湖南省长沙市长郡中学2016-2017学年高一上学期期中考试数学试题 (word版含答案)

合集下载

湖南省长沙市长郡中学2016-2017学年高一上学期第二次模块检测数学试题 含答案

湖南省长沙市长郡中学2016-2017学年高一上学期第二次模块检测数学试题 含答案

数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项 是符合题目要求的。

1。

已知集合{}2,1A =-,集合{}2,1B m m =--,且A B =,则实数m 等于()A .2B .1-C .2或1-D .42.下列函数中,在其定义域内既是增函数又是奇函数的是( )A .1y x=B .tan y x =C .3xy =D .3y xx =+3.给出下列三个命题: ①若a b =,则a b =;②若AB DC =,则四边形ABCD 是正方形; ③若ma na =(0a ≠,m ,n ∈R ),则m n =. 其中正.确.的命题为( )A .①B .①②C .①③D .②③4。

已知函数()()21sin π,10,0x x x f x e x -⎧-<<⎪=⎨≥⎪⎩,若()()12f f a +=,则a 的值为( )A .1B .1或22- C .2D .125.已知角α的终边过点(),3P a a --(0a ≠),则sin α=( ) A .310310 B 310C 10-D 6.若1e ,2e 是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) A .12e e -,21ee -B .122e e +,1212e e+C .2123ee -,1264e e -D .12e e +,12e e-7。

在下列给出的函数中,以π为周期且在π0,2⎛⎫⎪⎝⎭内是增函数的是( )A .πtan 4y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=+ ⎪⎝⎭C .cos 2y x =D .sin 2x y =8.在()0,2π内使sin cos x x >的x 的取值范围是( )A .π3π,44⎛⎫⎪⎝⎭B .ππ5π3π,,4242⎛⎤⎛⎤⎥⎥⎝⎦⎝⎦C .ππ,42⎛⎫ ⎪⎝⎭D .5π7π,44⎛⎫⎪⎝⎭9。

湖南省长沙市长郡中学2017-2018学年高一上学期期中考试数学试题 Word版含答案

湖南省长沙市长郡中学2017-2018学年高一上学期期中考试数学试题 Word版含答案

长郡中学2017-2018学年度高一第一学期期中考试数学一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集Z U =,{1012}A =-,,,,2{|}B x x x ==,则U A C B 为( ) A .{12}-, B .{10}-, C .{01}, D .{12},2.已知函数()f x 的图像在R 上是连续不间断的,且()()0f a f b >,则下列说法正确的是( ) A .()f x 在区间()a b ,上一定有零点 B .()f x 在区间()a b ,上不一定有零点 C .()f x 在()a b ,上零点的个数为奇数 D .()f x 在()a b ,上没有零点3.20()π000x x f x x x ⎧>⎪==⎨⎪<⎩,,,,则{[(3)]}f f f -等于( )A .0B .πC .2πD .94.已知集合A B ==R ,x A ∈,y B ∈,f :x y ax b →=+,若4和10的原象分别对应是6和9,则19在f 作用下的象为( )A .18B .30 C.272D .28 5.下列各组中两个函数是同一函数的是( )A.()f x =()g x = B .()f x x =,()g x =C.()1f x =,0()g x x = D .24()2x f x x -=+,()2g x x =-6.函数4()log f x x =与()4x f x =的图像( )A .关于x 轴对称B .关于y 轴对称 C.关于原点对称 D .关于直线y x =对称7.方程lg 20x x +-=一定有解的区间是( )A .(01),B .(12), C.(23), D .(34), 8.方程3log 41x =,则44x x -+为( )A .0B .103 C.3 D .1639.在同一坐标系中,函数y ax a =+与x y a =的图像大致是( )A .B . C.D .10.已知函数()lg(1)f x x =-的值域为(1]-∞,,则函数()f x 的定义域为( ) A .[9)-+∞, B .[0)+∞, C.(91)-, D .[91)-,11.若2{|60}A x x x =+-=,{|10}B x mx =+=,且A B A =,则m 的取值范围为( ) A .1132⎧⎫⎨⎬⎩⎭, B .11032⎧⎫--⎨⎬⎩⎭,, C. 11032⎧⎫-⎨⎬⎩⎭,, D .1132⎧⎫--⎨⎬⎩⎭,12.某化工厂生产一种溶液,按市场需求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,要使产品达到市场要求,则至少应过滤的次数为(已知lg20.3010=,lg30.4771=)A .6B .7 C.8 D .913.若函数()f x 为定义在R 上的奇函数,且在(0)+∞,为减函数,若(2)0f =,则不等式(1)(1)0x f x -->的解集为( )A .(31)--,B .(31)(2)--+∞,, C.(30)(13)-,,D .(11)(13)-,,14.若函数2()|2|f x x a x =+-在(0)+∞,上单调递增,则a 的范围为( ) A .[42]-, B .[40]-, C.[42)-, D .[22]-, 15.对于函数1()1x f x x -=+,设2()[()]f x f f x =,32()[()]f x f f x =,…,1()[()]n n f x f f x +=(n +∈N ,且2n ≥),令集合{}20172|()log ||M x f x x ==-,则集合M 为( ) A .空集 B .一元素集 C.二元素集 D .四元素集二、填空题:本大题共5小题,每题3分,满分15分,把答案填写在题中的横线上16.已知幂函数的图像经过点(28),,则它的解析式是 .17.求值220.53327492()()(0.008)8925---+⨯= .18.已知函数2()48f x x kx =--在[520],上具有单调性,则k 的取值范围是 .19.若函数211()2()1x x y a a =+-(0a >,且1a ≠)在[11]x ∈-,上的最大值为23,则a 的值为 .20.若函数()f x 为定义域D 上的单调函数,且存在区间[]a b D ⊆,(其中a b <),使得当[]x a b ∈,,()f x 的取值范围恰为[]a b ,,则称函数()f x 是D 上的美妙函数,若函数2()g x x m =+是(0)-∞,上的美妙函数,则实数m 的取值范围为 .三、解答题:本大题共5小题,每小题8分,共40分.要求写出必要的文字说明、证明过程或演算步骤.)21. 已知函数()f x 是定义在R 上的偶函数,当0x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭.(1)画出函数()f x 的图像;(2)根据图像写出()f x 的单调区间,并写出函数的值域.22. 已知函数()f x =A ,函数22()lg[(21)]g x x a x a a =-+++的定义域是集合B .(1)求集合A 、B ;(2)若A B A =,求实数a 的取值范围. 23. 对于函数2()21x f x a =-+(a ∈R ). (1)判断函数()f x 的单调性(不需要证明);(2)是否存在实数a 使函数()f x 为奇函数,并说明理由.24. 电信局为了配合客户不同需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系,如下图所示(实线部分).(注:图中MN CD ∥.)试问:(1)若通话时间为2小时,按方案A 、B 各付话费多少元? (2)方案B 从500分钟以后,每分钟收费多少元? (3)通话时间在什么范围内,方案B 才会比方案A 优惠.25. 对定义在[01],上,并且同时满足以下两个条件的函数()f x 称为G 函数, ①对任意的[01]x ∈,,总有()0f x ≥;②当10x ≥,20x ≥,121x x +≤时,总有1212()()()f x x f x f x ++≥成立. 已知函数2()g x x =与()2x h x b =-是定义在[01],上的函数. (1)试问函数()g x 是否为G 函数?并说明理由;(2)若函数()h x 是G 函数,求实数b 的所有取值组成的集合.长郡中学2017-2018学年度高一第一学期期中考试数学参考答案一、选择题: 1-5:ABCBB 6-10:DBBBD 11.C12.C 【解析】设至少需要过滤n 次,则20.02()0.0013n ⨯≤,即21()320n ≤,所以21lg lg 320n ≤,即1lg1lg 2207.42lg3lg 2lg 3n +=≈-≥,又n N ∈,所以8n ≥,所以至少过滤8次才能使产品达到市场要求. 13.D14.B 【解析】因为当2x ≥时,22()|2|2f x x a x x ax a =+-=+-,对称轴为2ax =-,因为在(2)+∞,上单调递增,所以22ax =-≤①.又当20x >>时,22()|2|2f x x a x x ax a =+-=-+在(02),上单调递增,所以有对称轴02ax =≤②,由①②知40a -≤≤,故选B. 15.B二、填空题:16.3()f x x = 17.1918.(40][160)-∞+∞,,19.4或14【解析】设1xt a ⎛⎫= ⎪⎝⎭,0t >,则221y t t =+-,其图像为开口向上且对称轴为1t =-的抛物线,所以二次函数221y t t =+-在[1)-+∞,上是增函数.①若1a >,则1xt a ⎛⎫= ⎪⎝⎭在[11]-,上单调递减,∴1t a a ⎡⎤∈⎢⎥⎣⎦,,所以t a =时y 取最大值,2max 2123y a a =+-=,∴4a =或6a =-(舍去);②若01a <<,则1xt a ⎛⎫= ⎪⎝⎭在[11]-,上递增,1t a a ⎡⎤∈⎢⎥⎣⎦,,所以1t a =时,y 取得最大值,max 212123y a a =+-=. ∴212240a a +-=,11640a a ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,∴14a =或16a =-(舍去). 综上可得4a =或14a =. 20.314⎛⎫-- ⎪⎝⎭,三、解答题21.【解析】(1)先作出当0x ≥时,1()2xf x ⎛⎫= ⎪⎝⎭的图像,利用偶函数的图像关于y 轴对称,再作出()f x 在(0)x ∈-∞,时的图像.(2)函数()f x 的单调递增区间为(0)-∞,,单调递减区间为[0)+∞,,值域为(01],. 22.【解析】(1){|12}A x x x =->或≤, {|1}B x x a x a =<>+或.(2)由A B A =得A B ⊆,因此112a a >-⎧⎨+⎩≤,所以1a -<≤1,所以实数a 的取值范围是(11]-,. 23.【解析】(1)单调递增.(2)存在1a =,定义法证明(略).24.【解析】由图知(6098)M ,,(500230)N ,,(500168)C ,,MN CD ∥. 设两种方案应付话费与通话时间的函数关系分别为()A f x 、()B f x ,则98060()38060.10A x f x x x ⎧⎪=⎨+>⎪⎩,,,≤≤1680500()318500.10B x f x x x ⎧⎪=⎨+>⎪⎩,,,≤≤ (1)通话2小时两种方案的话费分别为116元、168元. (2)∵333(1)()(500)(1)18180.3101010B B f n f n n n n +->=++--==(元) ∴方案B 从500分钟以后,每分钟收费0.3元. (3)由图知,当060x ≤≤时,()()A B f x f x <, 当500x >时,()()A B f x f x >,∴当60500x <≤时,由()()A B f x f x >,得8803x >, 即当通话时间在8803⎛⎫+∞ ⎪⎝⎭,内时,方案B 较A 优惠.25.【解析】(1)当[01]x ∈,时,总有2()0g x x =≥,满足① 当10x ≥,20x ≥,121x x +≤时,22222121212121212()()2()()g x x x x x x x x x x g x g x +=+=+++=+≥,满足②,所以函数()g x 为G 函数.(2)()2x h x b =-([01]x ∈,)为增函数,()(0)10h x h b =-≥≥, ∴1b ≤.由1212()()()h x x h x h x ++≥,得1212222x x x x b b b +--+-≥. 即111(21)(21)x x b ---≥,因为10x ≥,20x ≥,121x x +≤. 所以110(21)(21)1x x --<≤; ∴1101(21)(21)1x x <---≤.当120x x ==时,11max (1(21)(21))1x x ---=;∴1b ≥. 综合上述:{1}b ∈.。

湖南省长沙市长郡中学2016-2017学年高一下学期期中考试数学试题Word版含答案

湖南省长沙市长郡中学2016-2017学年高一下学期期中考试数学试题Word版含答案

长郡中学2016-2017学年度高一第二学期期中考试数学时间:120分钟 满分:100分一、选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.数列1,43-,95,167-,...的一个通项公式是 A.a n =1)1(+-n 212n n - B.a n =n )1(-212n n - C.a n =1)1(+-n 212n n + D.a n =n )1(-212n n + 2.在空间中,下列命题中正确的是 A.垂直于同一条直线的两条直线平行 B.没有公共点的两条直线平行 C.平行于同一平面的两个平面平行 D.平行同一平面的两条直线平行3.已知圆锥的母线长为4,侧面展开图的中心角为2π,那么它的体积为 A.315π B.215π C.15π D.4π4.已知a ,b 为非零实数,且a <b ,则下列命题中正确的是A.2a <2bB.a 1>b 1C.a 2c <b 2c D.21ab <ba 215,在△ABC 中,若a=1,b=23,A=30︒,则B 等于 A.60︒ B.60︒或120︒ C.30︒ D.30︒或150︒6.设Sn 是等差数列{an}的前n 项和,已知a 2=3,a 6=11,则S 7等于 A.13 B.35 C.49 D.637.若-9,a 1.a 2,-1成等差数列,-9,b 1,b 2,b 3,-1成等比数列,则b 2(a 1+a 2)等于A.-30B.30C.±30D.158.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、AD 的中点,则异面直线B 1C 与EF所成的角的大小为 A.30︒ B.45︒ C.60︒ D.90︒9.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某多面体的三视图,则该多面体的体积为A.320 B.8 C.322 D.316 10.已知各顶点都在一个球面上的正四棱形(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是 A.16 π B.20π C.24π D.32π11.已知各项均为正数的等比数列{an}满足a 7=a 6+2a 5,若存在两项a m ,a n 使得n m a a =4a 1,则m 1+n4的最小值为 A.23 B.35 C.49D.不存在12.如图,透明塑料制成的长方体容器ABCD-A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,在将容器倾斜,随着倾斜度的不同,有下面五个命题①有水的部分始终呈棱柱形; ②没有水的部分始终呈棱柱形; ③水面EFGH 所在四边形的面积为定值; ④棱A 1D 1始终与水面所在平面平行⑤当容器倾斜如图3所示时,BE ·BF 是定值 其中正确命题的个数为A.2B.3C.4D.513.已知数列{a n }的前n 项和为S n =1-5+9-13+17-21+...+1)1(--n (4n-3),则S 15+S 22-S 31的值是A.13B.-76C.46D.7614.在△ABC 中,b=asinC,c=acosB,则△ABC 一定是 A.等腰三角形但不是直角三角形 B.直角三角形但不是等腰三角形 C.等边三角形 D.等腰直角三角形x+y-6≤015.设x ,y 满足不等式组 2x-y-1≤0,若z=ax+y 的最大值为2a+4,最小值为a+1, 3x-y-2≥0 则实数a 的取值范围为 A.[-1,2] B.[-2,1] C.[-3,-2] D.[-3,1] 选择题答题卡二、填空题:本大题共5小题,每小题3分,共15分,把答案填写在题中的横线上。

【全国百强校】湖南省长郡中学2016-2017学年高一上学期第一次模块检测数学试题(原卷版)

【全国百强校】湖南省长郡中学2016-2017学年高一上学期第一次模块检测数学试题(原卷版)

湖南省长郡中学2016-2017学年高一上学期第一次模块检测数学试题一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}21,A x =,则下列说法正确的是( ) A .{}1A ∈B .1A ⊆C .1A -∉D .{}A ∅⊆2.下列图形中不能作为函数()y f x =的图象的是( )3.下列各组函数中表示同一函数的是( ) A .()1f x =,0()g x x =B .()f x x =,2()x g x x=C .()f x x =,()g x =D .()f x x =,()g x =4.设a ,b R ∈,集合{}1,,A a b a =+,0,,b B b a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -=( ) A .2B .1-C .1D .2-5.设集合{}||1|2A x x =-<,[]{}|2,0,2x B y y x ==∈,则A B =( )A .(0,3)B .(1,3)C .(1,4)D .[1,3)6.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B .3y x x =--C .3xy -=D .1y x x=-7.函数y =的定义域为( )A .[4,0)(0,1]- B .[4,0)- C .(0,1]D .[]4,1-8.函数||xxa y x =(01a <<)的图象的大致形状是( )9.设()f x 为定义在R 上的奇函数,当0x ≥时,()22x f x x a =++(a 为常数),则(1)f -等于( ) A . 3B .1C .3-D .1-10.定义在R 上的()f x 满足:①()()0f x f x --=;②对任意的1x ,2[0,)x ∈+∞(12x x ≠),有2121()()0f x f x x x -<-,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-11.设函数42()f x x x =+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1(,1)3B .1(,)(1,)3-∞+∞ C .11(,)33-D .11(,)(,)33-∞-+∞ 12.在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于2300m 的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( ) A .[]15,20B .[]12,25C .[]10,30D .[]20,3013.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( )A .3(,)4-∞B .3[0,)4C .3(0,)4D .30,4⎡⎤⎢⎥⎣⎦14.设[]x 表示不超过x 的最大整数(如[]22=,514⎡⎤=⎢⎥⎣⎦).对于给定的*n N ∈,定义[][](1)(1)(1)(1)x n n n n x C x x x x --+=--+……,[1,)x ∈+∞,则当3[,3)2x ∈时,函数6x C 的值域是( )A .[]4,25B .(3,4]C .25(3,][15,30)3D .(3,4](5,15] 15.已知函数2()f x x =,若不等式2(2)4()3(1)a f x af x f x ≤++对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .12a ≤-或32a ≥ B .1322a -≤≤ C .3122a -≤≤ Da ≤≤ 第Ⅱ卷(非选择题共55分)二、填空题(本大题共5小题,每题3分,满分15分.)16.若(21)f x x +=,则(5)f = . 17.已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则用列举法表示集合A = . 18.已知()y f x =是定义在区间(1,1)-上的减函数,且(1)(21)f a f a -<-,则a 的取值范围 是 .19.已知2(),0,()1,0,x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 . 20.在一次研究性学习中,老师给出函数()1||xf x x =+(x R ∈),四个小组的同学在研究此函数 时,讨论交流后分别得到以下四个结果: ①函数()f x 的值域为(1,1)-;②若12x x ≠,则一定有12()()f x f x ≠;③若规定1()()f x f x =,…,1()(())n n f x f f x -=,则()1||n xf x n x =+对任意*n N ∈恒成立;④若实数a ,b 满足(1)()0f a f b -+=,则1a b +=.你认为上述四个结果中正确的序号有 .(写出所有正确结果的序号)三、解答题(本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)21.(1)求值:162164()201649-++;(2)已知13a a -+=,求22a a --的值.22.已知全集U R =,集合{}2|3100M x x x =-++≥,{}|121N x a x a =+≤≤+. (1)若2a =,求()R M N ð;(2)若M N M =,求实数a 的取值范围.23.已知函数1()4f x x x=+. (1)判断()f x 的奇偶性;(2)写出()f x 的单调递增区间,并用定义证明.24.已知12()2x x nf x m+-+=+是定义在R 上的奇函数.(1)求n ,m 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.25.已知函数2()1f x x =-,()|1|g x a x =-.(1)若关于x 的方程|()|()f x g x =只有一个实数解,求实数a 的取值范围; (2)若a >0,求函数()|()|()h x f x g x =+在区间[]2,2-上的最大值.:。

湖南省长郡中学2016-2017学年高一上学期第一次模块检测数学试题Word版含答案

湖南省长郡中学2016-2017学年高一上学期第一次模块检测数学试题Word版含答案

第Ⅰ卷(共45分)一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知集合{}21,A x =,则下列说法正确的是( ) A .{}1A ∈B .1A ⊆C .1A -∉D .{}A ∅⊆2.下列图形中不能作为函数()y f x =的图象的是( )3.下列各组函数中表示同一函数的是( ) A .()1f x =,0()g x x =B .()f x x =,2()x g x x=C .()f x x =,()g x =D .()f x x =,()g x =4.设a ,b R ∈,集合{}1,,A a b a =+,0,,b B b a ⎧⎫=⎨⎬⎩⎭,若A B =,则b a -=( ) A .2B .1-C .1D .2-5.设集合{}||1|2A x x =-<,[]{}|2,0,2xB y y x ==∈,则AB =( )A .(0,3)B .(1,3)C .(1,4)D .[1,3)6.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B .3y x x =--C .3xy -=D .1y x x=-7.函数y = )A .[4,0)(0,1]- B .[4,0)- C .(0,1]D .[]4,1-8.函数||xxa y x =(01a <<)的图象的大致形状是( )9.设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x a =++(a 为常数),则(1)f -等于( ) A .3B .1C .3-D .1-10.定义在R 上的()f x 满足:①()()0f x f x --=;②对任意的1x ,2[0,)x ∈+∞(12x x ≠),有2121()()0f x f x x x -<-,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-11.设函数42()f x x x =+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1(,1)3B .1(,)(1,)3-∞+∞C .11(,)33-D .11(,)(,)33-∞-+∞ 12.在如图所示的锐角三角形空地(底边长为40m ,高为40m )中,欲建一个面积不小于2300m 的内接矩形花园(阴影部分),则其边长x (单位:m )的取值范围是( )A .[]15,20B .[]12,25C .[]10,30D .[]20,3013.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( )A .3(,)4-∞B .3[0,)4C .3(0,)4D .30,4⎡⎤⎢⎥⎣⎦14.设[]x 表示不超过x 的最大整数(如[]22=,514⎡⎤=⎢⎥⎣⎦).对于给定的*n N ∈,定义[][](1)(1)(1)(1)x n n n n x C x x x x --+=--+……,[1,)x ∈+∞,则当3[,3)2x ∈时,函数6xC 的值域是( )A .[]4,25B .(3,4]C .25(3,][15,30)3D .(3,4](5,15] 15.已知函数2()f x x =,若不等式2(2)4()3(1)a f x af x f x ≤++对[1,)x ∈+∞恒成立,则实数a 的取值范围是( ) A .12a ≤-或32a ≥ B .1322a -≤≤ C .3122a -≤≤ Da ≤≤第Ⅱ卷(共55分)二、填空题(每题3分,满分15分,将答案填在答题纸上)16.若(21)f x x +=,则(5)f = .17.已知集合8|6A x N N x ⎧⎫=∈∈⎨⎬-⎩⎭,则用列举法表示集合A = . 18.已知()y f x =是定义在区间(1,1)-上的减函数,且(1)(21)f a f a -<-,则a 的取值范围是 .19.已知2(),0,()1,0,x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩若(0)f 是()f x 的最小值,则a 的取值范围为 . 20.在一次研究性学习中,老师给出函数()1||xf x x =+(x R ∈),四个小组的同学在研究此函数时,讨论交流后分别得到以下四个结果: ①函数()f x 的值域为(1,1)-;②若12x x ≠,则一定有12()()f x f x ≠;③若规定1()()f x f x =,…,1()(())n n f x f f x -=,则()1||n xf x n x =+对任意*n N ∈恒成立;④若实数a ,b 满足(1)()0f a f b -+=,则1a b +=.你认为上述四个结果中正确的序号有 .(写出所有正确结果的序号)三、解答题 (本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)21.(1)求值:162164()201649-++;(2)已知13a a-+=,求22a a --的值.22.已知全集U R =,集合{}2|3100M x x x =-++≥,{}|121N x a x a =+≤≤+. (1)若2a =,求()R M N ð;(2)若MN M =,求实数a 的取值范围.23.已知函数1()4f x x x=+. (1)判断()f x 的奇偶性;(2)写出()f x 的单调地增区间,并用定义证明.24.已知12()2x x nf x m+-+=+是定义在R 上的奇函数.(1)求n ,m 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围. 25.已知函数2()1f x x =-,()|1|g x a x =-.(1)若关于x 的方程|()|()f x g x =只有一个实数解,求实数a 的取值范围; (2)若a >0,求函数()|()|()h x f x g x =+在区间[]2,2-上的最大值.长郡中学2016—2017学年度高一第一学期第一次模块检测答案一、选择题二、填空题16.2 17.{}2,4,5 18.203(,) 19.[]0,2 20.①②③④三、解答题21.解:(1)原式32723341694=⨯+-⨯+=. (2)∵112122()25a a a a --+=++=,又11220a a-+>,∴1122a a-+=又112122()21a aa a ---=+-=,∴11221a a--=±,1111221112222()()()()()a a a a a a a a a a a a -------=+-=++-=±22.解:(1)2a =时,{}|25M x x =-≤≤,{}|35N x x =≤≤, ∴{}|35R N x x x =<>或ð, ∴{}()|23R MN x x =-≤<ð.综上,2a ≤.23.解:(1)()f x 的定义域为{}|0x x ≠. 又1()(4)()f x x f x x-=-+=-, ∴()f x 为奇函数.(2)()f x 的单调递增区间为1(,)2-∞-,1(,)2+∞. 证明:设1212x x <<,12121211()()44f x f x x x x x -=+--121212()(41)x x x x x x --=, ∵1212x x <<,∴120x x -<,12410x x ->,120x x >, ∴12()()0f x f x -<,即12()()f x f x <, ∴()f x 在1(,)2+∞上为增函数. 同理,()f x 在1(,)2-∞-上为增函数.24.解:(1)∵()f x 是R 上的奇函数,∴(0)0f =,即102n m-=+,∴1n =. ∴112()2xx f x m+-=+,又(1)(1)0f f +-=,∴11122041m m--+=++,∴2m =. (2)由(1)知11211()22221x x x f x +-==-+++,易知()f x 在R 上为减函数,又()f x 是奇函数,∴22(2)(2)0f t t f t k -+-<等价于222(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得2222t t k t ->-, 即对一切t R ∈有2320t t k -->, ∴4120k ∆=+<,即13k <-.25.解:(1)由|()|()f x g x =,得2|1||1|x a x -=-, 即|1|(|1|)0x x a -+-=,显然,1x =是该方程的根,从而欲原方程只有一解, 即要求方程|1|x a +=有且仅有一个等于1的解或无解, ∴0a <.(2)∵2()|()|()|1||1|h x f x g x x a x =+=-+-2221,1,1,11,1, 1.x ax a x x ax a x x ax a x ⎧-+-≤-⎪=--++-<<⎨⎪+--≥⎩①当12a>,即2a >时,结合图形可知()h x 在[]2,1-上递减,在[]1,2上递增,且(2)33h a -=+,(2)3h a =+,∵(2)(2)h h ->,∴()h x 在[]2,2-上的最大值为33a +. ②当012a <≤,即02a <≤时,结合图形可知()h x 在[]2,1--,,12a ⎡⎤-⎢⎥⎣⎦上递减, 在1,2a ⎡⎤--⎢⎥⎣⎦,[]1,2上递增,且(2)33h a -=+,(2)3h a =+,2()124a a h a -=++, 经比较,知()h x 在[]2,2-上的最大值为33a +, 即0a >时,()h x 在[]2,2-上的最大值为33a +.。

湖南省长沙市长郡中学-2016学年高一上学期期中考试数学试题-bytian

湖南省长沙市长郡中学-2016学年高一上学期期中考试数学试题-bytian

长郡中学2015-2016学年度高一第一学期期中考试数学第Ⅰ卷一、选择题(本大题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合{1,2,3,4},{1,2},{2,3},()U U A B C A B ====( )A .{}2B .{}4C .{}1,2,3D .{}1,3,42、函数()f x =的定义域为( ) A .(,4]-∞ B .(,4)(1,4]-∞ C .[2,2]- D .(1,2]-3、下列四种函数中,表示同一函数的是( )A .1y x =-与y =B .2y x =与4y =C .4lg y x =与22lg y x =D .2y x =与y =4、下列函数中,在(,)-∞+∞上单调递增的是( )A .y x =B .2log y x =C .12y x = D .0.5x y = 5、函数21(0,1)x y a a a -=+>≠的图象必经过点( )A .()0,1B .()1,1C .()2,1D .()2,26、已知01,log log 0a a a m n <<<<,则( )A .1n m <<B .1m n <<C .1m n <<D .1n m <<7、已知函数()(3)4,1lg ,1x x a x f x x x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,那么a 的取值范围是( )A .(1,)+∞B .(,3)-∞C .3[,3)5 D .(1,3)8、设M 、P 是两个非空集合,定义M 与P 的差集为{|M P x x M -=∈且}x P ∉,则()M M P --=( )A .PB .M PC .M PD .M9、23(log 9)(log 4)=( )A .14B .12C .2D .4 10、设4520.6,log 3,0.6a b c ===,则,,a b c 大小关系正确的是( )A .a b c >>B .b a c >>C .b c a >>D .c b a >>11、设奇函数()f x 在()0,+∞上为增函数,且()30f =,则不等式()()02f x f x -->的解集为( )A .(3,0)(3,)-⋃+∞B .(3,0)(0,3)-⋃C .(,3)(3,)-∞-⋃+∞D .(,3)(0,3)-∞-⋃12、函数2x y m -=-的图象与x 轴有交点时,则( )A .10m -≤<B .01m ≤≤C .01m <≤D .0m ≥13、函数()2log 21f x x x =+-的零点必落在区间( )A .11(,)84B .1(,1)2C .11(,)42D .()1,214、如图1,点P 在边长为1的正方形上运动,设M 是CD 的中点,则当P 沿A-B-C-M 运动时,点P 经过的路程x 与APM ∆的面积y 之间的函数()y f x =的图象大致是图2中的( )15、已知224,0,0x y x y +=>>且1log (2),log 2a a x m n x+==-,则log a y 等于( ) A .m n + B .m n - C .1()2m n + D .1()2m n - 第Ⅱ卷二、填空题:本大题共5小题,每小题3分,共15分,把答案填在答题卷的横线上。

湖南省长沙市长郡中学2016-2017学年高一下学期期中考试数学试题

湖南省长沙市长郡中学2016-2017学年高一下学期期中考试数学试题

长郡中学2016-2017学年度高一第二学期期中考试数学时间:120分钟 满分:100分一、选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.数列1,43-,95,167-,...的一个通项公式是 A.a n =1)1(+-n 212n n - B.a n =n )1(-212n n - C.a n =1)1(+-n 212n n + D.a n =n )1(-212n n + 2.在空间中,下列命题中正确的是 A.垂直于同一条直线的两条直线平行 B.没有公共点的两条直线平行 C.平行于同一平面的两个平面平行 D.平行同一平面的两条直线平行3.已知圆锥的母线长为4,侧面展开图的中心角为2π,那么它的体积为 A.315π B.215π C.15π D.4π4.已知a ,b 为非零实数,且a <b ,则下列命题中正确的是A.2a <2bB.a 1>b 1C.a 2c <b 2cD.21ab <ba 215,在△ABC 中,若a=1,b=23,A=30︒,则B 等于 A.60︒ B.60︒或120︒ C.30︒ D.30︒或150︒6.设Sn 是等差数列{an}的前n 项和,已知a 2=3,a 6=11,则S 7等于 A.13 B.35 C.49 D.637.若-9,a 1.a 2,-1成等差数列,-9,b 1,b 2,b 3,-1成等比数列,则b 2(a 1+a 2)等于A.-30B.30C.±30D.158.如图所示,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是AB 、AD 的中点,则异面直线B 1C 与EF所成的角的大小为 A.30︒ B.45︒ C.60︒ D.90︒9.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某多面体的三视图,则该多面体的体积为A.320 B.8 C.322 D.316 10.已知各顶点都在一个球面上的正四棱形(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是 A.16 π B.20π C.24π D.32π11.已知各项均为正数的等比数列{an}满足a 7=a 6+2a 5,若存在两项a m ,a n 使得n m a a =4a 1,则m 1+n 4的最小值为 A.23 B.35 C.49D.不存在12.如图,透明塑料制成的长方体容器ABCD-A 1B 1C 1D 1内灌进一些水,固定容器底面一边BC 于地面上,在将容器倾斜,随着倾斜度的不同,有下面五个命题①有水的部分始终呈棱柱形; ②没有水的部分始终呈棱柱形; ③水面EFGH 所在四边形的面积为定值; ④棱A 1D 1始终与水面所在平面平行⑤当容器倾斜如图3所示时,BE ·BF 是定值 其中正确命题的个数为A.2B.3C.4D.513.已知数列{a n }的前n 项和为S n =1-5+9-13+17-21+...+1)1(--n (4n-3),则S 15+S 22-S 31的值是A.13B.-76C.46D.7614.在△ABC 中,b=asinC,c=acosB,则△ABC 一定是 A.等腰三角形但不是直角三角形 B.直角三角形但不是等腰三角形 C.等边三角形 D.等腰直角三角形x+y-6≤015.设x ,y 满足不等式组 2x-y-1≤0,若z=ax+y 的最大值为2a+4,最小值为a+1, 3x-y-2≥0 则实数a 的取值范围为 A.[-1,2] B.[-2,1] C.[-3,-2] D.[-3,1] 选择题答题卡二、填空题:本大题共5小题,每小题3分,共15分,把答案填写在题中的横线上。

【百强校】2016-2017学年湖南省长沙市长郡中学高一上学期中试卷(带解析)

【百强校】2016-2017学年湖南省长沙市长郡中学高一上学期中试卷(带解析)

试卷第1页,共10页绝密★启用前【百强校】2016-2017学年湖南省长沙市长郡中学高一上学期中试卷(带解析)试卷副标题考试范围:xxx ;考试时间:30分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、下列句子有语病的一项是 ( )A .这篇别具特色的报道体现出较高的政策把握水平和驾驭文字的能力。

B .读了《奥斯维辛没有什么新闻》一文,深切感受到了纳粹对人类的惨绝人寰的摧残和迫害,控诉了纳粹滔天暴行的罄竹难书。

C .《别了,“不列颠尼亚”》用灵活的笔法、深沉的感情、丰厚的内涵,记录了中华民族发展史上的一件大事,也为我们上了一堂形象而深刻的历史课。

D .特写性消息侧重于“再现”,往往采用文学手法,集中、突出地描述某一重大事件的发生现场,或某些重要和精彩的场面,生动、形象地将所报道的事实再现在读者面前。

2、下列句子中,加点词语使用错误的一项是( )A .传统的文史哲学科,有许多蜚声中外的学术大师,有浩如烟海的学术资料,有非常成熟的学科体系,这是其它学科难以相比的。

B .也许是大家都知道巴金老人对玫瑰情有独钟,一束束象征热情与朝气的红玫瑰将冬试卷第2页,共10页日里巴老的病房装点得春意盎然。

C .《包身工》被称为我国报告文学的经典之作,“包身工”“芦柴棒”已经成为家喻户晓的名词,给每一位认真读过本文的人以心灵的震撼。

D .听他讲到他最喜爱的《桃花扇》,讲到“高皇帝,在九天,不管……”那一段,他悲从中来,竟痛哭流涕而情不自禁。

3、下列词语中,字音字形全都正确的一项是( ) A .戊戌(xū) 戎马生涯(róng ) 左顾右盼 笔而记之 B .覆盖(fù) 步履维艰(lǔ) 文彩斐然 博闻强记 C .差别(chà) 涕泗交流(sì) 剑拔驽张 酣畅淋漓 D .激亢(kàng ) 引吭高歌(káng ) 流言蜚语 泪下沾巾试卷第3页,共10页第II 卷(非选择题)二、语言表达(题型注释)4、在下面一段文字横线处补写恰当的语句,使整段文字语意连贯,内容贴切,逻辑严密。

湖南省长沙市长郡中学2017_2018学年高一数学上学期期中试题(PDF)

湖南省长沙市长郡中学2017_2018学年高一数学上学期期中试题(PDF)

&,."!%"( & (&, !% ")!, + - %且 , / #"%令 集 合 - (
&% &#$"1!%"(!234# % '%则集合 - 为
)!空集
*!一元素集
+!二元素集
,!四元素集
选择题答题卡
题号 答案 题号 答案
"#&'%/10 - "$ "" "# "& "' "% 得分
二$填空题#本大题共%小题%每小题&分%共"%分%把答案填写在题中的横
*!"#
+!#&
,!&'
-0!方程%234&'("则'%.'!%为
)!$
*!பைடு நூலகம்&$
+!&
,!"&/
-!在同一坐标系中函数)('%.'与)('% 的图象大致是
"$!已知函数&%(24"!%的值域为!5"则函数&%的定义域为
)!!-.5
*!$.5
+!!-"
数学!长郡版"!!/
#'!!本小题满分0分" 电信局为了配合客户不同需要%设有 #$$ 两种优惠方案%这两种方案应 付话费!元"与通话时间 !分钟"之间 的 关 系%如 下 图 所 示 !实 线 部 分"! !注#图中 -021/!"试问# !""若通话时间为#小时%按方案#$$ 各付话费多少元, !#"方案$ 从%$$分钟以后%每分钟收费多少元, !&"通话时间在什么范围内%方案$ 才会比方案# 优惠!

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷(含答案)

2024-2025学年湖南省长沙市长郡中学高一上学期期中考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知a∈R,若集合M={1,a},N={−1,0,1},则“a=0”是“M⊆N”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.下列命题是全称量词命题且为真命题的是A. ∀a,b∈R,a2+b2<0B. 菱形的两条对角线相等C. ∃x0∈R,x20=x0D. 一次函数的图象是直线3.设全集U=R,集合A={1,2,3,4,5},B={x|3<x<8,x∈N},则下图中的阴影部分表示的集合是A. {1,2,3,4,5}B. {3,4}C. {1,2,3}D. {4,5,6,7}4.若函数f(x)=4x2−kx−8在[5,8]上是单调函数,则实数k的取值范围是A. (−∞,40)B. (−∞,40]∪[64,+∞)C. [40,64]D. [64,+∞)5.已知关于x的不等式ax2+bx+c>0的解集为{x|13<x<12},则不等式cx2+bx+a>0的解集为A. {x|−12<x<−13}B. {x|x>3或x<2}C. {x|2<x<3}D. {x|−3<x<−2}6.已知关于x的不等式2x+2x−a≥7在区间(a,+∞)上恒成立,则实数a的最小值为A. 1B. 32C. 2 D. 527.17世纪初,约翰·纳皮尔为了简化计算而发明了对数.对数的发明是数学史上的重大事件,恩格斯曾经把笛卡尔的坐标系、纳皮尔的对数、牛顿和莱布尼兹的微积分共同称为17世纪的三大数学发明.我们知道,任何一个正实数N可以表示成N=a×10n(1≤a<10,n∈Z)的形式,这便是科学记数法,若两边取常用对数,则有lg N=n+lg a.现给出部分常用对数值(如下表),则可以估计22023的最高位的数值为真数x2345678910lg x(近0.301030.477120.602060.698970.778150.845100.903090.95424 1.000似值)A. 6B. 7C. 8D. 98.已知函数g(x)是R上的奇函数,且当x<0时,g(x)=−x2+2x,函数f(x)={x,x≤0,g(x),x>0,若f(2−x2 )>f(x),则实数x的取值范围是A. (−2,1)B. (−∞,−2)∪(1,+∞)C. (1,2)D. (−∞,1)∪(2,+∞)二、多选题:本题共3小题,共18分。

2017学年湖南长郡中学高一期中数学试卷(带解析)

2017学年湖南长郡中学高一期中数学试卷(带解析)

D. 1,3
2
14.若函数 f ( x) log 2 ( x ax 3a) 在区间 (, 2] 上是减函数,则实数 a 的取值范围是(
2

A. (, 4)
B. (4, 4]
C. (, 4)
[2, )
D. [4, 4)
15.已知函数 f ( x) 1
1 (x 0) ,若存在实数 a , b ( a b ) ,使 y f ( x) 的定义域为 a, b 时,值 x
U
A) B 为(

2.下列函数中,定义域是 R 且为增函数的是( A. y e
x
B. y x
3
C. y ln x
D. y | x |
3. 设集合 A 和 B 都是坐标平面上的点集 ( x, y) | x R, y R , 映射 f :A B 使集合 A 中的元素 ( x, y) 映射成集合 B 中的元素 ( x y, x y) ,则在映射 f 下,象 (2,1) 的原象是( A. 3,1 B. ( , ) )
) D. m
域为 (ma, mb) ,则实数 m 的取值范围是( A. m
1 4
B. 0 m
1 4
C. m
1 且m 0 4
1 4
3
第 II 卷(非选择题)
请点击修改第 II 卷的文字说明 评卷人 得分 二、填空题 16.计算 log 2.5 6.25 lg
2
1 ln e 2 1log 2 3 100
1 1 满足 0 2 x 1 1 ,解得 x 1 ,所 2 log 1 (2 x 1)
2
以函数的定义域为 ( ,1) ,故选 A. 考点:函数的定义域. 9.A 【解析】 试 题 分 析 : 由 函 数 y f ( x) 是 函 数 y 3 的 反 函 数 , 所 以 f

2016-2017学年湖南省长沙市长郡中学高三(上)入学数学试卷(理科)(解析版)

2016-2017学年湖南省长沙市长郡中学高三(上)入学数学试卷(理科)(解析版)

2016-2017学年湖南省长沙市长郡中学高三(上)入学数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|y=},B={x|a≤x≤a+1},若A∪B=A,则实数a的取值范围为()A.(﹣∞,﹣3]∪[2,+∞)B.[﹣1,2]C.[﹣2,1]D.[2,+∞)2.(5分)设复数w=()2,其中a为实数,若w的实部为2,则w的虚部为()A.﹣B.﹣C.D.3.(5分)“a<0”是“函数f(x)=|x(ax+1)|在区间(﹣∞,0)内单调递减”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)5.(5分)将函数y=sin(x+)cos(x+)的图象沿x轴向右平移个单位后,得到一个偶函数的图象,则φ的取值不可能是()A.B.﹣C.D.6.(5分)已知点M(1,0),A,B是椭圆+y2=1上的动点,且=0,则•的取值是()A.[,1]B.[1,9]C.[,9]D.[,3] 7.(5分)如图所示程序框图中,输出S=()A.45B.﹣55C.﹣66D.668.(5分)如图,设D是图中边长分别为1和2的矩形区域,E是D内位于函数y=(x >0)图象下方的区域(阴影部分),从D内随机取一个点M,则点M取自E内的概率为()A.B.C.D.9.(5分)在棱长为3的正方体ABCD﹣A1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥M﹣PBC的体积为()A.1B.C.D.与M点的位置有关10.(5分)已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若A,B是以点M(0,10)为圆心,|OA|的长为半径的圆与抛物线C的两个公共点,且△ABO为等边三角形,则p的值是()A.B.C.D.11.(5分)设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为11,则a+b的最小值为()A.2B.4C.6D.812.(5分)设函数f(x)=,则当x>0时,f[f(x)]表达式的展开式中常数项为()A.﹣20B.20C.﹣15D.15二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)若(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,则|a0|+|a1|+|a3|=.14.(5分)给定双曲线C:x2﹣=1,若直线l过C的中心,且与C交M,N两点,P为曲线C上任意一点,若直线PM,PN的斜率均存在且分别记为k PM、k PN,则k PM•k PN =.15.(5分)已知,点P(x,y)的坐标满足,则的取值范围为.16.(5分)在数列{a n}中,a1=1,3n﹣1a n=3n﹣2a n﹣1﹣2•3n﹣2+2(n≥2),S n是数列{}的前n项和,当不等式(m∈N*)恒成立时,m•n的所有可能取值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知函数f(x)=sinωx﹣2sin2(ω>0)的最小正周期为3π.(1)求函数f(x)在区间[﹣,π]上的最大值和最小值;(2)已知a,b,c分别为锐角三角形ABC中角A,B,C的对边,且满足b=2,f(A)=﹣1,a=2b sin A,求△ABC的面积.18.(12分)某城市城镇化改革过程中最近五年居民生活水平用水量逐年上升,下表是2011至2015年的统计数据:(Ⅰ)利用所给数据求年居民生活用水量与年份之间的回归直线方程y=bx+a;(Ⅱ)根据改革方案,预计在2020年底城镇化改革结束,到时候居民的生活用水量将趋于稳定,预计该城市2023年的居民生活用水量.参考公式:.19.(12分)如图,在几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.(1)求证:平面FBC⊥平面ACFE;(2)点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.20.(12分)已知椭圆C:+=1(a>b>0)的两个焦点分别为F1(﹣,0),F2(,0),以椭圆短轴为直径的圆经过点M(1,0).(1)求椭圆C的方程;(2)过点M的直线l与椭圆C相交于A、B两点,设点N(3,2),记直线AN,BN的斜率分别为k1,k2,问:k1+k2是否为定值?并证明你的结论.21.(12分)设f(x)=(a>0且a≠1),g(x)是f(x)的反函数.(1)设关于x的方程log a=g(x)在区间[2,6]上有实数解,求t的取值范围;(2)当a=e(e为自然对数的底数)时,证明:g(k)>;(3)当0<a≤时,试比较|f(k)﹣n|与4的大小,并说明理由.[选修4-1:几何证明选讲]22.(10分)(几何证明选讲选做题)已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC.(1)求证:FB=FC;(2)若AB是△ABC外接圆的直径,∠EAC=120°,BC=3,求AD的长.[选修4-4:坐标系与参数方程]23.已知曲线C的参数方程为(α为参数),以直角坐标系原点为极点,x轴正半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程,并说明其表示什么轨迹.(2)若直线的极坐标方程为sinθ﹣cosθ=,求直线被曲线C截得的弦长.[选修4-5:不等式选讲]24.已知函数f(x)=|x+a|+|x+|(a>0)(I)当a=2时,求不等式f(x)>3的解集;(Ⅱ)证明:f(m)+.2016-2017学年湖南省长沙市长郡中学高三(上)入学数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由4﹣x2≥0,解得﹣2≤x≤2,∴A=[﹣2,2].∵A∪B=A,∴,解得﹣2≤a≤1.故选:C.2.【解答】解:∵==.a为实数,∴复数w=()2=﹣+=a+,∵w的实部为2,∴a=2则w的虚部为=﹣.故选:A.3.【解答】解:当a<0时,f(x)=|ax2+x|═|a(x+)2|,则函数f(x)的对称轴为x=﹣>0,又f(x)=|ax2+x|=0得两个根分别为x=0或x=>0,∴函数f(x)=|ax2+x|在区间(﹣∞,0)内单调递减.函数在上单调递减,∴“a<0”是“函数f(x)=|(ax+1)x|在区间(﹣∞,0)内单调递减”的充分不必要条件.故选:A.4.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.5.【解答】解:∵y=sin(x+)cos(x+)=sin(2x+φ),将函数y的图象向右平移个单位后得到f(x﹣)=sin(2x﹣+φ),∵f(x﹣)为偶函数,∴﹣+φ=kπ+,k∈Z,∴φ=kπ+,k∈Z,故选:C.6.【解答】解:∵=0,可得•=•(﹣)=,设A(2cosα,sinα),则=(2cosα﹣1)2+sin2α=3cos2α﹣4cosα+2=3(cosα﹣)2+,∴cosα=时,的最小值为;cosα=﹣1时,的最大值为9,故选:C.7.【解答】解:由程序框图知,第一次运行T=(﹣1)2•12=1,S=0+1=1,n=1+1=2;第二次运行T=(﹣1)3•22=﹣4,S=1﹣4=﹣3,n=2+1=3;第三次运行T=(﹣1)4•32=9,S=1﹣4+9=6,n=3+1=4;…直到n=9+1=10时,满足条件n>9,运行终止,此时T=(﹣1)10•92,S=1﹣4+9﹣16+…+92﹣102=1+(2+3)+(4+5)+(6+7)+(8+9)﹣100=×9﹣100=﹣55.故选:B.8.【解答】解:本题是几何概型问题,区域E的面积为:S=2×=1+=1﹣ln=1+ln2∴“该点在E中的概率”事件对应的区域面积为1+ln2,矩形的面积为2由集合概率的求解可得P=故选:C.9.【解答】解:如图所示,连接BC1,取=,则PN∥D1C1,,PN=1,∵D1C1⊥平面BCC1B1,∴PN⊥平面BCC1B1,即PN是三棱锥P﹣BCM的高.∴V三棱锥M﹣PBC=V三棱锥P﹣BCM===.故选:B.10.【解答】解:由题意,|MA|=|OA|,∴A的纵坐标为5,∵△ABO为等边三角形,∴A的横坐标为,∵点A是抛物线C:x2=2py(p>0)上一点,∴∴p=.故选:C.11.【解答】解:满足约束条件,的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即11=2ab+3,∴ab=4,∴a+b≥2=4,在a=b=2时是等号成立,∴a+b的最小值为4.故选:B.12.【解答】解:当x>0时,f[f(x)]==的展开式中,常数项为:=﹣20.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:令x=0,可得:a0=1.对(2x﹣1)4=(1﹣2x)4=a0+a1x+a2x2+a3x3+a4x4,两边求导可得:4(2x﹣1)3×2=a1+2a2x+3a3x2+4a4x3,令x=0,可得:a1=8.上式两边再两次求导可得:4×3×2(2x﹣1)×2×2×2=3×2×1×a3+4×3×2a4x,令x=0,可得a3=﹣32.∴|a0|+|a1|+|a3|=41.故答案为:41.14.【解答】设M(x0,y0),由双曲线的对称性,可得N(﹣x0,﹣y0).设P(x P,y P),则,又∵x2﹣=1,∴x2=+1,则x02=y02+1.同理x P2=y P2+1,两式作差得x P2﹣x02=(y P2﹣y02),即y P2﹣y02=(x P2﹣x02),则=,故答案为:15.【解答】解:作出不等式组表示的平面区域,得到如图的平面区域,其中B(﹣2,0),C(1,)设A(,),P(x,y)为区域内一个动点,向量、的夹角为θ∵||=,•=x+y∴cosθ===×∵当P运动到C点时,θ达到最小值;P运动到与x轴负半轴上一点重合时,θ达到最大值∴∠AOC<θ≤∠AOB,由直线OA、OC的倾斜角分别为、,可得θ∈(,]由此可得:﹣≤cosθ<,即﹣≤×<∴﹣≤<,即的取值范围为[﹣)故答案为:[﹣)16.【解答】解:∵3n﹣1a n=3n﹣2a n﹣1﹣2•3n﹣2+2(n≥2),∴3n a n﹣3n﹣1a n﹣1=6﹣2×3n﹣1.∴3n a n=(3n a n﹣3n﹣1a n﹣1)++…+(32a2﹣3a1)+3a1=(6﹣2×3n﹣1)+(6﹣2×3n﹣2)+…+(6﹣2×3)+3=6(n﹣1)﹣2×+3=6n﹣3n,∴a n=(n=1时也成立).∴=.∴数列{}的前n项和S n==.不等式(m∈N*)化为:<1(*),m=1时,化为:2•3n﹣1<3,n=1时成立.此时mn=1.m=2时,化为:3n<21,n=1,2时成立.此时mn=2,或4.m≥3时,3m+1>3m,=>1,∴>1,因此上式(*)不成立.综上可得:m•n的所有可能取值为1,2,4.故答案为:1,2,4.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)∵,∴,∴,∴,∵,∴,∴,∴当时,f(x)取最小值;当时,f(x)取最大值1;(2)由正弦定理:=2R,∴a=2R sin A,b=2R sin B,∵a=2b sin A,sin A=2sin B sin A,∴sin B=,∵0<B<,∴B=,由f(A)=﹣1,即=﹣1,解得:A=由正弦定理得:,∴.△ABC的面积.18.【解答】解:(I)=2013,==260.2,=(﹣2)×(﹣24.2)+(﹣1)×(﹣14.2)+0+1×15.8+2×25.8=130.=4+1+0+1+4=10.∴b==13,∴回归方程为y﹣260.2=13(x﹣2013),即y=13(x﹣2013)+260.2.(II)当x=2020时,y=13(2020﹣2013)+260.2=351.2(万吨).答:该城市2023年的居民生活用水量预计为351.2万吨.19.【解答】(1)证明:在四边形ABCD中,∵AB∥CD,AD=DC=CB=1,∠ABC=60°,∴AB=2,∴AC2=AB2+BC2﹣2AB•BC•cos60°=3,∴AB2=AC2+BC2,∴BC⊥AC.∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACFE.又∵BC⊂平面FBC,∴平面ACFE⊥平面FBC.…(5分)(2)解:由(1)可建立分别以直线CA,CB,CF为x轴,y轴,z轴的如图所示的空间直角坐标系,令FM=λ(0≤λ≤),则C(0,0,0),A(,0,0),B(0,1,0),M(λ,0,1),∴=(﹣,1,0),=(λ,﹣1,1),设=(x,y,z)为平面MAB的一个法向量,由,得取x=1,则=(1,,),∵=(1,0,0)是平面FCB的一个法向量,∴cosθ=cos<>==,…(10分)∵0≤λ≤,∴当λ=0时,cosθ有最小值,当λ=时,cosθ有最大值.∴cosθ∈[].…(12分)20.【解答】解:(1)∵椭圆C:+=1(a>b>0)的两个焦点分别为F1(﹣,0),F2(,0),以椭圆短轴为直径的圆经过点M(1,0),∴,解得,b=1,∴椭圆C的方程为=1.(2)k1+k2是定值.证明如下:设过M的直线:y=k(x﹣1)=kx﹣k或者x=1①x=1时,代入椭圆,y =±,∴令A(1,),B(1,﹣),k1=,k2=,∴k1+k2=2.②y=kx﹣k代入椭圆,(3k2+1)x2﹣6k2x+(3k2﹣3)=0设A(x1,y1),B(x2,y2).则x1+x2=,x1x2=,y1+y2=﹣2k =,y1y2=k2x1x2﹣k2(x1+x2)+k2=﹣,k1=,k2=,∴k1+k2==2.21.【解答】解:(1)由题意,得a x =>0故g(x )=,x∈(﹣∞,﹣1)∪(1,+∞)由得t=(x﹣1)2(7﹣x),x∈[2,6]则t′=﹣3x2+18x﹣15=﹣3(x﹣1)(x﹣5)列表如下:所以t最小值=5,t最大值=32所以t的取值范围为[5,32](5分)(Ⅱ)=ln()=﹣ln令u(z)=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′(z)=﹣=(1﹣)2≥0所以u(z)在(0,+∞)上是增函数又因为>1>0,所以u()>u(1)=0即ln>0即(9分)(3)设a=,则p≥1,1<f(1)=≤3,当n=1时,|f(1)﹣1|=≤2<4,当n≥2时,设k≥2,k∈N*时,则f(k)=,=1+所以1<f(k)≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f(1)+n+1≤n+4,综上所述,总有|﹣n|<4.[选修4-1:几何证明选讲]22.【解答】(1)证明:∵AD平分∠EAC,∴∠EAD=∠DAC;∵四边形AFBC内接于圆,∴∠DAC=∠FBC;…2′∵∠EAD=∠F AB=∠FCB∴∠FBC=∠FCB∴FB=FC. (5)(2)解:∵AB是圆的直径,∴∠ACD=90°∵∠EAC=120°,∴∠DAC=60°,∴∠D=30°…7′在Rt△ACB中,∵BC=3,∠BAC=60°,∴AC=3又在Rt△ACD中,∠D=30°,AC=3,∴AD=6 …10′[选修4-4:坐标系与参数方程]23.【解答】解:(1)∵曲线C的参数方程为(α为参数),∴由sin2α+cos2α=1,得曲线C的普通方程为(x﹣3)2+(y﹣1)2=10,即x2+y2=6x+2y,由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,得曲线C的极坐标方程为ρ2=6ρcosθ+2ρsinθ,即ρ=6cosθ+2sinθ,它是以(3,1)为圆心,以为半径的圆.(2)∵直线的极坐标方程为sinθ﹣cosθ=,∴ρsinθ﹣ρcosθ=1,∴直线的直角坐标为x﹣y+1=0,∵曲线C是以(3,1)为圆心,以r=为半径的圆,圆心C(3,1)到直线x﹣y+1=0的距离d==,∴直线被曲线C截得的弦长|AB|=2=2=.[选修4-5:不等式选讲]24.【解答】(I)解:当a=2时,f(x)=|x+2|+|x+|,不等式f(x)>3等价于或或,∴x<﹣或x>,∴不等式f(x)>3的解集为{x|x<﹣或x>};(Ⅱ)证明:f(m)+f(﹣)=|m+a|+|m+|+|﹣+a|+|﹣+|≥2|m+|=2(|m|+)≥4,当且仅当m=±1,a=1时等号成立,∴f(m)+.。

湖南省长郡中学2016-2017学年高二上学期期中考试数学(文)试题含答案

湖南省长郡中学2016-2017学年高二上学期期中考试数学(文)试题含答案

数学(文)试题 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“R x ∈∃0,020x ≤”的否定是( )A .R x ∈∃0,020x > B .0x R ∃∉,020x ≤ C .x R ∀∈,20x > D .x R ∀∈,20x ≤2.设x ,y R ∈,则“0x y >>”是“22x y >”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件3.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图).1s ,2s 分别表示甲、乙选手分数的标准差,则1s 与2s 的关系是( )A .12s s >B .12s s =C .12s s <D .不能确定 4.命题“在ABC ∆中,若A B >,则sin sin A B >”的逆否命题是( ) A .在ABC ∆中,若sin sin A B >,则A B > B .在ABC ∆中,若A B ≤,则sin sin A B ≤ C. 在ABC ∆中,若sin sin A B <,则A B < D .在ABC ∆中,若sin sin A B ≤,则A B ≤5.已知函数()3223f x x x a =-+的极大值为6,那么a 的值是( )A .0B .1 C. 5 D .66.已知某产品的广告费用x (万元)与销售额y (万元)所得的数据如表,经分析,y 与x 有较强的线性相关性,且 0.95y x a=+,则 a 等于( )A .2.5B .2.6 C.2.7 D .2.87.如果222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .()0,1 B .()0,2 C.()1,+∞ D .()0,+∞8.为了了解某校高三400名学生的数学学业水平测试成绩,制成样本频率分布直方图如图,规定不低于60分为及格,不低于80分为优秀,则及格率与优秀人数分别是( )A .60%,60B .60%,80 C. 80%,80 D. 80%,609.已知双曲线()22210y x a a-=>的渐近线与圆()22314x y -+=相切,则a =( )A .10.长方形ABCD 中,2AB =,1BC =,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A .4π B .14π- C.8π D .18π- 11.已知直线y kx =与曲线ln y x =有交点,则k 的最大值是( ) A .e B .e - C.1e D .1e-12.已知1F ,2F 是双曲线C :()222210,0x y a b a b-=>>的两个焦点,12F F =为2()00,M x y 是双曲线C 上的一点,若120MF MF < ,则0y 的取值范围是( )A .33⎛- ⎝⎭B .,66⎛⎫- ⎪ ⎪⎝⎭ C. 33⎛⎫- ⎪ ⎪⎝⎭D .33⎛⎫-⎪ ⎪⎝⎭13.函数ln y ax x =-在1,2⎛⎫+∞⎪⎝⎭内单调递增,则a 的取值范围为( ) A .()2,+∞ B .[2,)+∞ C. (),2-∞ D .(,2]-∞14.已知椭圆C :()222210x y a b a b+=>>的两个焦点为1F ,2F ,若椭圆C 上存在点P 使得12F PF ∠为钝角,则该椭圆的离心率的取值范围是( )A .0,2⎛ ⎝⎭B . 2⎛⎫ ⎪ ⎪⎝⎭ C.10,2⎛⎫ ⎪⎝⎭ D .1,12⎛⎫⎪⎝⎭ 15.设过曲线()xf x e x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为( ) A .()2,1- B .[]2,1- C. ()1,2- D .[]1,2-第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)16.某次体检,6名同学的身高(单位:米)分别为1.71,1.78,1.75,1.80,1.69,1.77,则这组数据的中位数是 (米).17.若直线2x y -=与抛物线24y x =交于A ,B 两点,则线段AB 的中点坐标是 . 18.有下列四个命题:①若A B =∅ ,则A ,B 之中至少有一个为空集;②在回归直线21y x =+中,x 增加1个单位时,y 平均增加3个单位; ③若p 且q 为假命题,则p ,q 均为假命题;④在ABC ∆中,若A B >,则sin sin A B >.其中是真命题的有: .(请将真命题的序号填在答题卷的横线上)19.已知()f x 为奇函数,当0x <时,()()ln 3f x x x =-+,则曲线()y f x =在(1,3)处的切线方程是 .20.已知抛物线22y px =过点14M ⎛⎝⎭,A ,B 是抛物线上的点,直线OA ,OM ,OB 的斜率依次成等比数列,则直线AB 恒过点 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 21. (本小题满分12分)某高校调查了20名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[]17.5,30,样本数据分组为[)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5,[]27.5,30.(1)求直方图中a 的值;(2)从每周自习时间在[]25,30的受调查学生中,随机抽取2人,求恰有1人的每周自习时间在[]27.5,30 的概率.22. (本小题满分12分)已知()322f x ax bx x c =+-+在2x =-时有极大值6,在1x =时有极小值.(1)求a ,b ,c 的值;(2)求()f x 在区间[]3,3-上的最大值和最小值. 23. (本小题满分12分)已知命题p :()()2425f x x m x =+-+在区间(),0-∞上是减函数,命题q :不等式2210x x m -+->的解集是R ,若命题“p q ∨”为真,命题“p q ∧”为假,求实数m 的取值范围.24. (本小题满分12分) 设函数()1ln f x x x=(0x >且1x ≠). (1)求函数()f x 的单调区间;(2)已知12axx >对任意()0,1x ∈成立,求实数a 的取值范围.25. (本小题满分12分)已知椭圆G :()222210x y a b a b +=>>的离心率e =).(1)求G 的方程;(2)直线1y kx =+与曲线G 交于不同的两点A ,B ,若在x 轴上存在一点M ,使得AM BM =,求点M 的横坐标的取值范围.试卷答案一、选择题1-5:CACDD 6-10:BACCB 11-15:CABBD 二、填空题16.1.76 17.()4,2 18.④ 19.21y x =+ 20.1,04⎛⎫-⎪⎝⎭三、解答题 21.(1)0.1a = (2)81522.【解析】(1)()2322f x ax bx =+-′,由条件知()()()212420,13220,2844 6.f a b f a b f a b c -=--=⎧⎪=+-=⎨⎪-=-+++=⎩′′解得13a =,12b =,83c =.(2)()321182323f x x x x =+-+,()22f x x x =+-′ 当x 变化时,()f x ′,()f x 的变化情况如下表:由上表知,在区间[]3,3-上,当3x =时,()max 616f x =⎡⎤⎣⎦;当1x =时,()min 32f x =⎡⎤⎣⎦.23.【解析】若命题p 为真,即()()2425f x x m x =+-+在区间(),0-∞上是减函数,只需对称轴120x m =-≥,即12m ≤. 若命题q 为真,即不等式2210x x -+>的解集是R , 只需()4410m ∆=--<,即0m <.当()0f x >′,即10x e<<时,()f x 为增函数; 当()0f x <′,即11x e<<或1x >时,()f x 为减函数. 所以()f x 的单调递增区间为10,e ⎛⎫ ⎪⎝⎭,单调递减区间为1,1e ⎡⎫⎪⎢⎣⎭和()1,+∞.(2)在12axx >两边取对数,得1ln 2ln a x x>,由于01x <<,所以1ln 2ln a x x>.① 由(1)的结果知:当()0,1x ∈时,()1f x f e e ⎛⎫≤=- ⎪⎝⎭. 为使①式对所有()0,1x ∈成立. 当且仅当ln 2ae >-,即ln 2a e >-. 25.【解析】(1)由题意可知:c e a ==a =222b ac =-,联立解得a =1c =,22b =.所求椭圆G 的方程为:22132x y +=. (2)将直线l 的方程1y kx =+与椭圆G 的方程联立:221132y kx x y =+⎧⎪⎨+=⎪⎩,, 化简整理可得:()2232630k x kx ++-=,设()11,A x y ,()22,B x y . 则122632kx x k +=-+,122332x x k -=+ . 设线段AB 中点N 的坐标为()00,x y . 则12023232x x k x k +-==+,0022132y kx k =+=+. 设x 轴上M 点坐标为(),0m ,使得AM BM =, 依题意可得:AB MN ⊥.①当0k =时,直线l 平行于x 轴,易知:此时M 点与坐标原点重合,其坐标为(0,0); ②当0k ≠时,有1MN k k=-, ()2020222132333232y k k x m k k m k m k +∴===-----+-+,从而212323k m k k k=-=-++,而)230k k k +≥>,或)230k k k+≤-<,故012m -≤<或012m <≤.综上所述:实数的取值范围是1212⎡-⎢⎣⎦.即点的横坐标的取值范围是,1212⎡-⎢⎣⎦.。

湖南省长沙市长郡中学2016-2017学年高一上学期期末数

湖南省长沙市长郡中学2016-2017学年高一上学期期末数

2016-2017学年湖南省长沙市长郡中学高一(上)期末数学试卷一、选择题:本大题共15小题,每小题3分,共45分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)2.已知α是第一象限角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角3.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)在R上是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)4.已知向量,若,则m=()A.﹣1 B.﹣4 C.4 D.15.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y36.若向量,,两两所成的角相等,且||=1,||=1,||=3,则|++|等于()A.2 B.5 C.2或5 D.或7.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)8.已知,则的值是()A.B.C.2 D.﹣29.若f(x)=lg(x2﹣2ax+1+a)在区间(﹣∞,1]上递减,则a的取值范围为()A.[1,2) B.[1,2]C.[1,+∞)D.[2,+∞)10.若f(x)=(m﹣2)x2+mx+(2m+1)=0的两个零点分别在区间(﹣1,0)和区间(1,2)内,则m的取值范围是()A.(﹣,) B.(﹣,)C.(,)D.[,]11.函数y=的图象是()A.B.C.D.12.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则φ=()A.﹣B.C.﹣D.13.已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不可能是()A. B.πC. D.14.设函数f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则成f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围是()A.(0,)B.(0,1) C.(0,]D.(,+∞)15.已知向量满足:对任意λ∈R,恒有,则()A.B.C.D.二、填空题:本大题共5小题,每小题3分,共15分.16.已知=(4,2),则与垂直的单位向量的坐标为.17.已知,则tan(α﹣2β)=.18.函数f(x)=2x|log0.5x|﹣1的零点个数为.19.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是.20.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②对于任意的a >0,均有f(1)=1;③对于任意的a>0,函数f(x)的最大值均为4.其中所有正确的结论序号为.三、解答题:本大题共5小题,每小题8分,共40分.解答应写出必要的文字说明或推理、验算过程.21.已知函数.(1)试确定a的值,使f(x)为奇函数;(2)判断函数f(x)的单调性,并用定义法证明.22.已知O为坐标原点,为常数),若.(1)求y关于x的函数解析式f(x);(2)若时,f(x)的最大值为2,求a的值,并指出函数f(x),x ∈R的单调区间.23.有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k•f(x),其中f(x)=.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放k个单位的洗衣液,3分钟时水中洗衣液的浓度为4(克/升),求k 的值;(Ⅱ)若投放4个单位的洗衣液,则有效去污时间可达几分钟?24.如图所示,已知OPQ是半径为1,圆心角为的扇形,ABCD是扇形的内接矩形,B,C两点在圆弧上,OE是∠POQ的平分线,连接OC,记∠COE=α,问:角α为何值时矩形ABCD面积最大,并求最大面积.25.对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在[a,b]⊆D区间,使f(x)在[a,b]上的值域为[a,b],那么把y=f(x),x∈D叫闭函数.(1)求闭函数y=﹣x3符合条件②的区间[a,b];(2)若函数是闭函数,求实数k的取值范围.2016-2017学年湖南省长沙市长郡中学高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共15小题,每小题3分,共45分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)【考点】并集及其运算.【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.2.已知α是第一象限角,那么是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角【考点】半角的三角函数;象限角、轴线角.【分析】由题意α是第一象限角可知α的取值范围(2kπ, +2kπ),然后求出即可.【解答】解:∵α的取值范围(2kπ, +2kπ),(k∈Z)∴的取值范围是(kπ, +kπ),(k∈Z)分类讨论①当k=2i+1 (其中i∈Z)时的取值范围是(π+2iπ, +2iπ),即属于第三象限角.②当k=2i(其中i∈Z)时的取值范围是(2iπ, +2iπ),即属于第一象限角.故选:D.3.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)在R上是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【考点】函数奇偶性的性质.【分析】由函数在y轴左侧是余弦函数,右侧是二次函数的部分可知函数不具有周期性和单调性,函数不是偶函数,然后求解其值域得答案.【解答】解:由解析式可知,当x≤0时,f(x)=cosx,为周期函数,当x>0时,f(x)=x2+1,是二次函数的一部分,∴函数不是偶函数,不具有周期性,不是单调函数,对于D,当x≤0时,值域为[﹣1,1],当x>0时,值域为(1,+∞),∴函数的值域为[﹣1,+∞).故选:D.4.已知向量,若,则m=()A.﹣1 B.﹣4 C.4 D.1【考点】平面向量的坐标运算;平行向量与共线向量.【分析】根据即可得到关于m的方程,解方程即可得出m的值.【解答】解:∵;∴1•m﹣(﹣2)•2=0;∴m=﹣4.故选B.5.已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y3【考点】指数函数的单调性与特殊点.【分析】实数x,y满足a x<a y(0<a<1),可得x>y,对于A.B.C分别举反例即可否定,对于D:由于y=x3在R上单调递增,即可判断出正误.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.取x=2,y=﹣1,不成立;B.\取x=0,y=﹣1,不成立C.取x=π,y=﹣π,不成立;D.由于y=x3在R上单调递增,因此正确故选:D.6.若向量,,两两所成的角相等,且||=1,||=1,||=3,则|++|等于()A.2 B.5 C.2或5 D.或【考点】向量的模.【分析】由题意可得每两个向量成的角都等于120°,或都等于0°,再由,由此分别求得、、的值,再根据==,运算求得结果【解答】解:由于平面向量两两所成的角相等,故每两个向量成的角都等于120°,或都等于0°,再由,①若平面向量两两所成的角相等,且都等于120°,∴=1×1×cos120°=﹣,=1×3×cos120°=﹣,=1×3×cos120°=﹣.====2.②平面向量两两所成的角相等,且都等于0°,则=1×1=1,=1×3=3,=1×3=3,====5.综上可得,则=2或5,故选C.7.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.8.已知,则的值是()A.B.C.2 D.﹣2【考点】三角函数的化简求值.【分析】利用化简•得结果为﹣1,进而根据的值,求得,则答案取倒数即可.【解答】解:∵•=(﹣)•==﹣1∴=2∴=故选A9.若f(x)=lg(x2﹣2ax+1+a)在区间(﹣∞,1]上递减,则a的取值范围为()A.[1,2) B.[1,2]C.[1,+∞)D.[2,+∞)【考点】复合函数的单调性.【分析】由题意,在区间(﹣∞,1]上,a的取值需令真数x2﹣2ax+1+a>0,且函数u=x2﹣2ax+1+a在区间(﹣∞,1]上应单调递减,这样复合函数才能单调递减.【解答】解:令u=x2﹣2ax+1+a,则f(u)=lgu,配方得u=x2﹣2ax+1+a=(x﹣a)2 ﹣a2+a+1,故对称轴为x=a,如图所示:由图象可知,当对称轴a≥1时,u=x2﹣2ax+1+a在区间(﹣∞,1]上单调递减,又真数x2﹣2ax+1+a>0,二次函数u=x2﹣2ax+1+a在(﹣∞,1]上单调递减,故只需当x=1时,若x2﹣2ax+1+a>0,则x∈(﹣∞,1]时,真数x2﹣2ax+1+a>0,代入x=1解得a<2,所以a的取值范围是[1,2)故选A.10.若f(x)=(m﹣2)x2+mx+(2m+1)=0的两个零点分别在区间(﹣1,0)和区间(1,2)内,则m的取值范围是()A.(﹣,) B.(﹣,)C.(,)D.[,]【考点】函数零点的判定定理;一元二次方程的根的分布与系数的关系.【分析】根据函数f(x)=(m﹣2)x2+mx+(2m+1)=0有两个零点,我们易得函数为二次函数,即m﹣2≠0,又由两个零点分别在区间(﹣1,0)和区间(1,2)内,根据零点存在定理,我们易得:f(﹣1)•f(0)<0且f(1)•f(2)<0,由此我们易构造一个关于参数m的不等式组,解不等式组即可求出答案.【解答】解:∵f(x)=(m﹣2)x2+mx+(2m+1)=0有两个零点且分别在区间(﹣1,0)和区间(1,2)内∴∴∴<m<故选:C11.函数y=的图象是()A.B.C.D.【考点】函数的图象.【分析】根据x的变化趋势,得到y的变化趋势,问题得以解决.【解答】解:当x→﹣∞时,x3→﹣∞,3x﹣1→﹣1,故y→+∞,当x→+∞时,x3→+∞,3x﹣1→+∞,且故y→0,故选:A.12.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则φ=()A.﹣B.C.﹣D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数图象的顶点求出A,由周期求出ω,由五点法作图求出φ的值.【解答】解:有函数的图象顶点坐标可得A=2,再根据==﹣求得ω=2.再根据五点法作图可得2×+φ=可得φ=,故选:D.13.已知函数y=2sinx的定义域为[a,b],值域为[﹣2,1],则b﹣a的值不可能是()A. B.πC. D.【考点】正弦函数的定义域和值域.【分析】由题意得,x∈[a,b]时,﹣1≤sinx≤,定义域的区间长度b﹣a最小为,最大为,由此选出符合条件的选项.【解答】解:函数y=2sinx的定义域为[a,b],值域为[﹣2,1],∴x∈[a,b]时,﹣1≤sinx≤,故sinx能取到最小值﹣1,最大值只能取到,例如当a=﹣,b=时,区间长度b﹣a最小为;当a=﹣,b=时,区间长度b﹣a取得最大为,即≤b﹣a≤,故b﹣a一定取不到,故选:D.14.设函数f(x)的定义域为D,若f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则成f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则t的范围是()A.(0,)B.(0,1) C.(0,]D.(,+∞)【考点】函数的值域.【分析】由题意得,函数是增函数,构造出方程组,利用方程组的解都大于0,求出t的取值范围.【解答】解:∵函数f(x)=为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴方程+t=0有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,),故答案选:A.15.已知向量满足:对任意λ∈R,恒有,则()A.B.C.D.【考点】向量的模;向量的减法及其几何意义.【分析】由已知两边同时平方可得,≥,整理之后,结合二次不等式的性质可得可得,△≤0,从而可求【解答】解:∵恒有两边同时平方可得,≥整理可得,对任意λ都成立∴ []≤0整理可得,∴∴故选B二、填空题:本大题共5小题,每小题3分,共15分.16.已知=(4,2),则与垂直的单位向量的坐标为或..【考点】数量积判断两个平面向量的垂直关系.【分析】设出与垂直的单位向量的坐标,由题意列方程组,求解后即可得到答案.【解答】解:设与垂直的单位向量.则,解得或.故答案为或.17.已知,则tan(α﹣2β)=2.【考点】两角和与差的正切函数.【分析】利用两角差的正切公式,求得要求式子的值.【解答】解:∵,则tan(α﹣2β)=tan[(α﹣β)﹣β]===2,故答案为:2.18.函数f(x)=2x|log0.5x|﹣1的零点个数为2.【考点】根的存在性及根的个数判断.【分析】函数f(x)=2x|log0.5x|﹣1的零点个数,即方程2x|log0.5x|﹣1=0根个数,即方程|log0.5x|=()x根个数,即函数y=|log0.5x|与y=()x图象交点的个数,画出函数图象,数形结合,可得答案.【解答】解:函数f(x)=2x|log0.5x|﹣1的零点个数,即方程2x|log0.5x|﹣1=0根个数,即方程|log0.5x|=()x根个数,即函数y=|log0.5x|与y=()x图象交点的个数,在同一坐标系中画出函数y=|log0.5x|与y=()x图象,如下图所示:由图可得:函数y=|log0.5x|与y=()x图象有2个交点,故函数f(x)=2x|log0.5x|﹣1的零点有2个,故答案为:219.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是(,).【考点】奇偶性与单调性的综合.【分析】根据函数奇偶性和单调性之间的关系将不等式进行转化进行求解即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在区间(0,+∞)上单调递减,则f(2|a﹣1|)>f(﹣),等价为f(2|a﹣1|)>f(),即﹣<2|a﹣1|<,则|a﹣1|<,即<a<,故答案为:(,)20.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,对于函数y=f(x),给出以下三个结论:①当a=2时,函数f(x)的值域为[1,4];②对于任意的a >0,均有f(1)=1;③对于任意的a>0,函数f(x)的最大值均为4.其中所有正确的结论序号为②③.【考点】命题的真假判断与应用.【分析】通过建立如图所示的坐标系,可得y=f(x)==(a2+1)x2﹣(4+a2)x+4.x∈[0,1].通过分类讨论,利用二次函数的单调性即可判断出.【解答】解:如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵,(0≤x≤1).∴=(﹣2,0)+x(1,a)=(x﹣2,xa),=(0,a)﹣(x﹣2,xa)=(2﹣x,a﹣xa).得y=f(x)==(a2+1)x2﹣(4+a2)x+4.x∈[0,1].①当a=2时,y=f(x)=5x2﹣8x+4=5(x﹣)+.∵0≤x≤1,∴当x=时,f(x)取得最小值;又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.综上可得:函数f(x)的值域为[,4].因此①不正确.②由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可得:∀a∈(0,+∞),都有f(1)=1成立,因此②正确;③由y=f(x)=(a2+1)x2﹣(4+a2)x+4.可知:对称轴x0=,当0<a≤时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.当a时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.又f(0)=4,f(1)=1,∴f(x)max=f(0)=4.因此③正确.综上可知:只有②③正确.故答案为:②③.三、解答题:本大题共5小题,每小题8分,共40分.解答应写出必要的文字说明或推理、验算过程.21.已知函数.(1)试确定a的值,使f(x)为奇函数;(2)判断函数f(x)的单调性,并用定义法证明.【考点】奇偶性与单调性的综合.【分析】(1)利用f(0)=0,确定a的值,使f(x)为奇函数;(2)利用函数单调性的定义进行证明即可.【解答】解:(1)由题意,f(0)=a﹣=0,∴a=,f(﹣x)=a﹣;∵f(x)+f(﹣x)=a﹣+a﹣=2a﹣=2a﹣1;∴经检验a=,f(x)为奇函数;(2)函数f(x)在定义域R内单调递增.任意设两个实数x1,x2,且x1<x2,则f(x1)﹣f(x2)=,∵x1<x2,∴﹣<0,(1+)(1+)>0∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴函数f(x)在定义域R内单调递增.22.已知O为坐标原点,为常数),若.(1)求y关于x的函数解析式f(x);(2)若时,f(x)的最大值为2,求a的值,并指出函数f(x),x ∈R的单调区间.【考点】平面向量数量积的运算.【分析】(1)进行数量积的坐标运算得出f(x)=,化简后即可得到;(2)由x的范围可得出2x+的范围,从而求出f(x)的最大值2+1+a=2,求出a的值,并可写出f(x)的单调增减区间.【解答】解:(1)f(x)====(2)当x时,2x+;故f(x)max=2+1+a=2,解得a=﹣1;f(x)的单调递增区间为,k∈Z;单调递减区间为,k∈Z.23.有一种新型的洗衣液,去污速度特别快.已知每投放k(1≤k≤4且k∈R)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度y(克/升)随着时间x(分钟)变化的函数关系式近似为y=k•f(x),其中f(x)=.根据经验,当水中洗衣液的浓度不低于4(克/升)时,它才能起到有效去污的作用.(Ⅰ)若投放k个单位的洗衣液,3分钟时水中洗衣液的浓度为4(克/升),求k 的值;(Ⅱ)若投放4个单位的洗衣液,则有效去污时间可达几分钟?【考点】分段函数的应用.【分析】(Ⅰ)若投放k个单位的洗衣液,3分钟时水中洗衣液的浓度为4(克/升),则,解得k值;(II)由已知中y=.对x进行分类讨论求出满足条件的范围,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)由题意知,,解得;…(Ⅱ)当k=4,所以y=…当0≤x≤5时,由解得x≥1,所以1≤x≤5.…当5<x<16时,由解得:﹣15≤x≤15所以5<x≤15综上,1≤x≤15 …故若投放4个单位的洗衣液,则有效去污时间可达14分钟…24.如图所示,已知OPQ是半径为1,圆心角为的扇形,ABCD是扇形的内接矩形,B,C两点在圆弧上,OE是∠POQ的平分线,连接OC,记∠COE=α,问:角α为何值时矩形ABCD面积最大,并求最大面积.【考点】已知三角函数模型的应用问题.【分析】先把矩形的各个边长用角α表示出来,进而表示出矩形的面积;再利用角α的范围来求出矩形面积的最大值即可.【解答】解:设OE交AD于M,交BC于N,显然矩形ABCD关于OE对称,而M,N均为AD,BC的中点,在Rt△ONC中,CN=sinα,ON=cosα.,∴即∴BC=2CN=2sinα故:====∵,∴取得最大,此时.故当,即时,S矩形25.对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在[a,b]⊆D区间,使f(x)在[a,b]上的值域为[a,b],那么把y=f(x),x∈D叫闭函数.(1)求闭函数y=﹣x3符合条件②的区间[a,b];(2)若函数是闭函数,求实数k的取值范围.【考点】函数与方程的综合运用.【分析】(1)根据单调性依据闭区间的定义等价转化为方程,直接求解;(2)根据闭函数的定义一定存在区间[a,b],由定义直接转化:a,b为方程x=k+的两个实数根,即方程x2﹣(2k+1)x+k2﹣2=0(x≥﹣2,x≥k)有两个不等的实根,由二次方程实根分布求解即可.【解答】解:(1)由题意,y=﹣x3在[a,b]上递减,则,解得,所以,所求的区间为[﹣1,1];(2)若函数是闭函数,且为[﹣2,+∞)的增函数,则存在区间[a,b],在区间[a,b]上,函数f(x)的值域为[a,b],即,可得a,b为方程x=k+的两个实数根,即方程x2﹣(2k+1)x+k2﹣2=0(x≥﹣2,x≥k)有两个不等的实根,设f(x)=x2﹣(2k+1)x+k2﹣2,当k≤﹣2时,有,即为,解得﹣<k≤﹣2,当k>﹣2时,有,即有,无解,综上所述,k的取值范围是(﹣,﹣2].2017年3月22日。

【全国百强校】湖南省长沙市长郡中学2016-2017学年高一上学期期中考试数学试题解析(解析版)

【全国百强校】湖南省长沙市长郡中学2016-2017学年高一上学期期中考试数学试题解析(解析版)

一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()U A B ð为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,4【答案】C 【解析】试题分析:由题意得{0,4}U A =ð,所以{}()0,2,4U A B =ð,故选C .考点:集合的运算.2.下列函数中,定义域是R 且为增函数的是( ) A .xy e -= B .3y x =C .ln y x =D .||y x =【答案】B考点:函数的单调性.3.设集合A 和B 都是坐标平面上的点集{}(,)|,x y x R y R ∈∈,映射f :A B →使集合A 中的元素(,)x y 映射成集合B 中的元素(,)x y x y +-,则在映射f 下,象(2,1)的原象是( ) A .()3,1 B .31(,)22C .31(,)22-D .(1,3)【答案】B 【解析】试题分析:由题意得,令21x y x y +=⎧⎨-=⎩,解得31,22x y ==,即在映射f 下,象(2,1)的原象是31(,)22,故选B .考点:映射的概念及其应用.4.设集合{}|02M x x =≤≤,{}|02N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有( ) A .①② B .②③C .③④D .①④【答案】B 【解析】试题分析:根据映射的概念,可知能表示为M 到N 的函数关系的只有②③,故选B . 考点:映射的概念.5.下列各对函数中,是同一函数的是( )A .()f x =,()g x =B .||()x f x x =,1,0()1,0x g x x ≥⎧=⎨-<⎩C .2()f x =,212()(n g x -=(n 为正整数)D .()f x =,()g x =【答案】C考点:同一函数的概念. 6.函数||x y x x=+的图象是( )【答案】D 【解析】试题分析:由函数||x y x x=+,可知,当0x >时,1y x =+,当0x <时,1y x =-,根据一次函数的图象可知,函数||x y x x=+的图象为选项D ,故选D . 考点:函数的图象.7.已知函数()ln 38f x x x =+-的零点[]0,x a b ∈,且1b a -=(a ,b N +∈),则a b +=( ) A .5 B .4C .3D .2【答案】A考点:函数的零点.【方法点晴】本题主要考查了函数的零点问题,其中解答中涉及到对数函数的图象与性质,函数值的求解,函数零点的存在性定理及函数零点的概念等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中熟记函数零点的存性性定理和准确求解函数值是解答的关键,试题比较基础,属于基础题. 8.若()f x =,则()f x 的定义域为( )A .1(,1)2B .1(,1]2C .1(,)2+∞D .(1,)+∞【答案】A 【解析】试题分析:由题意得,函数()f x =0211x <-<,解得112x <<,所以函数的定义域为1(,1)2,故选A . 考点:函数的定义域.9.若函数()y f x =是函数3x y =的反函数,则1()2f 的值为( ) A .3log 2- B .2log 3-C .19D【答案】A 【解析】试题分析:由函数()y f x =是函数3xy =的反函数,所以()3log f x x =,所以3311()log log 222f ==-,故选A .考点:指数函数与对数函数的概念及应用. 10.已知幂函数()f x x α=的图象经过点,则(4)f 的值等于( ) A .16 B .116 C .2D .12【答案】D考点:幂函数的解析式及应用.11.函数()2log (1)3x a f x x =+++恒过定点为( ) A .()0,4 B .()0,1C .7(1,)2-D .(1,4)-【答案】A 【解析】试题分析:由函数()2log (1)3x a f x x =+++,令0x =,解得0(0)2log (01)34a f =+++=,所以函数()2log (1)3x a f x x =+++恒过定点()0,4,故选A .考点:函数过定点问题.12.已知0.6log 0.5a =,ln 0.5b =,0.50.6c =,则( ) A .a b c >> B .c a b >>C .a c b >>D .c b a >>【答案】C考点:指数函数与对数函数的性质.13.已知函数2(1)(0)()(3)2(0)a x a x f x a x x -+<⎧=⎨-+≥⎩在(,)-∞+∞上是减函数,则实数a 的取值范围为( ) A .()2,3 B .()1,3C .[2,3)D .[]1,3【答案】C 【解析】试题分析:由函数2(1)(0)()(3)2(0)a x a x f x a x x -+<⎧=⎨-+≥⎩在(,)-∞+∞上是减函数,则10302a a a -<⎧⎪-<⎨⎪≥⎩,解得23a ≤<,故选C .考点:分段函数的单调性.14.若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( ) A .(,4)-∞ B .(4,4]-C .(,4)[2,)-∞-+∞ D .[4,4)-【答案】D 【解析】试题分析:令23t x ax a =--,则由函数2()log f x t =在区间(,2]-∞-上是减函数,可得函数t 在区间(,2]-∞-上是减函数且(2)0t ->,所以有22(2)4230at a a ⎧≤-⎪⎨⎪-=-+>⎩解得44a -≤<,故选D . 考点:复合函数的单调性及其应用.【方法点晴】本题主要考查了复合函数的单调性及其应用问题,其中解答中涉及到对数函数的单调性及其应用,二次函数的图象与性质,复合函数的单调性等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解得中根据复合函数单调性的判定方法——同增异减和正确理解对数函数的定义域是解答的关键,试题比较基础,属于基础题. 15.已知函数1()1f x x=-(0x >),若存在实数a ,b (a b <),使()y f x =的定义域为(),a b 时,值域为(,)ma mb ,则实数m 的取值范围是( ) A .14m <B .104m <<C .14m <且0m ≠ D .14m > 【答案】B考点:函数性质的综合应用.【方法点晴】本题主要考查了函数性质的综合应用问题,其中解答中涉及到函数的定义域与函数的值域,函数的单调性与函数值域之间的关系等知识点的综合考查,着重考查了分析问题和解答问题的能力,以及数学转化思想和二次函数性质的应用,本题的解答中熟练掌握一元二次函数的图象与性质及判别式与根的关系是解答的关键,试题有一定的难度,属于中档试题.第Ⅱ卷(非选择题共55分)二、填空题(本大题共5小题,每题3分,满分15分.)16.计算21log 32.51log 6.25lg ln 2100++++= . 【答案】132【解析】试题分析:由222511log 3log 61422.5521113log 6.25lg 2log lg(10)ln 221610022e +-++=+++=-++=.考点:对数的运算.17.设2()2f x ax bx =++是定义在[]1,2a +上的偶函数,则()f x 的值域是 .【答案】[]10,2-考点:函数的奇偶性的应用.18.一次函数()f x 是减函数,且满足[]()41f f x x =-,则()f x = . 【答案】21x -+ 【解析】试题分析:因为一次函数()f x 是减函数,设()(0)f x ax b a =+<,所以[]2()()()41f f x f ax b a ax b b a x ab b x =+=++=++=-,所以24,1a ab b =+=,解得2,1a b =-=,所以函数的解析式为()f x =21x -+. 考点:函数的解析式.19.某公司为激励创新,计算逐年加大研发奖金投入,若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 年(参考数据:lg1.120.05=,lg1.30.11=,lg 20.30=). 【答案】2020 【解析】试题分析:设第n 年开始超过200万元,则2016130(112%)200n -⨯+>,化简得(2016)lg1.12lg 2lg1.3n ->-,所以2016 3.8n ->,取2020n =,所以开始超过200万元的年份为2020年.考点:等比数列的应用问题.【方法点晴】本题主要考查了等比数列的应用问题,其中解答中涉及到等比数列的通项公式及其应用,不等式的性质,对数的运算等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理能力与运算能力,试题有一定的难度,属于中档试题,本题的解答中根据题意得到关于年份的函数解析式是解答的关键.20.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程()(1,2,3,4)i f x i =关于时间x (0)x ≥的函数关系式分别为1()21x f x =-,32()f x x =,3()f x x =,42()log (1)f x x =+,有以下结论:①当1x >时,甲走在最前面; ②当1x >时,乙走在最前面;③当01x <<时,丁走在最前面,当1x >时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分) 【答案】③④⑤考点:函数模型的应用.【方法点晴】本题主要考查了函数模型的应用,其中解答中涉及到指数函数、幂函数、一次函数和对数型函数的增长速度以及各类基本初等函数的性质等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据各类基本初等函数,利用取特值验证结论是解答的关键,试题有一定的难度,属于中档试题.三、解答题(本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)21.设a R ∈,集合A R =,{}2|(2)2(2)30B x R a x a x =∈-+--<. (1)若3a =,求集合B (用区间表示); (2)若A B =,求实数a 的取值范围. 【答案】(1)()3,1B =-;(2)(1,2]-.试题解析:(1)3a =时,2230x x +-<,解得31x -<<, ∴集合()3,1B =-. (2)当A B R ==时,(i )当20a -=,即2a =时,30-<符合题意;(ii )当20a -≠,则有220,4(2)12(2)0,a a a -<⎧⎨∆=-+-<⎩解得12a -<<. 综上,a 的取值范围为(1,2]-. 考点:集合的运算.22.已知函数22()3px f x q x +=-是奇函数,且5(2)3f =-.(1)求函数()f x 的解析式;(2)判断函数()f x 在(0,1)上的单调性,并用单调性定义证明.【答案】(1)222()3x f x x+=-;(2)单调递增,证明见解析.【解析】试题分析:(1)由()f x 是奇函数,得对定义域内的任意的x ,都有()()f x f x -=-,列出方程即可求解q 的值,再由5(2)3f =-,解得p 的值,即可得到函数的解析式;(2)利用函数的单调性的定义,即可判定和证明函数的单调性.试题解析:(1)∵()f x 是奇函数,∴对定义域内的任意的x ,都有()()f x f x -=-,即222233px px q x q x++=-+-,整理得33q x q x +=-+,∴0q =,又∵5(2)3f =-,∴425(2)63p f +==--,解得2p =,∴所求的解析式为222()3x f x x +=-. (2)由(1)可得22221()()33x f x x x x+==-+-,设1201x x <<<,则由于122121211()()()()3f x f x x x x x ⎡⎤-=+-+⎢⎥⎣⎦2121211()()3x x x x ⎡⎤=-+-⎢⎥⎣⎦1221122()3x x x x x x ⎡⎤-=-+⎢⎥⎣⎦121221()(1)3x x x x =--12121212()3x x x x x x -=-⋅ ,因此,当1201x x <<<时,1201x x <<,从而得到12()()0f x f x -<,即12()()f x f x <, ∴(0,1)是()f x 的递增区间.考点:函数的奇偶性的应用及单调性的判定. 23.已知函数()2xf x =,||1()22x g x =+. (1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值. 【答案】(1)(2,3];(2)2log (1x =.试题解析:(1)||||11()2()222x x g x =+=+, 因为||0x ≥,所以||10()12x <≤,即2()3g x <≤,故()g x 的值域是(2,3].(2)由()()0f x g x -=,得||12202x x --=,当0x ≤时,显然不满足方程,即只有0x >时满足12202x x --=,整理得2(2)2210x x-⋅-=,2(21)2x -=,故21x =±因为20x >,所以21x =2log (1x =+.考点:指数函数的图象与性质.24.物理学家和数学家牛顿曾提出了物体在常温环境下温度变化的冷却模型,如果物体的初始温度为1C θ︒,空气温度为0C θ︒,则min t 后物体的温度()f t 满足:010()()kt f t e θθθ-=+-⨯(其中k 为正的常数,2.71828e =…为自然对数的底数),现有65C ︒的物体,放在15C ︒的空气中冷却,5min 以后物体的温度是45C ︒.(1)求k 的值;(2)求从开始冷却,经过多少时间物体的温度是25.8C ︒?【答案】(1)15ln 53k =;(2)15min .试题解析:(1)由题意可知,1=65θ,015θ=,当5t =时,45θ=,于是535k e -=, 化简得35ln 5k -=,即15ln 53k =. (2)由(1)可知()1550kt f t e-=+(其中15ln 53k =), ∴由25.81550kt e -=+,得27125kt e -=, 结合15ln 53k =,得5327()5125t =,得15t =. ∴从开始冷却,经过15min 物体的温度是25.8C ︒.考点:函数的实际应用问题.【方法点晴】本题主要考查了函数的实际应用问题,其中解答中涉及到指数函数的图象与性质的应用,函数解析式的求解,对数的运算等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题意建立函数关系式,利用指数函数与对数函数的性质解答是求解的关键,试题有一定的难度,属于中档试题.25.已知函数()|1|2f x x x x =-+.(1)当3a =时,求方程()f x m =的解的个数;(2)若()f x 在(4,2)-上单调递增,求a 的取值范围.【答案】(1)当6m =或254时,方程有两个解,当6m <或254m >时,方程一个解,当2564m <<时,方程有三个解;(2)6a ≤-或2a ≥-.试题解析:(1)当3a =时,22,3,()5, 3.x x x f x x x x ⎧-≥⎪=⎨-<⎪⎩ 当6m =或254时,方程有两个解; 当6m <或254m >时,方程一个解; 当2564m <<时,方程有三个解. (2)22(2),,()(2),.x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩ ①22a a -≤且22a a +≥,即22a -≤≤,()f x 在R 单调递增,满足题意; ②22a a ->且22a a +≥,即2a <-, ()f x 在(,)a -∞和2(,)2a -+∞上单调递增, ∵()f x 在(4,2)-上单调递增,∴2a ≥或242a -≤-, ∴6a ≤-; ③22a a ->且22a a +<,即2a <-且2a >,舍去; ④22a a -≤且22a a +<,即2a >, ()f x 在2(,)2a +-∞和(,)a +∞上单调递增, 因为()f x 在(4,2)-上单调递增,所以222a +≥或4a ≤-, 所以2a >.综上,6a ≤-或2a ≥-.考点:函数的性质的综合应用.【方法点晴】本题主要考查了函数性质的综合应用问题,其中解答中涉及到分段函数的性质,一元二次函数的图象与性质的应用,方程解的个数的判定等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化思想与分类讨论思想的应用,本题的解答中去掉绝对值号,得到分段函数的解析式,利用二次函数的图象与性质,合理分类讨论是解答的关键,试题有一定的难度,属于中档试题.。

湖南省长沙市长郡中学2016-2017学年高一上学期期中考试数学试题含答案

湖南省长沙市长郡中学2016-2017学年高一上学期期中考试数学试题含答案

B. f ( x)
|
x|

g(x)
1,x 0
x
1,x 0
C. f ( x) 2 n 1 x2 n 1 , g ( x) ( 2n 1 x) 2n 1 ( n 为正整数)
D. f (x) x x 1 , g (x) x(x 1)
D.①④
|x|
6. 函数 y
x 的图象是( )
x
7. 已知函数 f ( x) ln x 3x 8 的零点 x0 a,b ,且 b a 1( a ,b N ),则 a b ( )
16. 计算 log 2.5 6.25 lg 1 ln e 21 log 23

100
17. 设 f (x) ax2 bx 2 是 定义在 1 a,2 上的偶函数,则 f ( x) 的值域是

18. 一次函数 f ( x) 是减函数,且满足 f f (x) 4x 1 ,则 f (x)

19. 某公司为激励创新, 计算逐年加大研发奖金投入, 若该公司 2016 年全年投入研发资金 130
( 2)由 f (x) g( x) 0 ,
得 2x
1 2|x |
2
0,
当 x 0 时,显然不满足方程,
即只有 x
0 时满足 2 x
1 2x
2
0,
整理得 (2 x ) 2 2 2x 1 0 ,
(2x 1)2 2 ,故 2x 1 2 ,
因为 2 x 0 ,
所以 2x 1 2 ,
即 x log 2(1 2) . 24. 解:( 1)由题意可知, 1=65 , 0 15 ,当 t 5 时,
2 (x
1) ,
3x
设 0 x1 x2 1,

【推荐】2017-2018学年湖南省长沙市长郡中学高一(上)期中数学试卷

【推荐】2017-2018学年湖南省长沙市长郡中学高一(上)期中数学试卷

2017-2018学年湖南省长沙市长郡中学高一(上)期中数学试卷一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知全集U =Z ,A ={﹣1,0,1,2},B ={x|x 2=x},则A ∩?U B 为()A .{﹣1,2}B .{﹣1,0}C .{0,1}D .{1,2}2.(3分)已知函数f (x )的图象在R 上是连续不间断的,且f (a )f (b )>0,则下列说法正确的是()A .f (x )在区间(a ,b )上一定有零点B .f (x )在区间(a ,b )上不一定有零点C .f (x )在(a ,b )上零点的个数为奇数D .f (x )在(a ,b )上没有零点3.(3分)f (x )=,则f{f[f (﹣3)]}等于()A .0B .πC .π2D .94.(3分)已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax+b ,若4和10的原象分别对应是6和9,则19在f 作用下的象为()A .18B .30C .D .285.(3分)下列各组中两个函数是同一函数的是()A .B .C .f (x )=1,g (x )=x 0D .6.(3分)函数f (x )=log 4x 与f (x )=4x的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称7.(3分)方程lgx +x ﹣2=0一定有解的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.(3分)方程xlog 34=1,则4x +4﹣x为()A .0B .C .3D .9.(3分)在同一坐标系中,函数y =ax+a 与y =a x的图象大致是()A .B .C .D .10.(3分)已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为()A .[﹣9,+∞)B .[0,+∞)C .(﹣9,1)D .[﹣9,1)11.(3分)A ={x|x 2+x ﹣6=0},B ={x|mx+1=0}且A ∪B =A ,则m 的取值范围()A .B .C .D .12.(3分)某化工厂生产一种溶液,按市场需求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,要使产品达到市场要求,则至少应过滤的次数为(已知lg 2=0.3010,lg 3=0.4771)()A .6B .7C .8D .913.(3分)若函数f (x )为定义在R 上的奇函数,且在(0,+∞)为减函数,若f (2)=0,则不等式(x ﹣1)f (x ﹣1)>0的解集为()A .(﹣3,﹣1)B .(﹣3,1)∪(2,+∞)C .(﹣3,0)∪(1,3)D .(﹣1,1)∪(1,3)14.(3分)若函数f (x )=x 2+a|x ﹣2|在(0,+∞)上单调递增,则a 的范围为()A .[﹣4,2]B .[﹣4,0]C .[﹣4,2)D .[﹣2,2)15.(3分)对于函数,设f 2(x )=f[f (x )],f 3(x )=f[f 2(x )],…,f n+1(x )=f[f n (x )](n ∈N *,且n ≥2),令集合M ={x|f 2017(x )=﹣log 2|x|},则集合M 为()A .空集B .一元素集C .二元素集D .四元素集二、填空题:本大题共5小题,每题3分,满分15分,把答案填写在题中的横线上16.(3分)已知幂函数的图象经过点(2,8),则它的解析式是.17.(3分)求值=.18.(3分)已知函数f (x )=4x 2﹣kx ﹣8在[5,20]上具有单调性,则实数k 的取值范围为.19.(3分)若函数(a >0,且a ≠1)在x ∈[﹣1,1]上的最大值为23,则a 的值为.20.(3分)若函数f (x )为定义域D 上的单调函数,且存在区间[a ,b]?D (其中a <b ),使得当x ∈[a ,b]时,f (x )的取值范围恰为[a ,b],则称函数f (x )是D 上的“正函数”,若f (x )=x 2+k 是(﹣∞,0)上的正函数,则实数k 的取值范围是.三、解答题:本大题共5小题,每小题8分,共40分.要求写出必要的文字说明、证明过程或演算步骤.)21.(8分)已知函数f (x )是定义在R 上的偶函数,当x ≥0时,(1)画出函数f (x )的图象;(2)根据图象写出f (x )的单调区间,并写出函数的值域.22.(8分)已知函数的定义域是集合A ,函数g (x )=lg[x 2﹣(2a+1)x+a 2+a]的定义域是集合B .(1)求集合A 、B ;(2)若A ∩B =A ,求实数a 的取值范围.23.(8分)对于函数f (x )=a(a ∈R ).(1)判断并证明函数的单调性;(2)是否存在实数a ,使函数f (x )为奇函数?证明你的结论.24.(8分)电信局为了配合客户不同需要,设有A 、B 两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系,如图所示(实线部分).(注:图中MN ∥CD .)试问:(1)若通话时间为2小时,按方案A 、B 各付话费多少元?(2)方案B 从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B 才会比方案A 优惠.25.(8分)对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.①对任意的x∈[0,1],总有f(x)≥0;②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.已知函数g(x)=x2与h(x)=2x﹣b是定义在[0,1]上的函数.(1)试问函数g(x)是否为G函数?并说明理由;(2)若函数h(x)是G函数,求实数b组成的集合.2017-2018学年湖南省长沙市长郡中学高一(上)期中数学试卷参考答案与试题解析一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)已知全集U =Z ,A ={﹣1,0,1,2},B ={x|x 2=x},则A ∩?U B 为()A .{﹣1,2}B .{﹣1,0}C .{0,1}D .{1,2}【分析】B 为二次方程的解集,首先解出,再根据交集、补集意义直接求解.【解答】解:由题设解得B ={0,1},?U B ={x ∈Z |x ≠0且x ≠1},∴A ∩?U B ={﹣1,2},故选:A .【点评】本题考查集合的基本运算,属容易题.2.(3分)已知函数f (x )的图象在R 上是连续不间断的,且f (a )f (b )>0,则下列说法正确的是()A .f (x )在区间(a ,b )上一定有零点B .f (x )在区间(a ,b )上不一定有零点C .f (x )在(a ,b )上零点的个数为奇数D .f (x )在(a ,b )上没有零点【分析】f (x )在区间(a ,b )上有可能有零点,也可能没有零点.【解答】解:∵函数f (x )的图象在R 上是连续不间断的,且f (a )f (b )>0,∴f (x )在区间(a ,b )上有可能有零点,也可能没有零点,即f (x )在区间(a ,b )上不一定有零点.故选:B .【点评】本题考查函数在给定区间上是否有零点的判断与求法,考查导数、极限、连续等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3.(3分)f (x )=,则f{f[f (﹣3)]}等于()A .0B .πC .π2D .9【分析】应从内到外逐层求解,计算时要充分考虑自变量的范围.根据不同的范围代不同的解析式.【解答】解:由题可知:∵﹣3<0,∴f(﹣3)=0,∴f[f(﹣3)]=f(0)=π>0,∴f{f[f(﹣3)]}=f(π)=π2故选:C.【点评】本题考查的是分段函数求值问题.在解答的过程当中充分体现了复合函数的思想、问题转化的思想.4.(3分)已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为()A.18B.30C.D.28【分析】根据映射的定义及条件若4和10的原象分别对应是6和9,解出a和b,然后再求解;【解答】解:∵集合A=B=R,x∈A,y∈B,f:x→y=ax+b,∴,解得,a=2,b=﹣8,∴y=2x﹣8,当x=19时,y=2×19﹣8=30,故选:B.【点评】此题主要考查映射与函数的定义及其应用,理解象与原象的定义,不要弄混淆了,此题是一道好题.5.(3分)下列各组中两个函数是同一函数的是()A.B.C.f(x)=1,g(x)=xD.【分析】要判断两个函数是否是同一个函数,需要从三个方面来分析,即定义域,对应法则和值域,观察四个选项结果有三个的定义域不同,从而得出正确选项.【解答】解:A、的定义域为R,的定义域为x≥0,两函数的定义域不同,故不是同一函数;B 、,相同的定义域,值域与对应法则,故它们是同一函数;C 、f (x )=1的定义域为R ,g (x )=x 0的定义域为x ≠0,两函数的定义域不同,故不是同一函数;D 、的定义域为x ≠﹣2;g (x )=x ﹣2的定义域为R ,两函数的定义域不同,故不是同一函数,则选项B 中的两函数表示同一函数.故选:B .【点评】本题考查判断两个函数是否是同一函数,在开始学习函数的概念时,这是经常出现的一个问题,注意要从三个方面来分析:定义域、对应法则、值域,只有三要素完全相同,才能判断两个函数是同一个函数,这是判定两个函数为同一函数的标准.6.(3分)函数f (x )=log 4x 与f (x )=4x的图象()A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x 对称【分析】先判断函数f (x )=log 4x 与f (x )=4x互为反函数,然后根据互为反函数的两个函数图象关于直线y =x 对称,从而得到结论.【解答】解:函数f (x )=log 4x 与f (x )=4x互为反函数∴函数f (x )=log 4x 与f (x )=4x的图象关于直线y =x 对称故选:D .【点评】本题考查反函数的求法,互为反函数的2个函数图象间的关系,属于基础题.7.(3分)方程lgx +x ﹣2=0一定有解的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)【分析】设f (x )=lgx +x ﹣2,根据f (1)f (2)<0,以及函数零点的判定定理可得f(x )在(1,2)内必有零点.【解答】解:设f (x )=lgx +x ﹣2,∵f (1)=﹣1<0,f (2)=lg2>0,f (1)f (2)<0,根据函数零点的判定定理可得f (x )在(1,2)内必有零点,故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题.8.(3分)方程xlog 34=1,则4x+4﹣x为()A .0B .C .3D .【分析】由已知可解得x 的值,然后代入4x+4﹣x计算可得答案.【解答】解:∵xlog 34=1,∴x =log 43.∴则4x+4﹣x==.故选:B .【点评】本题考查了对数的运算性质,是基础题.9.(3分)在同一坐标系中,函数y =ax+a 与y =a x的图象大致是()A .B .C .D .【分析】一方面,函数y =a x横过点(0,1)且在a >1时递增,在0<a <1时递减;另一方面再结合函数y =ax+a 与y 轴的交点为(0,a )作出判断.【解答】解:∵函数y =a x横过点(0,1)且在a >1时递增,在0<a <1时递减,而函数y =ax+a 与y 轴的交点为(0,a ),因此,A 中、由y =a x的图象递增得知a >1,由函数y =ax+a 与y 轴的交点(0,a )得知a <1,矛盾;C 中、由y =a x的图象递减得知0<a <1,由函数y =ax+a 与y 轴的交点(0,a )得知a>1,矛盾;D 中、由y =a x 的图象递减得知0<a <1,函数y =ax+a 递减得知a <0,矛盾;故选:B .【点评】本题考查对数函数的图象与性质,着重考查一次函数y =ax+a 与指数函数y =ax之间的对应关系,考查数形结合的分析能力,属于基础题.10.(3分)已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为()A.[﹣9,+∞)B.[0,+∞)C.(﹣9,1)D.[﹣9,1)【分析】由于函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,即有0<1﹣x≤10,解得即可得到定义域.【解答】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选:D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.11.(3分)A={x|x 2+x﹣6=0},B={x|mx+1=0}且A∪B=A,则m的取值范围()A.B.C.D.【分析】根据已知中A={x|x2+x﹣6=0},B={x|mx+1=0}且A∪B=A,我们分m=0,m ≠0两种情况进行讨论,分别求出满足条件的m的值,即可得到答案.【解答】解:∵A={x|x2+x﹣6=0}={﹣3,2},A∪B=A,则B?A若m=0,则B=?,满足要求;若m≠0,则B={x|x=﹣}则m=,或m=﹣综上m的取值范围组成的集合为故选:C.【点评】本题考查的知识点是集合关系中的参数取值问题,其中本题易忽略m=0的情况,而错选A12.(3分)某化工厂生产一种溶液,按市场需求,杂质含量不能超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少,要使产品达到市场要求,则至少应过滤的次数为(已知lg2=0.3010,lg3=0.4771)()A.6B.7C.8D.9【分析】根据题意,设至少需要过滤n次,则,进而可建立不等式,由此可得结论.【解答】解:设至少需要过滤n次,则,即,所以,即,又n∈N,所以n≥8,所以至少过滤8次才能使产品达到市场要求.故选:C.【点评】本题考查数列的应用,考查学生的阅读能力,考查学生的建模能力,属于中档题.13.(3分)若函数f(x)为定义在R上的奇函数,且在(0,+∞)为减函数,若f(2)=0,则不等式(x﹣1)f(x﹣1)>0的解集为()A.(﹣3,﹣1)B.(﹣3,1)∪(2,+∞)C.(﹣3,0)∪(1,3)D.(﹣1,1)∪(1,3)【分析】利用函数的单调性与奇偶性做出函数图象,然后按x﹣1得符号进行分类讨论.【解答】解:由做出函数的大致图象如图:(1)当x﹣1>0时,即x>1时,f(x﹣1)>0,∴0<x﹣1<2或x﹣1<﹣2,解得1<x<3.(2)当x﹣1<0时,即x<1时,f(x﹣1)<0,∴﹣2<x﹣1<0或x﹣1>2,解得﹣1<x<1.综上所述:x的取值范围是(﹣1,1)∪(1,3).故选:D.【点评】本题考查了函数的单调性与奇偶性,是基础题.14.(3分)若函数f(x)=x 2+a|x﹣2|在(0,+∞)上单调递增,则a的范围为()A.[﹣4,2]B.[﹣4,0]C.[﹣4,2)D.[﹣2,2)【分析】先通过讨论x的范围,将f(x)写出分段函数的形式,结合二次函数的性质,得到不等式组,解出即可.【解答】解:f(x)=x2+a|x﹣2|=,要使f(x)在[0,+∞)上单调递增,则:,解得﹣4≤a≤0;∴实数a的取值范围是[﹣4,0].故选:B.【点评】本题考查了二次函数的性质,考查了分段函数问题,是一道中档题.15.(3分)对于函数,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,f n+1(x)=f[f n(x)](n∈N*,且n≥2),令集合M={x|f2017(x)=﹣log2|x|},则集合M为()A.空集B.一元素集C.二元素集D.四元素集【分析】根据函数解析式,利用递推关系得到函数是周期为4的周期函数,结合函数与方程之间的关系转化两个函数图象的交点问题,利用数形结合进行求解即可.【解答】解:∵,∴f2(x)=f[f(x)]====,f3(x)=f[f2(x)]===,f4(x)===,f5(x)==f(x),…∴函数f n(x)是周期为4的周期函数,则f2017(x)=f2016+1(x)=f(x)=,由f2017(x)=﹣log2|x|得=﹣log2|x|,即﹣=log2|x|,则log2|x|=﹣=﹣1+,作出两个函数y=log2|x|和y=﹣1+的图象如图:由图象知两个图象有1个交点,即方程f2017(x)=﹣log2|x|有一个根,则集合M为一元素集,故选:B.【点评】本题主要考查函数与方程的应用,根据条件判断函数的周期性以及利用数形结合进行转化是解决本题的关键.综合性较强难度较大.二、填空题:本大题共5小题,每题3分,满分15分,把答案填写在题中的横线上16.(3分)已知幂函数的图象经过点(2,8),则它的解析式是f (x )=x3.【分析】设出幂函数,通过幂函数经过的点,即可求解幂函数的解析式.【解答】解:设幂函数为f (x )=x a,因为幂函数图象过点(2,8),所以8=2a,解得a =3,所以幂函数的解析式为f (x )=x 3.故答案为:f (x )=x 3.【点评】本题考查了幂函数的定义与应用问题,是基础题目.17.(3分)求值=.【分析】直接由有理指数幂的运算性质化简即可.【解答】解:===.故答案为:.【点评】本题考查了有理指数幂的化简求值,是基础题.18.(3分)已知函数f (x )=4x 2﹣kx ﹣8在[5,20]上具有单调性,则实数k 的取值范围为{k|k ≤40,或k ≥160}.【分析】已知函数f (x )=4x 2﹣kx ﹣8,求出其对称轴x =﹣,要求f (x )在〔5,20〕上具有单调性,只要对称轴x ≤5,或x ≥20,即可,从而求出k 的范围;【解答】解:∵函数f (x )=4x 2﹣kx ﹣8的对称轴为:x =﹣=﹣=,∵函数f (x )=4x 2﹣kx ﹣8在〔5,20〕上具有单调性,根据二次函数的性质可知对称轴x =≤5,或x =≥20∴≤5或,∴k ≤40,或k ≥160∴k ∈(﹣∞,40〕∪〔160,+∞),故答案为:{k|k≤40,或k≥160}【点评】此题主要考查二次函数的图象及其性质,利用对称轴在区间上移动得出,f(x)在(5,20)上具有单调性的条件,此题是一道基础题.19.(3分)若函数(a>0,且a≠1)在x∈[﹣1,1]上的最大值为23,则a的值为4或.【分析】由题意,设,t>0,则y=t2+2t﹣1,其图象为开口向上且对称轴为t =﹣1的抛物线,所以二次函数y=t2+2t﹣1在[﹣1,+∞)上是增函数.对a进行讨论可得答案.【解答】解:设,t>0,则y=t2+2t﹣1,其图象为开口向上且对称轴为t=﹣1的抛物线,所以二次函数y=t2+2t﹣1在[﹣1,+∞)上是增函数.①若a>1,则在[﹣1,1]上单调递减,∴,所以t=a时y取最大值,,∴a=4或a=﹣6(舍去);②若0<a<1,则在[﹣1,1]上递增,,所以时,y取得最大值,.∴,,∴或(舍去).综上可得:a=4或.故答案为:4或.【点评】本题主要考查函数最值的求解,根据指数的单调性讨论以及一元二次函数的性质是解决本题的关键.20.(3分)若函数f(x)为定义域D上的单调函数,且存在区间[a,b]?D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的“正函数”,若f(x)=x2+k是(﹣∞,0)上的正函数,则实数k的取值范围是(﹣1,﹣).【分析】根据函数f(x)=x2+k是(﹣∞,0)上的正函数,则f(a)=b,f(b)=a,建立方程组,消去b,求出a的取值范围,转化成关于a的方程a2+a+k+1=0在区间(﹣1,﹣)内有实数解进行求解.【解答】解:因为函数f(x)=x2+k是(﹣∞,0)上的正函数,所以a<b<0,所以当x∈[a,b]时,函数单调递减,则f(a)=b,f(b)=a,即a2+k=b,b2+k=a,两式相减得a2﹣b2=b﹣a,即b=﹣(a+1),代入a2+k=b得a2+a+k+1=0,由a<b<0,且b=﹣(a+1),∴a<﹣(a+1)<0,解得﹣1<a<﹣.故关于a的方程a2+a+k+1=0在区间(﹣1,﹣)内有实数解,记h(a)=a2+a+k+1,则h(﹣1)>0,h(﹣)<0,即1﹣1+k+1>0且﹣+k+1<0,解得k>﹣1且k<﹣.即﹣1<k<﹣.故答案为:(﹣1,﹣).【点评】本题考查新定义的理解和运用,考查函数的单调性的运用,考查函数方程的转化思想,考查运算能力,属于中档题和易错题.三、解答题:本大题共5小题,每小题8分,共40分.要求写出必要的文字说明、证明过程或演算步骤.)21.(8分)已知函数f(x)是定义在R上的偶函数,当x≥0时,(1)画出函数f(x)的图象;(2)根据图象写出f(x)的单调区间,并写出函数的值域.【分析】(1)由偶函数的图象关于y轴对称可知,要画出函数f(x)的图象,只须作出f (x)当x≥0时的图象,然后关于y轴对称即可;(2)观察图象,结合函数单调性和值域的定义,写出f(x)的单调区间及值域.【解答】解:(1)函数f(x)的图象如图所示(2)由图象得,f(x)的单调区间为:(﹣∞,0)上是增函数,(0,+∞)上是减函数,值域为(0,1].【点评】本题考查了偶函数的性质:图象关于y轴对称和数形结合思想,函数的图象可直观反映其性质,利用函数的图象可以解答函数的值域(最值),单调性,奇偶性等问题,也可用来解答不等式的有关题目.22.(8分)已知函数的定义域是集合A,函数g(x)=lg[x 2﹣(2a+1)x+a2+a]的定义域是集合B.(1)求集合A、B;(2)若A∩B=A,求实数a的取值范围.【分析】(1)由函数的定义域能求出集合A,由函数g(x)=lg[x2﹣(2a+1)x+a 2+a]的定义域能求出集合B.(2)由A={x|x≤﹣1或x>2},B={x|x<a或x>a+1},A∩B=A,得A?B,由此能求出实数a的取值范围.【解答】解:(1)∵函数的定义域是集合A,∴A={x|≥0}={x|x≤﹣1或x>2},∵函数g(x)=lg[x2﹣(2a+1)x+a2+a]的定义域是集合B,∴B={x|x2﹣(2a+1)x+a2+a>0}={x|x<a或x>a+1}.(2)∵A={x|x≤﹣1或x>2},B={x|x<a或x>a+1}.由A∩B=A,得A?B,∴,解得﹣1<a≤1,∴实数a的取值范围是(﹣1,1].【点评】本题考查集合的求法,考查实数的取值范围的求法,考查函数的定义域、子集等基础知识,是基础题.23.(8分)对于函数f(x)=a(a∈R).(1)判断并证明函数的单调性;(2)是否存在实数a,使函数f(x)为奇函数?证明你的结论.【分析】(1)函数f(x)为R上的增函数任取x1,x2∈R,且任意x1<x2,作差判断f(x1)﹣f(x2)的符号,进而可得答案;(2)存在实数a=1,使函数f(x)为奇函数,代入利用奇偶性的定义,可得答案.【解答】(12分)(1)函数f(x)为R上的增函数.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)证明如下:函数f(x)的定义域为R,对任意x1,x2∈R,=…(3分)因为y=2x是R上的增函数,x1<x2,所以<0,…(5分)所以f(x1)﹣f(x2)<0即f(x1)<f(x2),函数f(x)为R上的增函数.…(6分)(2)∵x∈R,若f(x)是奇函数,则f(0)=0,∴a=1.所以存在实数a=1,使函数f(x)为奇函数.…(8分)证明如下:当a=1时,=.对任意x∈R,f(﹣x)===﹣=﹣f(x),即f(x)为奇函数.…(12分)【点评】本题考查的知识点是函数的单调性,函数的奇偶性,是函数图象和性质的综合应用,难度中档.24.(8分)电信局为了配合客户不同需要,设有A、B两种优惠方案,这两种方案应付话费(元)与通话时间(分钟)之间的关系,如图所示(实线部分).(注:图中MN∥CD.)试问:(1)若通话时间为2小时,按方案A、B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B才会比方案A优惠.【分析】(1)要求通话时间为2小时,按方案A,B各付话费多少元,关键是要根据函数图象求出函数的解析式,再当通话时间代入解析式进行求解.(2)由(1)中的结论,我们不难求出方案B在500分钟后,对应函数图象的斜率,即每分钟收费的多少.(3)由图可知,方案A与方案B的图象有交点,在交点的左侧,A方案更优惠,在交点的右侧,B方案更优惠,故我们只要求出交战的横坐标,即可得到通话时间在什么范围内,方案B比方案A优惠.【解答】解:(1)由图知M(60,98),N(500,230),C(500,168),MN∥CD.设两种方案应付话费与通话时间的函数关系分别为f A(x)、f B(x),则,通话2小时两种方案的话费分别为116元、168元.(2)∵(元)∴方案B从500分钟以后,每分钟收费0.3元.(3)由图知,当0≤x≤60时,f A(x)<f B(x),当x>500时,f A(x)>f B(x),∴当60<x≤500时,由f A(x)>f B(x),得,即当通话时间在内时,方案B较A优惠.【点评】已知函数图象求函数的解析式,是一种常见的题型,关键是要知道函数的类型,利用待定系数法设出函数的解析式,然后将函数图象上的点的坐标代入求出参数的值,即可得到要求函数的解析式.25.(8分)对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数.①对任意的x∈[0,1],总有f(x)≥0;②当x1≥0,x2≥0,x1+x2≤1时,总有f(x1+x2)≥f(x1)+f(x2)成立.已知函数g(x)=x2与h(x)=2x﹣b是定义在[0,1]上的函数.(1)试问函数g(x)是否为G函数?并说明理由;(2)若函数h(x)是G函数,求实数b组成的集合.【分析】(1)根据G函数的定义,验证函数g(x)是否满足条件.即可(2)若函数h(x)是G函数根据条件结合函数的单调性进行判断求解即可.【解答】解:(1)是,理由如下:当x∈[0,1]时,总有g(x)=x2≥0,满足①,当x1≥0,x2≥0,x1+x2≤1时,g(x1+x2)=(x1+x2)2=x12+x22+2x1x2≥x12+x22=g(x1)+g(x2),满足②…(4分)(2)h(x)=2x﹣b为增函数,h(x)≥h(0)=1﹣b≥0,∴b≤1,由h(x1+x2)≥h(x1)+h(x2),﹣b+﹣b,即b≥1﹣(﹣1)(﹣1),∵x1≥0,x2≥0,x1+x2≤1,∴0≤﹣1≤1,0≤﹣1≤1,x1,x2不同时等于1∴0≤(﹣1)(﹣1)<1;∴0<1﹣(﹣1)(﹣1)≤1,当x1=x2=0时,1﹣(﹣1)(﹣1)的最大值为1;∴b≥1,则b=1,综合上述:b∈{1}…(12分)【点评】本题主要考查抽象函数的应用,根据抽象函数图象判断条件是否成立是解决本题的关键.考查学生的运算和推理能力.。

长郡中学高一数学必修一期中测试试卷

长郡中学高一数学必修一期中测试试卷

长郡湖天中学高一数学必修一期中测试试卷满分:150分 时间:120分钟 命题人:谭著名 审题人:唐青波A .[1,2)B .[1,2]C .(2,3]D .[2,3]2.下列函数与y x =有相同图象的一个是( )A 、y =B 、2x y x=C 、log (0,a x y a a =>且1)a ≠D 、log (0,x a y a a =>且1)a ≠ 3.若0a <,则函数(1)1x y a =--的图象必过点( ) A 、(0,1) B 、(0,0) C 、(0,-1) D 、(1,-1) 4.函数y=x 2-3x (x <1)的反函数是( )A .y =4923++x (x >-49)B .y =4923+-x (x >-49) C .y =4923++x (x >-2) D .y =4923+-x (x >-2) 5. 函数f (x )=⎪⎩⎪⎨⎧≤≤-+≤≤-)02(6)30(222x x x x x x 的值域是( ) A .RB .[-9,+∞)C .[-8,1]D .[-9,1]6. 设f (x )=lg(10x+1)+ax 是偶函数,g (x )=xx b24-是奇函数,那么a +b的值为( ) A . 1B .-1C .-21D .217.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:t y a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ;③ 浮萍从24m 蔓延到212m需要经过1.5个月; ④ 浮萍每个月增加的面积都相等; ⑤ 若浮萍蔓延到22m 、23m 、26m所经过的时间分别为1t 、2t 、3t ,则123t t t +=. 其中正确的是A. ①②B.①②③④C.②③④⑤D. ①②⑤ 8、函数2()log ()a f x ax x =-在[2,4]上是增函数,则实数a 的取值范围是( )1.12A a <<或1a > . B a > 1. 14C a << 1. 08D a << 9. 要得到函数(2)1y f x =-+的图象,只需将函数()y f x =的图象( ) A 、 向右平移2个单位,向下平移1个单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第Ⅰ卷(共45分)一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}0,1,2,3,4U =,集合{}1,2,3A =,{}2,4B =,则()U A B ð为( ) A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,42.下列函数中,定义域是R 且为增函数的是( ) A .x y e -=B .3y x =C .ln y x =D .||y x =3.设集合A 和B 都是坐标平面上的点集{}(,)|,x y x R y R ∈∈,映射f :A B →使集合A 中的元素(,)x y 映射成集合B 中的元素(,)x y x y +-,则在映射f 下,象(2,1)的原象是( ) A .()3,1B .31(,)22C .31(,)22-D .(1,3)4.设集合{}|02M x x =≤≤,{}|02N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有( ) A .①②B .②③C .③④D .①④5.下列各对函数中,是同一函数的是( )A .()f x =()g x =B .||()x f x x =,1,0()1,0x g x x ≥⎧=⎨-<⎩C .2()f x =212()(n g x -=(n 为正整数)D .()f x ,()g x =6.函数||x y x x=+的图象是( )7.已知函数()ln 38f x x x =+-的零点[]0,x a b ∈,且1b a -=(a ,b N +∈),则a b +=( ) A .5 B .4C .3D .28.若()f x =,则()f x 的定义域为( )A .1(,1)2B .1(,1]2C .1(,)2+∞D .(1,)+∞9.若函数()y f x =是函数3xy =的反函数,则1()2f 的值为( )A .3log 2-B .2log 3-C .19D10.已知幂函数()f x x α=的图象经过点(2,2,则(4)f 的值等于( ) A .16B .116 C .2D .1211.函数()2log (1)3x a f x x =+++恒过定点为( ) A .()0,4B .()0,1C .7(1,)2-D .(1,4)-12.已知0.6log 0.5a =,ln 0.5b =,0.50.6c =,则( ) A .a b c >> B .c a b >> C .a c b >> D .c b a >>13.已知函数2(1)(0)()(3)2(0)a x a x f x a x x -+<⎧=⎨-+≥⎩在(,)-∞+∞上是减函数,则实数a 的取值范围为( ) A .()2,3B .()1,3C .[2,3)D .[]1,314.若函数22()log (3)f x x ax a =--在区间(,2]-∞-上是减函数,则实数a 的取值范围是( )A .(,4)-∞B .(4,4]-C .(,4)[2,)-∞-+∞D .[4,4)-15.已知函数1()1f x x=-(0x >),若存在实数a ,b (a b <),使()y f x =的定义域为(),a b 时,值域为(,)ma mb ,则实数m 的取值范围是( ) A .14m <B .104m <<C .14m <且0m ≠ D .14m > 第Ⅱ卷(共55分)二、填空题(每题3分,满分15分,将答案填在答题纸上)16.计算21log 32.51log 6.25lgln 2100+++= . 17.设2()2f x ax bx =++ 是定义在[]1,2a +上的偶函数,则()f x 的值域是 . 18.一次函数()f x 是减函数,且满足[]()41f f x x =-,则()f x = .19.某公司为激励创新,计算逐年加大研发奖金投入,若该公司2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是 年(参考数据:lg1.120.05=,lg1.30.11=,lg 20.30=).20.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程()(1,2,3,4)i f x i =关于时间x (0)x ≥的函数关系式分别为1()21x f x =-,32()f x x =,3()f x x =,42()log (1)f x x =+,有以下结论:①当1x >时,甲走在最前面; ②当1x >时,乙走在最前面;③当01x <<时,丁走在最前面,当1x >时,丁走在最后面; ④丙不可能走在最前面,也不可能走在最后面; ⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为 (把正确结论的序号都填上,多填或少填均不得分) 三、解答题 (本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.)21.设a R ∈,集合A R =,{}2|(2)2(2)30B x R a x a x =∈-+--<.(1)若3a =,求集合B (用区间表示); (2)若A B =,求实数a 的取值范围.22.已知函数22()3px f x q x+=-是奇函数,且5(2)3f =-.(1)求函数()f x 的解析式;(2)判断函数()f x 在(0,1)上的单调性,并用单调性定义证明. 23.已知函数()2x f x =,||1()22x g x =+. (1)求函数()g x 的值域;(2)求满足方程()()0f x g x -=的x 的值.24.物理学家和数学家牛顿曾提出了物体在常温环境下温度变化的冷却模型,如果物体的初始温度为1C θ︒,空气温度为0C θ︒,则min t 后物体的温度()f t 满足:010()()kt f t e θθθ-=+-⨯(其中k 为正的常数, 2.71828e =…为自然对数的底数),现有65C ︒的物体,放在15C ︒的空气中冷却,5min 以后物体的温度是45C ︒. (1)求k 的值;(2)求从开始冷却,经过多少时间物体的温度是25.8C ︒? 25.已知函数()|1|2f x x x x =-+.(1)当3a =时,求方程()f x m =的解的个数; (2)若()f x 在(4,2)-上单调递增,求a 的取值范围.长郡中学2016-2017学年度高一第一学期期中考试数学答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案CBBBCDAAADACCDB二、填空题 16.13217.[]10,2- 18.21x -+ 19.2020 20.③④⑤ 三、解答题21.解:(1)3a =时,2230x x +-<,解得31x -<<,∴集合()3,1B =-. (2)当A B R ==时,(i )当20a -=,即2a =时,30-<符合题意; (ii )当20a -≠,则有220,4(2)12(2)0,a a a -<⎧⎨∆=-+-<⎩解得12a -<<.综上,a 的取值范围为(1,2]-. 22.解:(1)∵()f x 是奇函数,∴对定义域内的任意的x ,都有()()f x f x -=-,解得2p =,∴所求的解析式为222()3x f x x+=-.(2)由(1)可得22221()()33x f x x x x+==-+-, 设1201x x <<<,则由于122121211()()()()3f x f x x x x x ⎡⎤-=+-+⎢⎥⎣⎦2121211()()3x x x x ⎡⎤=-+-⎢⎥⎣⎦1221122()3x x x x x x ⎡⎤-=-+⎢⎥⎣⎦121221()(1)3x x x x =--12121212()3x x x x x x -=-⋅, 因此,当1201x x <<<时,1201x x <<, 从而得到12()()0f x f x -<,即12()()f x f x <, ∴(0,1)是()f x 的递增区间. 23.解:(1)||||11()2()222x x g x =+=+, 因为||0x ≥, 所以||10()12x <≤,即2()3g x <≤,故()g x 的值域是(2,3]. (2)由()()0f x g x -=, 得||12202xx --=, 当0x ≤时,显然不满足方程, 即只有0x >时满足12202xx --=, 整理得2(2)2210x x-⋅-=,2(21)2x -=,故21x =因为20x>,所以21x =即2log (1x =.24.解:(1)由题意可知,1=65θ,015θ=,当5t =时,45θ=,于是535ke-=, 化简得35ln 5k -=,即15ln 53k =.(2)由(1)可知()1550kt f t e -=+(其中15ln 53k =), ∴由25.81550kte-=+,得27125kte-=, 结合15ln 53k =,得5327()5125t=,得15t =.∴从开始冷却,经过15min 物体的温度是25.8C ︒.25.解:(1)当3a =时,22,3,()5, 3.x x x f x x x x ⎧-≥⎪=⎨-<⎪⎩ 当6m =或254时,方程有两个解; 当6m <或254m >时,方程一个解;当2564m <<时,方程有三个解.(2)22(2),,()(2),.x a x x a f x x a x x a ⎧+-≥⎪=⎨-++<⎪⎩①22a a -≤且22a a +≥,即22a -≤≤,()f x 在R 单调递增,满足题意; ②22a a ->且22a a +≥,即2a <-, ()f x 在(,)a -∞和2(,)2a -+∞上单调递增, ∵()f x 在(4,2)-上单调递增,∴2a ≥或242a -≤-, ∴6a ≤-;③22a a ->且22a a +<,即2a <-且2a >,舍去; ④22a a -≤且22a a +<,即2a >, ()f x 在2(,)2a +-∞和(,)a +∞上单调递增, 因为()f x 在(4,2)-上单调递增,所以222a +≥或4a ≤-, 所以2a >.综上,6a ≤-或2a ≥-.。

相关文档
最新文档