第五章youjihuaxue
有机化学 第五章旋光异构
旋光性
旋光仪(polarimeter)
旋光性的表示方法: • 旋光性--能旋转偏振光的振动方向的性质叫旋光性
• 旋光性物质(或叫光活性物质)--具有旋光性的物质.
• 右旋物质--能使偏振光的振动方向向右旋的物质. 通常用 “d” 或 “+” 表示右旋. • 左旋物质--能使偏振光的振动方向向左旋的物质. 通常用 “ l” 或 “-” 表示左旋. l • 旋光度-- 偏振光振动方向的旋转角度.用“”表 示.
(2)锲形式——比较直观 •将手性碳原子表示在纸面上,用实线表示在纸面 上的键,虚线表示伸向纸后方的键,用锲形实线表 示伸向纸前方的键。
2、构型的标记 (1)D—L法
(相对标记法)
甘油醛
D-(+)-甘油醛
L-(-)-甘油醛
目前,糖类、氨基酸的构型仍采用D、L标 记法,适合含一个C*的分子构型。
(2) R-S标记法
(补充). 螺环化合物
• 类似于丙二烯型化合物
a b
H HOOC
c a b ,c d 时, d 存在对映体
CH3 COOH
例2:联苯(邻位上有较大取代基时):
两个苯环不在一个平面 • 如果两个苯环上的取代基分布不对称,整个分子就具有 手性.(6,6’-二硝基-2,2’-联苯二甲酸)
HOOC
NO2
构造异构:分子式相同而分子中原子或 基团连接顺序不同 立体异构:分子中原子的结合顺序相同 而原子或基团在空间相对位置不同 对映异构:分子式和构造式相同,构型 不同并呈镜象对映关系的立体异构现象 称为对映异构,又称旋光异构或光学异 构。
一、 手性和对映体
生活中的对映体 (1)-镜象
沙漠胡杨
生活中的 对映体(2) -镜象
有机化学-第五章
5.1 饱和烃的结构和分类 5.2 链烷烃的物理性质 5.3 烷烃的化学性质
卤代反应的机理 烷烃的其他取代反应 烷烃的氧化反应 裂解及异构反应
5.4 环烷烃的化学性质
烃:分子中只含碳、氢两种元素的化合物 统称为碳氢化合物,简称为烃。烃是有机化合 物最基本的化合物,也是有机化学工业的基础 原料。
硝化反应产物复杂,除取代反应外,还有烃分子断链的 反应。 硝化反应属自由基型反应机理:
开始的· NO2来自硝酸中,· NO2是个含奇数电子的中性物种, 是一个自由基。 硝化产物作为工业溶剂,如用硝基戊烷作为纤维素酯和 合成树脂的溶剂;硝基甲烷是有机合反应的重要原料。
二. 氯磺酰化反应
烃分子中的氢被氯磺酰基(-SO2Cl)取代的反应称为 氯磺酰化反应。 常用的氯磺酰化试剂有:硫酰氯(SO2Cl2)或氯和二 氧化硫。
5469.2
2,2-二甲基己 烷
5462.1
2,2,3,3-四 甲基丁烷
5455.4
烃氧化反应的产物都是 CO2 和 H2O ,燃烧焓 -Δ Hθ 值反映了反应物的焓 Hθ反应物,即反映了异构体的 稳定性: 正构CnH2n+2 比 异构CnH2n+2 能量高,不稳定 在CnH2n+2中:支键数增多,HØ值小,稳定 每一摩尔 -CH2- 的 -ΔHθ ≈ 660 kJ· mol-1 烷烃的最大用途就是作为燃料,是目前人类的主要能 源。 合理利用现有能源,开发新的能量是人类生存面临的 主要问题之一。
可用反应--能量图表示这一反应过程:
在这一反应过程中,C 原子的杂化状态是由 Csp3 向 Csp2 的转变过程,中间体· CH3的 C 的构型是 sp2 杂化, 即平面构型。 生成的· CH3中间体的能量很高,极活泼, 很快与Cl2反应:
有机化学:第五章 环烷烃
? CH3 C CH3 CHC3H3
CH3 H3C CHC3H3
e, a构象
e, a构象
33
1,3-二取代环己烷的构象
CH3
CH3
CH3 CH3
CH3 CH3
e, a构象
CH3 CH3
H3C
CH3
a, a构象
e, e构象,优势
34
小结:
1°环己烷有两种极限构象(椅式和船式),椅式为优势构象。 2°一元取代基主要以e键和环相连。 3°多元取代环己烷最稳定的构象是e键上取代基最多的构象。 4°环上有不同取代基时,大的取代基在e键上构象最稳定。
1885年,Baeyer提出了张力学说(strain theory):
a. 形成环的C原子都在同一平面上,并排成正多 边形; b. 在不同环中C-C键之间的夹角小于或大于正四 面体所要求的角度:109°28′; c. 环中C-C键键角的变形会产生张力,键角变形 的程度越大,张力越大,环的稳定性低,反应活 性越大。
+
Cl2
+
Cl2
+
Cl2
+
Br2
+
Cl2
hv hv 300 oC hv hv
Cl Cl
Cl Br
Cl
10
氧化反应
KMnO4
O + CO2H
O3
( Z)
Zn/H2O
OHC
CHO
11
中小环的加成反应
加氢反应
+
H2
+
H2
+
H2
Ni 80 oC
Ni 100 oC
Pt 300 oC
有机化学 第5章 芳烃
Cl
催化剂: 催化剂:FeCl3 、FeBr3 、AlCl3等 卤素活性: 卤素活性:F > Cl > Br > I 芳烃活性: 芳烃活性:烷基苯 > 苯 > 卤代苯
Cl
Cl Cl2 FeCl3
39% %
Cl Cl
Cl Cl
Cl 55 %
6%
CH3
CH3 Cl
Cl2
CH3 Cl
CH3
FeCl3 ,25℃
H H 120° H o.140nm 120° H H H
0.140nm
价键理论: ② 价键理论:
苯分子的轨道结构
氢化热低(208.5< 119.3),苯具有特殊稳定性。 ),苯具有特殊稳定性 氢化热低(208.5<3×119.3),苯具有特殊稳定性。
苯的结构式: 苯的结构式:
或
或
苯同系物(单环芳烃) 5.2 苯同系物(单环芳烃)异构和命名
Cl Cl Cl Cl Cl Cl
(B)加氯
3 Cl2
紫外光
只有γ异构体有杀虫效果: 六六六有八种异构体,只有γ异构体有杀虫效果:
Cl Cl Cl Cl Cl
Cl
(3)氧化反应
(苯环本身的氧化) 苯环本身的氧化
O
2
空 9 O2(空气)
V2O5 400-500 ℃
2
O 70% O
4 CO2 4 H2O
O , N(CH3)2 ,
R,
NH2 ,
Cl ,
OH ,
Br ,
OCH3 ,
I, C6H5
NHCOCH3
OCOCH3 ,
间位定位基( (2)第二类定位基 间位定位基(间位异构体 )第二类定位基—间位定位基 > 40%) ) 使苯环钝化, 使苯环钝化,并使新引进的取代基主要进入 其间位。例如 例如: 其间位 例如:
第5章 自由基反应(有机化学)
本章内容 5.1 自由基的产生 5.2 自由基的结构及稳定性 5.3 烷烃的自由基取代反应 5.4 不饱和烃的α-H卤代 5.5 自由基加成反应 5.6 烷烃的热裂
5.1 自由基的产生
自由基(free radicals),又称游离基,是化学键发 生均裂时产生的含未成对电子的中间体。
烷烃在光照下可与卤素发生反应生成卤代烃。烷烃的取 代反应又称卤代反应。
5.3.1 甲烷的氯化反应
CH4 +
光照 Cl2 或高温 CH3Cl +
CH3Cl + Cl2
HCl
H= 100 kJ.mol-1
混合物
CH2Cl2 + HCl
CH2Cl2 Cl2
CHCl3
HCl
CHCl3 Cl2
CCl4
HCl
5.3.2 氯代反应的机理
碳为sp2
H CH
H
p轨道 三个σ键
R.
烷基自由基(R·)的中心碳原子大多数也是 sp2杂化,单电子占据未杂化的p轨道上,其 结构与甲基自由基类似。
5.2.2 自由基的稳定性
碳自由基的稳定性为:3o2o1o ·CH3。
原因
(1)键能:键能越大,断裂此键需要提供的能量越高, 自由基的内能越高,稳定性越差。
作业
1 ; 3(1, 2, 3, 4, 6)
O
CH3CH
CH2 +
CH2 C N
Br
CH2 C
O
h , CCl4 (C6H5COO)2
CH2CH Br
CH2 +
O CH2 C
NH CH2 C
O
N-溴代丁二酰亚胺(简称NBS)
有机化学 第五章 脂环烃讲解
CH2CH3
CH3 CH2CH3
乙基环己烷
H3C
1,4-二甲基-2-乙基环己烷
2.单环烯烃的命名
单环烯烃的命名是根据组成环的碳原子数目称为环某烯。编号时,
把1、2号位次留给双键的碳原子。若有取代基时,取代基的位置数则
以双键为准依次排列。
CH3
3-甲基-1-环己烯
CH3
5-甲 基 -1,3-环 戊 二 烯5—甲基—3—异丙基环己烯
1-溴-5-甲基螺[3,4]辛烷 三环[3,3,1,13,7]癸烷(金刚烷)
第二节 环烷烃的性质
一、环烷烃的物理性质 1.物态 温常压下,环丙烷、环丁烷为气体,环戊烷
至环十一烷是液体,其它高级环烷烃为固体。 2.熔点、沸点 环烷烃的熔点、沸点比相应的烷烃高一些。 3.相对密 相对密度仍小于1。 4.溶解性 常不溶于水,易溶于有机溶剂。
0.745 0.779 0.779 0.769 0.810 0.836
二、环烷烃的化学性质
从化学键的角度来分析,环烷烃与烷烃相似; 但是,由于脂环烃具有环状构造,小环烃会出现 一些特殊的化学性质,主要表现在环的稳定性上, 小环较不稳定,大环则较稳定。
1.取代反应
环戊烷、环己烷和氯气在光照下反应,生 成一氯环烷烃。
与环丙烷相似,环丁烷分子中存在着张力,但比环丙烷的小, 因在环丁烷分子中四个碳原子不在同一平面上,见下图:
环丁烷
环戊烷
环丁烷比环丙烷要稳定些。环戊烷分子(见上图)中, C-C-C夹角为108°,接近sp3杂化轨道间夹角109.5°,环张 力甚微,是比较稳定的环。环戊烷分子中几乎没有什么角张 力,故五元环比较稳定,不易开环,环戊烷的性质与开链烷 烃相似。 在环己烷分子中,六个碳原子不在同一平面内,碳 碳键之间的夹角可以保持109.5°,因此环很稳定。
有机化学第05章旋光异构
甲烷、乙烯、乙炔它们分子的二维图象和三维图象可以看出这些分子是对称的。 如果把分子中的氢互换位置,分子没有变化 生活中有许多对称的现象,也有不对称的现象。 2、 手性碳原子 与四个不同原子或基团相连的碳原子称为手性碳原子,并用“*”标出。
3. 手性分子:若分子与其镜像不能重叠,则此分子为手性分子。 判断一个分子是否为手性分子,主要看它是否具有对称因素,即对称面、 对称面 对称面 对称轴和对称中心。
二、分子的对称性,手性(chirality)及旋光活性
1、分子的立体形象 分子的形象是分子结构体现的一种表现现象。少数简单的分子具有二维形象, 大多数有机分子都具有三维形象,也就是呈现立体的形象。碳原子是一个三维的 正四面体结构,当它和四个相同的原子结合时,四个键的键长以及它们之间的夹 角都是均等的,为109.5°单当它结合的原子不同时,键角就偏离了这一正常角 度。键长、键角的变化可以影响分子的其他性质。
S
反时针
(R)-乳酸
(S)-乳酸
特点:R、S构型法,能表示分子的绝对的空间关系,即:看见一个光活异构体 的名字,就可写出它的空间构型表达式。
COOH
HOOC
HOOC C H
HCOOH
H
C
OH
HO
C
H
H
HO
CH3
C CH3 H
HO H H H
H R S R R 注意:R、S构型与旋光性无内在联系,即R不代表旋光性中的右旋,S构型不代 表旋光性中的左旋。
[O ] CH3 CH CH C H 3 + K M nO 4 + H 2O CH3 CH OH CH OH CH3
两个邻二醇都是无旋光的。将熔点为19 0C的进行拆分,可以达到两个旋光度绝
有机化学05章脂环烃
1 3 2 5 6 4
4 2 3
6
5
椅型构象
船型构象
1. 椅型构象
直立键——与对称轴平行 的键,或叫做a键。
6个(3上、3下)
平 伏 键 —— 与 对 称 轴 成 109.5o 倾 斜 角 的 键 , 或 叫 做e键。
6个(3上、3下)
1. 椅型构象
H H H 2 3 H H 4 H H 6 5 H 1 H H
力大,非键合原子张力也较大, 故船型构象不稳定。
6
5
椅型和船型环己烷构象中氢原子间的斥力比较
椅型环己烷 C1 上的 H 原子与最 近的 H 原子距离为 0.25 nm , 斥力较小 。
船型环己烷 C1 上的 H 原子与最 近的 H 原子距离为 0.23 nm , 斥力较大。
3. 构象的互变
由于 C—C 键的旋转, 环己烷构象之间可以相 互转化的,这种构象的
3.2. 环丁烷和环戊烷的结构
3.2.1. 环丁烷的结构
环丁烷的四个碳原子实际上不在一个平面上。分子通过C-C键 的扭转而以折叠的碳环形式存在。三个碳处于同一平面,另一 个处于该平面外。这样可减少C-H键的重叠,从而使环张力 相应降低。
环丁烷的构象——蝴蝶型 尽管环丁烷的折叠式构象较平面构象能量有所降低,但环张力 还很大,故也不稳定。
7 1 6 5 4 3 2
9 8 6 7 1 2 5 4 3
1,6-二甲基二环[2.2.1]-2-庚烯
1,9,9-三甲基二环[3.2.2]-6-壬烯
5-甲基二环[2.2.1]-2-庚烯 三环[2.2.1.02,6]庚烷 三环[7.4.1.05,14]-3-十四碳烯
X
三环[8.3.1.05,14]-2-十四碳烯
有机化学-第5章-卤代烃
叔〉仲〉伯
魏能俊
主讲教师:曹瑞军
有机化学
16-13
(1)单分子取代反应 SN1
能 量
R-X
慢
E2 E1 R+
R+ + X快 Nu-
R-Nu
RX
RNU
反应进程
反应坐标
能线图
1)反应特征 2) 影响反应速度的因素
魏能俊
主讲教师:曹瑞军
有机化学
16-14
1)反应特征
① 此反应由两步完成的一级反应,速度取决于第一步,与亲核试剂Nu无关。
H
S-2-溴丁烷
可见,E2消除反应产物的立体结构,取决于反应物先前的立体结构。
魏能俊
主讲教师:曹瑞军
有机化学
试判断反-1-甲基-2溴环己烷E2的消除产物 Br H CH3 H CH3 H
KOH 乙醇
Br
CH3
试判断顺-1-甲基-2溴环己烷E2的消除产物?????
魏能俊
主讲教师:曹瑞军
有机化学
3)单分子消除机理 E1cB(了解)
魏能俊
主讲教师:曹瑞军
有机化学
19-15
2) 双分子消除 E2 R-CH—CH2 H X
ZZ-
C — C 2 R-CH —CH H X
R-CH=CH2 + HZ + X-
过渡态 其中Z-是强碱 OH-、RO-
讨论: ①这是一步完成的二级反应,反应速度与RX和Z -都有关。
即
V = k’ [RX] [Z-]
3-甲基-1-碘戊烷
CH3CH2CH-CHCH2CH3 Cl Br
3-氯-4-溴己烷
魏能俊
主讲教师:曹瑞军
有机化学
有机化学第五章 脂环烃
三、脂环烃的结构与稳定性
为什么三、四元的小环化合物不稳定,易发生开环 的反应,而五元环、六元环相对稳定?
拜尔张力学说
键角: 60° 90°
当碳原子的键角偏离109°28′时,便会产生一种恢复
正常键角的力量。这种力就称为张力。键角偏离正常键角
越多,张力就越大。
C C
109.5 。
C
105.5 。
C
如果取代基更大,则空间效果更突出,叔丁基以e键与环
相连的构象近100%。
C
(2)二取代环己烷的构象
1,2-二甲基环己烷
CH3 CH3 CH3
CH3
CH3
CH3 CH3
CH3
反式
顺式
1,2-二甲基环己烷的平面表示法
顺式
CH3 H3 C CH3 CH3
稳定性相同 反式
CH3 CH3 CH3
CH3
更稳定
H 1 H H 5 2 H 4 2.50A H H 2.51A H H 3 H 2.49A H
H 6
H
a键
e键
a b b b a a a
a b b b a a a
b b a
b a a b
b
a
b
构象翻转,a键转变成e键,e键转变成a键;环 上原子或基团的空间关系保持。
2、环己烷椅式构象的书写
3、环己烷的船式构象
椅式
扭船式
船式
半椅式
1、环己烷的椅式构象
H 1 H H H
H 2 3 H H 4 H H
H 6 H H
5
锯架式
纽曼式
环己烷椅式构象的特点
环中相邻两个碳原子均为邻交叉。
C-H键分为两类,有6个直立键叫a (axial) 键,有6个 平伏键称e (equatorial)键。
有机化学课件-第五章醇和醚
03
醚不溶于水,但可溶于 有机溶剂。
04
醚的稳定性相对较高, 但在强酸或强碱的作用 下可以发生水解反应。
04
醇和醚的反应
醇的反应
氧化反应
醇可以被氧化生成醛、酮、羧酸等化合物, 如用氧化剂如铬酸、硝酸或过氧化氢等处 理醇,可将其转化为相应的醛或酮。
脱水反应
醇在浓硫酸或高温下可发生脱水反应,生 成烯烃。例如,乙醇在170℃下脱水生成
醛和酮是含有羰基的有机化合物,而醌则是一种具有特殊结 构的有机化合物。这些化合物在化学性质和反应方面有着重 要的应用。
第七章 羧酸及其衍生物
羧酸是含有羧基的有机化合物,其衍生物包括酯、酸酐、酰 胺等。这些化合物在化学工业、食品、医药等领域有着广泛 的应用。
THANKS
感谢观看
醇和醚的结构多样,可以根据 连接的碳原子数、取代基的类 型等进行分类。
醚的性质和反应
醚也是一类含有氧的有机化合物 ,其化学性质与醇类似,但也有 其独特之处,如稳定性较高。
醇和醚的应用
醇和醚在日常生活和工业生产中有 着广泛的应用,如乙醇可以用于消 毒、燃料等,而乙醚则常用于麻醉 。
下章预告
第六章 醛、酮和醌
有机化学课件-第五章醇 和醚
• 引言 • 醇的分类和结构 • 醚的分类和结构 • 醇和醚的反应 • 醇和醚的应用 • 结论
01
引言
醇和醚的简介
醇
是含有羟基的有机化合物,其官能团 为$- OH$。根据与羟基所连碳原子的 类型,醇可分为伯醇、仲醇和叔醇。
醚
是含有醚键的化合物,其官能团为 $R-O-R'$。根据醚键所连碳原子的个 数,醚可分为单醚和双醚。
醇和醚的重要性
醇在日常生活和工业生产中具有广泛 的应用,如乙醇可作为消毒剂、燃料 添加剂和溶剂,而某些高级醇可用于 化妆品和润滑剂的制造。
有机化学第五章旋光异构
OH C CO2 H HO2 C CH3 镜象 CH3
OH C H 实物
03:03
13
二、 分子的手性和旋光性
手性分子:物质的分子和它的镜象不能重叠,这种分子叫手性分子。 一般说来 具有手性的分子都有旋光性;
从分子的内部结构来说,手性与分子的对称性有关。
对称性
{
对称面 对称轴
对称中心
若一个分子中没有上述任何一种 对称因素,这种分子就叫不对称 分子,不对称分子就有手性
-OH经-CH3至-H的排列顺序
03:03
A 逆时针方向
B
顺时针方向
19
A、B两分子不能重叠,是实物和镜象的关系
COOH H OH CH3 镜
COOH HO CH3 H
(A)
(B)
若将A中的任意两个基团对调,就是B……,所以含有一个手性 碳原子的化合物,只能有两种构型,也就是只能有两个具旋光 活性的异构体。
COOH COOH
OH H CH3 H
OH CH3
03:03
29
2、透视式
COOH HO C H CH3 H COOH C CH3 OH
3、费歇尔投影式
横向基团位于平面的前方
COOH H CH3 H
COOH OH CH3
30
竖向基团位于平面的后方 HO
03:03
COOH OH H CH3
光照
费歇尔投影式
碳干异构 构造异构 位置异构 官能团异构 同分异构 立体异构 互变异构 构型异构 构象异构 对映异构
03:03 2
顺反异构
偏振光和旋光活性
普通光是由各种波长的在垂直于前进方向的各个平面内振动的光波 所组成
03:03 3
有机化学 第五章 脂环烃
(3) 其它方法
+
CHO
。
30 C
100%
OH
+ ZnBr2 CHO
环戊二烯的工业来源和制法
石油热裂解的C5馏分加热至100℃,其中的 环戊二烯聚合为二聚体,蒸出易挥发的 其他C5馏分,再加热至约200℃,使二聚 体解聚为环戊二烯:
。
+
100 C
。
200 C
(八) 萜类和甾族化合物
萜类化合物广泛存在于自然界,是植物香精 油的主要成分,广泛用于医药、香料工业。
CH +
CH
双烯体 亲双烯体
双环[2,2,1]-2,5-庚二烯
(四) 环烷烃的结构与稳定性
• 环的大小与环张力、环的稳定性 • 环丙烷的结构 • 环丁烷的结构 • 环戊烷的结构
(四) 环烷烃的结构与稳定性
实验事实: 环的稳定性:三元环<四元环<五元、六元环 why? 结构所致!环张力所致!
• 环烷烃的环张力越大,表明分子的能量越高, 稳定性越差,越容易开环加成。
(甲) 桥环烃 (乙) 螺环烃
(二) 脂环烃的命名
(1) 单环脂环烃
CH2 CH2 CH2
即
CH2 CH2
环戊烷
CH3
即
CH
H3C
CH3
CH3
CH3 CH3
甲基环丁烷
1,2-二甲基环戊烷
H CH3
H CH3
CH3 H
即
CH3 H
1-甲基-4-异丙基环己烷
CH3
反-1,4-二甲基环己烷
CH3
1-甲基-1-环己烯
环己烷的船式构象
船式与椅式翻转,环己烷二种椅式构象互换
取代环己烷的构象1
有机化学 第5章醇和醚
(二)物理性质
1.性状:
2.沸点:
1)比烷烃的沸点高(形成分子间氢键的原因), 如 乙烷的沸点为-88.6℃,而乙醇的沸点为78.3℃。
2)含支链的醇比直链醇的沸点低,如正丁醇 (117.3 ℃ )、异丁醇(108.4 ℃ )、叔丁醇 (88.2 ℃ )。
3.溶解度:
✓ 甲、乙、丙醇与水以任意比混溶(与水形 成氢键的原因);
CH3CH2O- (乙醇钠)的碱性HO-(氢氧化钠)强, 所以醇钠极易水解。
CH3CH2ONa + H2O
较较强强键碱 较强较酸强酸
CH3CH2OH + NaOH
较弱酸 较较弱弱酸碱
较弱减
即:强酸置换弱酸盐!
工业上制备醇钠常用上述逆反应,但需将生 成的水及时移走。
醇与钠的反应活性:
CH3OH > 伯醇(乙醇) > 仲醇 > 叔醇
伯醇 仲醇 叔醇
Lucas试剂
(-) 5分钟内浑浊 立即浑浊
4)与卤化磷和亚硫酰氯反应p154
3ROH + PX3
3RX + P(OH)3
X=Br、I,制备溴代或碘代烃
( Cl的反应产率低于50%)
ROH + PCl5 ROH + SOCl2
RCl + POCl3 + HCl RCl + SO2 + HCl
OO O K+ O
OO
MnO4-
COOH COOH
六、环氧乙烷的部分化学性质
H
R Cδ
Oδ
δ H
H
酸性,生成酯
氧化反应 形成 C ,发生取代及消除反应
(一)O-H键断裂的反应 1.与活泼金属的反应
有机化学第五章脂环烃
或
5
1-甲基-3-乙基环戊烷 甲基-
CH2 CH2 CH2 CH-CH3 CH2 CH CH(CH3)2 或
4 5
6 1 2 3
1-甲基-3-异丙基环己烷 甲基③ 若环烃中有双键时,编号应从双键开始,且使编号的数 若环烃中有双键时,编号应从双键开始, 值最小。 值最小。
1 6 5 4 2
结论: 结论: ● e键取代基最多的构象稳定 ● 大取代基(体积)在e键的构象稳定 大取代基(体积)
§5-5 脂环烃的制备
一、芳烃化合物还原法
Ni 180~ 180~250℃
+ 3 H2
+ H2
催化剂
H2 催化剂 四氢化萘 十氢化萘
二、分子内偶联法
1.武慈合成法——主要适合于制备三 主要适合于制备三、 1.武慈合成法——主要适合于制备三、四元环
1,31,3-环己二烯
3
若环中有双键也有支链时,编号从双键起, ④ 若环中有双键也有支链时,编号从双键起,且要使支链 编号尽可能最小。 编号尽可能最小。
1 5 2
3-甲基环戊烯 CH3
4 3
1 6 5 4 2
1,61,6-二甲基环己烯
3
2. 螺环烃的命名
螺环烃编号方法----- 从邻接于螺原子的一个碳原子开始, ① 螺环烃编号方法----- 从邻接于螺原子的一个碳原子开始, 由小环到大环。 由小环到大环。 螺环烃命名方法---------用 做词头, ② 螺环烃命名方法-----用螺做词头,然后在方括号中写出 每 个环的碳原子数(不包括螺碳) 个环的碳原子数(不包括螺碳)从 小 7 8 1 2 10 1 9 环到大环。 环到大环。 CH2 CH2 CH2 2 C CH2 8 4 5 CH2 CH CH2 5 6 3 3 7 6 4 CH3 5-甲基螺[3 .4] 辛烷 甲基螺 甲基 螺[4.5]癸-1,6-二烯 [4.5]癸 1,6-
高等有机化学-第5章-活泼中间体1
2019/7/8
2
碳正离子的中心碳原子是缺电子的(价电子层仅有六个电 子),其成键形式可以采取下列两种情况:一是碳原子以 sp2杂化轨道和三个原子(团)成键,呈平面型结构,有一个空 的p轨道垂直于该平面;另一种是碳原子以sp3杂化轨道与其 它三个原子(团)成键,呈棱锥型结构,有一个空的sp3杂化轨 道。
空间效应: 碳正离子的中心碳原子处于sp2杂化状态的平面构型是
较稳定的,但是当空间因素使碳正离子不能具有平面构型 时,则其稳定性大为降低。如叔丁基氯能与乙醇-硝酸银 溶液迅速反应,但1-氯双环[2,2,1]庚烷(A)则不能与之反应。 因为(A)难以生成如(B)所示的正离子。
2019/7/8
7
另外,烯丙基正离子通常是稳定的,但是(C)所示正 离子很不稳定。因为非平面结构不能使电荷离域。
2019/7/8
15
(C6H5)3C+ +
H
H
(C6H5)3CH +
+
此外,自由基被高价铜离子氧化,也生成碳正离子。
R. + Cu 2+
R+ + Cu+
2019/7/8
16
四、碳正离子的反应
ห้องสมุดไป่ตู้
碳正离子一般是活性很高的中间体,可进一步发生多
种化学反应。它们是亲电物种,其反应一般是亲电试剂要 求的反应。
H
13
羰基化合物C=O双键的氧原子也可发生质子化形成碳 正离子。如酮在浓硫酸中产生如下的碳正离子:
R
C
R
O + H+
R
+
C
OH
R
卤素正离子可由卤素或取代卤素产生,例如:
第五章_有机化合物的酸碱性
第五章 有机化合物的酸碱性酸碱是化学中的重要概念,从广义的角度讲,多数的有机化学反应都可以被看作是酸碱反应。
因此,酸碱的概念在有机化学中有着重要的应用,在学习有机化学的时候,学习与了解有机化合物的酸碱性是十分必要的。
5.1 Brönsted 酸碱理论1923年,为了克服S. A. Arrehenius 依据电离学说,所提出的水溶液中酸碱理论的不足,丹麦的J. N. Brönsted 和英国的J. M. Lowry 分别独立地提出了新的酸碱理论。
该理论给出的酸碱定义为:凡是能给出质子的任何物质(分子或离子),叫做酸;凡是能接受质子的任何物质,叫做碱。
简言之,酸是质子的给予体,碱是质子的接受体。
因此,Brönsted 酸碱理论又称为质子酸碱理论。
依据Brönsted 酸碱理论,酸给出质子后产生的碱,称之为酸的共轭碱;碱接受质子生成的物质就是它的共轭酸。
即:酸碱 +质子CH3CO 2H CH 3CO 2- + H +C2H 5OHC 2H 5O - + H +可以看出,CH 3CO 2H 给出质子是酸,生成的CH 3CO 2―则是碱。
这样的一对酸碱,称为共轭酸碱对。
C 2H 5OH 和C 2H 5O ―也是如此。
酸、碱的电离可以看作是两对酸碱的反应过程。
例如:CH3CO 2H + H 2OCH 3CO 2- + H 3O +酸1 + 碱2碱1 + 酸2H2O + CH 3NH 2OH - + CH 3NH 3+醋酸在水中的电离,CH 3CO 2H 给出一个质子是酸,H 2O 接受一个质子为碱。
这里,CH 3CO 2H/CH 3CO 2―与H 2O/H 3O +分别是两个共轭酸碱对。
但是,甲胺在水中电离时,H 2O 给出一个质子是酸,CH 3NH 2接受一个质子为碱。
H 2O/OH ―与CH 3NH 2/CH 3NH 3+分别是两个共轭酸碱对。
由此可见, Brönsted 理论中的酸碱概念是相对的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①亲电取代反应 a. 卤代反应
α-氯萘 氯萘 b. 硝化反应
α-硝基萘 硝基萘
c. 磺化反应
萘磺酸
② 氧化反应
O
CrO3, CH3COOH 10~15 ℃
萘醌
O
O
V2O5 (空 空 ) 400~500 ℃
C O C O
邻苯二甲酸酐
NO2
[O]
NO2 COOH COOH
NH2 HOOC
[O]
HOOC
CH3 Cl+ H3C N CH3 CONH2 NHCOCH3
OCOCH3
COCH3
NO2
亲电取代定位效应
诱导效应 共轭效应 1. 定位基 1)邻对位定位基 )
吸电基团或供电基团
供电子基团
-NH2(-NHR、-NR2) -OH OCH3(-OC2H5 etc. etc.) 、 -NHCOCH3 -C6H5 -CH3
③ 加氢反应
Na C2H5OH Na C2H5OH
2. 蒽
α
8
γ
9
α
1 2 3
0.1436nm
0.1396nm
0.1423nm
0.1370nm
β β
7 6 5 10 4
β
0.1408nm
β
α
γ
α
3. 菲
6 5 4 8 3 2 1 10 9 7 8 9 10 1
或
7 6 5 4 3
2
§3 非苯芳香烃 1.休克尔规则 休克尔规则 4n+2 П 电子
2.环多烯的分子轨道和休克尔规则 环多烯的分子轨道和休克尔规则 3.环丙烯正离子 环丙烯正离子
空空空
或
路易斯酸: 路易斯酸
① ②
AlCl3 FeX3 BF3 ZnCl2
③
b. 硝化反应 浓硝酸和浓硫酸混合物
TNT
c. 磺化反应
可逆反应
氯磺化反应
d. Friedel-Crafts 反应(傅-克反应) 反应( 克反应 克反应) 烷基化
酰基化
重排反应
当苯环上连有: 当苯环上连有: 供电子基团 吸电子基团
三苯甲烷
③稠环芳烃
萘
蒽
菲
1. 萘 1)结构和命名
为α位 为β位
α-萘酚 萘酚 或1-萘酚 萘酚
β-萘酚 萘酚 2-萘酚 萘酚
2,6-二乙基萘 二乙基萘
4-甲基 萘磺酸 甲基-萘磺酸 甲基
2) 化学性质 α 取代
H E + H E H E + + + + H E H E
β 取代
+ H E + H E + H E + H E H E +
1,3-二甲苯 , 二甲苯 m-二甲苯 二甲苯
1,4-二甲苯,p-二甲苯 , 二甲苯 二甲苯, 二甲苯
连三甲苯
偏三甲苯
均三甲苯
2-甲基 甲基-3-3-苯基戊烷 甲基 苯基戊烷
苯乙烯
苯乙炔
2-苯基-2-丁烯
苯基
苄基
3. 化学性质 亲电取代反应
1) 亲电取代反应
快
慢
快
π-络络反
σ-络络反
a. 卤代反应
特别稳定
稳定
苯苯苯苯 甲苯中位苯苯 能能 过过过过 甲苯硝硝位苯苯
中中中 反反反 反反反反
b.羟基 羟基
特别稳定
特别稳定
c. 硝基
特别不稳定
特别不稳定
硝硝苯硝硝位苯苯 硝硝苯中位苯苯 能能 过过过过 苯苯苯苯
中中中 反反反 反反反反
d. 卤素
相对稳定
3.亲电取代定位规则的应用 亲电取代定位规则的应用 1)预测反应的主要产物(连有两个取代基) 预测反应的主要产物(连有两个取代基) 预测反应的主要产物 ① 当两个取代基是不同种类时 反应方向有邻对位定位基决定 例如
第五章 芳香烃
分类: 分类 (1)单环芳香烃 单环芳香烃
苯
甲基苯
苯乙烯
(2) 多环芳香烃
联苯
萘
蒽
(3)非苯芳香烃 非苯芳香烃
环戊二烯负离子 环庚三烯正离子 奥
§1 单环芳香烃
1. 苯的结构
分子轨道理论的解释
2. 单环芳香烃的命名和异构
甲苯
乙基苯
丙苯
异丙苯
1,2-二甲基苯 , 二甲基苯 o-二甲苯 二甲苯
2) 间位定位基
吸电子基团
N+(CH3)3 -NO2 -CN COOH(-COOR) -SO3H -CHO -COR 3) 卤素 F Cl Br I 吸电子基团
2.理论解释 理论解释 1)邻对位基定位效应 邻对位基定位效应 (诱导效应 (+I) 诱导效应)( ) 诱导效应 a.甲基 甲基 (超共轭效应 (+C) 超共轭效应) 超共轭效应 )
有利于反应进行
不反应
2) 氧化反应
前提条件: 前提条件
α-H
3) 加成反应 a. 加氢反应
b. 加氯反应 666
练习 1.命名 命名
1-p-甲基苯基-1-丙烯
p-异丙基甲苯
p-氯苄基氯
2. 反应方程式
克反应? 练习 2:下列化合物中,哪些不能进行付 克反应? :下列化合物中,哪些不能进行付-克反应
②当两个取代基是同种类型时 由强势基团决定 例如
OCH3 F + HNO3 H2SO4
OCH 3 F O2 N + NO2
OCH3 F +
OCH3 F + NO2 O2N
OCH 3 F
31 %
66 %
<3%
<3%
2)选择更佳的合成路线 选择更佳的合成路线
练习: 练习:推测下述化合物硝化时硝基进入的主要位置
CH3 Cl NHCOCH3
NO2 OH OH
Cl NO2
COOH
COCH3
COOH CH3
①由甲苯合成对硝基苯甲酸Leabharlann 分离②由苯合成间硝基对氯苯磺酸
混酸
练习: 练习
由苯或甲苯合成下列化合物
混酸
1)
2)
混酸
分离
§2 多环芳烃 定义和分类 ①联苯型化合物
二联苯
三联苯
②脂肪烃的多苯取代物
甲苯
二苯甲烷