第2章 插值法2

合集下载

2. 第二章_数值插值方法

2. 第二章_数值插值方法

显然 L(x)=l0(x)y0+l1(x)y1+l2(x)y2 满足条件 L2(xj)=yj (j=0,1,2) 将l0(x), l1(x), l2(x)代入得
( x x0 )( x x 2 ) ( x x1 )( x x 2 ) L2 ( x ) y0 y1 ( x0 x1 )( x0 x 2 ) ( x1 x0 )( x1 x 2 ) ( x x0 )( x x1 ) y2 ( x 2 x0 )( x 2 x1 )
( 7 2.6458 )
二、Lagrange插值多项式
设有n+1个互异节点x0 <x1<…<xn,且 yi=f(xi) (i=0,1,2…,n) 构造Ln (x),使 Ln (xj)= yj (j = 0,1,2,…,n)
定义 若n次多项式lj(x) (j = 0,1,…,n)在n+1个节 点x0 <x1<…<xn上满足条件
求出a0,a1,a2,即可得到5、6月份的日照时 间的变化规律。
定义 已知函数y=f(x)在[a,b]有定义,且已知它在 n+1个互异节点 a ≤ x0 <x1<…<xn≤b
上的函数值
y0=f(x0),y1=f(x1) ,…,yn=f(xn),
若存在一个次数不超过n次的多项式
Pn (x)=a0 + a1x + a2x2 + ……+ anxn Pn (xk)= yk (k = 0,1,…,n) 满足条件 则称Pn (x)为f(x)的n次插值多项式。
三、插值余项与误差估计
定义 若在[a,b]上用Ln (x)近似f(x),则其截断误 差 Rn (x)=f(x)- Ln (x) 称插值多项式的余项。 定理 设 f(x)在[a,b]上具有n阶连续导数, 且 f (n+1)(x) 存在,节点a ≤ x0 <x1<…<xn≤b, Ln (x)是满足条件Ln (xj)= yj (j = 0,1,2,…,n)的插 值多项式,则对任何x[a,b],插值余项

第2章1-4节 插 值 法

第2章1-4节 插 值 法

12
图2-3
13
2.
n次插值多项式
根据插值的定义
Ln ( x j ) y j
Ln (x) 应满足
( j 0,1, , n).
为构造 L
n
( x),
先定义 n 次插值基函数.
14
定义1 若
n 次多项式 L j ( x) ( j 0,1, , n) 在 n 1 个节点
x0 x1 xn
b, Ln ( x)
( n1)
定理2 设 f
(n)
( x)
( x ) 在 ( a, b) 内
存在,节点 a x0 x1 xn
是满足条件
的插值多项式,则对任何 x [a, b] ,插值余项
Rn ( x) f ( x) Ln ( x) f
( n 1
( )
(n 1)!
11
显然,lk (x) 及 lk 1 ( x) 也是线性插值多项式,在节点 xk 及 上满足条件
lk ( xk ) 1, lk 1 ( xk ) 0, lk ( xk 1 ) 0, lk 1 ( xk 1 ) 1,
xk 1

lk (x) 及 lk 1 ( x) 为线性插值基函数, 图形见图2-3.
( xk 1 , yk 1 )
的直线. 如图2-2.
图2-2
10

L1 ( x)
的几何意义可得到表达式
yk 1 y k xk 1 xk ( x xk )
L1 ( x ) yk
(点斜式), (两点式),
L1 ( x )
xk 1 x xk 1 xk
yk
x xk xk 1 xk

第2章_插值法

第2章_插值法
56
13.214 285 71

175 13.228756555322952...
考虑通过 + 1个节点0 < 1 < ⋯ < 的次插值
多项式 (),满足条件
= ,
= 0,1, … ,
希望找到 li(x),i = 0, …, n, 使得
= ; = ,
n次插值多项式, 插值节点为{ xi }in 0 [ a , b],则x [ a , b],有
f ( n 1) ( )
Rn (x )
n 1 ( x)
Lagrange型余项
(n 1)!
n
其中 n 1 ( x ) ( x xi ) , ( a , b) , 且依赖于 x.
满足条件P(xi) = f(xi) (i = 0, … n)。 P(x) 称
为f(x) 的插值函数。
P(x) f(x)
x0
x1
x2
x
x3
x4
定理1:设插值节点 ≠ ( ≠ ),则满足条件
= , = 0,1, … , 的插值多项式
= 0 + 1 + ⋯ +
− , , + 线性无关。
二次插值多项式
= − − + + + + ()
满足 = ( = − , , + )
例1:
已知 f ( x )满足 f (144) 12 , f (169) 13, f ( 225) 15
i 0
一次及二次差值余项
1 ′′
1 = − 0 − 1 ,

第2章插值法二

第2章插值法二
《数值分析》 黄龙主讲
2.6 Hermite插值(埃尔米特插值)
1. 问题:实际问题中,要求插值多项式在节点上,
函数值相等,并且导数值也相等。
(这里只讨论函数值与导数值相等的情形)
描述:设 y f x ,在节点 a x0 x1 xn b 上有:
yj f xj , mj f xj j 0,1,,n
H3 x ykk x yk1 k1 x mk k x mk1 k1 x
9
Wednesday, January 15, 2020
《数值分析》 黄龙主讲
基函数取值表:
xk xk1 xk xk1
k x 1 0 0 0 k x k1x 0 1 0 0 k1x k x 0 0 1 0 k x k1x 0 0 0 1 k1x
《数值分析》 黄龙主讲
基函数为:
k
x

1
2
x xk xk1 xk

x xk1 xk xk1
2
k1
x

1
2
x xk1 xk xk1

x xk xk1 xk
2
2
因此: x 0 , H 2n1 xk H 2n1 xk
8
Wednesday, January 15, 2020
《数值分析》 黄龙主讲
4. 插值余项(与证明 Lagrange 插值余项类似)
Rx
f x H2n1x
f 2n2 2n 2
k
x

x

xk

x xk1 xk xk1

k1 x

计算方法(2)-插值法

计算方法(2)-插值法



2
2
yk1 2

f (xk

h
2
),
y
k

1 2

f (xk

h) 2
21
3.牛顿向后插值公式
Nn (xn

th)

yn

tyn

t(t 1) 2!
2
yn



t(t

1)


(t n!

n

1)

n
yn
(t 0)
插值余项
Rn
(xn

th)

t(t
1) (t (n 1)!
Nn (x0

th)

y0

ty0

t(t 1) 2!
2
y0Leabharlann 插值余项t(t

1)


(t n!

n

1)
n
y0
Rn (x0

th)

t(t
1) (t (n 1)!
n)
h n1
f
(n1) ( ),
(x0 , xn )
20
二.向后差分与牛顿向后插值公式
杂.

根据f(x)函数表或复杂的解析表达式构
造某个简单函数P(x)作为f(x)的近似.
2
2.问题的提法
1)已知条件 设函数y f (x)在区间[a,b]上
连 续, 且 在n 1个不 同点a x0 , x1, , xn b 上 分 别 取 值y0 , y1, , yn

第二章插值法多项式插值的存在性

第二章插值法多项式插值的存在性

第二章 插值法⏹ 多项式插值的存在性 ⏹ Lagrange 插值 ⏹ Newton 插值 ⏹ Hermit 插值 ⏹ 分段低次插值 ⏹ 三次样条插值在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的。

虽然其函数关系)(x f y =在某个区间[]b a ,是客观存在的,但是却不知道具体的解析表达式,只能通过观察、测量或实验得到函数在区间a ,b]上一些离散点上的函数值、导数值等,因此,希望对这样的函数用一个比较简单的函数表达式来近似地给出整体上的描述。

还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。

插值法就是寻求近似函数的方法之一.在用插值法寻求近似函数的过程中,根据所讨论问题的特点,对简单函数的类型可有不同的选取,如多项式、有理式、三角函数等,其中多项式结构简单,并有良好的性质,便于数值计算和理论分析,因此被广泛采用。

本章主要介绍多项式插值、分段多项式插值和样条插值. 2.1 插值多项式的存在唯一性 2.1.1 插值问题设函数)(x f y =在区间],[b a 上有定义,且已知函数在区间],[b a 上n+1个互异点n x x x ,,,10 处的函数值)(i i x f y = i=0,1,…,n ,若存在一个简单函数)(x p y =,使其经过)(x f y =上的这n+1个已知点),(,),,(),,(1100n n y x y x y x (图5-1),即n i y x p i i ,,1,0 ,)( == (2.1.1)那么,函数)(x p 称为插值函数,点n x x x ,,,10 称为插值节点,],[b a 称为插值区间,求)(x p 的方法称为插值法,)(x f 称为被插函数。

若)(x p 是次数不超过n 的多项式,记为)(x p n ,即n n n x a x a a x p +++= 10)(则称)(x p n 为n 次插值多项式,相应的插值法称为多项式插值;若)(x p 为分段多项式,称为分段插值,多项式插值和分段插值称为代数插值。

数值方法第二章 插值法2

数值方法第二章 插值法2

当选择代数多项式作为插值函数类时,称为代数多项 式插值问题:
代数多项式插值问题:
设函数y=f(x)在[a,b]有定义, 且已知在n+1个点 a≤x0<x1<……<xn≤b上的函数值y0, y1,……,yn.,要求一 个次数不高于n的多项式
Pn ( x) a0 a1 x a2 x 2 an x n
现设 x x j 由 Rn ( x j ) f ( x j ) Pn ( x j ) 0
故知 Rn (x) 可表示为
(j=0,1,…,n),
Rn ( x) k ( x)n1 ( x) k ( x)( x x0 )( x xn )
关键是求 k ( x) ?
(2.2.10)
grange插值多项式
现在考虑一般的插值问题:
满足插值条件 Ln ( xk )
y
பைடு நூலகம்
k
(k 0,1,2,,n) (2.2.1)
的次数不超过n的多项式显然为 : Ln ( x) l0 ( x) y0 l1 ( x) y1 ln ( x) yn
这是因为 (1) Ln ( xk ) lk ( xk ) yk yk (k 0,1,2,,n) (2)次数不超过n
3
1 f ( ) ( x) 2
3
1 2 R1 ( x) ( x x0 )(x x1 ) 8 3 1 2 R1 (115) (115 100)(115 121 ) 8 3 1 (115 100)(115 121 max 2 ) 100 ,121 8
其中,Ak为待定系数,由条件 lk ( xk ) 1 可得
1 Ak ( xk x0 ) ( xk xk 1 )( xk xk 1 ) ( xk xn )

计算方法插值法(均差与牛顿插值公式)

计算方法插值法(均差与牛顿插值公式)

为f ( x)关于节点 x0 , xk 一阶均差 (差商)
2018/11/7
5
2018/11/7
6
二、均差具有如下性质:
f [ x0 , x1 ,, xk 1 , xk ]

j 0
k
f (x j ) ( x j x0 )( x j x j 1 )(x j x j 1 )( x j xk )
2018/11/7
27
fk fk 1 fk 为f ( x)在 xk 处的二阶向前差分
2
依此类推
m f k m1 f k 1 m1 f k
为f ( x)在 xk 处的m阶向前差分
2018/11/7
28
差分表
xk f k 一阶差分 x0 f 0 x1 f 1 二阶差分 三阶差分 四阶差分
2018/11/7
31
等距节点插值公式
一、牛顿前插公式
2018/11/7
32
2018/11/7
33
二、牛顿插值公式与拉格朗日插值相比
牛顿插值法的优点是计算较简单,尤其是增加 节点时,计算只要增加一项,这是拉格朗日插值 无法比的. 但是牛顿插值仍然没有改变拉格朗日插值的 插值曲线在节点处有尖点,不光滑,插值多 项式在节点处不可导等缺点.
2018/11/7
25
2018/11/7
26
§
2.3.4 差分及其性质
一、差分
fk , 定义3. 设f ( x)在等距节点xk x0 kh 处的函数值为 k 0 ,1, , n , 称
f k f k 1 f k
k 0,1,, n 1
为f ( x)在 xk 处的一阶向前差分

第2章-插值法(Hermite插值,样条插值)

第2章-插值法(Hermite插值,样条插值)
§
2.5 埃尔米特插值法
Newton插值和Lagrange插值虽然构造比较简单,但都存 在插值曲线在节点处有尖点,不光滑,插值多项式在节 点处不可导等缺点
问题的提出: 不少实际问题不但要求在节点上函数值相等,而且还要 求它的导数值也相等(即要求在节点上具有一阶光滑度), 甚至要求高阶导数也相等,满足这种要求的插值多项式就是 埃尔米特(Hermite)插值多项式。下面只讨论函数值与导数 值个数相等的情况。
由 j ( x j ) 1 ,可得
Cj
1 ( x j x0 ) 2 ( x j x1 ) 2 ( x j x j 1 ) 2 ( x j x j 1 ) 2 ( x j xn ) 2

j ( x) ( x x j )
( x x0 ) 2 ( x x1 ) 2 ( x x j 1 ) 2 ( x x j 1 ) 2 ( x xn ) 2 ( x j x0 ) 2 ( x j x1 ) 2 ( x j x j 1 ) 2 ( x j x j 1 ) 2 ( x j xn ) 2
( x x j )l j 2 ( x)
2016/8/14 6
(ii)由条件(1)可知,x0 , x1,, x j 1, x j 1,, xn都是 j ( x)的二重根,令
j ( x) C j (ax b)( x x0 ) 2 ( x x1 ) 2 ( x x j 1 ) 2 ( x x j 1 ) 2 ( x xn ) 2
17

x x1 x x0 2 0 ( x) (1 2l1 ( x)) l0 ( x) 1 2 x x x0 x1 1 0

数值分析 第2章 插值法

数值分析 第2章 插值法
代入抛物插值公式得:
115 (115 121)(115 144) 10 (100 121)(100 144)
(115 100)(115 144) 11 (121 100)(121 144) (115 100)(115 121) 12 10.7228 (144 100)(144 121)
几何意义:y=p1(x)表示通过三点(x0,y0), (x1,y1) , (x2,y2)的抛物线,因此,二次插值 又称抛物插值。
p2(x)的解?
先解决一个特殊的二次插值问题
特殊的二次插值问题
求作二次式l0(x),使满足条件 l0(x0)=1 , l0(x1)= l0(x2)=0
由l0(x1)= l0(x2)=0 可知:x1,x2是l0(x)的两个零点,因而有:
4x x
带入x0=100, 得
f
(x 0)
10,f
(x 0 )

1 ,f
20
(x 0 )


1 4000
p1(x ) f (x 0 ) f (x 0 )(x x 0 ) 5 0.05x
p2(x )

p1(x )
f
(x 0 ) (x
2!
x 0)2
计算 115的近似值 (精确值10.723805…)
2!

x0)
10.75 0.028125 10.721875
练习:求作f(x)=sin x在节点x0=0的5次泰勒多项式,并估计插 值误差。
解:f (x ) cos x ,f (x ) sin x ,f (3)(x ) cos x , f (4)(x ) sin x ,f (5)(x ) cos x

第二章三次样条插值

第二章三次样条插值
hk hk 1
mk 1 2mk
hk 1 hk hk 1
k 1
3( hk yk1 yk hk1 yk yk1 )
hk hk 1
hk
hk hk 1
hk 1
k mk1 2mk k mk 1 gk
k
hk
hk hk 1
k
hk 1 hk hk 1
gk
3(k
yk yk 1 hk 1
k 0,1,2
小结
1 x3 3 x2 7 x 1
8 8 4
1 x2
S(x)
1 8
x3
3 8
x2
7 4
x
1
3 x3 45 x2 103 x 33
88
4
2x4 4x5
f (3) S(3) 17 4
最后,介绍一个有用的结果
定理 . 设f (x)C2[a,b],S(x)是以xk (k 0,1,,n)
m2 m3
g0 g1 g2
g3
解方程组得:m0
17 8
, m1
Байду номын сангаас
7 4
, m2
5 4
, m3
19 8
将上述结果代入(10)式
S0 ( x)
1 8
x3
3 8
x2
7 4
x
1
S1 ( x)
1 8
x3
3 8
x2
7 4
x
1
1 x 2 2x4
S2(x)
3 8
x3
45 8
x2
103 4
x
33
4x5
注:三次样条与分段 Hermite 插值的根本区别在于S(x)自 身光滑,不需要知道 f 的导数值(除了在2个端点可能需 要);而Hermite插值依赖于f 在所有插值点的导数值。

数值分析--第2章 插值法

数值分析--第2章 插值法

数值分析--第2章插值法第2章 插值法在科学研究与工程技术中,常常遇到这样的问题:由实验或测量得到一批离散样点,要求作出一条通过这些点的光滑曲线,以便满足设计要求或进行加工。

反映在数学上,即已知函数在一些点上的值,寻求它的分析表达式。

此外,一些函数虽有表达式,但因式子复杂,不易计算其值和进行理论分析,也需要构造一个简单函数来近似它。

解决这种问题的方法有两类:一类是给出函数)(x f 的一些样点,选定一个便于计算的函数)(x ϕ形式,如多项式、分式线性函数及三角多项式等,要求它通过已知样点,由此确定函数)(x ϕ作为)(x f 的近似,这就是插值法;另一类方法在选定近似函数的形式后,不要求近似函数过已知样点,只要求在某种意义下在这些样点上的总偏差最小。

这类方法称为曲线(数据)拟合法。

设已知函数f 在区间],[b a 上的1+n 个相异点ix 处的函数值(),0,,iif f x i n ==,要求构造一个简单函数()x ϕ作为函数()f x 的近似表达式()()f x x ϕ≈,使得()(),0,1,,iiix f x f i n ϕ=== (2-1) 这类问题称为插值问题。

称f 为被插值函数;()x ϕ为插值函数;nx x ,,0 为插值节点;(2-1)为插值条件。

若插值函数类{()}x ϕ是代数多项式,则相应的插值问题为代数插值。

若{()}x ϕ是三角多项式,则相应的插值问题称为三角插值。

若{()}x ϕ是有理分式,则相应的插值问题称为有理插值。

§1 Lagrange 插值1.1 Lagrange 插值多项式设函数f 在1+n 个相异点01,,,nx x x 上的值n i x f f ii ,,1,0),( ==是已知的,在次数不超过n 的多项式集合n P 中,求()nL x 使得(),0,1,,n i iL x f n n == (2-2) 定理2.1 存在惟一的多项式nn P L ∈满足插值条件(2-2)。

第二章:插值法

第二章:插值法
(2.1)
满足(2.1)式的 l i(x) 是否存在?若存在,具有什么形式呢?
先考虑 l0(x)。因 l0(x)是以 x1, x2 为零点的二次多项式,
所以它可写成 l0(x)= 0(x -x1)(x -x2), 其中0 是待定系 数。 又因为 l0( x0)=1,所以0(x0-x1)(x0-x2)=1,则可有
n
| x - xi |
i=0
作为误差估计上限。
当 f(x) 为任一个次数 n 的多项式时, f (n1)( x) 0,
可知 Rn ( x) 0 ,即插值多项式对于次数 n 的多项式 是精确的。
例1 求经过A(0,1),B(1,2),C(2,3)三个插值点的插值多项式. 解:三个插值节点及对应的函数值为
-
3
);
1 2
cos x
3 2
0.00044
R2
5
18
0.00077
sin 50 = 0.7660444…
2次插值的实际误差 0.00061
高次插值通常优于 低次插值
但绝对不是次数越 高就越好,嘿 嘿……
例3 考虑下述的插值法问题:求二次多项式P(x),满足 P(x0) = y0, P(x1) = y1,P(x2 ) = y2, 其中 x0 x2,y0、y1、y2 是已给的数据并给出使这一问题的解存在且唯一的条件.
x0 )(x -
x1 ),
[ x0 , x1 ]
当n = 2时 , 抛 物 插 值 的 余 项 为
R2 ( x) =
1 6
f ( )( x -
x0 )(x -
x1 )(x -
x2 ),
[x0 , x2 ]
注: 通常不能确定 x , 而是估计 f (n1)( x) Mn1 , x(a,b)

数值分析课件-第02章插值法

数值分析课件-第02章插值法
数值分析课件-第02章插值法
目录
• 插值法基本概念与原理 • 拉格朗日插值法 • 牛顿插值法 • 分段插值法 • 样条插值法 • 多元函数插值法简介
01 插值法基本概念与原理
插值法定义及作用
插值法定义
插值法是一种数学方法,用于通过已知的一系列数据点,构造一个新的函数, 使得该函数在已知点上取值与给定数据点相符,并可以用来估计未知点的函数 值。
06 多元函数插值法简介
二元函数插值基本概念和方法
插值定义
通过已知离散数据点构造一个连 续函数,使得该函数在已知点处
取值与给定数据相符。
插值方法分类
根据构造插值函数的方式不同, 可分为多项式插值、分段插值、
样条插值等。
二元函数插值
针对二元函数,在平面上给定一 组离散点,构造一个二元函数通 过这些点,并满足一定的光滑性
差商性质分析
分析差商的性质,如差商 的对称性、差商的差分表 示等,以便更好地理解和 应用差商。
差商与导数关系
探讨差商与原函数导数之 间的关系,以及如何利用 差商近似计算导数。
牛顿插值法优缺点比较
构造简单
牛顿插值多项式构造过程相对简 单,易于理解和实现。
差商可重用
对于新增的插值节点,只需计算 新增节点处的差商,原有差商可 重用,节省了计算量。
要求。
多元函数插值方法举例
多项式插值
分段插值
样条插值
利用多项式作为插值函数,通 过已知点构造多项式,使得多 项式在已知点处取值与给定数 据相符。该方法简单直观,但 高阶多项式可能导致Runge现 象。
将整个定义域划分为若干个子 区间,在每个子区间上分别构 造插值函数。该方法可以避免 高阶多项式插值的Runge现象 ,但可能导致分段点处的不连 续性。

数值分析 第 版 插值法

数值分析 第 版 插值法

其中K(x)是待定函数。
对于任意固定的x[a,b], xxk ,构造自变量t 的辅助
函数
( t ) f ( t ) L n ( t ) K ( x ) n 1 ( t )
19
( t ) f ( t ) L n ( t ) K ( x ) n 1 ( t )
由式 n+1(xk)=0 和式 Ln(xk)=yk( k=0,1,…,n ),以及 R n ( x ) f ( x ) L n ( x ) K ( x ) n 1 ( x )
称为f (x)在x0 , x1 , …, xn点的 n 阶差商。 差商的计算步骤与结果可列成差商表,如下
26
xk 函数值
x0 f (x0)
x1 f (x1)
x2 f (x2)
x3 ...
f (x3) ...
一阶差商
表5-1
二阶差商
f [ x0 , x1] f [ x1 , x2] f [ x2 , x3]
此方程组有n+1个方程, n+1个未知数, 其系数行列式
是范德蒙行列式,即:
1 x0 x02 x0n
1 x1 x12 x1n (xj xi )
ji
1 xn xn2 xnn
4
1 x0 x02 x0n
1 x1 x12 x1n (xj xi )
ji 1 xn xn2 xnn
由于插值节点 xi 互不相同, 所有因子 xj-xi 0, 所以上 述行列式不等于零,故由克莱姆法则知方程组 (2-3) 的 解存在唯一. 即满足条件式 (2-1)的次数不超过n的多项 式(2-2) 存在且唯一。证毕。
定理1 设f (x)在区间[a ,b]上存在n+1 阶导数,

数值分析第2章插值法

数值分析第2章插值法

数值分析第2章插值法插值法是数值分析中常用的一种数值逼近方法,用于在给定一组有限数据点的情况下,通过构造合适的数学模型来估计这些数据点之间的未知数值。

插值法的应用广泛,包括图像处理、计算机辅助设计、数值计算等领域。

常见的插值方法有拉格朗日插值、牛顿插值、埃尔米特插值以及样条插值等。

这些方法都是基于多项式的插值形式,通过构造一个多项式函数来逼近数据点,并据此对未知点进行估计。

拉格朗日插值是一种基于拉格朗日多项式的插值方法。

对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值构造了一个n次多项式Ln(x),满足:Ln(x) = y0L0(x) + y1L1(x) + ... + ynLn(x)其中,L0(x),L1(x),...,Ln(x)是拉格朗日基函数,定义为:Lk(x) = ∏(i≠k)(x - xi)/(xk - xi) (k = 0, 1, ..., n)拉格朗日插值方法的优点是简单易用,但随着数据点数量的增加,拉格朗日多项式的计算复杂度也会大大增加。

牛顿插值是另一种基于多项式的插值方法,它使用差商的概念来构造插值多项式。

对于给定的n+1个不同的数据点 (x0, y0), (x1, y1), ..., (xn, yn),牛顿插值构造了一个n次多项式Nn(x),满足:Nn(x) = y0 + c0(x - x0) + c1(x - x0)(x - x1) + ... + cn(x -x0)(x - x1)...(x - xn-1)其中,c0 = Δy0/(x0 - x1),ci = Δyi/(xi - xi+1) (i = 0, 1, ..., n-1),Δyi = yi+1 - yi。

牛顿插值方法相比于拉格朗日插值方法,在计算多项式时具有更高的效率,尤其是在需要更新数据点时。

此外,牛顿插值方法还可以通过迭代的方式得到更高次数的插值多项式。

第2章 插值法

第2章 插值法
上页 下页
数值分析
第14页
二次插值基函数lk-1(x), lk(x), lk+1(x)在区间[xk-1, xk+1] 上的图形见下图.
y
y
lk ( x )
y
l k 1 ( x )
lk 1 ( x )
x
O x k 1x k
xk 1
x
O x k 1 xk
x k 1 O x k 1
x
xk xk 1
利用二次插值基函数lk-1(x), lk(x), lk+1(x),立即 得到二次插值多项式
L2 ( x ) yk 1 lk 1 ( x ) yk lk ( x ) yk 1 lk 1 ( x ).
上页 下页
(2.5)
数值分析
第15页
L2 ( x ) yk 1 lk 1 ( x ) yk lk ( x ) yk 1 lk 1 ( x ).
lk ( xk ) 1, lk ( xk 1 ) 0;
上页
L1 ( x ) yk lk ( x ) yk 1 lk 1 ( x ).
lk 1 ( xk ) 0, lk 1 ( xk 1 ) 1.
下页
数值分析
第11页
称lk(x)及lk+1(x)为线性插值基函数,它们的图形为 y y 1

Ln(xj)=yj, j=0,1, …,n. (2.6)
为了构造Ln(x),我们先定义n次插值基函数.
上页 下页
数值分析
第17页
定义1 若n次多项式lj(x) (j=0,1,…,n)在n +1个 节点x0<x1<…<xn上满足条件
1, k j l j ( xk ) ( j , k 0,1, , n) 0 , k j

第2章 拉格朗日插值

第2章 拉格朗日插值
i0
n
li(x) 每个 li 有 n 个根 x0 … xi … xn f 无关, 与 有关,而与 节点 l ( x) C ( x x )...(x x )...(x - x ) C
i i 0 i n
i
称为n次插值基函数。 1 li ( xi ) 1 Ci j i ( xi xj )
注:若不将多项式次数限制为 n ,则插值多项式不唯一。 例如 P ( x ) Ln ( x ) p( x ) ( x - xi ) 也是一个插值
i 0 n
多项式,其中 p( x )可以是任意多项式。
2.2 插值余项及误差估计
插值余项 /* Remainder */
设节点 a x0 x1 xn b ,且 f 满足条件 f C [a, b] , f ( n1)在[a , b]内存在, 考察截断误差 R ( x) f ( x) - L ( x) n n
插值法
§2.拉格朗日插值
2.1 拉格朗日插值
2.2 插值余项及误差估计
2.1 拉格朗日插值
n 求 n 次多项式 Ln ( x) a0 a1x an x 使得 Ln ( x i ) y i , i 0 , ... , n xi x j 条件:无重合节点,即 i j
n=1
f ( n 1) ( x ) M n 1, x(a,b)
当 f(x) 为任一个次数 n 的多项式时, f
( n1)
( x) 0 ,
可知 Rn ( x ) 0 ,即插值多项式对于次数 n 的多项 式是精确的。
Quiz: 给定 xi = i +1, i = 0, 1, 2, 3, 4, 5. 下面哪个是 l2(x)的图像?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又: hi’(xi) = 1 Ci = 1 设 a = x0 < x1 < ... < xn = b,
2n


hi(x) = ( x xi ) li2(x)
2
f ( 2 n+ 2 ) (ξ x ) n f ∈C [a, b] 则 Rn ( x ) = ( x x i ) ( 2n + 2)! ∏ i =0
…, (mi) (xi) = f (mi) (xi).
注:
N 个条件可以确定 N 1 阶多项式。 阶多项式。 要求在1个节点 x0 处直到 0 阶导数都重合的插 要求在 个节点 处直到m 值多项式即为Taylor多项式 值多项式即为 多项式
f ( m0 ) ( x0 ) ( x x0 )m0 ( x) = f ( x0 ) + f ′( x0 )( x x0 ) + ... + m0 ! f ( m +1 ) (ξ ) ( x x 0 )( m +1 ) 其余项为 R( x ) = f ( x ) ( x ) =
Nn( x) = f ( xn ) + f [xn , xn1](x xn ) + ...+ f [xn , ..., x0 ](x xn )...(x x1 )
设 x = x n + t h ,则 N n ( x ) = N n ( xn + t h) = Σ (1)k
k =0
n
t k
k f ( xn )
知识回顾: 知识回顾:
1. Lagrange插值 插值 思想: 根据线性(一次)插值多项式L 思想 根据线性(一次)插值多项式 1(x)的形式 的形式 推广到一般形式的n次插值多项式 推广到一般形式的 次插值多项式 Ln
Ln ( x) = ∑li ( x) yi
i =0 n
(x xj ) li ( x) = ∏ ( xi x j ) j ≠i
i =0


h1(x) 有根 x0, x2 h1 ( x ) = ( Ax + B )( x x0 )( x x2 ) (x) 有根 x0, x1, x2 h1
∧ ∧
与 Lagrange 分析 ’(x1) = 0 可解 可解。 由余下条件 h1(x1) = 1 和 h1完全类似 。

h1( x ) = C 1 ( x x 0 )( x x1 )( x x 2 )
中心差分
/* centered difference */
δ k f i = δ k 1 f i + δ k 1 f i
1 2
1 2
h 其中 f i ± = f ( x i ± 2 )
1 2
§2 Newton’s Interpolation
差分的重要性质: 差分的重要性质: 线性: 线性:例如 ( a f ( x ) + b g ( x )) = a f + b g 若 f (x)是 m 次多项式,则 k f ( x) (0 ≤ k ≤ m) 是 m k 次多项 是 次多项式, k 式,而 f ( x ) = 0 ( k > m ) 差分值可由函数值算出: 差分值可由函数值算出:
0 0
( m 0 + 1)!
的值。 一般只考虑 f 与f ’的值。 的值
§3 Hermite Interpolation
一般地, 一般地,已知 x0 , …, xn 处有 y0 , …, yn 和 y0’ , …, yn’ ,求 H2n+1(x) 满足 H2n+1(xi) = yi , H’2n+1(xi) = yi’。 。 解:设 H2n+1( x ) = Σ yi hi ( x ) + Σ yi’ h i ( x )
时用前插, 时用后插, 注:一般当 x 靠近 x0 时用前插,靠近 xn 时用后插,故两 种公式亦称为表初公式 表末公式。 表初公式和 种公式亦称为表初公式和表末公式。
§3 厄米插值
/* Hermite Interpolation */
不仅要求函数值重合,而且要求若干阶导数也重合。 不仅要求函数值重合,而且要求若干阶导数也重合。 导数也重合 即:要求插值函数 (x) 满足 (xi) = f (xi), ’ (xi) = f ’ (xi),
f (x) = f (x0 ) + f [x0, x1](x x0 ) + f [x0 , x1, x2](x x0 )(x x1) + ...
+ f [ x0 , ... , xn ](x x0 )...(x xn1 )
+ f [x, x0 , ..., xn](x x0 )...(x xn1 )(x xn )
牛顿公式
Nn ( x) = f ( x0 ) + f [ x0 , x1](x x0 ) + ...+ f [ x0 , ... , xn ](x x0 )...(x xn1 )
牛顿前插公式 /* Newton’s forward-difference formula */ 设 x = x 0 + t h ,则 N n ( x ) = N n ( x 0 + t h ) = Σ t k f ( x 0 )
P3 ( x ) = Σ f ( x i ) hi ( x ) + f ’( x1) h1 ( x )
2

其中 hi(xj) = δij , hi’(x1) = 0, h1 (xi) = 0, h1 1) = 1 ’(x
2 是重根。 h0(x) 有根 x1, x2,且 h0’(x1) = 0 x1 是重根。h0 ( x ) = C 0 ( x x1 ) ( x x2 ) ( x x1 ) 2 ( x x 2 ) 又: h0(x0) = 1 C0 h0 ( x ) = ( x0 x1 ) 2 ( x0 x 2 ) h2(x) 与h0(x) 完全类似。 完全类似。
i =0 i =0 n n

li ( x) = ∏

j≠i
其中 hi(xj) = δij , hi’(xj) = 0, hi (xj) = 0, hi’(xj) = δij
∧ 这样的Hermite 插值唯 这样的 且都是2重根 hi(x) 有根 x0 , …, xi , …, xn且都是 重根 hi ( x ) = ( Ai x + Bi )l i2 ( x )
/* forward difference */
f i = f i +1 f i k f i = k 1 ( f i ) = k 1 f i + 1 k 1 f i f i = f i f i1 k fi = k 1 f i k 1 f i 1
向后差分
/* backward difference */
n j =0
称为拉氏基函数 称为拉氏基函数 ,满足条件 li(xj)=δij
f ( n+1) (ξ x ) n 插值余项 Rn ( x) = ∏( x xi ) (n + 1) ! i =0
2. Newton插值 插值
Nn ( x) = a0 + a1( x x0 ) + a2 ( x x0 )(x x1 ) + ...+ an ( x x0 )...(x xn1 )
Nn(x)
ai = f [ x0, …, xi ]
Rn(x)
§2 Newton’s Interpolation
等距节点公式 /* Formulae with Equal Spacing */ 等距分布时 当节点等距分布时: 当节点等距分布时 x i = x 0 + i h ( i = 0 , ... , n ) 向前差分
2
f ( 4 ) (ξ x ) R3 ( x ) = f ( x ) P3 ( x ) = K ( x )( x x0 )( x x1 ) ( x x 2 ), K ( x ) = 4!
可解。 又: h1’(x1) = 1 C1 可解。
Quiz: 给定 xi = i +1, i = 0, 1, 2, 3, 4, 5. 下面哪个是 h2(x)的图像? 的图像?
n 越大, 越大, 端点附近抖动 越大, 越大,称为 Runge 现象
-4 -3 -2 -1 0 1 2 3 4 5
-0.5 -5
分段低次插值 分段低次插值 低次
§4 Piecewise Polynomial Approximation
分段线性插值 /* piecewise linear interpolation */ 直线) 在每个区间[ xi , xi +1 ] 上,用1阶多项式 (直线 逼近 f (x): 阶多项式 直线
n f k = Σ ( 1) f n+ k j j j=0
n j n
f k = Σ (1)n j
n j =0
n
n f k + j n j
其中
n n ( n 1 )...( n j + 1 ) = j j!
/* binomial coefficients */
函数值可由差分值算出: 函数值可由差分值算出:

(x xj ) ( xi x j )
一 可解A 由余下条件 hi(xi) = 1 和 hi’(xi) = 0 可解 i 和 Bi
hi ( x ) = [1 2l i′( xi )( x xi )] l i2 ( x )


hi (x) 有根 x0 , …, xn, 除了xi 外都是 重根 hi( x) = Ci ( x xi ) li2(x) 外都是2重根
§4 分段低次插值
/* piecewise polynomial approximation */
相关文档
最新文档