DE 2ABC C O BC O M AC O N AO BO AN OB 45DEB ∠=︒DE =6AN=OB =∴45CAB B ∠=∠=︒C O 90ACB ∠=︒Rt AEC △6CE =2EB =OM O OH AC ⊥H OM BC ⊥M 90OMC ∠=︒OHCM 5OM CH ==OH CM =3AH =3AH HN ==6AN =90ACB ∠=︒8AC BC ==∴45CAB B ∠=∠=︒C O 90ACB ∠=︒为直径,即,在中,,,,由勾股定理得:,;∵四边形内接于圆,且,,,,;【小问2详解】解:如图,连接,过点作于点,∵切于点,且为半径,于点,即,∵,四边形为矩形,,,∴,∵,且为半径,,即;在中,由勾股定理得:,,可知;在中,由勾股定理得:.【点睛】本题主要考查了勾股定理,圆内接四边形的性质,圆周角定理,解直角三角形以及切线的性质定理和矩形的判定及性质,熟练掌握解直角三角形以及切线的性质定理和矩形的判定及性质是解题的关键.22.校庆期间,小南同学从家到学校瞻仰张伯苓校长的雕塑,聆听学校的办校故事.他从家出发后,导航∴AE 10AE =∴Rt AEC △90ACB ∠=︒10AE =8AC=6CE ===∴862EB BC CE =-=-=ADEC 90ACB ∠=︒∴90ADE ∠=︒∴90EDB ∠=︒9045DEB B ∠=︒-∠=︒∴sin 2DE EB B =⋅∠==OM O OH AC ⊥H BC O M OM ∴OM BC ⊥M 90OMC ∠=︒90C OHC OMC ∠=∠=∠=︒∴OHCM ∴5OM CH ==OH CM =3AH =OH AC ⊥OH ∴3AH HN ==6AN =Rt AOH△4OH ===∴4OH CM ==844MB BC CM =-=-=∴Rt OBM△OB ===给出两条线路,如图:①;②.经勘测,点E 在点A 的北偏西方向米处,点D 在点E 的正北方向,点M 在点D 的正东方向90米处,点B 在点E 的正东方向,且在点A 的北偏东方向;点C 在点M 的正东方向米处,且在点B 的北偏西方向.(1)求的长度;(结果保留根号)(2)由于时间原因,小南决定选择一条较短路线到达张伯苓校长的雕塑前,请计算说明他应该选择哪条,取0.6,取0.8,取0.75).【答案】(1)的长度为米;(2)选择路线②距离短,见解析【解析】【分析】本题考查的是解直角三角形的实际应用,矩形的判定与性质,作出合适的辅助线是解本题的关键;(1)过点A 作,于点P ,分别在,中,利用三角函数求解,,即可得到答案;(2)过点B 作,垂足为Q ,证明四边形为矩形,求解;在中, 在中进一步求解即可得到答案.【小问1详解】解:过点A 作,于点P ,A E D M →→→ABC M →→→45︒30︒37︒EB 1.41≈ 1.73≈sin 37︒cos37︒tan 37︒EB (120+AP EB ⊥Rt EAP Rt BAP △PE AP BP BQ DC ⊥DEQB 30CQ =Rt CQB △Rt BAP △AP EB ⊥由题意得:,,,∵在中,,,同理;∵在中,,,,即的长度为米.【小问2详解】过点B 作,垂足为Q ,由题意得:,四边形为矩形,,,,且,;∵在中,,,45EAP ∠=︒30BAP ∠=︒90EPA BPA ∠=∠=︒EA =Rt EAP 45EAP ∠=︒EA =∴sin 45120EP AE =⋅︒==cos 45120AP AE =⋅︒=Rt BAP △30BAP ∠=︒120AP =∴tan 30120BP BP =⋅︒==∴120EB EP BP =+=+EB (120+BQ DC ⊥90DEB D DQB ∠=∠=∠=︒∴DEQB ∴DE QB =DQ EB = 90DQ DC CQ CQ =+=++120EB =+∴90120CQ ++=+∴30CQ =Rt CQB △37CBQ ∠=︒30CQ =,,,,∵在中,,,,;路线①的长为(米),而路线②的长为(米),显然,选择路线②距离短.23. 甲、乙两辆满载水果的运输车同时从A 地出发前往B 地,甲车匀速行驶至距离A 地的C 地时发生故障原地维修,后维修完毕,于是甲车匀速行驶到达B 地.乙车匀速行驶4h 到达距离A 地的B地,接着花费卸载水果,然后立即原路匀速返回A 地,结果乙车回到A 地时恰好甲车到达B 地.在两车行驶的过程中,甲、乙两车距离A 地的距离y (单位:)与它们离开A 地的时间x (单位:h )之间的函数图象如图所示.请结合图象信息,解答下列问题:(1)填表:甲车离开A 地的时间(单位:h )14 6.48甲车离A 地的距离(单位:)160∴tan CQ CBQ BQ ∠=sin CQ CBQ BC ∠=∴3040tan 370.75CQ BQ =≈=︒3050sin 370.6CQ BC =≈=︒∴40DE QB ==Rt BAP △30BAP ∠=︒120AP =cos AP PAB AB∠=∴120cos cos30AP AB PAB ===∠︒∴9040130299.2AE DE DM ++=++=+≈50257.6AB BC CM ++=+≈257.6299.2<∴4h 160km 2.4h 1.6h 240km 4h 3km km(2)请直接写出乙车行驶的全过程中y 与x 的函数关系式.(3)填空:①图中b 的值为_______;②当_______时,甲、乙两车相距.【答案】(1)40;160;240;(2)当时,;当时,;当时,; (3)①144;②3;;【解析】【分析】本题考查了一次函数的应用,解题的关键是:(1)根据图象直接求解即可求解;(2)待定系数法求一次函数解析式;(3)①把代入,即可求解;②分,,,四种情况讨论即可.【小问1详解】解:∵甲车匀速行驶至距离A 地的C 地,∴甲车的速度为,当时,,由图象可知,当时,;,当时,,故答案为:40,160,240;【小问2详解】解:当时,设y 与x 的函数关系式为,把,,代入得,解得,∴;x =()h 60km 04x ≤≤60y x =1643x <<240y =1683x ≤≤90720y x =-+5094776.4x =90720y x =-+04x <≤1643x <≤162639x <≤2689x <≤4h 160km 160440km /h ÷=1x =14040y =⨯=6.4x =160y =8x =240y =04x <≤y kx =4x =240y =2404k =60k =60y x =当,即时,;当时,设y 与x 函数关系式为,把,;,,代入,得,解得,∴;综上:当时,;当时,;当时,;【小问3详解】解:①把,代入,∴,故答案为:144;②当时,∵乙车匀速行驶4h 到达距离A 地的B 地,∴乙车速度为根据题意,得,解得;当时,两车相遇,故不符合题意,舍去;把代入,得,解得当时,根据题意,得,解得,当时,的4443x <<+1643x <<240y =1683x ≤≤y mx n =+163x =240y =8x =0y =16240380m n m n ⎧+=⎪⎨⎪+=⎩90720m n =-⎧⎨=⎩90720y x =-+04x ≤≤60y x =1643x <<240y =1683x ≤≤90720y x =-+6.4x =y b =90720y x =-+90 6.4720144b =-⨯+=04x <≤240km 240460km /h÷=604060x x -=3x =1643x <≤24016080km -=160y =90720y x =-+16090720x =-+26 6.49x =<162639x <≤9072016060x -+-=509x =2689x <≤设甲车行驶中y 与x 的函数关系式为,把,;,代入,得,解得,∴,根据题意,得,解得,综上,;;时,甲、乙两车相距,故答案为:3;;.24. 如图1,将一个矩形纸片放置在平面直角坐标系中,点,点,点,点D 在边上(点D 不与点O ,C 重合),折叠该纸片,使折痕所在的直线经过点D ,并与直线相交于点F ,且,点C 的对应点为﹒设.(1)如图2,当折痕经过点B 时,求t 的值和点的坐标;(2)若折叠后的图形为四边形,点B 的对应点为,与边相交于点G ,,分别与x 轴相交于点H ,I ,设折叠后四边形与矩形重合部分的面积为S .①如图3,当折叠后四边形与矩形重合部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围;②当时,直接写出S 的取值范围.y ax b =+6.4x =160y =8x =240y =6.41608240a b a b +=⎧⎨+=⎩50160a b =⎧⎨=-⎩50160y x =-()501609072060x x ---+=477x =3x =509477()h 60km 509477OABC ()0,0O ()A ()0,6C OC AB 60CDF ∠=︒C 'CD t =C 'B 'B C ''AB C D 'B C ''DFB C ''OABC DFB C ''OABC 71723t <<【答案】(1);点的坐标为; (2)①;;.【解析】【分析】(1)在中,利用正切定义求出即可,过作于H ,在中,利用余弦定义求出即可,利用勾股定理求出,即可求解;(2)①解直角三角形,分别用t 表示出,,,,然后求解即可;②分;;三种情况讨论,利用二次函数的性质求解即可.【小问1详解】解:由题意,得,∵矩形纸片放置在平面直角坐标系中,点,点,点,∴,,,在中,,过作于H ,∵折叠,∴,,∴,在中,,∴,,∴点的坐标为3t =C '32⎫⎪⎭2S =-+-()45t <<S <≤Rt BCD CD C 'C H OC '⊥Rt HC D ' DH C H 'OH FG AG A I ODH AGI DOAG S S S S =--梯形 742<≤t 45t <<1753t ≤<60CDB ∠=︒OABC ()0,0O ()A ()0,6C 6OC AB ==OA BC ==90AOC OCB ABC BC ∠=∠=∠=∠=︒OC AB ∥Rt BCD 3tan BDt BDC ===∠C 'C H OC '⊥3C D CD '==60BDC BD C '∠=∠=︒60HDC '∠=︒Rt HC D ' 3cos 3cos602DH C D C DH ''=⋅∠=⨯︒=C H '==32OH OC CD DH =--=C '32⎫⎪⎭【小问2详解】解:①过F 作于K ,则四边形,都是矩形,∴,在中,,∴,∵,∴,,∵折叠,∴,,,∴,∴,在中,,,∴,在中,,,∴,∴,,在中,,,∴,∴FK OC ⊥AOKFCKFB FK OA ==Rt DFK△3tan FK DK KDF ===∠3CK BF t ==-OC AB ∥180120BFD CDF ∠=︒-∠=︒60C DFG DF ∠=︒∠=DC DC t '==3B F BF t '==-120BFD B FD '∠=∠=︒60B FG '∠=︒30B GF AGT '∠=∠=︒Rt ODH △6OD t =-60ODH ∠=︒)tan 6OH OD ODH t =⋅∠=-Rt B FG ' 3B F t '=-60B FG '∠=︒()23cos B F FG t B FG==-∠''153AG AB BF FG t =-==-)3B G t '==-Rt AGI △153AG t =-30AGT =︒∠)tan 153AT AG AGI t =⋅∠=-ODH AGIDOAG S S S S =--梯形 ()())())11166366153153222t t t t t t =-+-+------∵折叠后与边相交于点G ,,分别与x 轴相交于点H ,I ,∴,∴,∴;②当时,如图,此时当时,随t 的增大而增大,∴当时,S,当时,S 有最大值为当时,,∴抛物线开口向下,点到对称轴的距离越大,函数值越小,2=-+-B C ''AB C D 'B C ''))61531530t t t --<⎪->⎩45t <<)245S t =-+-<<742<≤t B FGB C DF S S S '''=-梯形 B FGBCDF S S '=-梯形 ()())1133322t t t t =-+⨯---2=+-)26t =-+6t <S 72t =4t =45t <<2292S t ⎫=-+-=--+⎪⎭∵,∴当时,S,∵,,当或时,S 有最小值当时,如图,此时,当时,随t 的增大而减少,∴当时,S 有最大值为时,S,综上,当.【点睛】本题考查了矩形与折叠,解直角三角形,勾股定理,二次函数的性质等知识,理解重叠图形的变化规律是解题的关键.25.已知抛物线(其中a ,b ,c 为常数,,)与x 轴交于A ,B 两点(其中点A 在点B 的左侧),与y 轴相交于点C ,且点A 坐标为.点在抛物线上,连接,过抛物线的顶点E 作直线,交抛物线于点P ,设点P 的横坐标为m .为45t <<92t =71422-=91522-=4t =5t =1753t ≤<ODHDOAF S S S =-梯形 ()())116636622t t t t =-+-+⨯---2=++)23t =-+3t >S 5t =173t =71723t <<S <≤2y ax bx c =++a<00c ≠()3,0c -()3,D c AD EP AD ∥EP(1)若时,求抛物线的解析式及点E 的坐标;(2)若,求a ,m 的值;(3)过点P 作轴交直线于点Q ,连接,恰有轴,求a ,m 的值(直接写出结果即可).【答案】(1)抛物线解析式为,点E 的坐标为; (2),m 的值为; (3)【解析】【分析】本题考查了待定系数法求二次函数的解析式、二次函数的性质、定系数法求一次函数的解析式等知识,解题的关键是:(1)把A 、D 的坐标代入求解即可;(2)把A 、D 的坐标代入,求出a ,b 的值,然后利用待定系数法求出直线解析式,进而求出直线解析式,然后联立方程组求解即可;(3)把D 的坐标代入,求出,把A 的坐标代入,求出,则,,,求出顶点,利用待定系数法求出解析式为,结合,可求出解析式为,联立方程组,求出,,结合轴,求出Q 的横坐标为,求出,根据轴,得出,然后解方程即可.【小问1详解】解:当时,,,,6c =10c a =-PQ x ∥AD BQ BQ y ∥21327324y x ⎛⎫=--+ ⎪⎝⎭327,24⎛⎫ ⎪⎝⎭12a =-12-a =m =26y ax bx =++210y ax bx a =+-AD AD 2y ax bx c =++3b a =-23y ax ax c =-+31a c a -=2313a y ax a a x +-=-1,0A a ⎛⎫ ⎪⎝⎭313,a D a -⎛⎫ ⎪⎝⎭239124,24a a E a ⎛⎫-+- ⎪⎝⎭AD 1y x a =-PE AD ∥PE 29644a a y x a-+-=+229644313a a y x a a y ax ax a ⎧-+-=+⎪⎪⎨-⎪=-+⎪⎩32129,24a a P a +-⎛⎫ ⎪⎝⎭322a m a +=PQ x ∥291244a a x a -++=31,0a B a -⎛⎫ ⎪⎝⎭BQ y ∥23191244a a a a a--++=6c =()30A -,()3,6D 26y ax bx =++∴,解得,∴∴顶点E 的坐标为;【小问2详解】解:当时,,,,∴,解得或或,∵,∴,∴,,,∴,设直线解析式为,∴,解得,∴,93609366a b a b -+=⎧⎨++=⎩131a b ⎧=-⎪⎨⎪=⎩221132763324y x x x ⎛⎫=-++=--+ ⎪⎝⎭327,24⎛⎫⎪⎝⎭10c a =-()310,0A a +()3,10D a -210y ax bx a =+-()()2310310100931010a a b a a a b a a ⎧+++-=⎪⎨+-=-⎪⎩1515a b ⎧=⎪⎪⎨⎪=-⎪⎩1232a b ⎧=-⎪⎪⎨⎪=⎪⎩00a b =⎧⎨=⎩a<01232a b ⎧=-⎪⎪⎨⎪=⎪⎩22131349522228y x x x ⎛⎫=-++=--+ ⎪⎝⎭()2,0A -()3,5D 349,28E ⎛⎫ ⎪⎝⎭AD y kx n =+2035k n k n -+=⎧⎨+=⎩12k n =⎧⎨=⎩2y x =+∵,设直线解析式为,∴,∴,∴,联立方程组,解得或,∴;【小问3详解】解:把代入,得,∴,∴,把代入,得,化简得,∵,∴,又,∴,,∴,,,∵,EP AD ∥EP y x d =+34928d +=378d =378y x =+213522378y x x y x ⎧=-++⎪⎪⎨⎪=+⎪⎩12338x y ⎧=-⎪⎪⎨⎪=⎪⎩32498x y ⎧=⎪⎪⎨⎪=⎪⎩12m =-()3,D c 2y ax bx c =++93c a b c =++3b a =-23y ax ax c =-+()3,0A c -()()23330a c a c c ---+=230ac ac c -+=0c ≠310ac a -+=a<031a c a -=13a a-=2313a y ax a a x +-=-1,0A a ⎛⎫ ⎪⎝⎭313,a D a -⎛⎫ ⎪⎝⎭2223139124234a a a a x a a y ax ax --+-⎛⎫=-+ -+⎝⎭=⎪∴顶点,设解析式为,∴,解得,∴,∵,∴设解析式为,∴,解得,∴,联立方程组,解得或,∴,,∵轴,∴,239124,24a a E a ⎛⎫-+- ⎪⎝⎭AD 11y k x b =+111103133k b a a k b ⎧+=⎪⎪⎨-⎪+=⎪⎩1111k b a =⎧⎪⎨=-⎪⎩1y x a=-PE AD ∥PE 2y x b =+223912424a a b a-+-+=229644a a b a -+-=29644a a y x a-+-=+229644313a a y x a a y ax ax a ⎧-+-=+⎪⎪⎨-⎪=-+⎪⎩23291244x a a y a ⎧=⎪⎪⎨-+-⎪=⎪⎩3221294a x a a y +⎧=⎪⎪⎨-⎪=⎪⎩32129,24a a P a +-⎛⎫ ⎪⎝⎭322a m a +=PQ x ∥1294Q a y -=代入,得,解得,令,则,解得,,∴,∵轴,∴,解得,(舍去),∴.1y x a =-12914a xa -=-291244a a x a-++=0y =23103ax ax a a -+-=11x a =231a x a -=31,0a B a -⎛⎫ ⎪⎝⎭BQ y ∥23191244a a a a a--++=1a =2a =m ==。
2024届重庆市重点中学中考二模数学试题含解析
2024届重庆市重点中学中考二模数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)2.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣20183.下列图案是轴对称图形的是()A .B .C .D .4.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为()A.1 B.2 C.﹣1 D.﹣25.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A .16B.13C.12D.236.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°7.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。
”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是()A.4.5112x yy x-=⎧⎪⎨-=⎪⎩B.4.5112x yy x+=⎧⎪⎨-=⎪⎩C.4.5112x yx y-=⎧⎪⎨-=⎪⎩D.4.5112x yx y-=⎧⎪⎨-=⎪⎩8.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是()A.(3,-2 ) B.(-2,-3 ) C.(2,3 ) D.(3,2)9.在,90ABC C ∆∠=中,2AC BC =,则tan A 的值为( ) A .12B .2C .55D .25510.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( ) A .8米B .米C .米D .米二、填空题(本大题共6个小题,每小题3分,共18分)11.一组数:2,1,3,x ,7,y ,23,…,满足“从第三个数起,前两个数依次为a 、b ,紧随其后的数就是2a b -”,例如这组数中的第三个数“3”是由“221⨯-”得到的,那么这组数中y 表示的数为______. 12.若a:b=1:3,b:c=2:5,则a:c=_____.13.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,23=AB BC ,DE=6,则EF= .14.抛物线y=(x ﹣3)2+1的顶点坐标是____.15.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____. 16.如图,矩形ABCD 中,AB=2AD ,点A(0,1),点C 、D 在反比例函数y=kx(k >0)的图象上,AB 与x 轴的正半轴相交于点E ,若E 为AB 的中点,则k 的值为_____.三、解答题(共8题,共72分)17.(8分)徐州至北京的高铁里程约为700km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80km/h ,A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?18.(8分)如图,在平面直角坐标系中,直线y=x +4与x 轴、y 轴分别交于A 、B 两点,抛物线y=-x 2+bx +c 经过A 、B 两点,并与x 轴交于另一点C (点C 点A 的右侧),点P 是抛物线上一动点. (1)求抛物线的解析式及点C 的坐标;(2)若点P在第二象限内,过点P作PD⊥轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?(3)如果平行于x轴的动直线l与抛物线交于点Q,与直线AB交于点N,点M为OA的中点,那么是否存在这样的直线l,使得△MON是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.19.(8分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系. 图1 图2 图3(1)思路梳理将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为;(2)类比引申如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=12∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为.20.(8分)路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120 角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)21.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?22.(10分)在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A 30人/辆380元/辆B 20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。
江苏省南通市如皋市、崇川区2024届九年级下学期中考二模数学试卷(含解析)
2024年初中毕业、升学模拟考试试卷数学试题注意事项考生在答题前请认真阅读本注意事项:1.本试卷共6页,满分为150分,考试时间为120分钟,考试结束后,请将本试卷和答题纸一并交回.2.答题前,请务必将自己的姓名、智学号用0.5毫米黑色字迹的签字笔填写在试卷及答题纸指定的位置.3.答案必须按要求填涂、书写在答题纸上,在试卷、草稿纸上答题一律无效.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 在,,,四个数中,比大的数是()A. B. C. D.【答案】D解:,,,,而,,即比大的数是;故选:D.2. 据报道,2024年4月26日05时04分,在轨执行任务的神舟十七号航天员乘组打开舱门,迎接神舟十八号航天员乘组入驻距离地表约米的中国空间站——“天宫”.数用科学记数法表示为()A. B. C. D.【答案】B解:,故选:B.3. 下列几何体中,三视图都是圆的是()A. 圆柱B. 圆锥C. 球D. 正方体【答案】C解:由题意知,圆柱的三视图为圆和长方形,故A不符合要求;圆锥的三视图为带圆心的圆和三角形,故B不符合要求;球的三视图均为圆,故C符合要求;正方体的三视图均为正方形,故D不符合要求;故选:C.4. 下列运算正确的是()A. B. C. D.【答案】A解:A.,正确,故此选项符合题意;B.与不是同类项,无法合并,故此选项不符合题意;C.,故此选项不符合题意;D.∵,,∴,故此选项不符合题意;故选:A.5. 下列调查中,适宜全面调查的是( )A. 了解某班学生的视力情况B. 调查某批次汽车的抗撞击能力C. 调查某城市老年人2020年的日均锻炼时间D. 某鞋厂检测生产的鞋底能承受的弯折次数【答案】A解:.了解某班学生的视力情况,适合使用全面调查,因此选项符合题意;.调查某批次汽车的抗撞击能力,不可以使用全面调查,适用抽样调查,因此选项不符合题意;.调查某城市老年人2020年的日均锻炼时间,适用抽样调查,因此选项不符合题意;.某鞋厂检测生产的鞋底能承受的弯折次,适用抽样调查,因此选项不符合题意;故选:A.6. 如图,小明用一副三角板拼成一幅“帆船图”.,,,,则的度数为()A. B. C. D.【答案】C解:由题意知,,,∵,∴,∴,故选:C.7. 《周髀算经》中记载了“偃矩以望高”的方法,“矩”在古代指两条边呈直角的曲尺(即图中的),“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,E在同一水平线上,,与相交于点D.测得,,,则树高是()A. B. C. D.【答案】B解:∵,,∴,∴,即,∴,故选:B.8. 已知,,将线段平移得到线段,其中,点A的对应点为点C,若,,则的值为()A. B. 1 C. D. 5【答案】D解:与C对应,B与D对应,平移是向右平移2个单位长度,向下平移3个单位长度,,;故选:D.9. 如图,在菱形中,,点P是上一点(不与端点重合),点A关于直线的对称点为E,连接,,则的度数为()A. B. C. D.【答案】D解:连接,如图:由点A关于直线的对称点为E,得:,为等腰三角形,故,由菱形可得,,,,在四边形中,由内角和为得,,由,得,,,,即,故选:D.10. 定义:如果两个实数m,n满足,则称m,n为一对“互助数”.已知a,b为实数,且,是一对“互助数”.若,则p的值可以为()A. B. 6 C. D. 3【答案】A首先根据题意得到,求出,由得到,然后代入,解不等式组求解即可.∵,是一对“互助数”∴去分母得,∵∴∴∵∴∴∴整理得,∴或∴或∴解得或但当时,,,不符合题意,所以或,∴p的值可以为.故选:A.二、填空题(本大题共8小题,第11-12题每小题3分,第13-18题每小题4分,共30分,不需写出解答过程,请把最终结果直接填写在答题卡相应位置上)11. 分解因式:3ax2+6axy+3ay2=_____.【答案】3a(x+y)2.解:3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2.故答案为3a(x+y)2.12. 若圆锥的母线为6,底面圆的半径为3,则此圆锥的侧面积为________.【答案】18π解:依题意知母线长=6,底面半径r=3,则由圆锥的侧面积公式得S=πrl=π×3×6=18π.故答案为:18π.13. 计算:________.【答案】0解:==0故答案为:0.14. 若a,b为连续整数,且,则____________.【答案】11解:,,,,,故答案为:11.15. 如图,在中,,,分别以点,为圆心,大于的长为半径画弧,两弧分别相交于,两点,画直线交于点,连接,则的度数为____________.【答案】解:∵分别以点,为圆心,大于的长为半径画弧,两弧分别相交于,两点,∴垂直平分,∴,∴,∵,,∴,∴,故答案为:.16. 中国古代数学家杨辉的田亩比数乘除减法中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步”?翻译成数学问题是:一块矩形田地的面积为平方步,它的宽比长少步,问它的长与宽各多少步?利用方程思想,设长为步,则依题意列方程为______.【答案】根据矩形的长为x,宽为,利用矩形面积公式列方程即可.∵矩形长为x,宽比长少12,∴宽为,∵矩形面积为864,∴,故答案:.17. 如图,的顶点在反比例函数的图象上,顶点在轴的负半轴上,点为边的中点,若反比例函数的图象经过点C,E,则与的关系为____________.【答案】解:∵中,,∴点和点纵坐标相同,∵点在反比例函数上,点在反比例函数上,设,则,∴,∴,∵点为边的中点,∴点坐标为,即,∵点在反比例函数上,∴,化简得,故答案为:.18. 如图,在四边形中,,,.作,垂足为点M,连接,若,则的最小值为____________.【答案】解:如图,过D作的平行线,过A作的平行线,两平行线交于点E,即,四边形是平行四边形;,四边形是矩形,,,;连接,则当点M与的交点重合时,最小,从而最小,且最小值为线段的长;过C作,交延长线于点F,则,四边形是矩形,,,;在中,由勾股定理得,最小值为.故答案为:.三、解答题(本大题共8小题,共90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19. (1)解不等式组:(2)化简求值:,其中.【答案】(1);(2),解:(1)解不等式①得:,解不等式②得:,∴不等式组的解集为;(2)解:原式,当时,原式.20. 如图,点A,F,C,D一条直线上,,,.(1)求证:;(2)若,,求的长.【答案】(1)见解析(2)∵,,∴,.∵,∴.∴;【小问2】∵,∴.∴.即.∵,,∴.∴.∴.21. 移动支付由于快捷便利已成为大家平时生活中比较普遍的支付方式.某商店有“微信”和“支付宝”两种移动支付方式,甲、乙、丙三人在该商店购物时随机从这两种支付方式中选择一种支付.(1)甲选择“微信”支付的概率为____________;(2)求三人选择同一种支付方式的概率.【答案】(1)(2)【小问1】解:∵某商店有“微信”和“支付宝”两种移动支付方式,∴甲选择“微信”支付的概率为;【小问2】分别设“微信”和“支付宝”为A和B画树状图如下:∴一共有8种等可能得结果,其中三人选择同一种支付方式的结果有2种∴三人选择同一种支付方式的概率为.22. 某校举办“绿色低碳,美丽中国”主题作品展活动,五名评委对每组同学的参赛作品进行打分.对参加比赛的甲、乙、丙三个组参赛作品得分(单位:分)的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两组参赛作品得分的折线图:b.在给丙组参赛作品打分时,三位评委给出的分数分别为85,92,95,其余两位评委给出的分数均高于85;c.甲、乙、丙三个组参赛作品得分的平均数与中位数:甲组乙组丙组平均分88m90中位数n9292根据以上信息,回答下列问题:(1)填空:____________,____________;(2)若某组作品评委打分的5个数据的方差越小,则认为评委对该组作品的评价越“一致”.据此推断:对于甲、乙两组的参赛作品,五位评委评价更“一致”的是____________组(填“甲”或“乙”);(3)该校现准备推荐一个小组的作品到区里参加比赛,你认为应该推荐哪个小组,请说明理由·【答案】(1)90,86(2)乙(3)推荐丙小组,理由见解析【小问1】乙组平均数,甲组得分按从小到大排列为82,83,86,94,95,故中位数,故答案为:90,86;【小问2】甲组方差为,乙组方差为,∴乙组方差更小,∴对于甲、乙两组的参赛作品,五位评委评价更“一致”的是乙组,故答案为:乙.【小问3】推荐丙小组;理由:乙、丙两组的平均分高于甲组,所以可以在乙组或丙组中选一组,而乙组与丙组的平均分与中位数及最高分都相同,但丙组的最低分更高,所以推荐丙组去.23. 如图,是的直径,,是的两条切线,切点分别为A,B,,垂足为E,交于点D,连接.(1)求证:;(2)若,,求阴影部分的面积.【答案】(1)见解析(2)【小问1】解:∵与相切,∴.∵,∴.∴.∴.∵,∴,∴,∴;【小问2】解:如图,连接,过点O作.∵,∴.∵,∴为等边三角形.∴,.∵.∴.∴.∵与相切,∴.∵,,∴四边形为矩形.∴,.∴,,.∴,∴阴影部分面积为.24. 为了满足市场需求,提高生产效率,某工厂决定购买10台甲、乙两种型号的机器人来搬运原材料,甲、乙两种型号的机器人的工作效率和价格如下表:型号甲乙效率(单位:千克/时)m每台价格(单位:万元)46已知甲型机器人搬运500千克所用时间与乙型机器人搬运750千克所用时间相等.(1)求m的值;(2)若该工厂每小时需要用掉原材料710千克,则如何购买才能使总费用最少?最少费用是多少?【答案】(1)90(2)当购买方案为甲型6台,乙型4台时,最少费用为48万元【小问1】由题意列方程,得.解得.检验:当时,.所以原分式方程的解为.答:m的值为90;【小问2】设总费用为w万元,购买甲型号的机器人x台,则乙型号的机器人为台,则.∵,∴.∵,∴w随x的增大而减小.∴当时,w取得最小值,最小值为48万元.∴当购买方案为甲型6台,乙型4台时,最少费用为48万元.25. 在数学活动课上,老师给同学们提供了一个矩形纸片,其中,,要求各小组开展“矩形的折叠”探究活动.【操作猜想】(1)甲小组给出了下面框图中的操作及猜想:甲小组的操作与猜想操作:如图,在,上分别取一点N,M,将沿直线翻折,得到.猜想:当时,.请判断甲小组的猜想是否正确,并说明理由;【深入探究】(2)如图2,乙小组按照甲小组的方式操作发现,当时,点E恰好落在矩形的对角线上.请求出图中线段的长度;【拓广延伸】(3)丙小组按照甲小组的过程操作,进一步探究并提出问题:当时,过点E作交射线于点F,若,则的长是多少?请解答这个问题.【答案】(1)正确,理由见解析;(2);(3)或解:(1)甲小组的猜想正确.理由:∵四边形为矩形,∴,∴,∵折叠,∴,又∵,∴,∴;(2)在中,,,∴,∵折叠,∴,,由(1)可知,∴,,∴,∴,∴,同理,;(3)当点E在下方时,如图1,延长交于点H,同(2)可证.∴,∵,∴.∴.∴,由(1)可得,∴.∵,∴.设,则,∴,,∴,∴,∴,∴,∴;②当点E在下方时,设交于点H,如图2.同①可得,.∴.∴,∴,∴,∴;综上或.26. 在平面直角坐标系中,以A为顶点的抛物线与直线有两个公共点M,N,其中,点M在x轴上.直线与y轴交于点B,点B关于点A的对称点为C.(1)用含k的式子分别表示点B,N的坐标为:B____________,N____________;(2)如图,当时,连接,.求证:平分;(3)若函数的图象记为,将其沿直线翻折后的图象记为,当,两部分组成的图象与线段恰有一个公共点时,请确定k的取值范围.【答案】(1),(2)见解析(3)或【小问1】根据直线与y轴交于点B,令,得∴点,根据题意,得,解得,∴交点坐标分别为,∵点M在x轴上.∴点,故答案为:,.【小问2】∵抛物线,∴,解得,∴抛物线与x轴的交点为,∴,∵,∴,根据(1),得,,∵点B关于点A的对称点为C,,∴,设直线的解析式为,∴.∴,∵,∴,∴,故直线的解析式为,∴不论k为何值,直线过定点,∴点在直线上.∴平分;【小问3】设图象上的任意一点,图象上的任意一点,根据题意,得,,解得,∴即图象的解析式为,当时,图象的解析式为经过点B时,图象,图象与线段有唯一交点,∴满足解析式,∴,解得(舍去),经过点M时,图象,图象与线段有唯一交点,∴满足解析式,∴,解得(舍去)∴;当时,当时,图象,图象与线段没有交点,当时,图象,图象与线段有M,B两个交点,不符合题意;∴当时,图象与线段有两个交点,不符合题意;∴时,图象与线段有一个交点,∴,故,∴,综上所述,符合题意的范围是或.。
2024年江苏省南京市鼓楼区中考二模数学试卷+答案解析
2024年江苏省南京市鼓楼区中考二模数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列四个数中,最小的数是()A. B.0 C.2 D.2.如图,一辆汽车的轮胎因为漏气瘪掉了,将轮胎外轮廓看作一个圆,则这个圆和与它在同一平面内的地面看作一条直线的位置关系是()A.相交B.相切C.相离D.包含3.刚刚过去的“五一”假期,南京全市景区景点、文博场馆、乡村旅游等监测点接待游客量约为108250000人次.用科学记数法表示108250000是()A. B. C. D.4.计算的结果是()A. B. C. D.5.若一个正n边形的内角和为,则它的每个外角度数是()A. B. C. D.6.如图,O是的外心,,垂足分别为D,E,F,连接的中点H,I,J,则与的面积之比是()A. B. C. D.二、填空题:本题共9小题,每小题3分,共27分。
7.16的平方根是______,27的立方根是______.8.式子在实数范围内有意义,则x的取值范围是______.9.分解因式:__________.10.计算的结果是__.11.无人机正在飞行,某时刻控制界面显示“H:14m,D:48m”代表无人机离起飞点的垂直距离,D代表无人机离起飞点的水平距离,则此时无人机到起飞点的距离为_____12.如图,四边形ABCD是的内接四边形,BE是的直径,连接CE,若,则____13.用图中两块相同的含的三角板拼成一个四边形,在所有拼成的四边形中,两条对角线的所有比值的最大值为___.14.在平面直角坐标系中,直线与双曲线交于,两点,则的值为_____.15.如图,正方形ABCD边长为12,E为BC上一点,动点P,Q从E出发,分别向点B,C运动,且若PD和AQ交于点F,连接BF,则BF的最小值为_____.三、计算题:本大题共2小题,共12分。
16.计算:17.解方程:;解不等式组:四、解答题:本题共10小题,共80分。
2024年中考数学二模试卷(北京卷)(全解全析)
2024年中考第二次模拟考试数学·全解全析第Ⅰ卷选择题一、选择题(共16分,每小题2分)第1~8题均有四个选项,符合题意的只有一个.1.截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半,将239000000用科学记数法表示应为()A .723.910⨯B .82.3910⨯C .92.3910⨯D .90.23910⨯【答案】B【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:8239000000 2.3910=⨯,故选:B .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示绝对值较大的数时,一般形式为10n a ⨯,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值.2.下列图形中,既是中心对称图形也是轴对称图形的是()A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】A.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此项不合题意;D.既是中心对称图形,又是轴对称图形,故此项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为()A .100︒B .110︒C .130︒D .140︒【答案】B 【分析】根据∠AOC 和∠BOC 的度数得出∠AOB 的度数,从而得出答案.【详解】∵∠AOC =70°,∠BOC =30°,∴∠AOB =70°-30°=40°,∴∠AOD =∠AOB +∠BOD =40°+70°=110°.故选:B .【点睛】本题主要考查的是角度的计算问题,属于基础题型.理解各角之间的关系是解题的关键.4.如图,数轴上的点A 和点B 分别在原点的左侧和右侧,点A 、B 对应的实数分别是a 、b ,下列结论一定成立的是()A .0a b +<B .0b a -<C .22a b >D .22a b +<+【答案】D 【分析】依据点在数轴上的位置,不等式的性质,绝对值的意义,有理数大小的比较法则对每个选项进行逐一判断即可得出结论.【详解】解:由题意得:a <0<b ,且a <b ,∴0a b +>,∴A 选项的结论不成立;0b a ->,∴B 选项的结论不成立;22a b <,∴C 选项的结论不成立;22a b +<+,∴D 选项的结论成立.故选:D .【点睛】本题主要考查了不等式的性质,有理数大小的比较法则,利用点在数轴上的位置确定出a ,b 的取值范围是解题的关键.5.若正多边形的内角和是540︒,则该正多边形的一个外角为()A .45︒B .60︒C .72︒D .90︒【答案】C【分析】根据多边形的内角和公式()2180n -∙︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】 正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选:C .【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.6.已知关于x 的一元二次方程220x x a -+=有两个相等的实数根,则实数a 的值是()A .1-B .1C .2D .3【答案】B 【分析】本题考查一元二次方程根与判别式的关系,根据方程有两个相等的实数根,判别式等于0列式求解即可得到答案;【详解】解:∵一元二次方程220x x a -+=有两个相等的实数根,∴2(2)410a --⨯⨯=,解得:1a =,故选:B .7.不透明的袋子中装有2个红球和3个黄球,两种球除颜色外无其他差别,从中随机摸出一个小球,摸到黄球的概率是()A .23B .34C .25D .35【答案】D【分析】根据概率计算公式进行求解即可.【详解】解:∵不透明的袋子里装有2个红球,3个黄球,∴从袋子中随机摸出一个,摸到黄球的概率为33235=+;故选:D .【点睛】本题考查的是概率公式,熟知随机事件A 的概率P (A )=事件A 可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.8.如图,点A 、B 、C 在同一条线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB BC <,90A C ∠=∠=︒,EAB BCD ≌△△,连接DE ,设AB a =,BC b =,DE c =,给出下面三个结论:①a b c +<;②22a b a b +>+;)2a b c +>;上述结论中,所有正确结论的序号是()A .①②B .①③C .②③D .①②③【答案】D 【分析】如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,则DF AC a b ==+,由DF DE <,可得a b c +<,进而可判断①的正误;由EAB BCD ≌△△,可得BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,则90EBD ∠=︒,BDE △是等腰直角三角形,由勾股定理得,2222BE AB AE a b =+=+,由AB AE BE +>,可得22a b a b +>+,进而可判断②的正误;由勾股定理得222DE BD BE =+,即()2222c a b =+,则()2222c a b a b =⨯+<+,进而可判断③的正误.【详解】解:如图,过D 作DF AE ⊥于F ,则四边形ACDF 是矩形,∴DF AC a b ==+,∵DF DE <,∴a b c +<,①正确,故符合要求;∵EAB BCD ≌△△,∴BE BD =,CD AB a ==,AE BC b ==,ABE CDB ∠=∠,∵90CBD CDB ∠+∠=︒,∴90∠+∠=︒CBD ABE ,90EBD ∠=︒,∴BDE △是等腰直角三角形,由勾股定理得,2222BE AB AE a b =+=+,∵AB AE BE +>,∴22a b a b +>+,②正确,故符合要求;由勾股定理得222DE BD BE =+,即()2222c a b =+,∴()2222c a b a b =⨯+<+,③正确,故符合要求;故选:D .【点睛】本题考查了矩形的判定与性质,全等三角形的性质,勾股定理,等腰三角形的判定,不等式的性质,三角形的三边关系等知识.解题的关键在于对知识的熟练掌握与灵活运用.第Ⅱ卷非选择题二、填空题(共16分,每小题2分)93x -有意义,则x 可取的一个数是.【答案】如4等(答案不唯一,3x ≥)【分析】根据二次根式的开方数是非负数求解即可.【详解】解:∵式子3x -有意义,∴x ﹣3≥0,∴x ≥3,∴x 可取x ≥3的任意一个数,故答案为:如4等(答案不唯一,3x ≥.【点睛】本题考查二次根式、解一元一次不等式,理解二次根式的开方数是非负数是解答的关键.10.将2327m n n -因式分解为.【答案】()()333n m m +-【分析】先提公因式,再利用平方差公式可进行因式分解.【详解】解:2327m n n-=()239n m -=()()333n m m +-故答案为:()()333n m m +-.【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提.11.方程12131x x =的解为.【答案】x =3【分析】根据分式方程的解法解方程即可;【详解】解:去分母得:3x ﹣1=2x +2,解得:x =3,检验:把x =3代入得:(x +1)(3x ﹣1)≠0,∴分式方程的解为x =3.故答案为:x =3.【点睛】本题考查了解分式方程:先将方程两边乘最简公分母将分式方程化为整式方程,再解整式方程,最后需要检验整式方程的解是不是分式方程的解.12.在平面直角坐标系xOy 中,点(A 1-1)y ,,()22B y ,在反比例函数()0y k x =≠的图象上,且12y y >,请你写出一个符合要求的k 的值.【答案】2-(答案不唯一)【分析】由题可知A ,B 在两个象限,根据12y y >得到图象位于二、四象限,即0k <给出符合题意的k 值即可.【详解】由题可知A ,B 在两个象限,∵12y y >,∴反比例函数()0k y k x=≠的图象位于二、四象限,∴0k <,即2k =-,故答案为:2-.【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的性质是解题关键.13.如图,在O 中,AB 是直径,CD AB ⊥,ACD ∠=60︒,2OD =,那么DC 的长等于.【答案】23【分析】此题考查了圆的垂径定理,勾股定理,圆周角定理;根据垂径定理得到CE DE =, BDBC =,90DEO AEC ∠=∠=︒,利用圆周角定理求出求出260DOE A ∠=∠=︒,得出30ODE ∠=︒,进而根据含30度角的直角三角形的性质,求得1OE =,勾股定理即可得DE ,垂径定理即可求得DC 的长.【详解】解:如图所示,设,AB CD 交于点E ,AB 是直径,CD 丄AB ,CE DE ∴=, BDBC =,90DEO AEC ∠=∠=︒,ACD ∠ =60︒,30A ∴∠=︒,260DOE A ∴∠=∠=︒,30ODE ∴∠=︒,∴112OE OD ==,DE ∴=3,2CD DE ∴==23,故答案为:23.14.如图,《九章算术》是中国古代数学专着,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.该著作记载了“买椽多少”问题:“六贯二百一十钱,倩人去买几株椽.每株脚钱三文足,无钱准与一株椽”,大意是:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?(椽,装于屋顶以支持屋顶盖材料的木杆)设这批椽有x 株,根据题意可列分式方程为.【答案】()621031x x-=【分析】根据实际问题列分式方程即可,关键是对“那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱”的理解.【详解】解:由题意可列方程:62103(1)-=x x;故答案为:62103(1)-=x x .【点睛】本题考查根据题意列分式方程,解题关键是熟练运用单价计算公式:单价=总价÷数量,结合题意即可得出分式方程.15.如图,在矩形ABCD 中,4AB =,5BC =,E 点为BC 边延长线一点,且3CE =.连接AE 交边CD 于点F ,过点D 作DH AE ⊥于点H ,则DH =.【答案】5【分析】利用相似三角形的判定与性质求得线段FC 的长,进而求得DF 的长,利再用勾股定理求出AF 的长,最后根据三角形的面积公式,即可求出DH 的长.【详解】解: 四边形ABCD 为矩形,CD AB ∴∥,4DC AB ==,5AD BC ==,90ADC ∠=︒,EFC EAB ∴∠=∠,E E ∠=∠ ,EFC EAB ∴∽V V ,CE FC EB AB ∴=,3354FC ∴=+,32FC ∴=,52DF DC FC ∴=-=,在Rt ADF V 中,2222555522AF AD DF ⎛⎫=+=+= ⎪⎝⎭,DH AE ⊥ ,1122ADF S AD DF AF DH ∴=⋅=⋅V ,1515552222DH ∴⨯⨯=⨯⨯,5DH ∴=,故答案为:5.【点睛】本题矩形的性质,相似三角形的判定和性质,勾股定理,三角形面积公式,熟练掌握相似三角形的判定和性质是解题关键.16.有黑、白各6张卡片,分别写有数字1至6把它们像扑克牌那样洗过后,数字朝下,如图排成两行,排列规则如下:①左至右,按数字从小到大的顺序排列;②黑、白卡片数字相同时,黑卡片放在左边.将第一行卡片用大写英文字母按顺序标注,第二行卡片用小写英文字母按顺序标注,则白卡片数字1摆在了标注字母的位置,标注字母e 的卡片写有数字.【答案】B ;4【分析】根据排列规则依次确定白1,白2,白3,白4的位置,即可得出答案.【详解】解:第一行中B 与第二行中c 肯定有一张为白1,若第二行中c 为白1,则左边不可能有2张黑卡片,∴白卡片数字1摆在了标注字母B 的位置,∴黑卡片数字1摆在了标注字母A 的位置,;第一行中C 与第二行中c 肯定有一张为白2,若第二行中c 为白2,则a ,b 只能是黑1,黑2,而A 为黑1,矛盾,∴第一行中C 为白2;第一行中F 与第二行中c 肯定有一张为白3,若第一行中F 为白3,则D ,E 只能是黑2,黑3,此时黑2在白2右边,与规则②矛盾,∴第二行中c 为白3,∴第二行中a 为黑2,b 为黑3;第一行中F 与第二行中e 肯定有一张为白4,若第一行中F 为白4,则D ,E 只能是黑3,黑4,与b 为黑3矛盾,∴第二行中e 为白4.故答案为:①B ,②4.【点睛】本题考查图形类规律探索,解题的关键是理解题意,根据所给规则依次确定出白1,白2,白3,白4的位置.三、解答题(共68分,17~22题,每题5分,23~26题,每题6分,27~28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(本题5分)计算:()2021112π 3.144cos302-⎛⎫-+--︒+ ⎪⎝⎭【答案】4【分析】先计算特殊角三角函数值,再计算零指数幂,负整数指数幂和化简二次根式,再根据二次根式的加减计算法则求解即可.【详解】解:原式31231442=-++-⨯+1231234=-++-+4=.【点睛】本题主要考查了求特殊角三角函数值,零指数幂,负整数指数幂,化简二次根式等等,熟知相关计算法则是解题的关键.18.(本题5分)解不等式组:352x x +<-⎧⎪⎨-<⎪.【答案】35x <<【分析】先求出每个不等式的解集,再根据夹逼原则求出不等式组的解集即可.【详解】解:221352x x x x +<-⎧⎪⎨-<⎪⎩①②,解不等式①得:3x >,解不等式②得:5x <,∴不等式组的解集为35x <<.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.19.(本题5分)先化简,再求值:21221121x x x x x x --⎛⎫+-÷ ⎪+++,其中31x =-.【答案】2x x --,33-+.【分析】根据分式的混合运算法则进行化简,再代值计算即可.【详解】解:原式22121211(1)x x x x x x ⎛⎫---=+÷ ⎪+++⎝⎭()()22112x x x x x-+=⋅+-()1x x =-+2x x =--,当31x =-时,原式()()3131133=---+=-+.【点睛】本题考查分式的化简求值,二次根式的运算.熟练掌握相关运算法则,正确的进行计算,是解题的关键.20.(本题5分)如图,在ABC 中,60,ACB CD ∠=︒平分ACB ∠,过点D 作DE BC ⊥于点,E DF AC ⊥于点F ,点H 是CD 的中点,连接HE FH 、.(1)判断四边形DFHE 的形状,并证明;(2)连接EF ,若26EF =CD 的长.【答案】(1)菱形,见解析;(2)42【分析】本题考查菱形的性质和判定,关键是利用菱形的判定解答.(1)根据角平分线的性质得出DF DE =,进而利用直角三角形的性质得出FH DH EH ==,进而利用菱形的判定解答即可;(2)根据菱形的性质和含30︒角的直角三角形的性质得出DH ,进而解答即可.【详解】(1)解:四边形DFHE 是菱形,理由如下:CD 平分ACB ∠,过点D 作DE BC ⊥于点E ,DF AC ⊥于点F ,60ACB ∠=︒,DF DE ∴=,30FCD DCE ∠=∠=︒,点H 是CD 的中点,FH CH DH ∴==,EH CH DH ==,FH HE ∴=,30DCE ∠=︒ ,DE CB ⊥,60HDE ∴∠=︒,DHE ∴ 是等边三角形,DE HE DH ∴==,DF DE HE FH ∴===,∴四边形DFHE 是菱形;(2)解:连接EF ,交DH 于点O ,四边形DFHE 是菱形,12OH OD DH ∴==,162OF OE EF ===,EF DH ⊥,60HDE ∠=︒ ,6233OE OD ∴===,2442CD DH OD ∴===.21.(本题5分)已知,图①是一张可以缓解眼睛疲劳的视力远眺回形图,它是由多个大小不等的正方形构成的二维空间平面图,利用心理学空间知觉原理,通过变化图案可不断改变眼睛晶状体的焦距,强烈显示出三维空间的向远延伸的立体图形,调节人们的睫状体放松而保护视力.其中阴影部分是由能够缓解视疲劳的绿色构成,阴影之间的部分是空白区域.某体检中心想定做一张回形图,图②是选取的部分回形图的示意图,其中最大的正方形边长为3m ,且空白区域A B 、两部分的面积相等,若空白区域需要三种不同的护眼浅色贴纸,铺贴用纸费用分别为:A 区域10元2/m ,B 区域15元2/m ,C 区域20元2/m ,铺贴三个区域共花费150元,求C 区域的面积.【答案】25m 【分析】本题考查一元一次方程的应用,设A 区域的面积为m x ,根据题意得出101520(92)150x x x ++-=,解得2x =,再求出C 区域的面积即可.【详解】解:设A 区域的面积为m x ,101520(92)150x x x ++-=,解得2x =,9225-⨯=,答:C 区域的面积是25m .22.(本题5分)在平面直角坐标系xOy 中,一次函数y kx b =+(0k ≠)的图象经过点()0,1,()2,2-,与x 轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数y kx b =+(0k ≠)的值,直接写出m 的取值范围.【答案】(1)112y x =-+,(2,0)A ;(2)4m >-【分析】本题考查了待定系数法求一次函数解析式:掌握待定系数法求一次函数解析式一般步骤是解决问题的关键.也考查了一次函数的性质.(1)先利用待定系数法求出函数解析式为112y x =-+,然后计算自变量为0时对应的函数值得到A 点坐标;(2)当函数y x n =+与y 轴的交点在点A (含A 点)上方时,当0x >时,对于x 的每一个值,函数2y x m =+的值大于函数(0)y kx b k =+≠的值.【详解】(1)解: 一次函数(0)y kx b k =+≠的图象经过点(0,1),(2,2)-,∴122b k b =⎧⎨-+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,该一次函数的表达式为112y x =-+,令0y =,得1012x =-+,2x ∴=,(2,0)A ∴;(2)解:当2x >时,对于x 的每一个值,函数2y x m =+的值大于一次函数(0)y kx b k =+≠的值,1212x m x ∴+>-+,4m ∴>-.23.(本题6分)为进一步增强中小学生“知危险会避险”的意识,某校初三年级开展了系列交通安全知识竞赛,从中随机抽取30名学生两次知识竞赛的成绩(百分制),并对数据(成绩)进行收集、整理、描述和分析.下面给出了部分信息.a .这30名学生第一次竞赛成绩和第二次竞赛成绩得分统计图:b .这30名学生两次知识竞赛获奖情况相关统计表:参与奖优秀奖卓越奖第一次竞赛人数101010平均数828795第二次竞赛人数21216平均数848793(规定:分数90≥,获卓越奖;85≤分数90<,获优秀奖:分数85<,获参与奖)c .第二次竞赛获卓越奖的学生成绩如下:90909191919192939394949495959698d .两次竞赛成绩样本数据的平均数、中位数、众数如下表:平均数中位数众数第一次竞赛m 87.588第二次竞赛90n91根据以上信息,回答下列问题:(1)小松同学第一次竞赛成绩是89分,第二次竞赛成绩是91分,在图中用“○”圈出代表小松同学的点;(2)直接写出,m n 的值;(3)哪一次竞赛中初三年级全体学生的成绩水平较高?请说明你的理由(至少两个方面).【答案】(1)见详解;(2)88m =,90n =;(3)第二次【分析】(1)根据30名学生第一次竞赛成绩和第二次竞赛成绩得分情况统计图可得横坐标为89,纵坐标为91,即可获得答案;(2)根据平均数和中位数的定义求解即可;(3)根据平均数、众数和中位数的意义解答即可.【详解】(1)解:如图所示;(2)8210871095108830m ⨯+⨯+⨯==,∵第二次竞赛获卓越奖的学生有16人,成绩从小到大排列为:90,90,91,91,91,91,92,93,93,94,94,94,95,95,96,98,其中第1个和第2个数是30名学生成绩中第15和第16个数,∴1(9090)902n =⨯+=,∴88m =,90n =;(3)第二次竞赛,学生成绩的平均数、中位数和众数均高于第一次竞赛,故第二次竞赛中初三年级全体学生的成绩水平较高.【点睛】本题主要考查了众数、平均数、中位数等知识,理解题意,熟练掌握相关知识是解题关键.24.(本题6分)如图,圆内接四边形ABCD 的对角线AC ,BD 交于点E ,BD 平分ABC ∠,BAC ADB ∠=∠.(1)求证DB 平分ADC ∠,并求BAD ∠的大小;(2)过点C 作CF AD ∥交AB 的延长线于点F .若AC AD =,2BF =,求此圆半径的长.【答案】(1)见解析,90BAD ∠=︒;(2)4【分析】(1)根据已知得出 AB BC =,则ADB CDB ∠=∠,即可证明DB 平分ADC ∠,进而根据BD 平分ABC ∠,得出 AD CD=,推出 BAD BCD =,得出BD 是直径,进而可得90BAD ∠=︒;(2)根据(1)的结论结合已知条件得出,90F ∠=︒,ADC △是等边三角形,进而得出1302CDB ADC ∠=∠=︒,由BD 是直径,根据含30度角的直角三角形的性质可得12BC BD =,在Rt BFC △中,根据含30度角的直角三角形的性质求得BC 的长,进而即可求解.【详解】(1)解:∵BAC ADB∠=∠∴ AB BC =,∴ADB CDB ∠=∠,即DB 平分ADC ∠.∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ AD CD=,∴ AB AD BCCD +=+,即 BAD BCD =,∴BD 是直径,∴90BAD ∠=︒;(2)解:∵90BAD ∠=︒,CF AD ∥,∴180F BAD ∠+∠=︒,则90F ∠=︒.∵ AD CD=,∴AD DC =.∵AC AD =,∴AC AD CD ==,∴ADC △是等边三角形,则60ADC ∠=︒.∵BD 平分ADC ∠,∴1302CDB ADC ∠=∠=︒.∵BD 是直径,∴90BCD ∠=︒,则12BC BD =.∵四边形ABCD 是圆内接四边形,∴180ADC ABC ∠+∠=︒,则120ABC ∠=︒,∴60FBC ∠=︒,∴906030FCB ∠=︒-︒=︒,∴12FB BC =.∵2BF =,∴4BC =,∴28BD BC ==.∵BD 是直径,∴此圆半径的长为142BD =.【点睛】本题考查了弧与圆周角的关系,等弧所对的圆周角相等,直径所对的圆周角是直角,含30度角的直角三角形的性质,等边三角形的性质与判定,圆内接四边形对角互补,熟练掌握以上知识是解题的关键.25.(本题6分)兴寿镇草莓园是北京最大的草莓基地,通过一颗颗小草莓,促进了农民增收致富,也促进了农旅融合高质量发展.小梅家有一个草莓大棚,大棚的一端固定在离地面高1m 的墙体A 处,另一端固定在离地面高1m 的墙体B 处,记大棚的截面顶端某处离A 的水平距离为m x ,离地面的高度为m y ,测量得到如下数值:/mx01245/my18311311383小梅根据学习函数的经验,发现y是x的函数,并对y随x的变化而变化的规律进行了探究.下面是小梅的探究过程,请补充完整:(1)在下边网格中建立适当的平面直角坐标系,描出表中各组数值所对应的点(),x y,并画出函数的图象;解决问题:(2)结合图表回答,大棚截面顶端最高处到地面的距离高度为___________m;此时距离A的水平距离为___________m;(3)为了草莓更好的生长需要在大棚内安装补光灯,补光灯采用吊装模式悬挂在顶部,已知补光灯在距离地面1.5m时补光效果最好,若在距离A处水平距离1.5m的地方挂补光灯,为使补光效果最好补光灯悬挂部分的长度应是多少m?(灯的大小忽略不计)【答案】(1)见解析;(2)4;3;(3)为使补光效果最好补光灯悬挂部分的长度应是1.75m.【分析】(1)描点,连线,即可画出函数的图象;(2)结合图表回答,即可解答;(3)利用待定系数法求得抛物线的解析式,令 1.5x=,求得函数值,即可解答.【详解】(1)解:描点,连线,函数的图象如图所示,;(2)解:根据图表知,大棚截面顶端最高处到地面的距离高度为4m ;此时距离A 的水平距离为3m ;故答案为:4;3;(3)解:设抛物线的解析式为2y ax bx c =++,把()01,,813⎛⎫ ⎪⎝⎭,,1123⎛⎫ ⎪⎝⎭,,代入得,18311423c a b c a b c ⎧⎪=⎪⎪++=⎨⎪⎪++=⎪⎩,解得1321a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,∴抛物线的解析式为21213y x x =-++,令 1.5x =,则21331321 3.253224y ⎛⎫=-⨯+⨯+== ⎪⎝⎭,()3.25 1.5 1.75m -=,答:为使补光效果最好补光灯悬挂部分的长度应是1.75m .【点睛】本题考查二次函数的实际应用,根据点的坐标画出函数图象是解题关键.26.(本题6分)在平面直角坐标系xOy 中,已知抛物线()22230y ax a x a =--≠.(1)求该抛物线的对称轴(用含a 的式子表示);(2)若1a =,当23x -<<时,求y 的取值范围;(3)已知()121,A a y -,()2,B a y ,()32,C a y +为该抛物线上的点,若()()13320y y y y -->,求a 的取值范围.【答案】(1)直线x a =;(2)45x -≤<;(3)3a >或1a <-【分析】(1)根据对称轴为直线2b x a=-代入求解即可;(2)根据23x -<<,2x =-比3x =距离对称轴远,分别求得1,2x =-时的函数值即可求解;(3)分两种情况讨论132>y y y >和132y y y <<时.【详解】(1)解:∵抛物线解析式为()22230y ax a x a =--≠,∴对称轴为直线2222b a x a a a---===;(2)解:当1a =时,抛物线解析式为2=23y x x --,∴对称轴2122b x a -=-=-=,抛物线开口向上,∴当1x =时,取得最小值,即最小值为212134y =-⨯-=-,∵2x =-离对称轴更远,∴2x =-时取得最大值,即最大值为()()222235y =--⨯--=,∴当23x -<<时,y 的取值范围是45x -≤<;(3)解:∵()()13320y y y y -->,∴13>0y y -,32>0y y -,即132>y y y >;或130y y -<,320y y -<,即132y y y <<,∵抛物线对称轴2222b a x a a a ---===,∴()2,B a y 是抛物线顶点坐标,若132>y y y >,则抛物线开口向上,0a >,()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >;当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-,不符合题意;∴a 的取值范围是3a >;若132y y y <<,则抛物线开口向下,a<0,()32,C a y +在对称轴的右侧,当()121,A a y -在对称轴右侧时,21+2a a ->,解得:3a >,不符合题意,当()121,A a y -在对称轴左侧时,()21+2a a a a -->-,解得:1a <-;∴a 的取值范围是1a <-;综上所述:a 的取值范围是3a >或1a <-.【点睛】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键.27.(本题7分)如图,在ABC 中,AB AC =,()24590BAC αα∠=︒<<︒,D 是BC 的中点,E 是BD 的中点,连接AE .将射线AE 绕点A 逆时针旋转α得到射线AM ,过点E 作EF AE ⊥交射线AM 于点F .(1)①依题意补全图形;②求证:B AFE ∠=∠;(2)连接CF ,DF ,用等式表示线段CF ,DF 之间的数量关系,并证明.【答案】(1)①见解析;②见解析;(2)CF DF=【分析】(1)①根据题意画出图形即可求解;②连接AD ,则AD BC ⊥于点D ,AD 平分BAC ∠,根据等腰三角形的性质以及三角形内角和定理得出BAD ∠=α,90B α∠=︒-,根据90AEF ∠=︒,得出90AFE α∠=︒-,则B AFE ∠=∠;(2)延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,倍长中线法证明HBE FDE ≌,进而证明AHB AFC ≌,即可得证.【详解】(1)解:①如图所示,②连接AD ,∵AB AC =,D 是BC 的中点,∴AD BC ⊥于点D ,AD 平分BAC ∠,∵()24590BAC αα∠=︒<<︒∴BAD ∠=α,90B α∠=︒-,∵EF AE ⊥,∴90AEF ∠=︒,90AFE α∠=︒-,∴B AFE ∠=∠;(2)CF DF =;证明如下,延长FE 至点H ,使得EH EF =,连接,BH AH ,CF ,∵E 为BD 的中点,E 为HF 的中点∴,EH EF EB ED ==,又HEB FED ∠=∠,∴HBE FDE ≌()SAS ,∴BH FD =,∵AE HF ⊥,EH EF =,∴AHF △是等腰三角形,则AH AF =,HAE FAE α∠=∠=,,∵2BAC HAF α∠=∠=,∴HAF BAF BAC BAF ∠-∠=∠-∠,即BAH CAF ∠=∠,∴AHB AFC ≌()SAS ,∴CF BH =,∴CF FD =.【点睛】本题考查了等腰三角形的性质与判定,旋转的性质,全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.28.(本题7分)在平面直角坐标系xOy 中,O 的半径为1,对于直线l 和线段AB ,给出如下定义:若将线段AB 关于直线l 对称,可以得到O 的弦A B ''(A ',B '分别为A ,B 的对应点),则称线段AB 是O 的关于直线l 对称的“关联线段”.例如:在图1中,线段AB 是O 的关于直线l 对称的“关联线段”.(1)如图2,点1A ,1B ,2A ,2B ,3A ,3B 的横、纵坐标都是整数.①在线段11A B ,22A B ,33A B 中,O 的关于直线2y x =+对称的“关联线段”是______;②若线段11A B ,22A B ,33A B 中,存在O 的关于直线y x m =-+对称的“关联线段”,则m =______;(2)已知()30y x b b =+>交x 轴于点C ,在ABC 中,3AC =,2AB .若线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.【答案】(1)①22A B ;②3或2;(2)b 的最大值为43,17BC =;最小值为23,5BC =【分析】(1)①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,运用数形结合思想,即可求解;②从图象性质可知,直线y x m =-+与x 轴的夹角为45°,而线段11A B ⊥直线y x m =-+,线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦;线段335A B =,O 的最长的弦为2,得线段33A B 的对称线段不可能是O 的弦,而线段22A B ∥直线y x m =-+,线段222A B =,所以线段22A B 的对称线段22A B '',且线段222A B ''=,平移这条线段,使其在O 上,有两种可能,画出对应图形即可求解;(2)先表示出33OC b =,b 最大时就是CO 最大,b 最小时就是CO 长最小,根据线段AB 关于直线()30y x b b =-+>对称线段A B ''在O 上,得3A C AC ''==,再由三角形三边关系得A C OA OC A C OA ''''-≤≤+,得当A '为()10,时,如图3,OC 最小,此时C 点坐标为()20,;当A '为()10,时,如图3,OC 最大,此时C 点坐标为()40,,分两种情形分别求解.【详解】(1)解:①分别画出线段11A B ,22A B ,33A B 关于直线2y x =+对称线段,如图,发现线段11A B 的对称线段是⊙O 的弦,∴线段11A B ,22A B ,33A B 中,⊙O 的关于直线2y x =+对称的“关联线段”是11A B ,故答案为:11A B ;②从图象性质可知,直线y x m =-+与x 轴的夹角为45°,∴线段11A B ⊥直线y x m =-+,∴线段11A B 关于直线y x m =-+对称线段还在直线11A B 上,显然不可能是O 的弦;∵线段2233215A B =+=,O 的最长的弦为2,∴线段33A B 的对称线段不可能是O 的弦,线段22A B 是⊙O 的关于直线y x m =-+对称的“关联线段”,而线段22A B ∥直线y x m =-+,线段222A B =,∴线段22A B 的对称线段22A B '',且线段222A B ''=,平移这条线段,使其在O 上,有两种可能,第一种情况22A B ''、的坐标分别为()()0110,,,,此时3m =;第二种情况22A B ''、的坐标分别为()()1001--,、,此时2m =,故答案为:3或2;(2)已知()30y x b b =-+>交x 轴于点C ,在ABC 中,3AC =,2AB =.若线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,直接写出b 的最大值和最小值,以及相应的BC 长.解:∵直线()30y x b b =-+>交x 轴于点C ,当0y =时,()030x b b =-+>,解得:33x b =∴33OC b =即b 最大时就是OC 最大,b 最小时就是OC 最小,∵线段AB 是O 的关于直线()30y x b b =-+>对称的“关联线段”,∴线段AB 关于直线()30y x b b =-+>对称线段A B ''在⊙O 上,∴3A C AC ''==在A CO ' 中,A C OA OC A C OA ''''-≤≤+∴当A '为()10-,时,如图,OC 最小,此时C 点坐标为()20,,将点C 代入直线3y x b =-+中,得032b=-⨯+解得:23b =,∵点B B ',关于323y x =-+对称∴22125BC B C '==+=,∴当A '为()10,时,如图,OC 最大,此时C 点坐标为()40,,将点C 代入直线3y x b =-+中,得034b=-⨯+解得:43b =,∵点B B ',关于323y x =-+对称∴221417BC B C '==+=,综上b 的最大值为43,17BC =;最小值为23,5BC =.【点睛】本题考查了以圆为背景的阅读理解题,对称轴的性质、一次函数与坐标轴的交点问题,勾股定理,三角形三边关系,解决问题的关键是找出不同情境下的“关联线段”和阅读理解能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.
24.南水北调工程中线已经在12月27日开始向北京、天津等地供水.为了进一步加强居民的节水意识,合理调配水资源,某区决定对本区的居民用水实行额定用水管理.为了更好的确定额定用水的用水量,首先对本区居民的目前生活用水量进行了入户调查.下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨).
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
(1)请你将调查数据进行如下整理:
频数分布表
分组
划记(用正字划记)
频数
2.0<x≤3.5
3.5<x≤5.0
5.0<x≤6.5
6.5<x≤8.0
8.0<x≤9.5
合计
(2)结合整理的数据完成频数分布直方图,通过观察直方图你可以得到哪些信息?请你写出你得到的信息.
6.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( )
A. B. C. D.
【考点】概率公式.
【分析】让红球的个数除以球的总个数即为所求的概率.
【解答】解:因为一共有6个球,红球有2个,
所以从布袋里任意摸出1个球,摸到红球的概率为: = .
【解答】解:4 600 000 000用科学记数法表示为:4.6×109.
故选:C.
【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3.如图,△ABC中,∠C=90°,BC=2,AB=3,则下列结论中正确的是( )
∴2AC>AB,
即AB<2AC,
故选C.
【点评】本题考查了圆心角、弧、弦的关系以及三角形三边关系定理:三角形两边之和大于第三边,题目设计新颖,是一道不错的中考题.
9.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0)B. C. D.
【考点】一次函数的性质;正数和负数;垂线段最短.
C、正确,sLeabharlann nA= = ;D、错误,tanA= = = .
故选C.
【点评】本题可以考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
4.如图是一个圆柱体,则它的主视图是( )
A. B. C. D.
【考点】简单几何体的三视图.
【分析】找到从物体的正面看,所得到的图形即可.
①A点所表示的有理数大于B点所表示的有理数;
②B点所表示的有理数的绝对值大于C点所表示的有理数的绝对值;
③A点所表示的有理数与D点所表示的有理数和为0;
④C点所表示的有理数与B点所表示的有理数的乘积大于0.
A.①②B.①③C.②③D.③④
8.如图,⊙O中,如果 =2 ,那么( )
A.AB=ACB.AB=2ACC.AB<2ACD.AB>2AC
中考数学二模试题
一、选择题
1.3的相反数是( )
A. B. C.3D.﹣3
2.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( )
A.4.6×108B.46×108C.4.6×109D.0.46×1010
3.如图,△ABC中,∠C=90°,BC=2,AB=3,则下列结论中正确的是( )
A.sinA= B.cosA= C.sinA= D.tanA=
4.如图是一个圆柱体,则它的主视图是( )
A. B. C. D.
5.下列说法正确的是( )
A.一个游戏中奖的概率是 ,则做100次这样的游戏一定会中奖
B.为了了解全国中学生的心理健康状况,应采用普查的方式
C.一组数据0,1,2,1,1的众数和中位数都是1
A.4.6×108B.46×108C.4.6×109D.0.46×1010
【考点】科学记数法—表示较大的数.
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【解答】解:一个直立在水平面上的圆柱体的主视图是长方形,
故选A
【点评】此题考查三视图,关键是根据用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.
5.下列说法正确的是( )
A.一个游戏中奖的概率是 ,则做100次这样的游戏一定会中奖
B.为了了解全国中学生的心理健康状况,应采用普查的方式
(2)在△ABC中,∠A<∠B<∠C.
①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);
②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.
27.已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.
12.将抛物线y=2x2向上平移3单位,得到的抛物线的解析式是.
13.已知扇形的半径为4cm,圆心角为120°,则扇形的弧长为cm.
14.将一副三角尺如图所示叠放在一起,则 的值是.
15.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差km/h.
B、为了了解全国中学生的心理健康状况,应采用抽样调查的方式,该说法错误,故本选项错误;
C、这组数据的众数是1,中位数是1,故本选项正确;
D、方差越大,则平均值的离散程度越大,稳定性也越小,则甲组数据比乙组稳定,故本选项错误;
故选C.
【点评】本题考查了概率、方差、众数、中位数等知识,属于基础题,掌握各知识点是解题的关键.
A.sinA= B.cosA= C.sinA= D.tanA=
【考点】锐角三角函数的定义.
【分析】先根据勾股定理求出AC的长,再根据锐角三角函数的定义进行计算即可.
【解答】解:∵△ABC中,∠C=90°,BC=2,AB=3,
∴AC= = = .
∴A、错误,sinA= = ;
B、错误,cosA= = ;
9.如图,点A的坐标为(﹣1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0)B. C. D.
10.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是( )
A. B.
C. D.
二、填空题
11.分解因式:4x2﹣1=.
(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定多少吨?
五、解答题
25.如图,△ABC内接于⊙O,OC⊥AB于点E,点D在OC的延长线上,且∠B=∠D=30°.
(1)求证:AD是⊙O的切线;
(2)若AB=6 ,求⊙O的半径.
28.如图①,∠MON=60°,点A,B为射线OM,ON上的动点(点A,B不与点O重合),且AB= ,在∠MON的内部、△AOB的外部有一点P,且AP=BP,∠APB=120°.
(1)求AP的长;
(2)求证:点P在∠MON的平分线上;
(3)如图②,点C,D,E,F分别是四边形AOBP的边AO,OB,BP,PA的中点,连接CD,DE,EF,FC,OP.当AB⊥OP时,请直接写出四边形CDEF周长的值.
16.若x是不等于1的实数,我们把 称为x“差倒数”,如2的差倒数是 =﹣1,﹣1的差倒数为 = .现已知x1=﹣ ,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2015的值为.
三、解答题
17.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.
2015年北京市通州区中考数学二模试卷
参考答案与试题解析
一、选择题
1.3的相反数是( )
A. B. C.3D.﹣3
【考点】相反数.
【分析】根据相反数的定义即可求解.
【解答】解:3的相反数是:﹣3.
故选D.
【点评】本题主要考查了绝对值的定义,a的相反数是﹣a.
2.据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为( )
21.已知函数y= ﹣1与函数y=kx交于点A(2,b)、B(﹣3,m)两点(点A在第一象限),
(1)求b,m,k的值;
(2)函数与x轴交于点C,求△ABC的面积.
四、解答题
22.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(2015•通州区二模)如图.在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
C.一组数据0,1,2,1,1的众数和中位数都是1
D.若甲组数据的方差S甲2=0.2,乙组数据的方差S乙2=0.5,则乙组数据比甲组数据稳定
【考点】概率的意义;全面调查与抽样调查;中位数;众数;方差.
【分析】根据概率、方差、众数、中位数的定义对各选项进行判断即可.
【解答】A、一个游戏中奖的概率是 ,则做100次这样的游戏有可能中奖一次,该说法错误,故本选项错误;
故选D.
【点评】本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.
7.如图,数轴上用点A,B,C,D表示有理数,下列语句正确的有( )