八年级数学下学期第10章《分式》测试题 (5)

合集下载

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若分式的值为零,则x的值是()A.1B.﹣1C.±1D.22、下列计算正确的是().A. B.C. D.3、若分式的值为0,则x的值是()A.x≠3B.x≠﹣2C.x=﹣2D.x=34、下列运算,正确的是()A. B. C. D.5、对于两个不相等的实数a、b,我们规定符号表示a、b中的较小的值,如,按照这个规定,方程的解为().A. B.2 C. 或2 D.1或6、对于分式方程,下列说法中,一定正确的是()A.只要是分式方程,一定有增根B.分式方程若有增根,增根代入最简公分母中,其值一定为0C.使分式方程中分母为零的值,都是此方程的增根D.分式方程化成整式方程,整式方程的解都是分式方程的解7、计算:-3x2y2÷ =().A.-2xy 2B.- x 2C.- x 3D.- xy 48、若分式有意义,则的取值范围是()A. B. C. D.9、要使分式有意义,则实数x的取值范围是()A.x≠6B.x≠﹣6C.x≥﹣6D.x>﹣610、化简的结果是().A.m+3B.m﹣3C.D.11、若点在反比例函数的图像上,则分式方程的解是()A. B. C. D.12、将, , 通分的过程中,不正确的是( )A.最简公分母是(x-2)(x+3) 2B. =C. =D. =13、计算的结果为()A. B. C. a-2 D. a+214、如果代数式有意义,那么x的取值范围是()A.x≥0且x≠1B.x≠1C.x>0D.x≥015、若代数式中,的取值范围是,则为()A. B.m≠4 C. D.二、填空题(共10题,共计30分)16、在函数y=+(x﹣4)0中,自变量x的取值范围是________.17、当x=________时,分式的值为零.18、分式有意义,则x的取值范围是________.19、已知关于 x 的方程= 2的解是非负数,则 m 的取值范围是________.20、分式,,的最简公分母为________.21、分式方程=4的解是x=________.22、若关于的方程的解为正数,则的取值范围是________.23、若2x+3y=0,则的值是________.24、轮船顺水航行40千米所需的时间与逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x千米/时,可列方程为________.25、在函数y= 中,自变量x的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、先化简,再从﹣2,2,﹣1,1中选取一个恰当的数作为x的值代入求值.28、一辆汽车开往距离出发地的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后速度提高匀速行驶,并比原计划提前到达目的地,求前一小时的行驶速度.29、先化简,再求的值,且a、b满足.30、甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?参考答案一、单选题(共15题,共计45分)2、B3、D4、B5、B6、B7、C8、B9、B10、A11、B12、D13、B14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

苏科版八年级数学下《第10章分式》测试题含答案

苏科版八年级数学下《第10章分式》测试题含答案

八年级下第10章 分式 测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共24分)一、选择题(每小题3分,共30分)1.下列各式:51(1 – x ),34-πx,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >1 3.下列约分正确的是( ) A .313mm m +=+ B .212yx y x -=-+ C .123369+=+a ba b D .yxa b y b a x =--)()(4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23B . 223yxC .y x 232D .2323y x5.计算xx -++1111的正确结果是( ) A .0B .212x x- C .212x- D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( ) A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定7.若关于x 的方程xmx m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43-8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+xB .x +=+48720548720C .572048720=-xD .54872048720=+-x9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b -,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( )A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x >0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x1(x >0)的最小值是2.模仿张华的推导,你求得式子xx 92+(x >0)的最小值是( )A .1B .2C .6D .10 二、填空题(每小题4分,共32分) 11.分式x 21,221y,xy 51-的最简公分母为____________. 12.约分:①ba ab2205=____________,②96922+--x x x =____________.13.用科学记数法表示:0.000 002 016=____________. 14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________. 16.若关于x 的方程12123++=+-x mx x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f(n )+f (1n)= ____________.(结果用含n 的式子表示) 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m n n m m n n m -++---. 20.(每小题6分,共12分)解下列方程:(1)1123x x =-; (2)2124111x x x +=+--.21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分) 24.一列按一定顺序和规律排列的数: 第1个数是112⨯; 第2个数是123⨯; 第3个数是134⨯; ……对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +.(1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”;(3)设M 表示211,212,213,…,212016这个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 212.①a 41 ②33-+x x 13.2.016×10-614.6 15.4b a16. -5 17. 2 18. 21-n三、19.解:(1)224816x x x x --+=2(4)(4)4x x xx x -=--; (2)2m n m n n m m n n m -++---=2m n m n mn m n m n m n m--+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2. 解得x =-1.检验:当x =-1时,3x (x -2)≠0. 所以,原分式方程的解为x =-1. (2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4. 解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解. 所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2aa b-. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数, ∴x -3=±2或x -3=±1,解得x =1或x=2或x=4或x=5. ∴所有符合条件的x 的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x 米/分,则甲步行的速度是12x 米/分,公交车的速度是2x 米/分,根据题意,得60012x +30006002x -=3000x -2. 解得x =300.经检验,x =300是原方程的解.答:乙骑自行车的速度为300米/分. (2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米. 24.解:(1)由题意知第5个数a=156⨯=1156-. (2)∵第n 个数为1(1)n n +,第(n+1)个数为1(1)(2)n n ++,∴1(1)n n ++1(1)(2)n n ++=2(1)(2)n nn n n ++++=()()()2112n n n n +++=2(2)n n +,即第n 个数与第(n+1)个数的和等于2(2)n n +.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-12016=120152016⨯<212015<120142015⨯=12014-12015, 12016-12017=120162017⨯<212016<120152016⨯=12015-12016,∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016. ∴20162017<M<40312016.。

八年级数学下册第10章《分式》精选好题(含答案)

八年级数学下册第10章《分式》精选好题(含答案)

第10章《分式》例题精选知识梳理重难点分类解析考点1 分式的概念及性质【考点解读】分式的概念主要内容包括分式的定义、分式有意义的条件、分式的值等;分式的性质包括分式的基本性质、通分和约分.中考中对该知识点要求较低,多以基础题的形式出现.例1 (2018·盐城)要使分式12x -有意义,则x 的取值范围是 . 分析:当分母20x -≠,即2x ≠时,分式12x -有意义. 答案: 2x ≠ 【规律·技法】若分式有意义,则分母不等于零.【反馈练习】1.分式29x -在实数范围内有意义,则x 的取值范围是 . 点拨:当分母不为0时,分式有意义.2.在代数式21331,,,2x xy a x y mπ+++中,分式的个数有( ) A. 2个 B. 3个 C. 4个 D. 1个点拨:根据分式是分母中含有字母的式子进行判断即可.考点2 分式的运算【考点解读】分式的运算包括分式的加减和分式的乘除,分式的基本性质是解决分式运算问题的关键,在中考中分式的运算多以计算题出现,属于简单题.例2 (2018·泰州)化简: 22169(2)11x x x x x -++-÷+-. 分析:本题考查分式的化简,先算括号内的减法,把除式分子和分母中多项式因式分解,同时把除法变为乘法再约分化简.解答:原式= 222(1)1(1)(1)3(1)(1)1[]11(3)1(3)3x x x x x x x x x x x x x x +-+-++---⋅=⋅=++++++【规律·技法】整式与分式进行运算时,常把整式化为分式形式后再进行通分.【反馈练习】3.化简:11(2)()a a a a ++÷-.点拨:先算括号内加减法,再利用除法法则把除法运算变为乘法运算,并且因式分解分式中复杂的因式最后约分化为最简分式.4. (2018·淮安)先化简,再求值: 212(1)11a a a -÷+-,其中3a =-.点拨:先把括号中的式子通分,再把除法转化为乘法进行化简,最后把a 的值代入化简后的式子计算求值.考点3 分式方程【考点解读】分式方程的解法主要利用转化的数学思想,即把分式方程转化为整式方程,再进行求解,转化过程中可能会出现增根,故在解分式方程时一定要检验.中考中常以简单的计算题出现,遗忘检验是失分的主要原因.例3 (2018·镇江)解方程: 2121x x x =++-. 分析:两边同时乘最简公分母,将分式方程转化为整式方程,然后解答,检验后确定方程的解.解答:两边同时乘(2)(1)x x +-,得(1)2(2)(2)(1)x x x x x -=+++-.去括号,得22242x x x x x -=+++-.移项、合开同类项,得42x =-.系数化为1,得12x =-.检验:当12x =-时,(2)(1)0x x +-≠.故12x =-是原分式方程的解. 【规律·技法】分式方程的解法主要用到转化的数学思想,通过方程两边同乘最简公分母,把分式方程化为整式方程后再进行求解,检验是解分式方程必不可少的步骤.【反馈练习】5.若关于x 的分式方程1244m x x x-=---有增根,则实数m 的值是 . 点拨:先去分母转化为整式方程,利用方程有增根,使分式方程的分母为0的x 的值,代入整式方程即可解决问题.6.解方程: 14555x x x-+=--.点拨:先去分母化为整式方程,再解方程,最后检验方程的根是否是增根.考点4 列分式方程解决问题【考点解读】列分式方程解决问题的关键是要找出问题的等量关系,根据等量关系列出方程从而解决问题,在解方程时要注意进行检验.例4 (2018·徐州)徐州至北京的高铁里程约为700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80 km/h, A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?分析:解题关键是找出解决问题的等量关系列出方程.设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h ,根据速度=路程÷时间得出关于t 的分式方程,解此分式方程并检验即可得出结论.解答:设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h.由题意,得700700801.4t t-=,解得t = 2.5.经检验,t = 2.5是所列方程的解.则1.4t = 3.5.故A 车行驶的时间为3.5h ,B 车行驶的时间为2.5h . 【规律·技法】行程问题的等量关系主要体现在速度、时间和路程的关系,如速度×时间=路程,路程÷时间=速度,路程÷速度=时间,掌握基本的等量关系是解题的关键.【反馈练习】7.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作多少件?点拨:本题考查了分式方程的应用,解题的关键是根据题意列出符合等量关系的分式方程并正确求解检验。

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。

苏科版八年级下册数学第10章 分式含答案

苏科版八年级下册数学第10章 分式含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、下列关于x的方程是分式方程的是()A. B. C. D.2、若表示一个整数,则整数m可取值的个数是()A.9个B.8个C.7个D.无数个3、对于两个不相等的实数a,b,我们规定符号Max(a,b)表示a,b中的较大的值,如Max(2,4)=4,按照这个规定,方程Max( ,)=1- 的解是()A.x=4B.x=5C.x=4或x=5D.无实数解4、计算·÷的结果是( )A.x 5B.-x 5C.D.-5、如果关于x的方程无解,则m等于()A.3B.4C.-3D.56、关于x的不等式组无解,且关于x的分式方程有正整数解,则满足条件的所有整数a的个数为()A.2B.3C.4D.57、化简的结果是()A. B. C. D.a+b8、下列各式﹣3x,,,﹣,,,中,分式的个数为()A.4B.3C.2D.19、若,则的值为()A. B. C. D.10、把分式方程,的两边同时乘以x-2,约去分母,得()A.1-(1-x)=1B.1+(1-x)=1C.1-(1-x)=x-2D.1+(1-x)=x-211、下列分式是最简分式的是()A. B. C. D.12、使分式有意义的的取值范围是()A. B. C. D.13、化简的结果()A.x﹣yB.y﹣xC.x+yD.﹣x﹣y14、若分式有意义,则x的取值范围是()A.x≠﹣3B.x≥﹣3C.x≠﹣3且 x≠2D.x≠215、某次列车平均提速20km/h,用相同的时间,列车提速行驶400km,提速后比提速前多行驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A. =B. =C. =D. =二、填空题(共10题,共计30分)16、同分母的分式相加减,分母________,把分子________,即: ±=________.17、已知a+b=5,ab=3,则+=________ .18、当m=________时,分式的值为0.19、当x=________时,分式的值为0.20、已知﹣=4 则=________ .21、小强在做分式运算与解分式方程的题目时经常出现不符合题意,于是他在整理错题时,将这部分内容进行了梳理,如图所示:请你帮小强在图中的括号里补写出“通分”和“去分母”的依据分别是:________和________22、当x________时,分式有意义.23、分式与的最简公分母是________.24、分式方程= 的解是________.25、分式方程+ =的解为________ .三、解答题(共5题,共计25分)26、先化简,再求值:(1+ )÷,其中a=4.27、计算:.28、已知y=, x取哪些值时:(1)y的值是正数;(2)y的值是负数;(3)y的值是零;(4)分式无意义.29、如果关于x的方程1+ = 的解,也是不等式组的解,求m的取值范围.30、解分式方程:﹣1=.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、B5、A6、B7、A8、A9、B10、D12、A13、C14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章 分式 含答案

苏科版八年级下册数学第10章分式含答案一、单选题(共15题,共计45分)1、若分式的值为,则的取值为()A. B. C. D.不存在2、有意义的条件是( )A. B. C. 且 D. 或3、下列计算正确的是( )A. =B. =C. =D. =4、若分式有意义,则x的取值范围是()A. B. C. D.5、▱ABCD中,∠A:∠B:∠C:∠D的值可以等于()A.1:2:3:4B.3:4:4:3C.3:3:4:4D.3:4:3:46、无论a取什么值时,下列分式总有意义的是()A. B. C. D.7、某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A. =B. =C. =D. =8、下列约分正确的是()A. =-1B. =0C.D. =39、若- =2,则分式的值等于( )A.-B.C.-D.10、计算+ 的结果是()A. B. C.1 D.-111、代数式、、、中,分式有()个。

A.1B.2C.3D.412、在下列各式中,与分式的值相等的是( )A. B. C. D.-13、如果把的x与y都扩大10倍,那么这个代数式的值()A.扩大10倍B.扩大50倍C.不变D.缩小到原来的14、分式方程 +1=去分母后得到的方程是()A.3x=0B.x 2-3x-2=0C.x 2-3x+4=0D.x 2-2=015、已知分式的值为0,那么x的值是()A.-2B.-1C.1D.1或-2二、填空题(共10题,共计30分)16、如果,则=________.17、当a=2017时,分式的值是________.18、已知a2+3ab+b2=0(a≠0,b≠0),则代数式的值等于________.19、有 6 张卡片,上面分别标有 0,1,2,3,4,5 这 6 个数字,将它们背面洗匀后,任意抽出一张,记卡片上的数字为a,若数a 使关于x 的分式方程的解为正数,且使关于y 的不等式组的解集为y < −2,则抽到符合条件的a 的概率为________;20、计算:的结果是________.21、方程的解是________.22、若式子在实数范围内有意义,则x的取值范围是________.23、使代数式有意义的x的取值范围是________.24、计算的结果是________25、若分式有意义,则的取值范围是________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中a=2.27、某体育用品商场分别用10000元购进A种品牌、用7500元购进B种品牌的自行车进行销售,已知B种品牌的自行车的进价比A种品牌的高50%,所购进的A种品牌的自行车比B种品牌的多10辆,求每辆A种品牌的自行车的进价。

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。

苏科版八年级数学下册第10章 分式 综合测试卷(B)含答案

苏科版八年级数学下册第10章 分式 综合测试卷(B)含答案

第十单元 分式 综合测试卷(B)一、选择题(母题2分,共20分)1.下列分式222222155()4253()22b c x y a b a b a b a y x a b a b b a-+----+--、、、、,其中最简分式的个数是 ( ) A .1个 B .2个 C .3个 D .4个2.下列分式约分正确的是 ( )A .632x x x =B .x y x y +=+3.若1,2x y =-=,则22264x x y - A .117-B .117 4.当3a =时,代数式 1(1)2a -- A .5 B .一1 5.计算23()n - 与3()2n -C .互为相反数D .以上都不对6 ( )C .331x x +D .25x x - 7总有意义,则a 的取值范围是 ( ) C .a ≤1 D .a <18 )A .c c =-B .b c c =-C .()a b a b c c -++=-D .a b a b c c--+=- 9.一水池有甲、乙两根进水管.两管同时开放6小时可以将水池注满水.如果单开甲管5 小时后,两管同时开放,还需3小时才能注满水池,那么单独开放甲管注满水池需 ( )A .7.5小时B .10小时C .12.5小时D .15小时10.为保证某高速公路在2014年4月底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项任务比规定时间多用10天,乙队单独完成这项任务比规定时间多用40天,如果甲、乙两队合作,那么可比规定时间提前14天完成任务.若设规定时间为x 天,由题意列出的方程是 ( )A .111104014x x x +=--+B .111104014x x x +=++- C . 111104014x x x -=++- D .111101440x x x +=-+- 二、填空题(每题2分,共20分)11.下列各式中11152235a n a a b y m b zπ++-、、、、、中分式有 个. 12·当 时,分式1a -有意义.13 14 15 16 17b ,则该同学上学、放学的C 的倒数的2倍之和等于B 的倒数2421(1)422x x x ++-+-; (÷;22(3)(1)b a a b a b ÷--+; 211(4)()1211x x x x x x ++÷--+-22.(本题8分)解下列方程. 54410(1)1236x x x x -+=---23212)22a a a-÷--,其中a 是方程24.(本题6分)有这样一道题:“计算2221112x x x x x x x-+-÷--+的值,其中x =2 014”·小明 把“x =2 014,,错抄成“x =2 410”,但他的计算结果也正确.你能说明这是为什么吗?25.(本题6分)已知2113x x x =-+26.(本题10分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务 比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30 天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为 了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少 于乙队的工作量的2倍,那么甲队至少再单独施工多少天?27.(本题12分)某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400 元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆? 总运费为多少元?参考答案—、1.A 2.C 3.D 4.B 5.C 6.A 7.B 8.A 9.B 10.B二、11.3 12.≠32-13.一3 14.3 1 15.2 16.3 17.一2 18.一1 19.2ab a b + 20.12322x x x+=-+ 三、21.(1)12x +(2)2x - (3)1a b- (4)1x x - 22.(1)2x =,为增根,原方程无解(2)1x =,为增根,原方程无解. 23.原式2(3)322a a a a ++==∵a 是方程23100x x +-=∴2310a a += ∴原式=1052= 24.原式=2(1)(1)0(1)(1)1x x x x x x x -+⨯-=+--, ∵原式化简以后的结果中不含有x ,∴结果与x 的值无关....小明虽然抄错了x 的值,但结果也正确.214x x +=,求得22114x x +=,2421115x x x =++ 则甲队单独完成此项任务需要(x +10)天,由题x =20是原方程的解,∴x +10=30(天) 20天; 3232303020a +≥⨯,解得:a ≥3. x 台,则A 型汽车每辆可装计算机34x 台.依题意得134x x =+解得:x =60. 经检验,x =60是原方程的解.则34x =45(台). 即A 型汽车每辆可装计算机45台,B 型汽车每辆可装计算机60台.(2)若同时用A 、B 两种型号的汽车运送,设需要用A 型汽车y 辆,则需B 型汽车(y+1)辆.根据题意,得45y+60(y+1)=270.解得y =2.所以需A 型汽车2辆,需B 型汽车3辆.此 时总运费为350×2+400×3=1900(元).。

第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章 分式 苏科版数学八年级下册综合素质评价(含答案)

第10章分式综合素质评价一、选择题(每题2分,共16分)1.代数式25x,1π,2x2+4,x2-23,1x,x+1x+2中,属于分式的有( )A.2个B.3个C.4个D.5个2.使分式2x-4有意义的x的取值范围是( )A.x≤4B.x≥4C.x≠4D.x=43.分式①a+2a2+3,②a-ba2-b2,③4a12(a-b),④1x-2中,最简分式有( )A.1个B.2个C.3个D.4个4.解分式方程2x-1-2xx-1=1,可知方程的解为( )A.x=1 B.x=3 C.x=12D.无解5.《九章算术》之“粟米篇”中记载了中国古代的“粟米之法”:“粟率五十,粝米三十…”(粟指带壳的谷子,粝米指糙米),其意为:“50单位的粟,可换得30单位的粝米…”.问题:有3斗粟(1斗=10升),若按照此“粟米之法”,则可以换得的粝米为( )A.1.8升B.16升C.18升D.50升6.计算m2m-1-2m-1m-1的结果是( )A.m+1 B.m-1 C.m-2 D.-m-27.对于非零的两个实数a,b,规定a*b=3b-2a,若5*(3x-1)=2,则x的值为( )A.56B.34C.23D.-168.若关于x 的分式方程3x -a x -3+x +13-x=1的解为正数,且关于y 的不等式组{y +9≤2(y +2),2y -a 3>1的解集为y ≥5,则所有满足条件的整数a 的值之和是( )A .13B .15C .18D .20二、填空题(每题2分,共20分)9.x 6ab 2与y9a 2bc 的最简公分母是________.10.计算:a 2a -b+b 2-2ab a -b=________.11.若x =1是分式方程a -2x -1x -2=0的根,则a =________.12.若关于x 的方程ax +1x -1-1=0无实数根,则a 的值为________.13.若关于x 的分式方程m x -1+31-x=1的解为正数,则m 的取值范围是________.14.小明同学在对分式方程2x x -2+3-m 2-x=1去分母时,方程右边的1没有乘x -2,若此时解得整式方程的解为x =2,则原方程的解为________.15.如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被盖住的x 的值是_______________.先化简,再求值:3-xx -4+1,其中x =★.解:原式=3-xx -4·(x -4)+(x -4)…①=3-x +x -4=-1.16.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.17.若mn =n -m ≠0,则3n -3m的值为 ________.18.“绿水青山就是金山银山”.某地为美化环境,计划种植树木6 000棵.由于志愿者的加入,实际每天植树的棵数比原计划增加了25%,结果提前3天完成任务,则实际每天植树________棵.三、解答题(19~21题每题6分,22~23题每题8分,24~26题每题10分,共64分)19.计算:(1)2aa 2-9-1a -3;(2)(1+2a +1a 2)÷a +1a.20.先化简,再求值:(1)(1+1m -1)·m 2-1m,其中m =2.(2)a 2-6ab +9b 2a 2-2ab ÷a -3b a -2b -1a,其中a =4,b =1.21.解分式方程:(1)x 2x -3+53-2x=4.(2)x -2x +2-1=16x 2-4.22.已知M=2xyx2-y2,N=x2+y2x2-y2,用“+”或“-”连接M,N,有三种不同的形式:M+N,M-N,N-M,任选其中一种进行计算,并化简求值,其中x:y=5:2.23.已知关于x的方程mx+3-13-x=m+4x2-9.(1)若m=-3,解这个方程;(2)若原方程无解,求m的值.24.为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?25.小张去离家2 520 m的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23 min,于是他跑步回家,拿到门票后立刻找到一辆共享单车原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4 min,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度.(2)如果小张在家取票和寻找共享单车共用了5 min ,他能否在演唱会开始前赶到奥体中心?并说明理由.26.阅读下面材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘y ,得y 2-4=0,解得y =±2.经检验,y =2和y =-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x =-1和x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法.(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_______________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.答案一、1.B 2.C 3.B 4.D 5.C 6.B 7.B8.A 点拨:解分式方程得x =a -2,∵x >0且x ≠3,∴a -2>0且a -2≠3,∴a >2且a ≠5.解不等式组得{y ≥5,y >a +32,∵不等式组的解集为y ≥5,∴a +32<5,∴a <7.∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13.二、9.18a 2b 2c 10.a -b 11.1 12.1或-113.m >2且m ≠314.x =1 点拨:小明去分母得到的整式方程是2x -(3-m )=1,把x =2代入,得4-(3-m )=1,解得m =0.故原分式方程为2xx -2+32-x =1,解得x =1,经检验,x =1是原分式方程的解.15.5 点拨:3-x x -4+1=3-x +x -4x -4=14-x ,当14-x=-1时,可得x =5,检验:当x =5时,4-x ≠0,∴题图中被盖住的x 的值是5.16.30 点拨:设小博每消耗1千卡能量需要行走x 步,则小琼每消耗1千卡能量需要行走(x +10)步,根据题意得12 000x +10=9 000x ,解得x =30,经检验,x =30是原方程的解,且符合题意.故小博每消耗1千卡能量需要行走30步.17.-3 点拨:原式=3m mn -3nmn =3(m -n )mn.∵mn =n -m ,∴原式=-3mn mn=-3.18.500三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a-3(a+3)(a-3)=1a+3.(2)原式=a2+2a+1a2÷a+1a=(a+1)2a2·aa+1=a+1a.20.解:(1)原式=(m-1m-1+1m-1)·(m+1)(m-1)m=mm-1·(m+1)(m-1)m=m+1,当m=2时,原式=m+1=2+1=3.(2)a2-6ab+9b2a2-2ab÷a-3ba-2b-1a=(a-3b)2a(a-2b)·a-2ba-3b-1a=a-3ba-1a=a-3b-1a,当a=4,b=1时,原式=4-3×1-14=0.21.解:(1)方程两边同乘2x-3,得x-5=4(2x-3),解得x=1,检验:当x=1时,2x-3≠0,所以x=1是原分式方程的解.(2)方程两边同乘(x+2)(x-2),得x2-4x+4-x2+4=16,解得x=-2.检验:当x=-2时,(x+2)(x-2)=0,所以x=-2是增根,原分式方程无解.22.解:选择一,M+N=2xyx2-y2+x2+y2x2-y2=(x+y)2(x+y)(x-y)=x+yx-y.当x:y=5:2时,x=5 2y,∴原式=52y+y52y-y=73;选择二,M -N =2xyx 2-y 2-x 2+y 2x 2-y 2=-(x -y )2(x +y )(x -y )=y -xx +y.当x :y =5:2时,x =52y ,∴原式=y -52y 52y +y =-37;选择三,N -M =x 2+y 2x 2-y 2-2xyx 2-y 2=(x -y )2(x +y )(x -y )=x -y x +y .当x :y =5:2时,x =52y ,∴原式=52y -y 52y +y =37.点拨:任选一种即可.23.解:(1)把m =-3代入原方程得-3x +3-13-x =-3+4x 2-9.方程两边同乘(x -3)(x +3),得-3(x -3)+(x +3)=1.解这个一元一次方程,得x =5.5.检验:当x =5.5时,(x +3)(x -3)≠0,∴x =5.5是原方程的解.(2)当(x +3)(x -3)=0时,x =3或-3.方程两边同乘(x -3)(x +3),得m (x -3)+(x +3)=m +4,整理,得(m +1)x =1+4m ,当m +1=0时,1+4m ≠0,方程无解,此时m =-1.当m +1≠0时,x =1+4m m +1,当x =3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=3,解得m =2,经检验,m =2是方程1+4m m +1=3的解.当x =-3时,(x -3)(x +3)=0,方程无解,即1+4m m +1=-3,解得m =-47,经检验,m =-47是方程1+4mm +1=-3的解.综上,若原方程无解,则m =-1或2或-47.24.解:设原先每天生产x 万剂疫苗,由题意可得240(1+20%)x +0.5=220x ,解得x =40,经检验,x =40是原方程的解,且符合题意.答:原先每天生产40万剂疫苗.25.解:(1)设小张跑步的平均速度为x m/min ,则小张骑车的平均速度为1.5x m/min ,根据题意,得2 520x -2 5201.5x=4,解得x =210.经检验,x =210是原方程的解,且符合题意.答:小张跑步的平均速度为210 m/min.(2)不能.理由:小张跑步到家所用时间为2 520÷210=12(min),小张骑车赶回奥体中心所用时间为12-4=8(min),小张从开始跑步回家到赶回奥体中心所用时间为12+8+5=25(min),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.26.解:(1)y 4-1y =0 (2)y -4y=0(3)原方程可化为x -1x +2-x +2x -1=0,设y =x -1x +2,则原方程可化为y -1y =0,方程两边同时乘y ,得y 2-1=0,解得y =±1.经检验,y =1和y =-1都是方程y -1y =0的解.当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12.经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.。

苏科版八年级数学下册 第十章《分式》综合练习

苏科版八年级数学下册 第十章《分式》综合练习

苏科版八年级第十章《分式》一、选择题:1、下列计算中,正确的是( ).A. 12a =12(a+b)B. C. D.2、用换元法解分式方程时,如果设,将原方程化为关于的整式方程,那么这个整式方程是()A .B .C .D.3、已知关于x的分式方程211ax+=+的解是非正数,则以的取值范围是 ( )A.a≤一1 B.a≤一1且a≠一2C.a≤1且a≠2 D.a≤14、若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,35、已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C. D.6、无论x取何值,下列分式总有意义的是()[来源:学。

科。

网Z。

X。

X。

K]A.3xx-B.122x+C.2221x+D.1xx-7、若分式1(3)(1)xx x--+的值为0,则x等于()A.-1 B.-1或3 C.-1或1 D.18、如果把分式3xyx y+中的x和y都扩大为原来的2倍,那么分式的值()A.扩大2倍 B.缩小2倍 C.缩小4倍 D.扩大4倍9、下面是嘉淇在学习分式运算时解答的四道题:()其中计算正确的是( )A.①B.②C.③D.④ 10、下列说法:①解分式方程一定会产生增根;②方程x−2x −4x+4=0的根为2;③ 方程12x =12x−4的最简公分母是2x(2x −4);④x+1x−1=1+1x−1是分式方程. 其中正确的个数是( ). A. 1个 B. 2个 C. 3个 D. 4个11、已知关于x 的方程3x−1−x+ax(x−1)=0增根是1,则字母a 的取值为 2 B. −2 C. 1D. −112、已知,关于x 的分式方程2x−3+x+a3−x =2有增根,且关于x 的不等式组{x >ax ≤b只有4个整数解,那么b 的取值范围是( )A. −1<b ≤3B. 2<b ≤3C. 8≤b <9D. 3≤b <4 13、化简211211x x x x ⎛⎫÷- ⎪+++⎝⎭的结果是( ) A.11x + B. 1x x+ C. x+1 D. x ﹣1 14、甲、乙两人同时从A 地出发至B 地,如果甲的速度v 保持不变,而乙先用 的速度到达中点,再用的速度到达B 地,则下列结论中正确的是( )A. 甲、乙同时到达B 地B. 甲先到达B 地C. 乙先到达B 地D. 谁先到15、达B 地与速度v 有关16、已知,则的值是( )230.5x y z==32x y z x y z +--+A .B.7C.1D. 17、已知,且,则的值为( ) A . B . C .2 D .18、若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m≠C .m >﹣D .m >﹣且m≠﹣ 19、已知1a +12b =3,则代数式2a−5ab+4b4ab−3a−6b的值为( )A. 15B. −15C. 12D. −1220、已知:点p(1−2a,a −2)在第三象限内,且a 为整数,则关于x 的分式方程x+1x−a=2的解是( )A. 5B. 3C. 1D. 不能确定 21、对于两个不相等的实数a 、b ,我们规定符号Max{a,b}表示a 、b 中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,−x}=2x+1x的解为( )A. 1−√2B. 2−√2C. 1+√2或1−√2D. 1+√2或−122、如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A. k >2B. 1<k <2C. 12<k <1D. 0<k <12二、填空题:1、约分:= ___________.1713226a b ab +=0a b >>a ba b+-22±2±2、在分式:①224a a +-;②25xy x xy -;③1421()a ab -;④2369x x x +-+中,最简分式有 个.3、若关于x 的分式方程311x a x x--=-无解,则a = . 4、若219x x ⎛⎫+= ⎪⎝⎭,则21x x ⎛⎫- ⎪⎝⎭的值为___________.5、若关于x 的分式方程311x a x x--=-无解,则a =__________. 6、若1142,22a ab b a b a ab b+--=--则的值是________.7的值为0的x 值是___________.8、若22440,x yx xy y x y--+=+则等于________. 9、已知,则的值为______. 10、当a=﹣1时,代数式的值是 .11、已知一个口袋中装有六个完全相同的小球,小球上分别标有1,2,5,7,8,13六个数,搅匀后一次从中摸出一个小球,将小球上的数记为m ,则使得一次函数y =−mx +10−m 经过一、二、四象限且关于x 的分式方程mxx−8=3+8xx−8的解为整数的概率是______ .12、某农场原计划用m 天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 ___________ 2hm . 13、若,则w = __________.14、若代数式(x−2)(x−3)2x−6的值为零,则x =______________.2242141x y y x y y +-=-+-24y y x ++15、从-3,-1,12,1,3这五个数中,随机抽取一个数,记为a ,若数a使关于x 的不等式组()127330x x a ⎧+≥⎪⎨⎪-⎩,<无解,且使关于x 的分式方程3x x --23a x --=-1有整数解,那么这5个数中所有满足条件的a 的值之和是 16、若分式方程xx−1−m1−x =2有增根,则这个增根是______. 17、解关于x 的方程1−kx x−2=12−x 出现增根,则增根x =________,常数k =________.18、若关于x 的分式方程1ax+b =1bx+a 有增根(a ≠b ,且a ,b 都不为零),则a b=________.19、当x>2时,M=12--x x 与N=23--x x 的大小关系______20、某农场原计划用朋天完成2bhm 的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种 2hm . 21、A 1与-11-x 的最简公分母是2(x2-1),则分母A________22、已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,1a +1b =1;②若a =3,则b +c =9;③若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是 __________. (把所有正确结论的序号都填上)23、若分式A =4x 2−4,B =1x+2+12−x ,其中x ≠±2,则A 与B 的关系是________. 24、对于正数x ,规定.例如,,则 ______ .三、解答题: 1、计算:(1)222242x y x xy y -++·22x xy x y ++÷22x xy x y -+; (2)62122-++x x x ÷⎪⎭⎫ ⎝⎛---331x x x .(3)2411241111x x x x +++-+++ (4) 221111x x x x+⎛⎫-÷ ⎪--⎝⎭;2、先化简,后求值:(1) 211122a a a -⎛⎫-÷⎪++⎝⎭,其中3a =. (2)2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭ ÷ 222a a a b a b ⎛⎫- ⎪+-⎝⎭+1 ,其中a=23,b=-32、先化简代数式(a a+2−aa−2)•2−a a,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值.4、解下列方程 (1)51141022233x x x x +++=-- (2)214111x x x +-=--5、苏科版教科书对分式方程验根的归纳如下: “解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.” 请你根据对这段话的理解,解决下面问题:已知关于x 的方程m−1x−1−xx−1=0无解,方程x 2+kx +6=0的一个根是m .(1)求m 和k 的值;(2)求方程x 2+kx +6=0的另一个根.6、当m 为何值时,关于x 的方程223242mx x x x +=--+无解?7、五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?8、已知为整数,且为整数,求所有符合条件的x 的值.9、先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程xx−3=2+ax−3会产生增根?x 918232322-++-++x x x x(2)当m为何值时,方程yy−1−m2y2−y=y−1y会产生增根?10、先阅读下列解法,再解答后面的问题.已知3x−4x-3x+2=Ax−1+Bx−2,求A、B的值.解:将等号右边通分,再去分母,得:3x−4=A(x−2)+B(x−1),即:3x−4=(A+B)x−(2A+B),∴{A+B=3−(2A+B)=−4解得{A=1 B=2(1)已知11x-3x2-14x+24=Ax+6+B4−3x,用上面的解法求A、B的值.(2)计算:[1(x−1)(x+1)+1(x+1)(x+3)+1(x+3)(x+5)+…+1(x+9)(x+11)](x+11),并求x取何整数时,这个式子的值为正整数.11、阅读理解:小铭、小冲和小新学习完《整式的乘法》和《分式》两章后,小铭提出了一问题:小铭:“我知道一般情况下,当m ≠n 时,m 2+n ≠m +n 2.可是我发现有这样一个神奇的等式:当m 、n 分别取m =ab ,n =b−a b时,有(a b )2+b−a b=ab +(b−a b)2(其中a ,b 为任意实数,且b ≠0),却满足m 2+n =m +n 2.但我不知道为什么,你们知道吗?”小冲和小新对小铭的问题进行了探究,请你帮他们完成下面的探究过程: (1)小冲先取特殊值a =2,b =3,分别代入(a b )2+b−a b和ab +(b−a b)2进行计算,请你分别计算这两个式子的值,判断它们是否相等;(2)小冲后来想到a 、b 的值不能一一列举完,于是分别计算(a b )2+b−a b和ab +(b−a b)2的结果,请你帮小冲完成这两个式子的计算,判断它们是否相等; (3)小新发现,由m =ab ,n =b−a b可得m +n =1.于是设计了这样一道变式题:已知:m 2+n =m +n 2(其中m 、n 为任意实数且m ≠n),求证:m +n =1. 请你完成小新的这道证明题.12、华昌中学开学初在金利源商场购进A 、B 两种品牌的足球,购买A 品牌足球花费了2 500元,购买B 品牌足球花费了2 000元,且购买A 品牌足球的数量是购买B 品牌足球数量的2倍,已知购买一个B 品牌足球比购买一个A 品牌的足球多花30元.(1)求购买一个A 品牌、一个B 品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A 品牌足球的售价比第一次购买时提高了8%,B 品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A 、B 两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B 品牌足球?13、某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆?总运费为多少元?14、超市用2500元购进某种品牌苹果进行试销,由于销售状况良好,超市又调拨6000元资金购进该品牌苹果,但这次进货价比上次每千克少0.5元,购进苹果的数量是上次的3倍.(1)试销时该品牌苹果的进货价是每千克多少元?(2)如果超市按每千克4元的定价出售,当售出大部分后,余下600千克按五折出售完,那么超市在这两次苹果销售中共获利多少元?15、某一工程,在工程招标时,接到甲、乙两个工程队的投标书。

八年级数学下册第10章《分式》精选好题(含答案)

八年级数学下册第10章《分式》精选好题(含答案)

第10章《分式》例题精选知识梳理重难点分类解析考点1 分式的概念及性质【考点解读】分式的概念主要内容包括分式的定义、分式有意义的条件、分式的值等;分式的性质包括分式的基本性质、通分和约分.中考中对该知识点要求较低,多以基础题的形式出现.例1 (2018·盐城)要使分式12x -有意义,则x 的取值范围是 . 分析:当分母20x -≠,即2x ≠时,分式12x -有意义. 答案: 2x ≠ 【规律·技法】若分式有意义,则分母不等于零.【反馈练习】1.分式29x -在实数范围内有意义,则x 的取值范围是 . 点拨:当分母不为0时,分式有意义.2.在代数式21331,,,2x xy a x y mπ+++中,分式的个数有( ) A. 2个 B. 3个 C. 4个 D. 1个点拨:根据分式是分母中含有字母的式子进行判断即可.考点2 分式的运算【考点解读】分式的运算包括分式的加减和分式的乘除,分式的基本性质是解决分式运算问题的关键,在中考中分式的运算多以计算题出现,属于简单题.例2 (2018·泰州)化简: 22169(2)11x x x x x -++-÷+-. 分析:本题考查分式的化简,先算括号内的减法,把除式分子和分母中多项式因式分解,同时把除法变为乘法再约分化简.解答:原式= 222(1)1(1)(1)3(1)(1)1[]11(3)1(3)3x x x x x x x x x x x x x x +-+-++---⋅=⋅=++++++【规律·技法】整式与分式进行运算时,常把整式化为分式形式后再进行通分.【反馈练习】3.化简:11(2)()a a a a ++÷-.点拨:先算括号内加减法,再利用除法法则把除法运算变为乘法运算,并且因式分解分式中复杂的因式最后约分化为最简分式.4. (2018·淮安)先化简,再求值: 212(1)11a a a -÷+-,其中3a =-.点拨:先把括号中的式子通分,再把除法转化为乘法进行化简,最后把a 的值代入化简后的式子计算求值.考点3 分式方程【考点解读】分式方程的解法主要利用转化的数学思想,即把分式方程转化为整式方程,再进行求解,转化过程中可能会出现增根,故在解分式方程时一定要检验.中考中常以简单的计算题出现,遗忘检验是失分的主要原因.例3 (2018·镇江)解方程: 2121x x x =++-. 分析:两边同时乘最简公分母,将分式方程转化为整式方程,然后解答,检验后确定方程的解.解答:两边同时乘(2)(1)x x +-,得(1)2(2)(2)(1)x x x x x -=+++-.去括号,得22242x x x x x -=+++-.移项、合开同类项,得42x =-.系数化为1,得12x =-.检验:当12x =-时,(2)(1)0x x +-≠.故12x =-是原分式方程的解. 【规律·技法】分式方程的解法主要用到转化的数学思想,通过方程两边同乘最简公分母,把分式方程化为整式方程后再进行求解,检验是解分式方程必不可少的步骤.【反馈练习】5.若关于x 的分式方程1244m x x x-=---有增根,则实数m 的值是 . 点拨:先去分母转化为整式方程,利用方程有增根,使分式方程的分母为0的x 的值,代入整式方程即可解决问题.6.解方程: 14555x x x-+=--.点拨:先去分母化为整式方程,再解方程,最后检验方程的根是否是增根.考点4 列分式方程解决问题【考点解读】列分式方程解决问题的关键是要找出问题的等量关系,根据等量关系列出方程从而解决问题,在解方程时要注意进行检验.例4 (2018·徐州)徐州至北京的高铁里程约为700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A 与“复兴号”高铁B 前往北京.已知A 车的平均速度比B 车的平均速度慢80 km/h, A 车的行驶时间比B 车的行驶时间多40%,两车的行驶时间分别为多少?分析:解题关键是找出解决问题的等量关系列出方程.设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h ,根据速度=路程÷时间得出关于t 的分式方程,解此分式方程并检验即可得出结论.解答:设B 车行驶的时间为t h ,则A 车行驶的时间为1.4t h.由题意,得700700801.4t t-=,解得t = 2.5.经检验,t = 2.5是所列方程的解.则1.4t = 3.5.故A 车行驶的时间为3.5h ,B 车行驶的时间为2.5h . 【规律·技法】行程问题的等量关系主要体现在速度、时间和路程的关系,如速度×时间=路程,路程÷时间=速度,路程÷速度=时间,掌握基本的等量关系是解题的关键.【反馈练习】7.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作多少件?点拨:本题考查了分式方程的应用,解题的关键是根据题意列出符合等量关系的分式方程并正确求解检验。

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分 式综合检测(满分100分,限时60分钟)一、选择题(本题共8题,每题3分,共24分)1.下列式子中,是分式的为( )A.12―a B.xπ―3 C.-x3 D.x2+y2.下列判断错误的是( )A.当a≠0时,分式2a 有意义B.当a=2时,分式3a ―62a +1的值为0C.当a>2时,分式a ―2a 2的值为正数D.当a=-2时,分式a +2a 2―4的值为03.(2022江苏扬州广陵期中)把分式x 2x ―3y 中的x 和y 都扩大为原来的3倍,则分式的值( )A.不变  B.扩大为原来的3倍C.缩小为原来的13 D.扩大为原来的9倍4.(2022江苏无锡月考)若式子x 2+1x ―1 2xx ―1的运算结果为x-1,则在“ ”中添加的运算符号为( )A.+B.-C.×D.÷5.(2022江苏泰州月考)下列运算正确的是( )A.1a +1b =2a +b B.―a +ba ―b =-1C.a÷b·1b =a D.ab =a ―1b ―16.(2021四川成都中考)分式方程2―x x ―3+13―x=1的解为( )A.x=2B.x=-2C.x=1D.x=-17.(2020黑龙江齐齐哈尔中考)若关于x 的分式方程3xx ―2=m2―x +5的解为正数,则m 的取值范围为( )A.m<-10B.m≤-10C.m≥-10且m≠-6D.m>-10且m≠-68.(2022山东泰安中考)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合作2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定时间为x 天,下面所列方程中错误的是( )A.2x +xx +3=1B.2x=3x +3+×2+x ―2x +3=1D.1x +x x +3=1二、填空题(每题3分,共24分)9.(2022江苏南京鼓楼期中)请你写出一个值恒为正数的分式: .10.(2022江苏南京三十九中期中)分式2xx ―2和3x 2―2x 的最简公分母是 . 11.(2022浙江温州中考)计算:x 2+xyxy+xy ―x 2xy = .12.若不改变分式的值,使分子与分母的最高次项的符号为正,则―1―2x ―x 2―x 2+1= . 13.(2022四川内江中考)对于非零实数a,b,规定a￿b=1a―1b,若(2x-1)￿2=1,则x 的值为 .14.(2021浙江宁波镇海期末)已知1x ―1y=2,则―x+xy+y2x+7xy―2y= .15.(2022黑龙江齐齐哈尔中考)若关于x的分式方程1x―2+2x+2=x+2mx2―4的解大于1,则m的取值范围是 .16.(2022江苏盐城月考)已知ab=1,且a≠b.若P=aa+1+bb+1,Q=1a+1+1b+1,则P Q(填“>”“<”“=”“≤”或“≥”).三、解答题(共52分)17.(10分)解分式方程:(1)(2022江苏苏州中考) xx+1+3x=1;(2)(2021江苏连云港中考)x+1x―1―4x2―1=1.18.(2022江苏江阴期中)(10分)先化简―÷a2+aa2―2a+1,再从-1,0,1,2四个数中选一个恰当的数作为a的值代入求值.19.【新素材·青春仪式】(2022江苏扬州中考)(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?20.(2021四川广安中考)(10分)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:甲乙进价(元/千克)x x+4售价(元/千克)2025已知用1 200元购进甲种水果的质量与用1 500元购进乙种水果的质量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的质量不低于乙种水果质量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?21.(12分)阅读下列材料:方程x+1x=2+12有两个解,它们是x 1=2,x 2=12;关于x 的方程:x+1x =c +1c 有两个解,它们是x 1=c,x 2=1c ;x-1x=c ―x +―1x=c +x 1=c,x 2=-1c ;x+2x =c +2c 的解是x 1=c,x 2=2c ;x+3x =c +3c 的解是x 1=c,x 2=3c ;……(1)请观察上述方程与解的特征,比较关于x 的方程x+m x=c +mc (m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;(2)请利用上题的结论解关于x 的方程:x+2x ―1=a +2a ―1.答案全解全析1.A A.12―a的分母中含有字母,是分式,符合题意;B、C不是分式,不符合题意;D选项不符合AB的形式,不是分式.故选A.2.D 当a=-2时,a2-4=0,分式a+2a2―4无意义,所以D选项错误,符合题意.故选D.3.B 将x,y扩大为原来的3倍,即将x,y分别用3x,3y代替,有(3x)23x―3×3y=3x2x―3y,∴分式的值扩大为原来的3倍,故选B.4.B ∵x2+1x―1―2xx―1=x2+1―2xx―1=(x―1)2x―1=x-1,∴在“ ”中添加的运算符号为-.故选B.5.B A.1a +1b=a+bab,不符合题意;B正确;C.a÷b·1b =a·1b·1b=a b2,不符合题意;D.运算错误,不符合题意.故选B.6.A 2―xx―3―1x―3=1,2-x-1=x-3,解得x=2,检验:当x=2时,x-3=2-3=-1≠0,∴x=2是分式方程的解,故选A.7.D 去分母得3x=-m+5(x-2),解得x=m+102,∵方程的解为正数,∴m+102>0且m+102-2≠0,解得m>-10且m≠-6.故选D.8.D+×2+x―2x+3=1,整理得2x +xx+3=1或2x=1―xx+3或2x=3x+3.∴A、B、C选项均正确,故选D.9.答案不唯一.如1x2+1解析 此题是一个开放性试题,答案不唯一.10.x(x-2)解析 第一个分式的分母为x-2,第二个分式的分母分解因式为x(x-2),∴最简公分母是x(x-2).11.2解析 x 2+xyxy +xy ―x 2xy=2xy xy =2.12.x 2+2x +1x 2―1解析 原式=―(1+2x +x 2)―(x 2―1)=x 2+2x +1x 2―1.13.56解析 由题意得12x ―1―12=1,等式两边同时乘2(2x-1)得2-2x+1=2(2x-1),解得x=56,经检验,x=56是原方程的根,∴x=56.14.1解析 ∵1x―1y =2,∴y ―x xy =2,∴y-x=2xy,x-y=-2xy,∴原式=y ―x +xy2(x ―y )+7xy=2xy +xy ―4xy +7xy=3xy 3xy =1.15.m>0且m≠1解析 方程两边同时乘(x+2)(x-2)得x+2+2(x-2)=x+2m,整理得2x=2m+2,解得x=m+1,∵分式方程的解大于1,∴m+1>1,且m+1≠2,m+1≠-2,解得m>0,且m≠1,∴m 的取值范围是m>0且m≠1.16.=解析 P-Q=aa +1+bb +1―+=ab +a +ab +b ―(a +b +2)(a +1)(b +1)=2ab ―2(a +1)(b +1).∵ab=1,且a≠b,∴2ab-2=0,∴P-Q=0,∴P=Q.17.解析 (1)方程两边同乘x(x+1),得x 2+3(x+1)=x(x+1),解得x=-32.经检验,x=-32是原方程的解.(2)去分母得(x+1)2-4=x 2-1,整理得2x=2,解得x=1,经检验,x=1是分式方程的增根,故此方程无解.18.解析 ―÷a 2+a a 2―2a +1=2a ―(a ―1)a (a ―1)÷a (a +1)(a ―1)2=a +1a (a ―1)×(a ―1)2a (a +1)=a ―1a 2,因为a≠1、-1、0,所以a 只能取2,所以原式=14.19.解析 设每个小组有学生x 名,根据题意,得3603x―3604x=3,解这个方程,得x=10,经检验,x=10是原方程的根.答:每个小组有学生10名.20.解析 (1)由题意可知1 200x=1 500x +4,解得x=16,经检验,x=16是原方程的解.(2)设购进甲种水果m千克,利润为y元,则购进乙种水果(100-m)千克,由题意可知y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的质量不低于乙种水果质量的3倍,∴m≥3(100-m),解得m≥75,即75≤m<100.在y=-m+500中,-1<0,∴y随m的增大而减小,∴当m=75时,y最大,最大为-75+500=425,∴购进甲种水果75千克,乙种水果25千克才能获得最大利润,最大利润为425元.21.解析 (1)关于x的方程x+mx=c+m c(m≠0)的解是x1=c,x2=m c.验证:当x=c时,方程左边=c+mc ,方程右边=c+mc,左边=右边,∴方程成立;当x=mc 时,方程左边=mc+c,方程右边=c+mc,左边=右边,∴方程成立.故关于x的方程x+mx=c+m c(m≠0)的解为x1=c,x2=m c.(2)由关于x的方程x+2x―1=a+2a―1,得x-1+2x―1=a―1+2a―1,∴x-1=a-1或x-1=2a―1,∴x1=a,x2=a+1a―1.。

2018年苏科版八年级数学初二下册 第十章《分式》检测卷及答案 (46)

2018年苏科版八年级数学初二下册 第十章《分式》检测卷及答案 (46)

第七章 锐角三角函数 检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分) 1. cos 60°的值等于( )1A B 2.2.在Rt △ABC 中,∠C =,BC =4,sin A =,则AC =( ) A.3 B.4 C.5 D.6 3.若∠A 是锐角,且sin A =,则( )A.<∠A <B.<∠A <C.<∠A <D.<∠A <4.(2014·杭州中考)在直角三角形ABC 中,已知90C ∠=︒,40A ∠=︒,3BC =, 则AC =( )A.3sin 40︒B.3sin 50︒C.3tan 40︒D.3tan 50︒ 5.在△ABC 中,∠A :∠B :∠C =1:1:2,则::=( )A.1:1:2B. 1:1:C. 1:1:D. 1:1: 6.在Rt △ABC 中,∠C =,则下列式子成立的是( )A.sin A =sin BB.sin A =cos BC.tan A =tan BD.cos A =tan B7.如图,一个小球由地面沿着坡度的坡面向上前进了10 m ,此时小球距离地面的高度为( )A. B.25 m C.45 m D.310m第8题图8.(2014·武汉中考)如图,P A ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交P A ,PB 于C ,D ,若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( ) A.13125B.512C.1353D.13329.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目第7题图高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( ) A.350 m B.100 mC.150 mD.3100 m二、填空题(每小题3分,共24分)11.在Rt △ABC 中,∠C =90°,AB =5,AC =3,则sin B =_____. 12.在△ABC 中,若BCABAC =3,则cos A =________. 13.如图所示,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B , 且BP =2,那么PP '的长为____________. (不取近似值. 以下数据供解题 使用:sin 15°,cos 15°) 14.如图所示,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.15.如图所示,机器人从A 点,沿着西南方向,行走了42个单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________(结果保留根号). 16.如图,△ABC 的顶点都在方格纸的格点上,则_ . 17.在直角三角形ABC 中,∠A =90°,BC =13,AB =12tan B =___________.18.根据图中所给的数据,求得避雷针CD 的长约为__m (结果精确到0.01 m ).(可用计算器求,也可用下列参考 数据求:sin ≈0.682 0,sin 40°≈0.642 8, cos 43°≈0.731 4,cos 40°≈0.766 0,tan 43° ≈0.932 5,tan 40°≈0.839 1)第13题图第14题图 第15题图A第18题图三、解答题(共46分)19.(6分)计算:︒⋅︒-︒-︒+︒30tan 60tan 45cot 60cos 30sin .20.(6分)如图所示,在△ABC 中,AD 是BC 边上的高,DAC B ∠=cos tan . (1)求证:AC =BD ; (2)若121312sin ==BC C ,,求AD 的长.21.(6分)每年的5月15日是“世界助残日”.某商场门前的台阶共高出地面1.2米,为帮助残疾人便于轮椅行走,准备拆除台阶换成斜坡,又考虑安全,轮椅行走斜坡的坡角不得超过,已知此商场门前的人行道距商场门的水平距离为8米(斜坡不能修在人行道上),问此商场能否把台阶换成斜坡?(参考数据)第20题图22.(7分)如图,在一次数学课外实践活动中,小文在点C处测得树的顶端A的仰角为37°,BC=20 m,求树的高度AB.(参考数据:sin370.60≈,cos370.80≈,tan370.75≈)23.(7分)如图,在同一平面内,两条平行高速公路1l和2l间有一条“Z”型道路连通,其中AB段与高速公路1l成30°角,长为20 km;BC段与AB、CD段都垂直,长为10 km;CD 段长为30 km,求两高速公路间的距离(结果保留根号).第23题图24. (7分)如图,在小山的东侧处有一热气球,以每分钟的速度沿着仰角为60°的方向上升,20分钟后升到处,这时气球上的人发现在的正西方向俯角为45°的处有一着火点,求气球的升空点与着火点的距离.(结果保留根号)°°第24题图25.(7分)小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB 垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且.⑴求此重物在水平方向移动的距离BC;⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)参考答案一、选择题1.A 解析:应熟记特殊角的三角函数值:2.A 解析:在Rt △ABC 中,∠C =90°.∵ BC =4,sin A =,∴ AB =BC ÷sin A =5,AC==3. 3.A 解析:∵ sin 30°=,,∴ 0°<∠A <30°.故选A .4.D 解析:在Rt △ABC 中,∵90C ∠=︒,40A ∠=︒,∴ 50∠B =︒, ∴ tan tan 50ACB BC=︒=,∴ tan 503tan 50g AC BC =︒=︒. 5.B 解析:设∠A 、∠B 、∠C 的度数分别为、、2,则 =180°,解得=45°.∴ 2=90°.∴ ∠A 、∠B 、∠C 的度数分别为45°、45°、90°.∴ △ABC 是等腰直角三角形,∴ =1:1:.6.B 解析:A.sin A =,sin B =,sin A ≠sin B ,故错误; B. sin A =,cos B =,sin A =cos B ,故正确; C.tan A =,tan B =,tan A ≠tan B ,故错误; D.,tan B =,则≠tan B ,故错误.7. B 解析:设小球距离地面的高度为则小球水平移动的距离为 所以解得8.B 解析:如图,因为∠APB 所在的三角形不是直角三角形,所以考虑添加辅助线构造直角三角形.因此,连接OA ,连接BO 并延长交PA 的延长线于点F ,由切线长定理得P A =PB ,CA =CE ,DE =DB , 所以△PCD 的周长=PC +CD +PD =PC +CE +ED +PD = PC +CA +(DB +PD )=P A +PB =2P A =3r .在△BFP 与△AFO 中,因为∠F =∠F ,∠PBF =∠OAF =90°, 所以△BFP ∽△AFO ,所以3322rFB PB AF OA r ===,所以AF =23FB .在Rt △BPF 中,由勾股定理,得PF 2=PB 2+FB 2, 第8题答图 即32⎛⎝r +223FB ⎫⎪⎭=232r ⎛⎫ ⎪⎝⎭+FB 2,解得FB =185r ,所以 18125tan 352rFB APB PB r ∠===.9.B 解析:由于某同学站在离国旗旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,则目高以上旗杆的高度h 1=12×tan 30°=4(米),旗杆的高度h =h 1+1.6=1.6+4≈8.5(米).故选B .10. D 解析:如图,作AE ⊥BC 于点E .∵ ∠EAB =30°,AB =100,∴ BE =50,AE =50.∵ BC =200,∴ CE =150.在Rt △ACE 中,根据勾股定理得:AC =100.即此时王英同学离A 地的距离是100m .二、填空题11. 解析:sin B ==.12. 解析:在△ABC 中,∵ AC =3,BC =,AB =,∴=, 即,∴ △ABC 是直角三角形,且∠B =90°.∴ cos A ==.13解析:连接PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD =15°,利用sin 15°先求出PD ,乘2即得PP '. 14.48 解析:根据两直线平行,内错角相等判断. 15.(0,4+解析:过点B 作BC ⊥AO 于点C ,利用勾股定理或三角函数可分别求得AC 与OC 的长. 16解析:利用网格,从C 点向AB 所在直线作垂线,利用勾股定理得,17.125 解析:先根据勾股定理求得AC =5,再根据tan AC B AB=求出结果. 18.4.86 解析:利用正切函数分别求出BD ,BC 的长,再利用CD =BD -BC 求解.第10题答图三、解答题19.解:-1.20.解:(1)在中,有BDADB=tan,中,有ACADDAC=∠cos..costan BDACACADBDADDACB==∴∠=,故,(2)由1312sin==ACADC,可设xBDACxAD1312===,,由勾股定理求得xDC5=,,1218,12==+∴=xDCBDBC即32=x,.83212=⨯=∴AD21.解:因为所以斜坡的坡角小于,故此商场能把台阶换成斜坡.22. 解:因为tan 37°=ABBC≈0.75,BC=20 m,所以AB≈0.75×20=15(m).23. 解:如图,过点A作AB的垂线交DC延长线于点E,过点E作1l的垂线与1l,2l分别交于点H,F,则HF⊥2l.由题意知AB⊥BC,BC⊥CD,又AE⊥AB,∴四边形ABCE为矩形,∴AE=BC,AB=EC.∴DE=DC+CE=DC+AB=30+20=50(km).又AB与1l成30°角,∴∠EDF=30°,∠EAH=60°.在Rt△DEF中,EF=DE sin 30°=50×12=25(km),在Rt△AEH中,EH=AE sin 60°,所以HF=EF+HE=25+,即两高速公路间的距离为(25+km.24.解:过作于点,则.因为∠,3003m,所以300(3-1)即气球的升空点与着火点的距离为300(3-1)第23题答图25. 解:⑴过点O作OD⊥AB于点D,交A′C于点E.根据题意可知EC=DB=OO′=2,ED=BC,∴∠A′ED=∠ADO=90°.在Rt△AOD中,∵ cos A=,OA=10,∴AD=6,∴OD==8.在Rt△A′OE中,∵ sin A′=,OA′=10.∴OE=5.∴BC=ED=OD-OE=8-5=3.⑵在Rt△A′OE中,A′E==5.∴B′C=A′C-A′B′=A′E+CE-AB=A′E+CE-(AD+BD)=5+2-(6+2)=5-6.答:此重物在水平方向移动的距离BC是3米,此重物在竖直方向移动的距离B′C是(5-6)米.。

初中数学:《分式》单元测试(有答案)

初中数学:《分式》单元测试(有答案)

初中数学:《分式》单元测试一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠05.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.8.akg盐溶于bkg水,所得盐水含盐的百分比是.9.某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧天.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=时,该分式的值为0.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有,分式有(填序号).13.分式所表示的实际意义可以是.14.已知分式的值为0,则x的值是.15.若分式的值为负数,则x的取值范围是.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===,﹣===;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.三、判断正误(正确的打“√”,错误的打“×”)20.=;.(判断对错)21.==;.(判断对错)22.3x﹣2=..(判断对错)四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.25.当a取什么值时,分式的值是正数?26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).《第10章分式》参考答案与试题解析一、选择题1.下列各式①,②,③,④(此处π为常数)中,是分式的有()A.①②B.③④C.①③D.①②③④【考点】分式的定义.【分析】根据分式的定义对上式逐个进行判断,得出正确答案.【解答】解:①,③这2个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选C.【点评】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有字母.2.当x为任意实数时,下列各式中一定有意义的是()A. B.C.D.【考点】分式有意义的条件.【专题】计算题.【分析】这几个式子有意义的条件是分式有意义,即分母一定不等于零.【解答】解:A、当x=0时,分母为零,分式没有意义,故选项错误;B、当x=±1时,分母为零,分式没有意义,故选项错误;C、无论x为何值,分母都不为零,分式有意义,故选项正确;D、当x=﹣1时,分母为零,分式没有意义,故选项错误.故选C.【点评】本题考查了分式有意义的条件:分母不为零,分式有意义.3.将分式中的m、n都扩大为原来的3倍,则分式的值()A.不变B.扩大3倍C.扩大6倍D.扩大9倍【考点】分式的基本性质.【分析】根据分式的基本性质进行解答即可.【解答】解:将分式中的m、n都扩大为原来的3倍可变为==.故选A.【点评】本题考查的是分式的基本性质,熟知分式的基本性质3是解答此题的关键.4.使式子从左到右变形成立,应满足的条件是()A.x+2>0 B.x+2=0 C.x+2<0 D.x+2≠0【考点】分式的基本性质.【分析】把等式右边的式子与左边相比较即可得出结论.【解答】解:∵等式的左边=,右边=,∴x+2≠0.故选D.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.5.把分式中x的值变为原来的2倍,而y的值缩小到原来的一半,则分式的值()A.不变B.为原来的2倍C.为原来的4倍D.为原来的一半【考点】分式的基本性质.【分析】把x,y换为2x,y代入所给分式化简后和原来分式比较即可.【解答】解:新分式为:==4•,∴分式的值是原来的4倍.故选C.【点评】本题考查了分式的基本性质的应用,解决本题的关键是得到把相应字母的值扩大或缩小后新分式的值.6.不改变分式的值,使的分子和分母中x的最高次项的系数都是正数,应该是()A.B.C.D.【考点】分式的基本性质.【分析】要不改变分式的值,将分子分母中x的最高次项的系数变为正数,即要上下同乘﹣1.【解答】解:依题意得:原式=,故选D.【点评】此题利用分式的性质变形时必须注意所乘的(或所除的)整式上下相同,且不为0.二、填空题7.小明th走了skm的路,则小明走路的速度是km/h.【考点】列代数式(分式).【分析】根据题意利用路程÷时间=速度进而得出答案.【解答】解:∵小明th走了skm的路,∴小明走路的速度是:km/h.故答案为:.【点评】此题主要考查了列代数式,根据路程与速度和时间直接的关系得出是解题关键.8.akg盐溶于bkg水,所得盐水含盐的百分比是.【考点】列代数式(分式).【分析】利用盐的质量÷(盐+水)的质量可得答案.【解答】解:由题意得:×100%=,故答案为:.【点评】此题主要考查了由实际问题列出代数式,关键是正确理解题意.9.(2016春•泰兴市校级期中)某食堂有煤mt,原计划每天烧煤at,现每天节约用煤b(b<a)t,则这批煤可比原计划多烧(﹣)天.【考点】列代数式(分式).【分析】根据“多用的天数=节约后用的天数﹣原计划用的天数”列式整理即可.【解答】解:这些煤可比原计划多用的天数=实际所烧天数﹣原计划所烧天数=(﹣)天.故答案为:(﹣).【点评】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.本题的等量关系为:多用的天数=后来可用的天数﹣原计划用的天数.10.小华参加飞镖比赛,a次投了m环,b次投了n环,则小华此次比赛的平均成绩是环.【考点】列代数式(分式);加权平均数.【分析】首先根据题意得出总环数除以总次数得出即可.【解答】解:∵a次投了m环,b次投了n环,∴则小华此次比赛的平均成绩是:.故答案为:.【点评】此题主要考查了列代数式以及加权平均数,正确利用加权平均数得出是解题关键.11.将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为;当m=3时,该分式的值为0.【考点】分式的值;分式的定义;分式的值为零的条件.【分析】除法运算中,被除式为分子,除式为分母,即可写成分式的形式,要使分式的值为0,分式的分子为0,分母不能为0.【解答】解:将(3﹣m)÷(m+2)写成分式为,当m=2时,该分式的值为==;当3﹣m=0且m+2≠0,即m=3时,该分式的值为0.故答案为:,;3.【点评】考查了分式的值,分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.12.在①﹣3x、②、③x2y﹣7xy2、④﹣x、⑤、⑥、⑦其中,整式有①③④⑥⑦,分式有②⑤(填序号).【考点】分式的定义;整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在式子:①﹣3x;②;③x y﹣7xy;④﹣x;⑤;⑥;⑦中,整式有①③④⑥⑦,分式有②⑤.故答案为:①③④⑥⑦;②⑤.【点评】本题考查整式、分式的概念,要熟记这些概念.13.分式所表示的实际意义可以是如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【考点】分式的定义.【专题】开放型.【分析】根据分式的意义进行解答即可.【解答】解:本题答案不唯一,如:如果用a+20(元)表示购买笔记本的钱数,b(元)表示每本笔记本的售价,那么就表示a+20(元)可购得笔记本的本数.【点评】考查了分式的定义,本题属开放性题目,答案不唯一,只要写出的题目符合此分式即可.14.已知分式的值为0,则x的值是﹣1.【考点】分式的值为零的条件.【分析】分式等于零时:分子等于零,且分母不等于零.【解答】解:由分式的值为零的条件得|x|﹣1=0且x2+x﹣2≠0,由|x|﹣1=0,得x=﹣1或x=1,由x2+x﹣2≠0,得x≠﹣2或x≠1,综上所述,分式的值为0,x的值是﹣1.故答案为:﹣1.【点评】考查了分式的值为零的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.若分式的值为负数,则x的取值范围是x>1.5.【考点】分式的值.【分析】因为分子大于0,整个分式的值为负数,所以让分母小于0列式求值即可.【解答】解:由题意得:3﹣2x<0,解得:x>1.5.故答案为:x>1.5.【点评】考查了分式的值,分式的值为负数,则分式的分子分母异号.16.已知当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.【考点】分式的值为零的条件;分式有意义的条件.【专题】计算题.【分析】根据分式无意义可以求出a,分式值为0求出b,进而求出a+b.【解答】解:当x=﹣2时,分式无意义,即﹣2+a=0,a=2;当x=4时,分式的值为0,即b=4.则a+b=6.故当x=﹣2时,分式无意义;当x=4时,分式的值为0.则a+b=6.故答案为6.【点评】分式有意义分母不为0,分式值为0,分子为0,分母不为0.17.用分式的基本性质填空:(1)=(b≠0);(2)=;(3)=3a﹣b.【考点】分式的基本性质.【分析】(1)分式的分子、分母同乘以2b;(2)分子、分母同时乘以(x﹣2y);(3)分子、分母同时除以2a.【解答】解:(1)==.故答案是:2(a+b)b;(2)==.故答案是:(x﹣2y);(3)=3a﹣b.故答案是:2a.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.18.在括号内填上适当的整式,使下列等式成立:(1)=;(2)=.【考点】分式的基本性质.【分析】(1)根据分式的性质,分母的变化,可得分子;(2)根据分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变,分母的变化,可得分子.【解答】解:(1);(2);故答案为:a2+ab,x+y.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为0 的整式,分式的值不变.19.填空:=﹣=﹣=,﹣===﹣;(2)填空:﹣===﹣,﹣==﹣=;(3)由(1)和(2),你对于分式的分子、分母和分式本身三个位置的符号变化有怎样的猜想?写出来,与同学交流.【考点】分式的基本性质.【分析】根据分式的性质,可得分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【解答】解:(2):﹣===﹣,﹣==﹣=;(3)分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.【点评】本题考查了分式的性质,分式的负号、分子的符号、分母的符号任意改变两个,分式的值不变.三、判断正误(正确的打“√”,错误的打“×”)20.=;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断.【解答】解:分式的分子、分母同时乘以x(x≠0)可以得到.故答案应为“×”.【点评】本题考查了分式的基本性质.分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.21.==;×.(判断对错)【考点】分式的基本性质.【分析】根据分式的基本性质进行判断即可.【解答】解:根据分式的基本性质得出:原式不正确,即==错误,故答案为:×.【点评】本题考查了分式的基本性质的应用,主要考查学生的理解能力和辨析能力.22.3x﹣2=.×.(判断对错)【考点】约分.【分析】根据分式有意义的条件进而得出.【解答】解:当3x+2≠0时,3x﹣2=,∴原式错误.故答案为:×.【点评】此题主要考查了分式的基本性质,熟练根据分式性质得出是解题关键.四、解答题23.当x分别取何值时,下列分式无意义、有意义、值为0?(1);(2).【考点】分式的值为零的条件;分式有意义的条件.【分析】分式无意义时:分母等于零;分式有意义时:分母不等于零;分式等于零时:分子等于零,且分母不等于零.【解答】解:(1)当分母x=0时,分式无意义;当分母x≠0时,分式有意义;当分子x+1=0,且分母x≠0时,分式值为0;(2)当分母x﹣1=0,即x=1时,分式无意义;当分母x﹣1≠0,即x≠1时,分式有意义;当分子x+3=0且分母x﹣1≠0,即x=﹣3时,分式值为0.【点评】本题考查了分式的值为零的条件、分式有意义的条件.注意:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.24.求下列分式的值:(1),其中a=﹣2;(2),其中x=﹣2,y=2.【考点】分式的值.【分析】(1)将a=﹣2代入,列式计算即可求解;(2)先化简,再将x=﹣2,y=2代入化简后的式子,列式计算即可求解.【解答】解:(1)∵a=﹣2,∴==﹣8;(2)==﹣,∵x=﹣2,y=2,∴原式=1.【点评】本题考查了分式的值,约分.分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.25.当a取什么值时,分式的值是正数?【考点】分式的值.【分析】根据分式的值是正数得出不等式组,进而得出x的取值范围.【解答】解:∵分式的值是正数,∴或,解得a<﹣1或a>3.故当a<﹣1或a>3时,分式的值是正数.【点评】此题主要考查了分式的值以及不等式组的解法,得出分子与分母的符号是解题关键.26.不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数.(1);(2).【考点】分式的基本性质.【分析】(1)先将分母按字母a进行降幂排列,添上带负号的括号,再根据分式的符号法则,将分母的负号提到分式本身的前边;(2)先将分子、分母均按字母y进行降幂排列,并且都添上带负号的括号,再根据分式的基本性质,将分子、分母都乘以﹣1.【解答】解:(1)==;(2)==.【点评】本题考查了分式的基本性质及分式的符号法则,解题的关键是正确运用分式的基本性质.规律总结:(1)同类分式中操作可总结成口诀:“一排二添三变”,“一排”即按同一个字母的降幂排列;“二添”是把第一项系数为负号的分子或分母添上带负号的括号;“三变”是按分式符号法则把分子与分母的负号提到分式本身的前边.(2)分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.27.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数.(1);(2).【考点】分式的基本性质.【分析】(1)先找出各式分子与分母的分母的公因式,再根据分式的基本性质进行解答即可;(2)把分子与分母同时乘以100即可得出结论.【解答】解:(1)分式的分子与分母同时乘以6得,原式=.(2)分式的分子与分母同时乘以100得,原式=.【点评】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的数(或整式),分式的值不变.28.不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数:(1);(2).【考点】分式的基本性质.【分析】(1)把分式的分子、分母同时乘以10即可得出结论;(2)把分式的分子、分母同时乘以100,再同时除以5即可.【解答】解:(1)分式的分子、分母同时乘以10得,=;(2)分式的分子、分母同时乘以100得,==.【点评】本题考查的是分式的基本性质,熟知分式的分子、分母同时乘以一个不为0的数,分式的值不变是解答此题的关键.。

八年级数学分式测试题

八年级数学分式测试题

八年级《分式》复习达标检测一、选择题(每小题3分,共30分)1、下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。

A 、2B 、3C 、4D 、5 2、计算m n n m n m m 222+--+的结果是( ).A 、 m n n m 2+-B 、m n n m 2++C 、 m n n m 23+-D 、mn n m 23++3、函数xxy 21-=中自变量x 的取值范围是: A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0D 、x 21<且x ≠0 4、下列分式中,最简分式是:A 、)1(21+-x xB 、2242y x y x --C 、24212+++x x xD 、223x x x +5、根据分式的基本性质,分式b a a--可变形为: A 、ba a--B 、b a a +C 、ba a --D 、ba a+-6、如果把分式yx x+2中的x 和y 都扩大3倍,那么分式的值 A 、扩大3倍 B 、缩小3倍C 、缩小6倍D 、不变7、若分式方程()()5812-=-+x a a x 的解是51-=x ,则a 等于( )A .65 B .5 C .65- D .5- 8、下列分式一定有意义的是( ).(A )x x 2+1 (B )x+2x 2 (C )22--x x (D )x 2x+39、如果分式121-a 的值是正数,那么a 的取值范围是( ) 班 姓 考试密 封 线 内 不 要 答 卷………………………………………………装………………………………订………………………………线………………………………(A )a>2 (B )a ≥12 (C )a <12 (D )a>1210、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。

苏科版八年级下学期数学《分式》章节测试题(含解析)

苏科版八年级下学期数学《分式》章节测试题(含解析)

苏科版八年级下学期数学《分式》章节测试题(含解析)一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣22.若分式,则分式的值等于()A.﹣B.C.﹣D.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±24.已知a2+b2=6ab,则的值为()A.B.C.2 D.±25.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)46.在,,,,中分式的个数有()A.1个B.2个C.3个D.4个7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或38.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.= C.=D.=9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠110.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2二.填空题(共8小题)11.计算:﹣=.12.分式方程的解是.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.14.已知a>b>0,a2+b2=3ab,则的值为.15.当a=2016时,分式的值是.16.已知关于x的方程的解是负数,则m的取值范围为.17.若分式方程的解为x=0,则a的值为.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.20.化简:(a+1﹣)•.21.先化简,再求值:(﹣)+,其中a=2,b=.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案与试题解析一.选择题(共10小题)1.若分式的值为0,则()A.x=﹣2 B.x=0 C.x=1 D.x=1或﹣2【分析】根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.【解答】解:∵分式的值为0,∴,解得x=1.故选:C.【点评】本题考查的是分式的值为0的条件,即分式值为零的条件是分子等于零且分母不等于零,根据此条件列出关于x的不等式组是解答此题的关键.2.若分式,则分式的值等于()A.﹣ B.C.﹣ D.【分析】根据已知条件,将分式整理为y﹣x=2xy,再代入则分式中求值即可.【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故答案为B.【点评】由题干条件找出x﹣y之间的关系,然后将其整体代入求出答案即可.3.若关于x的分式方程无解,则m的值为()A.0 B.2 C.0或2 D.±2【分析】根据解分式方程的方法和关于x的分式方程无解,可以求得相应的m的值,本题得以解决.【解答】解:方程两边同乘以x,得x﹣m=mx﹣x解得,x=∵关于x的分式方程无解,∴x=0或2﹣m=0,解得m=0或m=2,故选C.【点评】本题考查分式方程的解,解题的关键是明确分式方程什么时候无解.4.已知a2+b2=6ab,则的值为()A.B.C.2 D.±2【分析】首先由a2+b2=6ab,即可求得:(a+b)2=8ab,(a﹣b)2=4ab,然后代入即可求得答案.【解答】解:∵a2+b2=6ab,∴a2+b2+2ab=8ab,a2+b2﹣2ab=4ab,即:(a+b)2=8ab,(a﹣b)2=4ab,a+b=±2,a﹣b=±2,∴当a+b=2,a﹣b=2时,=;当a+b=2,a﹣b=﹣2时,=﹣;当a+b=﹣2,a﹣b=2时,=﹣;当a+b=﹣2,a﹣b=﹣2时,=.故选:B.【点评】本题主要考查完全平方公式.注意熟记公式的几个变形公式,还要注意整体思想的应用.5.分式,,的最简公分母是()A.(a2﹣1)2B.(a2﹣1)(a2+1)C.a2+1 D.(a﹣1)4【分析】利用最简公分母就是各系数的最小公倍数,相同字母或整式的最高次幂,所有不同字母或整式都写在积里求解即可.【解答】解:=,,=,所以分式,,的最简公分母是(a﹣1)2(a+1)2.即(a2﹣1)2故选:A.【点评】本题主要考查了最简公分母,解题的关键是熟记最简公分母的定义.6.在,,,,中分式的个数有()A.1个 B.2个 C.3个 D.4个【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式.【解答】解:分母不含字母,不是分式;是分式;是分式;π是数字不是字母,不是分式,是分式.故选C.【点评】本题主要考查的是分式的定义,掌握分式的定义是解题的关键.7.若分式的值为0,则x的值为()A.2 B.﹣2 C.2或﹣2 D.2或3【分析】分式值为零的条件是分子等于零且分母不等于零.【解答】解:∵分式的值为0,∴|x|﹣2=0.解得:x=±2.当x=2时,x2﹣4x+4=0,分式无意义,当x=﹣2时,x2﹣4x+4=16≠00,分式有意义.∴x的值为﹣2.故选:B.【点评】本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.8.某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是()A.=B.=C.=D.=【分析】首先根据行程问题中速度、时间、路程的关系:时间=路程÷速度,用列车提速前行驶的路程除以提速前的速度,求出列车提速前行驶skm用的时间是多少;然后用列车提速后行驶的路程除以提速后的速度,求出列车提速后行驶s+50km用的时间是多少;最后根据列车提速前行驶skm和列车提速后行驶s+50km时间相同,列出方程即可.【解答】解:列车提速前行驶skm用的时间是小时,列车提速后行驶s+50km用的时间是小时,因为列车提速前行驶skm和列车提速后行驶s+50km时间相同,所以列方程是=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程问题,解答此类问题的关键是分析题意找出相等关系,(1)在确定相等关系时,一是要理解一些常用的数量关系和一些基本做法,如行程问题中的相遇问题和追击问题,最重要的是相遇的时间相等、追击的时间相等.(2)列分式方程解应用题要多思、细想、深思,寻求多种解法思路.9.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是()A.k>或k≠1 B.k>且k≠1 C.k<且k≠1 D.k<或k≠1【分析】首先根据解分式方程的步骤,求出关于x的分式方程﹣=1的解是多少;然后根据分式方程的解为负数,求出k的取值范围即可.【解答】解:由﹣=1,可得(x+k)(x﹣1)﹣k(x+1)=x2﹣1,解得x=1﹣2k,∵1﹣2k<0,且1﹣2k≠1,1﹣2k≠﹣1,∴k>且k≠1.故选:B.【点评】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.10.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.二.填空题(共8小题)11.计算:﹣=.【分析】同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减;再分解因式约分计算即可求解.【解答】解:﹣===.故答案为:.【点评】考查了分式的加减法,注意通分是和约分是相反的一种变换.约分是把分子和分母的所有公因式约去,将分式化为较简单的形式;通分是分别把每一个分式的分子分母同乘以相同的因式,使几个较简单的分式变成分母相同的较复杂的形式.12.分式方程的解是x=﹣1.【分析】根据解分式方程的方法可以求得分式方程的解,记住最后要进行检验,本题得以解决.【解答】解:方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.13.某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是.【分析】先求得小王每小时分拣的件数,然后根据小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同列方程即可.【解答】解:小李每小时分拣x个物件,则小王每小时分拣(x+8)个物件.根据题意得:.故答案为:.【点评】本题主要考查的是分式方程的应用,根据找出题目的相等关系是解题的关键.14.已知a>b>0,a2+b2=3ab,则的值为.【分析】先依据完全平方公式得到(a+b)2=5ab,(a﹣b)2=ab,然后由=求解即可.【解答】解:∵a2+b2=3ab,∴(a+b)2=5ab,(a﹣b)2=ab.∵a>b>0,∴>0.∴===.故答案为:.【点评】本题主要考查的是求分式的值,依据完全平方公式求得=是解题的关键.15.当a=2016时,分式的值是2017.【分析】首先化简分式,然后把a=2016代入化简后的算式,求出算式的值是多少即可.【解答】解:当a=2016时,=﹣===a+1=2016+1=2017.故答案为:2017.【点评】此题主要考查了分式求值问题,要熟练掌握,求分式的值可以直接代入、计算.如果给出的分式可以化简,要先化简再求值.16.已知关于x的方程的解是负数,则m的取值范围为m>﹣8且m≠﹣4.【分析】求出分式方程的解x=﹣,得出﹣<0,求出m的范围,根据分式方程得出﹣≠﹣2,求出m,即可得出答案.【解答】解:,2x﹣m=4x+8,﹣2x=8+m,x=﹣,∵关于x的方程的解是负数,∴﹣<0,解得:m>﹣8,∵方程,∴x+2≠0,即﹣≠﹣2,∴m≠﹣4,故答案为:m>﹣8且m≠﹣4.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出﹣<0和﹣≠﹣2,题目具有一定的代表性,但是有一定的难度.17.若分式方程的解为x=0,则a的值为5.【分析】根据方程的解的定义,把x=0代入方程即可得到一个关于a的方程,从而求得a的值.【解答】解:把x=0代入方程得:=1,解得:a=5,故答案是:5.【点评】解题关键是要掌握方程的解的定义,由已知解代入原方程得到新方程,然后解答.18.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.【分析】根据题意,易知倒出的水的规律,第n次倒出的水=,然后从1升水中逐次减去每一次倒的水,再进行计算即可.【解答】解:根据题意可知第一次倒出:,第二次倒出:,第三次倒出:,…第n次倒出:,∴第10次倒出:,∴倒了10次后容器内剩余的水量=1﹣(++…+)=1﹣(+﹣+﹣+…+﹣)=1﹣(1﹣)=.故答案是.【点评】本题考查了分式的混合运算,解题的关键是注意寻找规律,如:第n次倒出:;以及=﹣.三.解答题(共9小题)19.先化简,再求值:﹣÷,其中x=﹣1.【分析】先化简分式,再把x=﹣1代入求解即可.【解答】解:﹣÷=﹣•,=﹣,=,当x=﹣1时原式=.【点评】本题主要考查了分式的化简求值,解题的关键是正确的化简.20.化简:(a+1﹣)•.【分析】先对括号内的式子进行化简,再根据分式的乘法进行化简即可解答本题.【解答】解:(a+1﹣)•====2a﹣4.【点评】本题考查分式的混合运算,解题的关键是明确分式的混合运算的计算方法.21.先化简,再求值:(﹣)+,其中a=2,b=.【分析】先对所求式子进行化简,然后根据a=2,b=可以求得化简后式子的值,本题得以解决.【解答】解:(﹣)+===,当a=2,b=时,原式=.【点评】本题考查分式的化简求值,解题的关键是会对所求的式子化简并求值.22.A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.【分析】根据题意,可以设出甲、乙的速度,然后根据题目中的关系,列出相应的方程,本题得以解决.【解答】解:设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,解得,x=60,经检验,x=60是分式方程的根,则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.【点评】本题考查分式方程的应用,解题的关键是明确题意,找出所求问题需要的条件,发现题目中的数量关系,列出相应的方程.23.某商店用1050元购进第一批某种文具盒,很快卖完.又用1440元购进第二批该种文具盒,但第二批每只文具盒的进价是第一批进价的1.2倍,数量比第一批多了10只.(1)求第一批每只文具盒的进价是多少元?(2)卖完第一批后,第二批按24元/只的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的文具盒全部按同一标准一次性打折销售,但要求这批文具盒利润不得少于288元,问最低可打几折?【分析】(1)设第一批文具盒的进价是x元,则第二批的进价是每只1.2x元,根据两次购买的数量关系建立方程求出其解即可;(2)设最低可以打m折,根据这批文具盒利润不得少于288元列出一元一次不等式求解.【解答】解:(1)设第一批每只文具盒的进价是x元.根据题意得:,解之得x=15,经检验,x=15是方程的根答:第一批文具盒的进价是15元/只.(2)设最低可打m折(24﹣15×1.2)××+(24×﹣15×1.2)××≥288,m≥8,答:最低可打8折.【点评】本题考查了列分式方程解实际问题的运用,列一元一次不等式解实际问题的运用,解答时找到题意中的等量关系及不相等关系建立方程及不等式是解答的关键.24.“五一”期间,我市某商场举行促销活动,活动期间规定:商场内所有商品按标价的80%出售;同时,当顾客在该商场消费满一定金额后,按如下方案获得相应金额的奖券:消费金额p(元)的范围200≤p<400400≤p<500500≤p<700700≤p<900…获得奖券金额(元)3060100130…根据促销方法,顾客在该商场购物可获得双重优惠.例如,购买标价为450元的商品,则消费金额为450×0.8=360(元),获得优惠额为:450×0.2+30=120(元).设购买商品的优惠率=.试问:(1)购买一件标价为800元的商品,顾客得到的优惠率是多少?(2)若一顾客购买了一套西装,得到的优惠率为,已知该套西装的标价高于700元,低于850元,该套西装的标价是多少元?【分析】(1)由800元×80%得出消费金额,再根据表中规定应享受100元优惠.则根据题目提供的优惠计算方法即可求出优惠额,从而得到优惠率;(2)因为西服标价低于850,所以其消费额最大为850×0.8=680(元),低于700元,因此获得的奖券金额为100元,设西服标价x元,根据题意可列出方程=,解方程即可.【解答】解:(1)消费金额为800×0.8=640(元),获得优惠额为:800×0.2+100=260(元),所以优惠率为=0.325=32.5%;(2)设西服标价x元,根据题意得=,解之得x=750经检验,x=750是原方程的根.答:该套西装的标价为750元.【点评】本题考查了分式方程的应用,列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.要注意题中给出的判断条件.此题关键是套用优惠率的公式.25.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y (km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h(1)求甲车的速度;(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.【分析】(1)根据函数图象可知甲2小时行驶的路程是(280﹣120)km,从而可以求得甲的速度;(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.【解答】解:(1)由图象可得,甲车的速度为:=80km/h,即甲车的速度是80km/h;(2)相遇时间为:=2h,由题意可得,=,解得,a=75,经检验,a=75是原分式方程的解,即a的值是75.【点评】本题考查分式方程的应用、函数图象,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)先求出甲款型的利润,乙款型前面销售一半的利润,后面销售一半的亏损,再相加即可求解.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.27.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【分析】(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.(2)关系式为:99≤A款汽车总价+B款汽车总价≤105.(3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.【点评】本题考查分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.。

苏科版八年级数学下册第10章 分式 综合测试卷(B)含答案

苏科版八年级数学下册第10章 分式 综合测试卷(B)含答案

第十单元 分式 综合测试卷(B)一、选择题(母题2分,共20分)1.下列分式222222155()4253()22b c x y a b a b a b a y x a b a b b a-+----+--、、、、,其中最简分式的个数是 ( )A .1个B .2个C .3个D .4个2.下列分式约分正确的是 ( )A .632x x x =B .0x y x y +=+C .21x y x xy x +=+D .222142xy x y = 3.若1,2x y =-=,则2221648x x y x y---的值等于 ( ) A .117-B .117C .116D .1154.当3a =时,代数式 213(1)24a a a --÷--的值为 ( )A .5B .一1C .5或一1D .05.计算2322()n a b - 与333()2n a b-的结果 ( ) A .相等 B .互为倒数 C .互为相反数 D .以上都不对6.无论x 取什么数,总是有意义的分式是 ( )A .221x x + B .21x x + C .331x x + D .25x x - 7.若不论x 取何实数时,分式22a x x a -+总有意义,则a 的取值范围是 ( )A .a ≥1B .a >1C .a ≤1D .a <18.下列各式的变形中,不正确的是 ( )A .a b a b c c ---=-B .b a a b c c --=-C .()a b a b c c -++=-D .a b a b c c--+=- 9.一水池有甲、乙两根进水管.两管同时开放6小时可以将水池注满水.如果单开甲管5 小时后,两管同时开放,还需3小时才能注满水池,那么单独开放甲管注满水池需( )A .7.5小时B .10小时C .12.5小时D .15小时10.为保证某高速公路在2021年4月底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项任务比规定时间多用10天,乙队单独完成这项任务比规定时间多用40天,如果甲、乙两队合作,那么可比规定时间提前14天完成任务.若设规定时间为x 天,由题意列出的方程是 ( )A .111104014x x x +=--+B .111104014x x x +=++- C . 111104014x x x -=++- D .111101440x x x +=-+- 二、填空题(每题2分,共20分)11.下列各式中11152235a n a a b y m b zπ++-、、、、、中分式有 个. 12·当a 时,分式123a a -+有意义. 13.若分式33x x --的值为0,则x = . 14·若41(2)(1)21a m n a a a a -=++-+-,则m = ,n = . 15·若最新x 的分式方程2133m x x =+--有增根,则m = . 16·当x = 时,52343x x -+与的值互为倒数. 17.若a :b :c =1:2:3,则33a b c a b c +--+= . 18·已知0a b a b +=,则ab ab的值为 . 19.某同学从家去学校上学的速度为a ,放学回家时的速度是b ,则该同学上学、放学的平均速度为 .20.设A 、B 、C 为三个连续的正偶数,若A 的倒数与C 的倒数的2倍之和等于B 的倒数的3倍.设B 数为x ,则所列方程是 .三、解答题(共60分)21.(本题12分)计算.2421(1)422x x x ++-+-; 5323()32y xy x y y x÷;22(3)(1)b a a b a b ÷--+; 211(4)()1211x x x x x x ++÷--+-22.(本题8分)解下列方程.54410(1)1236x x x x -+=--- 2324(2)111x x x +=+--23.(本题6分)先化简,再求值:222412)4422a a a a a a--÷-+--,其中a 是方程23100x x +-= 的根24.(本题6分)有这样一道题:“计算2221112x x x x x x x-+-÷--+的值,其中x =2 014”·小明 把“x =2 014,,错抄成“x =2 410”,但他的计算结果也正确.你能说明这是为什么吗?25.(本题6分)已知2113 xx x =-+,求2421xx x++值.26.(本题10分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30 天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?27.(本题12分)某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.(1)已知每辆A型汽车所装计算机的台数是B型汽车的34,求A、B两种型号的汽车各能装计算机多少台?(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400 元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆? 总运费为多少元?参考答案—、1.A 2.C 3.D 4.B 5.C 6.A 7.B 8.A 9.B 10.B二、11.3 12.≠32-13.一3 14.3 1 15.2 16.3 17.一2 18.一1 19.2ab a b + 20.12322x x x+=-+ 三、21.(1)12x + (2)2x y xy - (3)1a b- (4)1x x - 22.(1)2x =,为增根,原方程无解(2)1x =,为增根,原方程无解. 23.原式2(3)322a a a a ++==∵a 是方程23100x x +-=∴2310a a += ∴原式=1052= 24.原式=2(1)(1)0(1)(1)1x x x x x x x -+⨯-=+--, ∵原式化简以后的结果中不含有x ,∴结果与x 的值无关....小明虽然抄错了x 的值,但结果也正确.25.由2113x x x =-+得21x x x -+,进而14x x +=,求得22114x x+=,2421115x x x =++ 26.设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x +10)天,由题意,得453010x x=+,解得:20x =.经检验,x =20是原方程的解,∴x +10=30(天) 答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天; (2)设甲队至少再单独施工a 天,由题意,得3232303020a +≥⨯,解得:a ≥3. 答:甲队至少再单独施工3天. 27.解:(1)设B 型汽车每辆可装计算机x 台,则A 型汽车每辆可装计算机34x 台.依题意得27027030134x x +=+解得:x =60. 经检验,x =60是原方程的解.则34x =45(台). 即A 型汽车每辆可装计算机45台,B 型汽车每辆可装计算机60台.(2)若同时用A 、B 两种型号的汽车运送,设需要用A 型汽车y 辆,则需B 型汽车(y+1)辆.根据题意,得45y+60(y+1)=270.解得y =2.所以需A 型汽车2辆,需B 型汽车3辆.此 时总运费为350×2+400×3=1900(元).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下学期分式 综合测试卷
一、选择题(母题2分,共20分)
1.下列分式222222155()4253()22b c x y a b a b a b a y x a b a b b a
-+----+--、、、、,其中最简分式的个数是 ( )
A .1个
B .2个
C .3个
D .4个
2.下列分式约分正确的是 ( )
A .632x x x =
B .0x y x y +=+
C .21x y x xy x +=+
D .222142
xy x y = 3.若1,2x y =-=,则2221648x x y x y
---的值等于 ( ) A .117-
B .117
C .116
D .115
4.当3a =时,代数式 213(1)24a a a --÷--的值为 ( )
A .5
B .一1
C .5或一1
D .0
5.计算2
322()n a b - 与3
33()2n a b
-的结果 ( ) A .相等 B .互为倒数 C .互为相反数 D .以上都不对
6.无论x 取什么数,总是有意义的分式是 ( )
A .
221x x + B .21x x + C .331x x + D .25x x
- 7.若不论x 取何实数时,分式22a x x a -+总有意义,则a 的取值范围是 ( )
A .a ≥1
B .a >1
C .a ≤1
D .a <1
8.下列各式的变形中,不正确的是 ( )
A .a b a b c c ---=-
B .b a a b c c --=-
C .()a b a b c c -++=-
D .a b a b c c
--+=- 9.一水池有甲、乙两根进水管.两管同时开放6小时可以将水池注满水.如果单开甲管5 小时后,两管同时开放,还需3小时才能注满水池,那么单独开放甲管注满水池需
( )
A .7.5小时
B .10小时
C .12.5小时
D .15小时
10.为保证某高速公路在2014年4月底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项任务比规定时间多用10天,乙队单独完成这项任务比规定时间多用40天,如果甲、乙两队合作,那么可比规定时间提前14天完成任务.若设规定时间为x 天,由题意列出的方程是 ( )
A .111104014x x x +=--+
B .111104014
x x x +=++- C . 111104014x x x -=++- D .111101440
x x x +=-+- 二、填空题(每题2分,共20分)
11.下列各式中11152235a n a a b y m b z
π++-、
、、、、中分式有 个. 12·当a 时,分式123a a -+有意义. 13.若分式33
x x --的值为0,则x = . 14·若41(2)(1)21
a m n a a a a -=++-+-,则m = ,n = . 15·若关于x 的分式方程
2133
m x x =+--有增根,则m = . 16·当x = 时,52343
x x -+与的值互为倒数. 17.若a :b :c =1:2:3,则33a b c a b c +--+= . 18·已知0a b a b +=,则ab ab
的值为 . 19.某同学从家去学校上学的速度为a ,放学回家时的速度是b ,则该同学上学、放学的
平均速度为 .
20.设A 、B 、C 为三个连续的正偶数,若A 的倒数与C 的倒数的2倍之和等于B 的倒数
的3倍.设B 数为x ,则所列方程是 .
三、解答题(共60分)
21.(本题12分)计算.
2421(1)422x x x ++-+-; (÷;
22(3)
(1)b a a b a b ÷--+; 211(4)()1211
x x x x x x ++÷--+-
22.(本题8分)解下列方程.
54410(1)
1236x x x x -+=--- 2324(2)111
x x x +=+--
23.(本题6分)先化简,再求值:222412)4422a a a a a a
--÷-+--,其中a 是方程23100x x +-= 的根
24.(本题6分)有这样一道题:“计算2221112x x x x x x x
-+-÷--+的值,其中x =2 014”·小明 把“x =2014,,错抄成“x =2410”,但他的计算结果也正确.你能说明这是为什么吗?
25.(本题6分)已知
2
1
13 x
x x =
-+,求
2
421
x
x x
++
值.
26.(本题10分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30 天的工作量相同.
(1)甲、乙两队单独完成此项任务各需多少天?
(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队继续施工,为
了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?
27.(本题12分)某县向某贫困山区赠送一批计算机,首批270台将于近期起运.经与某物流公司联系,得知用A型汽车若干辆刚好装完,用B型汽车不仅可少用1辆,而且有一辆车还差30台才刚好装满.
(1)已知每辆A型汽车所装计算机的台数是B型汽车的3
4
,求A、B两种型号的汽车
各能装计算机多少台?
(2)在(1)中条件下,已知A型汽车的运费是每辆350元,B型汽车的运费是每辆400 元,若同时用这两种型号的汽车运送这批计算机,其中B型汽车比A型汽车多用1辆,并且刚好装满运完,按这种方案运输,则A、B两种型号的汽车各需多少辆? 总运费为多少元?
参考答案
—、1.A 2.C 3.D 4.B 5.C 6.A 7.B 8.A 9.B 10.B
二、11.3 12.≠32
-
13.一3 14.3 1 15.2 16.3 17.一2 18.一1 19.2ab a b
+ 20.12322x x x +=-+ 三、21.(1)12x +
(2)2x - (3)1a b
- (4)1
x x - 22.(1)2x =,为增根,原方程无解(2)1x =,为增根,原方程无解. 23.原式2(3)322
a a a a ++==∵a 是方程23100x x +-=∴2310a a += ∴原式=1052
= 24.原式=2(1)(1)0(1)(1)1
x x x x x x x -+⨯-=+--, ∵原式化简以后的结果中不含有x ,∴结果与x 的值无关....小明虽然抄错了x 的值,但结果也正确.
25.由2113x x x =-+得21x x x -+,进而14x x +=,求得22114x x +=,2421115
x x x =++ 26.设乙队单独完成此项任务需要x 天,则甲队单独完成此项任务需要(x +10)天,由题意,得453010x x
=+,解得:20x =.经检验,x =20是原方程的解,∴x +10=30(天) 答:甲队单独完成此项任务需要30天,乙队单独完成此项任务需要20天; (2)设甲队至少再单独施工a 天,由题意,得3232303020
a +≥⨯,解得:a ≥3. 答:甲队至少再单独施工3天. 27.解:(1)设B 型汽车每辆可装计算机x 台,则A 型汽车每辆可装计算机
34x 台.依题意得
27027030134
x x +=+解得:x =60. 经检验,x =60是原方程的解.则34x =45(台). 即A 型汽车每辆可装计算机45台,B 型汽车每辆可装计算机60台.
(2)若同时用A 、B 两种型号的汽车运送,设需要用A 型汽车y 辆,则需B 型汽车(y+1)辆.根据题意,得45y+60(y+1)=270.解得y =2.所以需A 型汽车2辆,需B 型汽车3辆.此 时总运费为350×2+400×3=1900(元).。

相关文档
最新文档