二次函数全章测试题
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 若二次函数y=ax^2+bx+c的图像开口向上,则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≠ 0答案:A2. 二次函数y=-3x^2+6x-2的对称轴是()A. x = -1B. x = 1C. x = 2D. x = 0答案:B3. 二次函数y=x^2-4x+c的顶点坐标是()A. (2, c-4)B. (2, c+4)C. (-2, c-4)D. (-2, c+4)答案:A4. 若二次函数y=x^2-6x+c的图像与x轴有两个交点,则c的取值范围是()A. c > 9B. c < 9C. c = 9D. c ≠ 9答案:B5. 二次函数y=2x^2-4x+3的最小值是()A. 1B. 2C. 3D. 4答案:C6. 二次函数y=-2x^2+4x+1的图像与y轴的交点坐标是()A. (0, -1)B. (0, 1)C. (0, 3)D. (0, 5)答案:B7. 若二次函数y=ax^2+bx+c的图像与x轴没有交点,则a和b的取值关系是()A. a > 0, b^2 > 4acB. a < 0, b^2 > 4acC. a > 0, b^2 < 4acD. a < 0, b^2 < 4ac8. 二次函数y=x^2-2x+1的图像的顶点坐标是()A. (1, 0)B. (1, 1)C. (0, 1)D. (2, 1)答案:B9. 二次函数y=x^2-6x+5的图像开口方向是()A. 向上B. 向下C. 向左D. 向右答案:A10. 若二次函数y=2x^2-4x+1的图像与x轴有一个交点,则该交点的坐标是()A. (1, 0)B. (2, 0)C. (-1, 0)D. (0, 0)答案:A二、填空题(每题3分,共15分)1. 二次函数y=x^2-2x+1的对称轴方程是______。
二次函数单元测试卷含答案
二次函数单元测试卷一、选择题每小题3分,共30分1. 当-2≤ x ≦1,二次函数y=-x-m 2 + m 2 +1有最大值4,则实数m 值为47B. 3或-3 或-3 D. 2或3或-47 2. 函数22y mx x m =+-m 是常数的图像与x 轴的交点个数为A. 0个 B .1个 C .2个 D .1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是A. 1个 B .2个 C .3个 D .4个4. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是A .116m <-B .116m -≥且0m ≠C .116m =-D .116m >-且0m ≠5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是A .2y x =B .24y x =+C .2325y x x =-+D .2351y x x =+-6. 若二次函数2y ax c =+,当x 取1x 、2x 12x x ≠时,函数值相等,则当x 取12x x +时,函数值为A .a c +B .a c -C .c -D .c7. 下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是A .1x y 2—=B .24y x =+C .1x 2x y 2+=—D .2351y x x =+-8. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点9. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根10..若把函数y=x 的图象用Ex,x 记,函数y=2x+1的图象用Ex,2x+1记,……则Ex,122+-x x 可以由Ex,2x 怎样平移得到A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位二、填空题每小题3分,共24分11. 抛物线2283y x x =--与x 轴有 个交点,因为其判别式24b ac -= 0,相应二次方程23280x x -+=的根的个数为. 12. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于 点,此时m = .13. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移 个单位.14. 如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x = .15. 已知二次函数212y x bx c =-++,关于x 的一元二次方程212x -根是1-和5-,则这个二次函数的解析式为16. 若函数y=m ﹣1x 2﹣4x+2m 的图象与x 轴有且只有一个交点,则m 的值为17. 若根式有意义,则双曲线y =x2-k 2与抛物线y =x 2+2x +2-2k 的交点在第 象限. 18. 将二次三项式x 2+16x+100化成x+p 2+q 的形式应为 三、解答题本大题共7小题,共66分19..7分已知一个二次函数的图象经过点0,0,1,﹣3,2,﹣8,求函数解析式;20. 8分已知抛物线21()3y x h k =--+的顶点在抛物线2y x =上,且抛物线在x 轴上截得的线段长是求h 和k 的值.21. 8分已知函数22y x mx m =-+-.1求证:不论m 为何实数,此二次函数的图像与x 轴都有两个不同交点;2若函数y 有最小值54-,求函数表达式. 22.9分 已知二次函数2224y x mx m =-+.1求证:当0m ≠时,二次函数的图像与x 轴有两个不同交点;2若这个函数的图像与x 轴交点为A ,B ,顶点为C ,且△ABC 的面积为求此二次函数的函数表达式23. 10分下图是二次函数2y ax bx c =++的图像,与x 轴交于B ,C 两点,与y 轴交于A 点. 1根据图像确定a ,b ,c 的符号,并说明理由;2如果A 点的坐标为(03)-,,45ABC ∠=,60ACB ∠=,求这个二次函数的函数表达式.24.12分 已知抛物线222m y x mx =-+与抛物线2234m y x mx =+-图所示,其中一条与x 轴交于A ,B 两点.1试判断哪条抛物线经过A ,B 两点,并说明理由;2若A ,B 两点到原点的距离AO ,OB 满足条件1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式.25. 12分已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标为4-,若1x ,2x 是方程222(1)70x m x m --+-=的两根,且221210x x +=. 1求A ,B 两点坐标;2求抛物线表达式及点C 坐标;3在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由.参考答案一、选择题每选对一题得3分,共30分1.C 2.C 3.D 4.B 5.D 6.D 7.B 8.B 9.C 10.D二、填空题每填对一题得3分,共24分11.0 < 0 12.一625 或9 7 15.25-x 3-x 21-y 2= 16.-1或1或2 17.2 18.()368x 2++ 三、解答题 7小题,共66分19.7分解:x 2--x y 2=20.1略 213x -x y 1-x -x y 22+==或21.1略 248x x 2y 48x -x 2y 22++=+=或 22.1a>0,b>0,c<0(2)A0,-3, B-3, 0 C0 , -323.14m 3-mx x y 22+= (2)设Ax 1 ,0,Bx 2 ,0, 则有32x 1x 121=+ 解得3-x 2x y 2+=25. 1A-1,0, B3, 0(2)3-x 2-x y 2=,C0,-3(3)存在;P1()()9,131P29,131-+,.。
二次函数单元测试题及答案
二次函数单元测试题及答案1. 选择题(每题2分)1. 下列函数中,属于二次函数的是:A. y = 3x + 2B. y = x^2 + 3x - 2C. y = √xD. y = |x|答案:B2. 二次函数y = 2x^2 + 3x - 4的图像开口方向是:A. 向上开口B. 向下开口答案:A3. 函数y = -x^2 + 5x + 3的顶点坐标是:A. (3, 8)B. (-3, 2)C. (5, 8)D. (-5, 3)答案:A4. 函数y = x^2 - 4x + 4的轴对称线方程为:A. x = 2B. x = 4C. x = -2D. x = -4答案:A5. 函数y = x^2 + 6x + 9的值域是:A. (-∞, 9)B. [9, +∞)C. (-∞, 0)D. [0, +∞)答案:B2. 填空题(每题3分)1. 二次函数y = -2x^2 + 4x - 1的判别式为_______。
答案:402. 函数y = x^2 + bx + c的顶点坐标是(-2, 1),则b和c的值分别为_______。
答案:b = 4,c = -33. 函数y = 3x^2 - 6x + k的图像与x轴有两个交点,则k的值为_______。
答案:k > 04. 函数y = -x^2 - 4x + m的轴对称线方程为x = 2,则m的值为_______。
答案:m = 35. 函数y = ax^2 + bx + 2的值域是(-∞, 1],则a和b的关系是_______。
答案:a < 0,b > 03. 计算题(每题5分)1. 求二次函数y = -3x^2 + 6x + 9的顶点坐标和对称轴方程。
解答:首先,二次函数的顶点坐标可以通过公式 h = -b/2a 和 k = f(h) 来求得。
其中,h 表示对称轴的横坐标,k 表示顶点的纵坐标。
对于给定的函数 y = -3x^2 + 6x + 9,我们可以得到 a = -3,b = 6,c = 9。
二次函数全章测试题
二次函数全章测试题一、填空题1.已知函数m m mx y -=2,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.2.抛物线2ax y =经过点(3,-1),则抛物线的函数关系式为 .3.抛物线9)1(22-++=k x k y ,开口向下,且经过原点,则k= .4.点A (-2,a )是抛物线2x y =上的一点,则a= ; A 点关于原点的对称点B 是 ;A 点关于y 轴的对称点C 是 ;其中点B 、点C 在抛物线2x y =上的是 .5.若抛物线c x x y +-=42的顶点在x 轴上,则c 的值是 .6.把函数261x y -=的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 . 7.已知二次函数m x x y +-=82的最小值为1,那么m 的值等于 .8.二次函数322++-=x x y 的图象在x 轴上截得的两交点之间的距离为 .9.抛物线122--=x x y 的对称轴是 ,根据图象可知,当x 时,y 随x 的增大而减小.10.已知抛物线的顶点在原点,对称轴是y 轴,且经过点(-2,-2),则抛物线的函数关系式为 .11.若二次函数c bx x y ++=2的图象经过点(2,0)和点(0,1),则函数关系式为 .12.抛物线322--=x x y 的开口方向向 ,顶点坐标是 ,对称轴是 ,与x 轴的交点坐标是 ,与y 轴的交点坐标是 ,当x=时,y 有最 值是 .13.抛物线c x x y ++=2与x 轴的两个交点坐标分别为)0,(1x ,)0,(2x ,若32221=+x x ,那么c 值为 ,抛物线的对称轴为 .14.已知函数42)1(22-++-=m x x m y .当m 时,函数的图象是直线;当m 时,函数的图象是抛物线;当m 时,函数的图象是开口向上,且经过原点的抛物线.15.一条抛物线开口向下,并且与x 轴的交点一个在点A (1,0)的左边,一个在点A (1,0)的右边,而与y 轴的交点在x 轴下方,写出这条抛物线的函数关系式 .二、选择题16.下列函数是二次函数的有 ( )①221x y -= ②21x y = ③)1(x x y -= ④)21)(21(x x y +-= A 、1个 B 、2个 C 、3个 D 、4个 17.若二次函数32)1(22--++=m m x m y 的图象经过原点,则m 的值必为 ( )A 、-1或3B 、-1C 、3D 、无法确定18二次函数m x m x y 4)1(22++-=的图象与x 轴( ) A 、没有交点 B 、只有一个交点C 、只有两个交点D 、至少有一个交点19.二次函数222+-=x x y 有( )A 、最大值1B 、最大值2C 、最小值1D 、最小值220.在同一坐标系中,作函数23x y =,23x y -=,231x y =的图象,它们的共同特点是A 、都是关于x 轴对称,抛物线开口向上 ( )B 、都是关于y 轴对称,抛物线开口向下C 、都是关于原点对称,抛物线的顶点都是原点D 、都是关于y 轴对称,抛物线的顶点都是原点21已知二次函数772--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( ) A 、47->K B 、47-≥K 且0≠k C 、47-≥K D 、47->K 且0≠k 22.二次函数2)1(212+-=x y 的图象可由221x y =的图象 ( ) A .向左平移1个单位,再向下平移2个单位得到B .向左平移1个单位,再向上平移2个单位得到C .向右平移1个单位,再向下平移2个单位得到D .向右平移1个单位,再向上平移2个单位得到23.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去.为了投资少而获利大,每床每晚应提高 ( )A 、4元或6元B 、4元C 、6元D 、8元24若抛物线c bx ax y ++=2的所有点都在x 轴下方,则必有 ( )A 、04,02>-<ac b aB 、04,02>->ac b aC 、04,02<-<ac b aD 、04,02<->ac b a25.抛物线1422-+=x x y 的顶点关于原点对称的点的坐标是( ) A 、(-1,3) B 、(-1,-3) C 、(1,3) D 、(1,-3)三、解答题26.已知二次函数12212++=x x y . (1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;(2)求抛物线与x 轴、y 轴的交点;(3)作出函数图象的草图;(4)观察图象,x 为何值时,y >0;x 为何值时,y= 0;x 为何值时,y <0?27.已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式.28.已知二次函数,当x=2时,y 有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.29.已知二次函数的图象与x 轴交于A (-2,0),B (3,0)两点,且函数有最大值2.(1)求二次函数的函数关系式;(2)设此二次函数图象的顶点为P ,求⊿ABP 的面积.30.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数:m=162-3x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题1. 二次函数y = ax^2 + bx + c中,当a的值变为原来的2倍时,函数图像如何变化?A. 向上平移B. 向下平移C. 向左平移D. 向右平移答案:B2. 下列哪个选项是二次函数的标准形式?A. y = x^2 + 2x + 1B. y = 2x^2 - 3x + 4C. y = 3x + 4D. y = x - 2答案:B3. 若二次函数y = -2x^2 + 3x + 1的顶点坐标为(1, 2),则下列哪个选项是正确的?A. a = -2, b = 3, c = 1B. a = 2, b = -3, c = -1C. a = -2, b = -3, c = -1D. a = 2, b = 3, c = 1答案:A4. 二次函数y = 3x^2 - 6x + 9的最小值是多少?A. 0B. 3C. 9D. 无法确定答案:C5. 如果二次函数y = x^2 + 4x + 4的图像与x轴相交于两点A和B,那么线段AB的长度是多少?A. 2B. 4C. 6D. 8答案:C二、填空题6. 已知二次函数y = 2x^2 - 5x + 3,其顶点坐标为__________。
答案:(1, -1)7. 函数y = -x^2 + 4x - 3的最大值是__________。
答案:18. 若二次函数y = 3x^2 - 2x - 5的图像关于y轴对称,则新的函数表达式为y = __________。
答案:y = 3x^2 + 2x - 5三、解答题9. 已知二次函数y = -2x^2 + 6x + 3,求该函数在x = -1时的函数值。
答案:当x = -1时,y = -2*(-1)^2 + 6*(-1) + 3 = -2 - 6 + 3 =-5。
10. 给定二次函数y = x^2 - 6x + 9,求该函数的对称轴方程。
答案:对称轴为x = -b/(2a) = -(-6)/(2*1) = 3。
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)
九年级数学上册《第二十二章 二次函数》单元测试题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是( )A .y =−8xB .y =8xC .y =8x 2D .y =8x −4 2.二次函数y=x 2的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.若抛物线y =ax 2经过点P(−√7,4),则该抛物线一定还经过点( )A .(4,−√7)B .(√7,4)C .(−4,√7)D .(−√7,−4)4.已知二次函数表达式为y =−(x +2)2−1,则下列结论中正确的是( )A .对称轴为直线x =2B .最大值是-1C .顶点坐标为(2,−1)D .图象开口向上5.二次函数y =x 2+bx+3满足当x <﹣2时,y 随x 的增大而减小,当x >﹣2时,y 随x 的增大而增大,则x =1时,y 的值等于( )A .﹣8B .0C .3D .86.点A(−2,y 1),B(4,y 2),C(6,y 3)均在二次函数y =x 2−2x −3的图象上,则y 1,y 2,y 3的大小关系是( )A .y 3>y 2>y 1B .y 1=y 2>y 3C .y >1y 2>y 3D .y >3y 1=y 2 7.二次函数y =ax 2−bx −5与x 轴交于(1,0)、(-3,0),则关于x 的方程ax 2−bx =5的解为( )A .1,3B .1,-5C .-1,3D .1,-38.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,则下列描述正确的是( )A.小球抛出3秒后,速度越来越快B.小球在空中经过的路程是40mC.小球抛出3秒时速度达到最大D.小球的高度h= 30m时,t=1.5s二、填空题9.若二次函数y=ax2的图象开口向上,则a的取值范围是.10.已知抛物线y=−x2+4x+m,若顶点在x轴上,则m=.11.当−2≤x≤1时,二次函数y=(x+m)2+m2+1有最大值4,则实数m的值为.12.二次函数y=−x2+bx+c的部分图像如图所示,由图像可知,方程−x2+bx+c=0的解为.13.某商场经营一种文具,进价为20元/件,当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.那么该文具定价为元时每天的最大销售利润最大.三、解答题14.如图,若二次函数y=x2−x−2的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点.(1)求A、B两点的坐标:(2)若P(m,−2)为二次函数y=x2−x−2图象上一点,求m的值.15.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为6m,桥洞的跨度为12m,如图建立直角坐标系.(1)求这条抛物线的函数表达式.(2)求离对称轴2m处,桥洞离水面的高是多少m?16.如图,抛物线y1=ax2−2x+c与x轴交于A(−1,0)和B(3,0)两点.(1)求此抛物线的解析式;(2)过点A的直线y2=mx+n与抛物线在第一象限交于点D,若点D的纵坐标为5,请直接写出当y2<y1时,x的取值范围是.17.新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?18.如图,抛物线y=−x2+bx+c与x轴交于A、B两点,与y轴交于C点,点A的坐标为(3,0),点C的坐标为(0,3).(1)求b与c的值;(2)求函数的最大值;时,利用函数图象写出m的取值范围.(3)M(m,n)是抛物线上的任意一点,当n≥7419.如图,抛物线y=x2+bx+c与x轴交于A(−1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式及顶点坐标;(2)若点E是抛物线的对称轴与直线BC的交点,点F是抛物线的顶点,求EF的长;(3)抛物线上是否存在点P使得S△PAB=6?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.C2.A3.B4.B5.D6.D7.D8.A9.a >010.-411.1−√22或−12+√5212.x 1=5 x 2=−113.3514.(1)解:当y=0时,即x 2−x −2=0解得:x 1=-1,x 2=2∴A 点坐标和B 点坐标为 A(−1,0),B(2,0) ;(2)解:把x=m,y=-2代入 y =x 2−x −2 即m 2−m −2=-2,解得:m 1=0,m 2=1.15.(1)解:由题意可得,抛物线顶点坐标为(6,6)设抛物线解析式为y =a(x −6)2+6∵抛物线过点(0,0)∴0=a(0−6)2+6解得a =−16∴这条抛物线所对应的函数表达式为y =−16(x −6)2+6=−16x 2+2x(2)解:由题意可知该抛物线的对称轴为x =6,则对称轴右边2m 处为x =8 将x =8代入y =−16x 2+2x可得y =−16×82+2×8,解得y =163答:离对称轴2m 处,桥洞离水面的高是163m .16.(1)解:把A(−1,0)和B(3,0)代入y 1=ax 2−2x +c得{a +2+c =09a −6+c =0∴{a =1c =−3∴y 1=x 2−2x −3;(2)x >4或x <-117.(1)解:由题意可知:y =(140−x −100)(20+2x)=−2x 2+60x +800∴y 与x 的函数关系式为y =−2x 2+60x +800.(2)解:令−2x 2+60x +800=1200解得x 1=10∴140−x 1=130答:要书店每天盈利1200元,每套书销售定价应定为130元或120元.(3)解:y =−2x 2+60x +800=−2(x −15)2+1250∵−2<0∴当x =15时,y 有最大值1250,此时140−x =140−15=125答:当每套书销售定价为125元时,书店每天可获最大利润。
二次函数单元测试卷及答案
二次函数单元测试卷及答案第一部分:选择题(共10题,每题2分)1. 若 $f(x)=2x^2+6x+1$,则该函数的抛物线开口向上()。
A. 对B. 错2. 对于函数 $f(x)=ax^2+bx+c$,若 $a>0$,则抛物线开口()。
A. 向上B. 向下3. 已知 $f(x)=x^2+bx+c$,若 $b^2-4c>0$,则该函数()。
A. 有两个实根B. 无实根C. 有一个实根4. 若 $f(x)=\frac{1}{2}x^2+ax+b$ 的导函数为 $f'(x)=x+1$,则 $f(x)$ 的解析式为()。
A. $\frac{1}{2}x^2+x+1$B. $\frac{1}{2}x^2+2x+1$C.$\frac{1}{2}x^2+x+2$5. 设 $f(x)=2x^2-10x+8$,$g(x)=x^2-3x+7$,则 $f(x)-g(x)$ 的值域为()。
A. $(0,+\infty)$B. $(-\infty,0)$C. $[0,+\infty)$6. 函数 $f(x)=x^2-2mx+1$ 与 $y=0$ 交点的横坐标为 $4$,则 $m$ 的值为()。
A. $1$B. $2$C. $-1$7. 若 $f(x)=x^2+1$,则 $f(2x+1)$ 的最小值为()。
A. $2$B. $5$C. $6$8. 已知函数 $f(x)=ax^2+bx+c$ 在 $x=1$ 处有极值 $0$,则 $a+b+c$ 等于()。
A. $-1$B. $0$C. $1$9. 函数 $f(x)=x^2-2x+5$ 与 $g(x)=2x-1$ 的交点横坐标之和为()。
A. $0$B. $1$C. $2$10. 若 $f(x)=x^2-2x-15$,则 $f(x)$ 的零点为()。
A. $-3,5$B. $-5,3$C. $-3,-5$答案:1.A 2.A 3.A 4.B 5.A 6.C 7.C 8.B 9.C 10.A第二部分:填空题(共5题,每题4分)1. 函数 $f(x)=x^2+2x+1$ 的零点是 _____________。
二次函数单元测试题及答案
二次函数单元测试题一、选择题(本题共计7 小题,每题3 分,共计21分,)1. 下列函数中是二次函数的是()+x2A.y=ax2+bx+cB.y=3x2+1C.y=2(x+1)2−2x2D.y=1x2. 已知二次函数的图象如右图,则下列结论中,正确的结论有()①a+b+c>0②a−b+c<0③abc<0④b=2a⑤b>0.A.5个B.4个C.3个D.2个3. 若正方形的边长为6,边长增加x,面积增加y,则y关于x的函数解析式为()A.y=(x+6)2B.y=x2+62C.y=x2+6xD.y=x2+12x4. 已知二次函数y=a(x+1)2−b(a≠0)有最小值1,则a,b的大小关系为()A.a>bB.a<bC.a=bD.不能确定5. 二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0, 1)和(−1, 0).下列结论:①ab<0;②b2>4ac;③0<b<1;④当x<−1时,y< 0.其中正确结论的个数是()A.1B.2C.3D.46. 设函数y=a(x−ℎ)2+k(a,ℎ,k是实数,a≠0),当x=1时,y=1;当x=8时,y =8,()A.若ℎ=4,则a<0B.若ℎ=5,则a>0C.若ℎ=6,则a<0D.若ℎ=7,则a>07. 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,现有下列结论:①abc> 0;②b2−4ac<0;③4a−2b+c<0;④b=−2a.则其中结论正确的是()A.①③B.③④C.②③D.①④二、填空题(本题共计10 小题,每题3 分,共计30分,)8. 抛物线y=x2+x+2上三点(−2, a)、(−1, b),(3, c),则a、b、c的大小关系是________.9. 将函数y=−12(x−1)2+5图象向________平移________个单位可得函数y=−12(x+1)2+5的图象.10. 抛物线y=−3x2+8向右平移5个单位的抛物线的函数关系式是________.11. 已知二次函数y=x2,在−1≤x≤3内,函数的最小值为________.12. 不等式x2+px>4x+p−3对于一切0≤p≤4均成立,则实数x的取值范围是________.13. 已知抛物线y=x2−kx−8经过点P(2, −8),则k=________,这条抛物线的顶点坐标是________.14. 用配方法将抛物线y=x2+2√3x+1化成y=(x+ℎ)2+k的形式是________.15. 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为________米.16. 在二次函数y=ax2+bx+c的图象如图所示,下列说法中:①b2−4ac<0;>0;③abc>0;④a−b−c>0,说法正确的是________(填序②−b2a号).17. 如图,在平面直角坐标系中,抛物线y=−x2−4x+1与y轴交于点A,过点A平行于x轴的直线交抛物线y=x2于点B、C两点,点P在抛物线y=−x2−4x+1上且在x轴的上方,连接PB、PC,则△PBC面积的最大值是________.三、解答题(本题共计6 小题,共计60分,)18. 已知抛物线y=x2−2x−3.(1)直接写出抛物线的开口方向、对称轴和顶点坐标;(2)若抛物线与x轴的两个交点为A、B,与y轴的一个交点为C,画草图,求△ABC的面积.19. 利用二次函数y=12x2+x+2的图象和性质,求方程−12x2+x+2=0在3和4之间的根的近似值.(结果精确到0.1)20. 已知二次函数y=x2+bx+c的图象如图所示,它与x轴的一个交点坐标为(1, 0),与y轴的交点坐标为(0, −3).(1)求出b、c的值,并写出此二次函数的解析式;(2)根据图象,直接写出函数值y为正数时,自变量x的取值范围.21. 如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=−112x2+23x+53.则他将铅球推出的距离是10m.22. 抛物线y=−x2+2x+3的顶点为D,它与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.(1)求顶点D的坐标;(2)求直线BC的解析式;(3)求△BCD的面积;(4)当点P在直线BC上方的抛物线上运动时,△PBC的面积是否存在最大值?若存在,请求出这个最大值,并且写出此时点P的坐标;若不存在,请说明理由.23. 已知如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA= 1,OB=3,OC=4.(1)求经过A,B,C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以点A,B,C,P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出使|PM−AM|最大时点M的坐标,并直接写出|PM−AM|的最大值.参考答案一、选择题(本题共计7 小题,每题 3 分,共计21分)1.【答案】B【考点】二次函数的定义【解答】解:A、y=ax2+bx+c,其中a≠0,故本选项错误;B、y=3x2+1,故本选项正确;C、y=2(x+1)2−2x2,整理后不含二次项,故本选项错误;+x2,不是整式,故本选项错误;D、y=1x故选B.2.【答案】B【考点】二次函数图象与系数的关系【解答】解:根据图象,当x=1时,y=a+b+c>0,当x=−1时,y=a−b+c<0,可知①②正确;>0,且抛物线开口向下,a<根据图象与y轴的交点位置可知c>0,根据对称轴x=−b2a0,可知b>0,abc<0,故③⑤正确;=1得b=−2a,可知④错误.根据对称轴x=−b2a正确的是①②③⑤4个,故选B.3.【答案】D【考点】根据实际问题列二次函数关系式【解答】解:原边长为6的正方形面积为:6×6=36,边长增加x后边长变为:x+6,则面积为:(x+6)2,∴ y=(x+6)2−36=x2+12x.故选:D.4.【答案】A【考点】二次函数的最值【解答】解:∴ 二次函数y=a(x+1)2−b(a≠0)有最小值,∴ 抛物线开口方向向上,即a>0;又最小值为1,即−b=1,∴ b=−1,∴ a>b.故选A.5.【答案】D【考点】二次函数图象上点的坐标特征二次函数图象与系数的关系抛物线与x轴的交点【解答】∴ 二次函数y=ax2+bx+c(a≠0)过点(0, 1)和(−1, 0),∴ c=1,a−b+c=0.>0,①∴ 抛物线的对称轴在y轴右侧,∴ x=−b2a∴ a与b异号,∴ ab<0,正确;②∴ 抛物线与x轴有两个不同的交点,∴ b2−4ac>0,∴ b2>4ac,正确;③∴ 抛物线开口向下,∴ a<0,∴ ab<0,∴ b>0.∴ a−b+c=0,c=1,∴ a=b−1,∴ a<0,∴ b−1<0,b<1,∴ 0<b<1,正确;④由图可知,当x<−1时,y<0,正确;综上所述,正确的结论有①②③④.6.【答案】C【考点】二次函数的性质待定系数法求二次函数解析式二次函数图象上点的坐标特征【解答】当x=1时,y=1;当x=8时,y=8;代入函数式得:,∴ a(8−ℎ)2−a(1−ℎ)2=7,整理得:a(9−2ℎ)=1,若ℎ=4,则a=1,故A错误;若ℎ=5,则a=−1,故B错误;若ℎ=6,则a=-,故C正确;若ℎ=7,则a=-,故D错误;7.【答案】B【考点】二次函数图象与系数的关系【解答】解:由抛物线的开口向下,得到a<0,>0,∴ b>0,∴ −b2a由抛物线与y轴交于正半轴,得到c>0,∴ abc<0,选项①错误;又抛物线与x轴有2个交点,∴ b2−4ac>0,选项②错误;∴ x=−2时对应的函数值为负数,∴ 4a−2b+c<0,选项③正确;=1,即b=−2a,选项④正确,∴ 对称轴为直线x=1,∴ −b2a则其中正确的选项有③④.故选B二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 8.【答案】c >a >b【考点】二次函数图象上点的坐标特征【解答】解:∴ 二次函数的解析式为y =x 2+x +2=(x +12)2+74, ∴ 抛物线的对称轴为直线x =−12,∴ (−2, a)、(−1, b),(3, c),∴ 点(3, c)离直线x =−12最远,(−1, b)离真相x =−12最近, 而抛物线开口向上,∴ c >a >b ;故答案为c >a >b .9.【答案】左,2【考点】二次函数图象与几何变换【解答】解:由“左加右减”的原则将函数y =−12(x −1)2+5的图象向左平移2个单位,所得二次函数的解析式为:y =−12(x +1)2+5; 故答案为:左,2.10.【答案】y =−3(x −5)2+8【考点】二次函数图象与几何变换【解答】解:∴ 抛物线y =−3x 2+8顶点坐标为(0, 8),向右平移5个单位后,顶点坐标为(5, 8),由顶点式,得平移后抛物线解析式为y =−3(x −5)2+8.故本题答案为:y =−3(x −5)2+8.11.【答案】【考点】二次函数的最值【解答】解:y=x2的对称轴为x=0,且−1≤x≤3,故x=0时,取最小值,最小值为0,故答案为:0.12.【答案】x<−1或x>3.【考点】二次函数与不等式(组)【解答】∴ x2+px>4x+p−3,∴ x2−1>4x−px+p−4,∴ x2−1>(4−p)x+p−4,∴ x2−1>(4−p)(x−1),当p=4时,x2−1>0,画出函数y=x2−1的图象,找出x轴上方所对应的x的取值范围得到x>1或x<−1;当p=0时,x2−4x+3>0,画出函数y=x2−4x+3的图象,找出x轴上方所对应的x的取值范围得到x<1或x>3;当0<p<4,①当x>1,不等式变形为x+1>4−p>0,解得x>−1,则x>1;②当x<1,不等式变形为x+1<4−p,则x+1<0,解得x<−1,则x<−1;∴ x>1或x<−1;综上所述,实数x的取值范围为x<−1或x>3.13.【答案】2,(1, −9)【考点】待定系数法求二次函数解析式【解答】解:∴ 抛物线y=x2−kx−8经过点P(2, −8),∴ 4−2k−8=−8,解得k=2,∴ 此抛物线的解析式为y=x2−2x−8,配方得y=(x−1)2−9,∴ 这条抛物线的顶点坐标是(1, −9).14.【答案】y=(x+√3)2−2【考点】二次函数的三种形式【解答】解:y=x2+2√3x+1=x2+2√3x+3−3+1=(x+√3)2−2.故化成y=(x+ℎ)2+k的形式是y=(x+√3)2−2.15.【答案】0.5【考点】二次函数的应用【解答】解:以左边树与地面交点为原点,地面水平线为x轴,左边树为y轴建立平面直角坐标系,由题意可得A(0, 2.5),B(2, 2.5),C(0.5, 1),设函数解析式为y=ax2+bx+c,把A,B,C三点分别代入得出c=2.5,同时可得4a+2b+c=2.5,0.25a+0.5b+c=1,解之得a=2,b=−4,c=2.5.∴ y=2x2−4x+2.5=2(x−1)2+0.5.∴ 2>0,∴ 当x=1时,y=0.5米.故答案为:0.5.16.【答案】②③④【考点】二次函数图象与系数的关系【解答】解:由图可知,抛物线与x轴有2个交点,所以b2−4ac>0,故①错误;>0,故②正确;对称轴在y轴右侧,则x=−b2a抛物线开口向上,则a>0,而对称轴在y轴右侧,则a、b异号,所以b<0,其与y轴的交点(0, c)位于y轴的负半轴,则c<0,所以abc>0,故③正确;∴ a>0,b<0,c<0,∴ a−b−c>0,故④正确;故答案为:②③④.17.【答案】4【考点】二次函数图象上点的坐标特征抛物线与x轴的交点【解答】当x=0时,y=−x2−4x+1=1,则A(0, 1),当y=1时,x2=1,解得x1=1,x2=−1,则B(−1, 1),C(1, 1),∴ BC=2,设P(x, −x2−4x+1),P点在BC上方时,△PBC面积有最大值,⋅2⋅(−x2−4x+1−1)=−x2−4x=−(x+2)2+4,∴ S△PBC=12∴ 当x=−2时,△PBC面积的最大值为4.三、解答题(本题共计6 小题,每题10 分,共计60分)18.【答案】解:(1)∴ y=x2−2x−3=(x−1)2−4,∴ 该抛物线开口向上,对称轴为x=1,顶点坐标为(1, −4).(2)按点A在点B的左侧画出草图,如图所示.∴ y=x2−2x−3=(x+1)(x−3),∴ 点A(−1, 0),点B(3, 0),当x=0时,y=−3,∴ 点C(0, −3),∴ S△ABC=12AB⋅OC=12×[3−(−1)]×|−3|=6.【考点】抛物线与x轴的交点【解答】解:(1)∴ y=x2−2x−3=(x−1)2−4,∴ 该抛物线开口向上,对称轴为x=1,顶点坐标为(1, −4).(2)按点A在点B的左侧画出草图,如图所示.∴ y=x2−2x−3=(x+1)(x−3),∴ 点A(−1, 0),点B(3, 0),当x=0时,y=−3,∴ 点C(0, −3),∴ S△ABC=12AB⋅OC=12×[3−(−1)]×|−3|=6.19.【答案】解:方程−12x2+x+2=0根是函数y=12x2+x+2与x轴交点的横坐标.如图所示:二次函数y=12x2+x+2的图象,由图象可知方程有两个根,一个在−2和−1之间,另一个在3和4之间.当x=3.2时,y=0.08;当x=3.3时,y=−0.145;因此,x=3.2是方程的一个近似根,故方程−12x2+x+2=0在3和4之间的根的近似值为x≈3.2.图象法求一元二次方程的近似根【解答】解:方程−12x 2+x +2=0根是函数y =12x 2+x +2与x 轴交点的横坐标.如图所示:二次函数y =12x 2+x +2的图象,由图象可知方程有两个根,一个在−2和−1之间,另一个在3和4之间.当x =3.2时,y =0.08;当x =3.3时,y =−0.145;因此,x =3.2是方程的一个近似根,故方程−12x 2+x +2=0在3和4之间的根的近似值为x ≈3.2. 20.【答案】解:(1)由二次函数y =x 2+bx +c 的图象经过(1, 0)和(0, −3)两点,得{1+b +c =0c =−3, 解这个方程组,得{b =2c =−3; ∴ 抛物线的解析式为y =x 2+2x −3.(2)当x <−3或x >1时,y >0.【考点】待定系数法求二次函数解析式二次函数与不等式(组)【解答】解:(1)由二次函数y =x 2+bx +c 的图象经过(1, 0)和(0, −3)两点,得{1+b +c =0c =−3, 解这个方程组,得{b =2c =−3; ∴ 抛物线的解析式为y =x 2+2x −3.(2)当x <−3或x >1时,y >0.21.【答案】当y =0时,−112x 2+23x +53=0,解之得x 1=10,x 2=−2(不合题意,舍去),所以推铅球的距离是10米.二次函数的应用【解答】当y =0时,−112x 2+23x +53=0,解之得x 1=10,x 2=−2(不合题意,舍去),所以推铅球的距离是10米.22.【答案】函数的对称轴为:x =1,当x =1时,y =−1+2+3=4,故点D(1, 4);y =−x 2+2x +3的顶点为D ,它与x 轴交于A ,B 两点,与y 轴交于点C ,则点A 、B 、C 的坐标分别为:(−1, 0)、(3, 0)、(0, 3),将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b b =3 ,解得:{k =−1b =3, 故直线BC 的表达式为:y =−x +3;过点D 作DG // y 轴交BC 于点G ,则点G(1, 2),△BCD 的面积=12×DG ×OB =12×(4−2)×3=3; 过点P 作y 轴的平行线交BC 于点H ,设点P(x, −x 2+2x +3),点H(x, −x +3),则S △PBC =12×PH ×OB =32(−x 2+2x +3+x −3)=−32x(x −3), ∴ −32<0,∴ S △PBC 有最大值,最大值为:278,此时点P(32, 154).【考点】二次函数综合题【解答】函数的对称轴为:x =1,当x =1时,y =−1+2+3=4,故点D(1, 4);y =−x 2+2x +3的顶点为D ,它与x 轴交于A ,B 两点,与y 轴交于点C ,则点A 、B 、C 的坐标分别为:(−1, 0)、(3, 0)、(0, 3),将点B 、C 的坐标代入一次函数表达式:y =kx +b 得:{0=3k +b b =3 ,解得:{k =−1b =3, 故直线BC 的表达式为:y =−x +3;过点D 作DG // y 轴交BC 于点G ,则点G(1, 2),△BCD 的面积=12×DG ×OB =12×(4−2)×3=3;过点P 作y 轴的平行线交BC 于点H ,设点P(x, −x 2+2x +3),点H(x, −x +3),则S △PBC =12×PH ×OB =32(−x 2+2x +3+x −3)=−32x(x −3), ∴ −32<0, ∴ S △PBC 有最大值,最大值为:278,此时点P(32, 154). 23.【答案】解:(1)设抛物线的解析式为y =ax 2+bx +c .由题意可知,A(1, 0),B(0, 3),C(−4, 0),∴ {a +b +c =0,c =3,16a −4b +c =0,解得:a =−34,b =−94,c =3,∴ 经过A ,B ,C 三点的抛物线的解析式为y =−34x 2−94x +3.(2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形,理由如下:如图,∴ OB =3,OC =4,OA =1,∴ BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴ BP =AC =5,且点P 到x 轴的距离等于OB ,∴ 点P 的坐标为(5, 3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5, 3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y =kx +b(k ≠0).∴ A(1, 0),P(5, 3),∴ {5k +b =3,k +b =0, 解得:{k =34,b =−34, ∴ 直线PA 的解析式为y =34x −34. 当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系可得:|PM −AM|<PA ,当点M 与点P ,A 在同一直线上时,|PM −AM|=PA ,∴ 当点M 与点P ,A 在同一直线上时,|PM −AM|的值最大,即点M 为直线PA 与抛物线的交点,解方程组{y =34x −34,y =−34x 2−94x +3, 得{x 1=1,y 1=0 或{x 2=−5,y 2=−92, ∴ 当点M 的坐标为(1,0)或(−5, −92)时,|PM −AM|的值最大,此时|PM −AM|的最大值为5.【考点】二次函数综合题待定系数法求二次函数解析式【解答】解:(1)设抛物线的解析式为y =ax 2+bx +c .由题意可知,A(1, 0),B(0, 3),C(−4, 0),∴ {a +b +c =0,c =3,16a −4b +c =0,解得:a =−34,b =−94,c =3, ∴ 经过A ,B ,C 三点的抛物线的解析式为y =−34x 2−94x +3. (2)在平面直角坐标系xOy 中存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形,理由如下:如图,∴ OB =3,OC =4,OA =1,∴ BC =AC =5.当BP 平行且等于AC 时,四边形ACBP 为菱形,∴ BP =AC =5,且点P 到x 轴的距离等于OB ,∴ 点P 的坐标为(5, 3).当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5, 3)时,以点A ,B ,C ,P 为顶点的四边形为菱形.(3)设直线PA 的解析式为y =kx +b(k ≠0).∴ A(1, 0),P(5, 3),∴ {5k +b =3,k +b =0, 解得:{k =34,b =−34, ∴ 直线PA 的解析式为y =34x −34.当点M与点P,A不在同一直线上时,根据三角形的三边关系可得:|PM−AM|<PA,当点M与点P,A在同一直线上时,|PM−AM|=PA,∴ 当点M与点P,A在同一直线上时,|PM−AM|的值最大,即点M为直线PA与抛物线的交点,解方程组{y=34x−34,y=−34x2−94x+3,得{x1=1,y1=0或{x2=−5,y2=−92,∴ 当点M的坐标为(1,0)或(−5, −92)时,|PM−AM|的值最大,此时|PM−AM|的最大值为5.。
《二次函数》全章测试及答案
二次函数单元测试题班级___________姓名___________学号____________一、 选择题(每题4分,共36分)1、二次函数y=x 2-2x +3图象的顶点坐标是( )A .(1,-4) B. (-1,2) C. (1,2) D. (0,3)2、将抛物线y =5x 2向左平移2个单位,再向下平移3个单位,得到的抛物线是( ) A .25(2)3y x =++ B.25(2)3y x =+- C.25(2)3y x =-+ D.25(2)3y x =--3、已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是( )A .1y >2yB .1y 2y =C .1y <2yD .不能确定4、下列关于二次函数的说法错误的是( )A .抛物线y =-2x 2+3x +1的对称轴是直线x =34; B .点A (3,0)不在抛物线y =x 2-2x -3的图象上; C .二次函数y =(x +2)2-2的顶点坐标是(-2,-2); D .函数y=2x 2+4x -3的图象的最低点在(-1,-5)5、已知二次函数22(21)1y m x m x =+++ 的图像与x 轴有两个交点,则m 的取值范围是 ( ) A .m >-14 B .m 41-≥ C .m >-14且m≠0 D .m 41-≥且m ≠0 6、在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可.能.是( ).7、二次函数c bx ax y ++=2的图象如图所示,则abc ,ac b 42-,b a +2,c b a ++这四个式子中,值为正数的有((A )4个 (B )3个 (C )2个(D )1个8、如图,四边形ABCD 中,∠BAD=∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A . 2425y x =B .225y x = C .2225y x= D .245y x =二、填空题(每题4分,共24分)9、已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数. 10、若把二次函数532+-=x x y 化为的形式,其中,m k 为常数,则m k +=.11、开口向下的抛物线y m x mx =-++()22221的对称轴经过点(-1,3),则m =12、已知c b a ,,满足b c a =+,b c a 24=+,则关于x 的二次函数c bx ax y ++=2(0)a ≠ 的图像与x 轴的交点坐标为 .13、已知抛物线y =ax 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是________. 14、 如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y_______0(填“>”,“=”或“<”号).(第14题图)(第8题)ABCD (第13题图)15、如图,已知抛物线y =x 2+bx +c 经过点(0,-3),请你确定一个b 的值, 使该抛物线与x 轴的一个交点在(1,0)和(3,0)之间.你所确定的 b 的值是 (写出一个值即可).三、解答题:(每题8分,共40分) 16、已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式.17、已知二次函数y = 2x 2 -4x -6.(1)用配方法将y = 2x 2 -4x -6化成y = a (x - h ) 2 + k 的形式; (2(3)当x 取何值时,y 随x 的增大而减少? (4)当x 取何值是,y <0? 解:-331O yx18、我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元,每件工艺品的利润率不得超过25%。
《二次函数》单元测试卷 (含答案)
《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。
二次函数全章测试题含答案
二次函数测试题 班别_________姓名__________学号_____ 一.填空题:(每题6分,共30分)1.将抛物线y =2x 2 向上平移3个单位,再向左平移2个单位,得到的抛物线的解析式是 __________________________2. 抛物线23(1)2y x =-+的顶点坐标是______________3. 抛物线y=-3x 2的对称轴是 ,顶点是 ,开口 , 顶点是最 点,与x 轴的交点为 。
(2,1)P -在抛物线2y ax =图像上,则a=__________;5. 抛物线y =4x 2-1与x 轴的交点坐标为_____________________.二.选择题:(每题6分,共30分)6.二次函数2365y x x =--+的图像的顶点坐标是 ( ) A .(-1,8) B .(1,8) C .(-1,2) D .(1,-4) 7. 二次函数223y x x =--的图象如上图所示.当y <0时,自变量x 的取值范围是( ).A .-1<x <3B .x <-1C . x >3D .x <-1或x >38.下列函数中是二次函数的是 ( ) A .y =x +12 B . y =3 (x -1)2 C .2y ax bx c =++ D .y =1x2 -x 9.二次函数322--=x x y 的图象与x 轴的交点个数为 ( ) A.0 B.1 C.2 D. 3 10. 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有( )A. 最小值 -3B. 最大值-3 C . 最小值2 D. 最大值2 三.解答题:(每题15分,共60分) 11.二次函数图像的顶点坐标是(-2,3),并经过点(1,2),求这个二次函数的函数关系式。
12.如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
(1) 求抛物线的解析式;(2) 求抛物线顶点D 的坐标,及对称轴。
二次函数 单元检测试卷(含答案)
二次函数检测卷时间:120分钟满分:150分班级:__________姓名:__________得分:__________ 一、选择题(本题共12小题,每小题3分,共36分)1.下列各式中,y是x的二次函数的是()A.y=1x2B.y=2x+1 C.y=x2+x-2 D.y2=x2+3x 2.抛物线y=2x2+1的顶点坐标是()A.(2,1) B.(0,1) C.(1,0) D.(1,2) 3.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是()A.-3 B.-1 C.2 D.34.抛物线y=x2-2x-3与x轴的交点个数是()A.0个B.1个C.2个D.3个5.下列函数中,当x>0时,y随x值的增大而先增大后减小的是()A.y=x2+1 B.y=x2-1 C.y=(x+1)2D.y=-(x-1)2 6.二次函数y=ax2+bx+c的部分对应值如下表:x …-2-10123…y …50-3-4-30…二次函数图象的对称轴是()A.直线x=1 B.y轴C.直线x=12D.直线x=-127.如图,二次函数y=ax2+bx+c的图象与x轴相交于(-2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是()A.x<-2 B.-2<x<4 C.x>0 D.x>48.二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()9.某种品牌的服装进价为每件150元,当售价为每件210元时,每天可卖出20件,现需降价处理,且经市场调查:每件服装每降价2元,每天可多卖出1件.在确保盈利的前提下,若设每件服装降价x 元,每天售出服装的利润为y 元,则y 与x 的函数关系式为( )A .y =-12x 2+10x +1200(0<x <60)B .y =-12x 2-10x +1200(0<x <60)C .y =-12x 2+10x +1250(0<x <60)D .y =-12x 2-10x +1250(x ≤60)10.如图,在平面直角坐标系中,抛物线y =12x 2经过平移得到抛物线y =12x 2-2x ,其对称轴与两段抛物线弧所围成的阴影部分的面积为( )A .2B .4C .8D .16第10题图 第12题图11.抛物线y =-x 2+6x -9的顶点为A ,与y 轴的交点为B ,如果在抛物线上取点C ,在x 轴上取点D ,使得四边形ABCD 为平行四边形,那么点D 的坐标是( )A .(-6,0)B .(6,0)C .(-9,0)D .(9,0)12.如图是抛物线y 1=ax 2+bx +c (a ≠0)的图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点为B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤ 二、填空题(本大题共6小题,每小题4分,共24分)13.当a = 时,函数y =(a -1)xa 2+1+x -3是二次函数.14.把二次函数y =x 2-12x 化为形如y =a (x -h )2+k 的形式为 . 15.已知A (4,y 1),B (-4,y 2)是抛物线y =(x +3)2-2的图象上两点,则y 1 y 2. 16.若抛物线y =x 2-2x +3不动,将平面直角坐标系xOy 先沿水平方向向右平移1个单位,再沿铅直方向向上平移3个单位,则原抛物线图象的解析式应变为.17.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=-112(x-4)2+3,由此可知铅球推出的距离是m.18.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为.三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)二次函数的图象如图所示,求这条抛物线的解析式(结果化成一般式).20.(10分)已知△ABC中,边BC的长与BC边上的高的和为20.写出△ABC的面积y 与BC的长x之间的函数关系式,并求出面积为48时BC的长.21.(10分)已知二次函数y=x2-6x+8.(1)将y=x2-6x+8化成y=a(x-h)2+k的形式;(2)当0≤x≤4时,y的最小值是,最大值是;(3)当y<0时,根据函数草图直接写出x的取值范围.22.(10分)已知在平面直角坐标系内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.23.(12分)某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间定价增加10x 元(x 为整数).(1)直接写出每天游客居住的房间数量y 与x 的函数关系式;(2)设宾馆每天的利润为w 元,当每间房价定价为多少元时,宾馆每天所获利润最大?最大利润是多少?24.(12分)已知抛物线y =x 2-px +p 2-14.(1)若抛物线与y 轴交点的坐标为(0,1),求抛物线与x 轴交点的坐标; (2)证明:无论p 为何值,抛物线与x 轴必有交点.25.(12分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若苗圃园的面积为72平方米,求x的值;(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.26.(14分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.参考答案1.C 2.B 3.D 4.C 5.D 6.A 7.B 8.A 9.A 10.B 11.D12.C 解析:对于抛物线y 1=ax 2+bx +c (a ≠0),对称轴为直线x =-b2a =1,∴2a +b=0,①正确;由抛物线图象可知a <0,c >0,x =-b2a >0,∴b >0,∴abc <0,②错误;由抛物线y 1=ax 2+bx +c (a ≠0)图象与y =3只有一个交点,∴方程ax 2+bx +c =3有两个相等的实数根,③正确;设抛物线与x 轴的另一个交点是(x 2,0),由抛物线的对称性可知4+x 22=1,∴x 2=-2,即抛物线与x 轴的另一个交点是(-2,0),④错误;通过函数图象可直接得到当1<x <4时,有y 2<y 1,⑤正确.故选C.13.-1 14.y =(x -6)2-36 15.> 16.y =x 2-1 17.10 18.-1或2或119.解:由图象可知抛物线的顶点坐标为(1,4),(1分)设此二次函数的解析式为y =a (x -1)2+4.(3分)把点(3,0)代入解析式,得4a +4=0,即a =-1.(7分)所以此函数的解析式为y =-(x -1)2+4=-x 2+2x +3.(10分)20.解:y =12x (20-x )=-12x 2+10x .(4分)解方程48=-12x 2+10x ,得x 1=12,x 2=8,(9分)∴△ABC 的面积为48时,BC 的长为12或8.(10分)21.解:(1)y =(x -3)2-1;(3分) (2)-1(5分) 8(7分) (3)2<x <4.(10分)22.解:(1)把点B 的坐标(3,0)代入抛物线y =x 2+bx +6得0=9+3b +6,解得b =-5,(3分)∴抛物线的表达式为y =x 2-5x +6;(4分)(2)∵抛物线的表达式y =x 2-5x +6,令y =0,即x 2-5x +6=0,解得x 1=2,x 2=3.令x =0,则y =6.∴A (2,0),B (3,0),C (0,6).(8分)∴AB =1,OC =6,S △ABC =12×1×6=3.(10分)23.解:(1)y =50-x (0≤x ≤50,x 为整数);(4分)(2)w =(120+10x -20)(50-x )=-10x 2+400x +5000=-10(x -20)2+9000.(8分)∵a =-10<0,∴当x =20时,w 取得最大值,最大值为9000.此时每个房间定价为120+10x =320(元).(11分)答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元.(12分)24.(1)解:对于抛物线y =x 2-px +p 2-14,将x =0,y =1代入得p 2-14=1,解得p =52,∴抛物线的解析式为y =x 2-52x +1.(2分)令y =0,得x 2-52x +1=0,解得x 1=12,x 2=2.(5分)则抛物线与x 轴交点的坐标为⎝⎛⎭⎫12,0与(2,0);(6分)(2)证明:∵Δ=p 2-4⎝⎛⎭⎫p 2-14=p 2-2p +1=(p -1)2≥0,∴无论p 为何值,抛物线与x 轴必有交点.(12分)25.解:(1)根据题意,得(30-2x )x =72,解得x 1=3,x 2=12.∵30-2x ≤18,∴x ≥6,∴x =12;(4分)(2)设苗圃园的面积为y ,则y =x (30-2x )=-2x 2+30x .由题意得30-2x ≥8,∴x ≤11.由(1)可知x ≥6,∴x 的取值范围是6≤x ≤11.(6分)∵a =-2<0,对称轴为直线x =-b 2a =-302×(-2)=152,∴当x =152时,y 取最大值,最大值为-2×⎝⎛⎭⎫1522+30×152=112.5;(9分)当x =11时,y 取最小值,最小值为-2×112+30×11=88.(11分)答:当平行于墙的一边长不小于8米时,这个苗圃园的面积的最大值为112.5平方米,最小值为88平方米.(12分)26.解:(1)根据已知条件可设抛物线的解析式为y =a (x -1)(x -5),(1分)把点A (0,4)代入上式,得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,(3分)∴抛物线的对称轴是直线x =3;(4分)(2)存在.(5分)理由如下:∵点A (0,4),抛物线的对称轴是直线x =3,∴点A 关于对称轴的对称点A ′的坐标为(6,4).(6分)如图①,连接BA ′交对称轴于点P ,连接AP ,此时△P AB 的周长最小.(7分)设直线BA ′的解析式为y =kx +b ,把A ′(6,4),B (1,0)代入得⎩⎪⎨⎪⎧4=6k +b ,0=k +b ,解得⎩⎨⎧k =45,b =-45,∴y =45x -45.(8分)∵点P 的横坐标为3,∴y =45×3-45=85,∴P ⎝⎛⎭⎫3,85;(9分)(3)在直线AC 的下方的抛物线上存在点N ,使△NAC 面积最大.(10分)设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5).如图②,过点N 作NG ∥y 轴交AC 于G ,作AD ⊥NG 于D .(11分)由点A (0,4)和点C (5,0)可求出直线AC 的解析式为y =-45x +4.则G (t ,-45t +4),此时NG =-45t +4-⎝⎛⎭⎫45t 2-245t +4=-45t 2+4t .∵AD +CF =CO =5,∴S △ACN =S △ANG +S △CGN=12AD ·NG +12NG ·CF =12NG ·OC =12×⎝⎛⎭⎫-45t 2+4t ×5=-2t 2+10t =-2⎝⎛⎭⎫t -522+252.∴当t =52时,△CAN 面积的最大值为252.(13分)当t =52时,y =45t 2-245t +4=-3,∴N ⎝⎛⎭⎫52,-3.(14分)。
二次函数单元测试题及答案
二次函数单元测试题及答案The document was prepared on January 2, 2021二函数单元测试一含答案一、选择题:1.下列函数中,是二次函数的是 A. 28xy =B.18+=x yC.x y 8=D. 182+=x y2. 二次函数12)12(2+--=x k x y ,当1>x 时,y 随着x 的增大而增大,当1<x 时,y 随着x 的增大而减小,则k 的值应取A .12B .11C .10D .93.2A. B. C. D.4.在函数,自变量x 的取值范围是 A. x ≥-2且x ≠±3 B. x ≥-2且x ≠3 C. x >-2且x ≠-3 D. x >-2且x ≠35.无论m 为何实数,二次函数m x m x y +--=)2(2的图象总是过定点A.-1,3B.1,0C.1,3D.-1,06.在直角坐标系中,坐标轴上到点P-3,-4的距离等于5的点共有 个 个 个 个7. 下列四个函数中,y 的值随着x 值的增大而减小的是A .x y 2=B .()01>=x x y C .1+=x y D .()02>=x x y 8.抛物线c bx ax y ++=2的图象如图,OA=OC,则 A .b ac =+1 B .c ab =+1 C .a bc =+1 D .以上都不是9.在同一坐标系中,一次函数和二次函数c ax y +=2的图象大致为10.若0>b ,则二次函数12-+=bx x y 2的图象的顶点在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:11.已知二次函数解析式为562+-=x x y ,则这条抛物线的对称轴为直线x = ,满足y <0的x 的取值范围是 ,将抛物线562+-=x x y 向 平移 个单位,则得到抛物线962+-=x x y .12.请写出一个开口向上,对称轴为直线2=x ,且与y 轴的交点坐标为0,3的抛物线的解析式 .13. c bx ax y ++=2中,0<a ,抛物线与x 轴有两个交点A2,0B-1,0,则02>++c bx ax 的解是____________,02<++c bx ax 的解是____________.14.已知抛物线y ax bx c =++2经过点A-2,7,B6,7,C3,-8,则该抛物线上纵坐标为-8的另一点的坐标是________.15.如右图所示,长方体的底面是边长为x cm 的正方形,高为6cm,请你用含x 的代数式表示这个长方体的侧面展开图的面积S=________,长方体的体积为V=__________,各边长的和L=__________,在上面的三个函数中,_______是关于x 的二次函数.16.抛物线22++=x x y 与直线4=y 有___个交点,交点坐标是_________________.三、解答题: 17.当二次函数图象与x 轴交点的横坐标分别是1,321=-=x x ,且与y 轴交点为0,-2,求这个二次函数的解析式.18.求抛物线3522--=x x y 与坐标轴的交点坐标,并求这些交点所构成的三角形面积.19. 一男生推铅球,铅球出手后运动的高度)(m y ,与水平距离)(m x 之间的函数关系是35321212++-=x x y ,那么这个男生的铅球能推出几米20.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m 件与每件的销售价x 元满足一次函数关系x m 3162-=,请写出商场卖这种商品每天的销售利润y 元与每件销售价x 元之间的函数关系式.21. 心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x单位:分钟之间满足函数关系-+=xxy,y的值越大,表示接受能力越强.+x30)≤0(431.02≤6.21若用10分钟提出概念,学生的接受能力y的值是多少2如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了通过计算来回答.22.如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20米,水位上升3m就达到警戒线CD,这是水面宽度为10米,1在如图的坐标系中求抛物线的解析式;2若洪水到来时,水位以每小时米的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶参答案一、选择题:;;;;;;;;; .二、填空题:新课标第一网xkb11. 3 , 51<<x ,上 , 4 ; 12. 342+-=x x y 答案不唯一;13. 21<<-x , 1-<x 或2>x ; 14. )8,1(-;15. x 24,26x ;248+x ,26x V =; 16. 两,-2,4和1,4.三、解答题:新 课标 第一 网 17. 234322-+=x x y . 18. )0,3( ,),(021- ,)3,0(- , 面积421. 19. 10米.提示:令0=y ,横坐标正值即为所求.20. )5430(486025232≤≤-+-=x x x y . 21.159=y ;2用8分钟与用10分钟相比,学生的接受能力减弱了;用15分钟与用10分钟相比,接受能力增强了.新 课 标第 一网x kb 22. 1 2251x y -=;25小时 .。
二次函数单元测试(附答案)
二次函数单元测试卷一、选择题(20分)1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( )A.B.C.D.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于04.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.16.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.258.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m二、填空题(20分):11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为__________.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为__________.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是__________.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=__________.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是__________.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为__________.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是__________.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为__________.19.当n=__________,m=__________时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口__________.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是__________.三、解答题(60分):21.(5分)求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.22.(6分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.23.(7分)下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?24.(8分)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.25.(7分)二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?26.(7分)有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)27.(10分)某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?28.(10分)在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.《二次函数》单元测试卷一、选择题1.二次函数y=x2﹣x+1的图象与x轴的交点个数是( )A.0个B.1个C.2个D.不能确定【考点】抛物线与x轴的交点.【分析】利用“二次函数的图象和性质与一元二次方程之间的关系”解答即可.【解答】解:判断二次函数图象与x轴的交点个数,就是当y=0时,方程x2﹣x+1=0解的个数,∵△=(﹣1)2﹣4×1×1=﹣3<0,此方程无解,∴二次函数y=x2﹣x+1的图象与x轴无交点.故选A.【点评】主要考查了二次函数的图象和性质与一元二次方程之间的关系,这些性质和规律要求掌握.2.若二次函数y=ax2﹣x+c的图象上所有的点都在x轴下方,则a,c应满足的关系是( ) A.B.C.D.【考点】抛物线与x轴的交点.【分析】根据函数图象上所有点都在x轴下方可知,函数图象开口向下且顶点纵坐标小于0,列出不等式.【解答】解:由题意得:,解得:,故选A.【点评】本题考查了二次函数的图象在x轴下方的性质:开口向下,且与x轴无交点.3.已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则有( )A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a,b,c都小于0【考点】二次函数图象与系数的关系.【分析】根据函数图象可以得到以下信息:a<0,b>0,c>0,再结合函数图象判断各选项.【解答】解:由函数图象可以得到以下信息:a<0,b>0,c>0,A、错误;B、错误;C、正确;D、错误;故选C.【点评】本题考查了二次函数图象与系数的关系,应先观察图象得到信息,再进行判断.4.若抛物线y=ax2﹣6x经过点(2,0),则抛物线顶点到坐标原点的距离为( )A. B. C. D.【考点】二次函数图象上点的坐标特征.【分析】由抛物线y=ax2﹣6x经过点(2,0),求得a的值,再求出函数顶点坐标,求得顶点到坐标原点的距离.【解答】解:由于抛物线y=ax2﹣6x经过点(2,0),则4a﹣12=0,a=3,抛物线y=3x2﹣6x,变形,得:y=3(x﹣1)2﹣3,则顶点坐标M(1,﹣3),抛物线顶点到坐标原点的距离|OM|==.故选B.【点评】本题考查了二次函数图象上点的坐标特征,先求解析式,再求顶点坐标,最后求距离.5.如图,二次函数y=x2﹣4x+3的图象交x轴于A,B两点,交y轴于C,则△ABC的面积为( )A.6 B.4 C.3 D.1【考点】二次函数综合题.【专题】压轴题.【分析】根据解析式求出A、B、C三点的坐标,即△ABC的底和高求出,然后根据公式求面积.【解答】解:在y=x2﹣4x+3中,当y=0时,x=1、3;当x=0时,y=3;即A(1,0)、B(3,0)、C(0,3)故△ABC的面积为:×2×3=3;故选C.【点评】本题考查根据解析式确定点的坐标.6.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c﹣8=0的根的情况是( )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根【考点】抛物线与x轴的交点.【专题】压轴题.【分析】把抛物线y=ax2+bx+c向下平移8个单位即可得到y=ax2+bx+c﹣8的图象,由此即可解答.【解答】解:∵y=ax2+bx+c的图象顶点纵坐标为8,向下平移8个单位即可得到y=ax2+bx+c ﹣8的图象,此时,抛物线与x轴有一个交点,∴方程ax2+bx+c﹣8=0有两个相等实数根.【点评】考查方程ax2+bx+c+2=0的根的情况与函数y=ax2+bx+c的图象与x轴交点的个数之间的关系.7.二次函数y=4x2﹣mx+5,当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么当x=1时,函数y的值为( )A.﹣7 B.1 C.17 D.25【考点】二次函数的性质.【分析】因为当x<﹣2时,y随x的增大而减小;当x>﹣2时,y随x的增大而增大,那么可知对称轴就是x=﹣2,结合顶点公式法可求出m的值,从而得出函数的解析式,再把x=1,可求出y的值.【解答】解:∵当x<﹣2时,y随x的增大而减小,当x>﹣2时,y随x的增大而增大,∴对称轴x=﹣=﹣=﹣2,解得m=﹣16,∴y=4x2+16x+5,那么当x=1时,函数y的值为25.故选D.【点评】主要考查了如何根据函数的单调性确定对称轴,并根据对称轴公式求字母系数从而求得函数值.8.(1997•山东)若直线y=ax+b不经过二、四象限,则抛物线y=ax2+bx+c( )A.开口向上,对称轴是y轴B.开口向下,对称轴是y轴C.开口向下,对称轴平行于y轴D.开口向上,对称轴平行于y轴【考点】二次函数图象与系数的关系.【分析】由直线y=ax+b不经过二、四象限,则a>0,b=0,再判断抛物线的开口方向和对称轴.【解答】解:∵直线y=ax+b不经过二、四象限,∴a>0,b=0,则抛物线y=ax2+bx+c开口方向向上,对称轴x==0.故选A.【点评】本题考查了一次函数和二次函数与其系数的关系,由一次函数判断出a、b的正负,在判断二次函数的性质.9.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣x2+4x+2,则水柱的最大高度是( )A.2 B.4 C.6 D.2+【考点】二次函数的应用.【专题】应用题.【分析】求最大高度,就要把抛物线解析式的一般形式改写成顶点式后,求顶点的纵坐标.【解答】解:y=﹣x2+4x+2=﹣(x﹣2)2+6,∵﹣1<0∴当x=2时,最大高度是6.故选C.【点评】注意抛物线的解析式的三种形式,在解决抛物线的问题中的作用.10.用长为6m的铝合金型材做一个形状如图所示的矩形窗框,要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成( )A.1.5m,1m B.1m,0.5m C.2m,1m D.2m,0.5m【考点】二次函数的应用.【专题】几何图形问题.【分析】本题考查二次函数最小(大)值的求法.【解答】解:设长为x,则宽为,S=x,即S=﹣x2+2x,要使做成的窗框的透光面积最大,则x=﹣=﹣==1.5m.于是宽为==1m,所以要使做成的窗框的透光面积最大,则该窗的长,宽应分别做成1.5m,1m.故选A.【点评】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.二、填空题:11.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为4.【考点】抛物线与x轴的交点.【专题】压轴题.【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并熟练运用.12.二次函数y=﹣x2+6x﹣9的图象与x轴的交点坐标为(3,0).【考点】抛物线与x轴的交点.【分析】解方程﹣x2+6x﹣9=0即可求得函数图象与x轴的交点坐标的横坐标.【解答】解:当y=0时,﹣x2+6x﹣9=0,解得:x=3.∴交点坐标是(3,0).【点评】考查二次函数与一元二次方程的关系.13.抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积是1.【考点】抛物线与x轴的交点.【分析】抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形中:底边长为与x轴的两交点之间的距离,高为抛物线的顶点的纵坐标的绝对值,再利用三角形的面积公式即可求出b的值.【解答】解:由题意可得:抛物线的顶点的纵坐标为=﹣1,∴底边上的高为1;∵x2﹣4x+3=0,解得x1=1,x2=3,∴抛物线与x轴的交点为(1,0)、(3,0);由题意得:底边长=|x1﹣x2|=2,∴抛物线y=x2﹣4x+3的顶点及它与x轴的交点三点连线所围成的三角形面积为:×2×1=1.【点评】要求熟悉二次函数与一元二次方程的关系和坐标轴上两点距离公式|x1﹣x2|,并能与几何知识结合使用.14.已知二次函数y=ax2+bx+c(a≠0)的顶点坐标(﹣1,﹣3.2)及部分图象(如图),由图象可知关于x的方程ax2+bx+c=0的两个根分别是x1=1.3和x2=﹣3.3.【考点】图象法求一元二次方程的近似根.【专题】压轴题.【分析】先根据图象找出函数的对称轴,得出x1和x2的关系,再把x1=1.3代入即可得x2.【解答】解:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣1,﹣3.2),则对称轴为x=﹣1;所以=﹣1,又因为x1=1.3,所以x2=﹣2﹣x1=﹣2﹣1.3=﹣3.3.故答案为:﹣3.3【点评】考查二次函数和一元二次方程的关系.15.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点B的坐标是(0,0).【考点】二次函数的性质.【分析】此题可以先将点A的坐标代入抛物线和直线,求得a、b的值,再将两个函数联立成一元二次方程求得另一个交点坐标B.【解答】解:抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A的坐标是(2,4),则点A代入y=ax2,解得a=1;代入y=2x+b,解得:b=0;将两方程联立得:x2=2x,解方程得:x=0或2,则另一交点坐标B为(0,0).【点评】本题考查了待定系数法解函数及两函数图象的交点问题.16.将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为y=﹣4(x﹣2)2+3.【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及所给的坐标可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向右平移2个单位,再向上平移3个单位,那么新抛物线的顶点为(2,3);可设新抛物线的解析式为y=a(x﹣h)2+k,把(3,﹣1)代入得a=﹣4,∴y=﹣4(x﹣2)2+3.【点评】题中由抛物线的顶点求解析式一般采用顶点式;解决本题的关键是得到新抛物线的顶点坐标.17.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m的取值范围是m>.【考点】抛物线与x轴的交点.【分析】由题意二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,可知(m+5)x2+2(m+1)x+m=0,方程二次项系数(m+5)>0,方程根的判别式△<0,根据以上条件从而求出m的取值范围.【解答】解:∵二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,∴(m+5)>0,△<0,∴m>﹣5,4(m+1)2﹣4(m+5)×m<0,解得m>.故m>【点评】此题主要考查一元二次方程与函数的关系,函数与x轴的交点的横坐标就是方程的根.18.已知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),则抛物线的关系式为y=﹣3x2﹣12x﹣9.【考点】待定系数法求二次函数解析式.【分析】由题知抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),且过A(﹣3,0),将点代入抛物线解析式,再根据待定系数法求出抛物线的解析式.【解答】解:抛物线y=ax2+bx+c(a≠0)图象的顶点为P(﹣2,3),∴对称轴x=﹣=﹣2…①,又∵抛物线过点P(﹣2,3),且过A(﹣3,0)代入抛物线解析式得,由①②③解得,a=﹣3,b﹣12,c=﹣9,∴抛物线的关系式为:y=﹣3x2﹣12x﹣9.【点评】此题考查二次函数的基本性质及其对称轴和顶点坐标,运用待定系数法求抛物线的解析式,同时也考查了学生的计算能力.19.当n=2,m=2时,函数y=(m+n)x n+(m﹣n)x的图象是抛物线,且其顶点在原点,此抛物线的开口向上.【考点】二次函数的性质;二次函数的定义.【分析】对y=(m+n)x n+(m﹣n)x的图象是抛物线的判定,需满足n=2,又其顶点在原点,需满足m﹣n=0,则m、n的值即可求出,根据解得的函数解析式判断抛物线的开口方向.【解答】解:若函数y=(m+n)x n+(m﹣n)x的图象满足是抛物线,且其顶点在原点,则,解得,,故函数y=4x2,又由于a=4>0,则抛物线的开口向上.【点评】本题考查了二次函数的性质,需掌握抛物线函数需满足的条件及开口方向的判定.20.若抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,且开口向下,对称轴在y轴左侧,则a的取值范围是﹣1<a<0.【考点】二次函数的性质.【分析】抛物线经过(0,1)可得c的值,又经过(2,﹣3)可得a和b的关系,又开口向下,对称轴在y轴左侧,则需满足a<0,x=<0,解得a的取值范围.【解答】解:抛物线y=ax2+bx+c经过(0,1)和(2,﹣3)两点,则c=1,4a+2b+c=﹣3,即4a+2b=﹣4,化简得:2a+b=﹣2,又抛物线开口向下,对称轴在y轴左侧,则需满足:,解得:﹣1<a<0.【点评】本题综合考查了二次函数的各种性质,并与不等式结合体现出来.三、解答题:21.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.【考点】二次函数的性质;抛物线与x轴的交点.【分析】本题已知二次函数的一般式,求顶点,可以通过配方法把解析式写成顶点式,求它与x轴的交点坐标,可以设y=0,求方程x2﹣2x﹣1=0的解.【解答】解:∵y=x2﹣2x﹣1=x2﹣2x+1﹣2=(x﹣1)2﹣2∴二次函数的顶点坐标是(1,﹣2)设y=0,则x2﹣2x﹣1=0∴(x﹣1)2﹣2=0(x﹣1)2=2,x﹣1=±∴x1=1+,x2=1﹣.二次函数与x轴的交点坐标为(1+,0)(1﹣,0).【点评】本题考查求二次函数的顶点坐标及x轴交点坐标的求法.22.已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.【考点】二次函数的性质;抛物线与x轴的交点.【分析】(1)此题首先要将函数右边的式子化为完全平方式,才能知道顶点坐标和对称轴;(2)令y=0,求得抛物线在x轴上的交点坐标,那么长度就很快就能求出.【解答】解:(1)∵y=x2+x﹣=(x+1)2﹣3,∴抛物线的顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)当y=0时,x2+x﹣=0,解得:x1=﹣1+,x2=﹣1﹣,AB=|x1﹣x2|=.【点评】考查求抛物线的顶点坐标的方法及与x轴交点坐标特点.23.下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 x2+bx+c … 3 ﹣1 3 (1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y>0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?【考点】二次函数图象与几何变换;待定系数法求二次函数解析式;二次函数与不等式(组).【专题】图表型.【分析】根据与x轴的交点坐标得到什么时候y>0.讨论两个二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.【解答】解:(1)这个代数式属于二次函数.当x=0,y=3;x=4时,y=3.说明此函数的对称轴为x=(0+4)÷2=2.那么﹣=﹣=2,b=﹣4,经过(0,3),∴c=3,二次函数解析式为y=x2﹣4x+3,当x=1时,y=0;当x=3时,y=0.(每空2分)(2)由(1)可得二次函数与x轴的交点坐标,由于本函数开口向上,可根据与x轴的交点来判断什么时候y>0.当x<1或x>3时,y>0.(3)由(1)得y=x2﹣4x+3,即y=(x﹣2)2﹣1.将抛物线y=x2﹣4x+3先向左平移2个单位,再向上平移1个单位即得抛物线y=x2.【点评】常由一些特殊点入与y轴的交点,对称轴等得到二次函数的解析式.24.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【考点】待定系数法求二次函数解析式;二次函数图象与几何变换;抛物线与x轴的交点.【专题】压轴题;分类讨论.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位故A'(2,4),B'(5,﹣5)∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点评】本题考查了用待定系数法求抛物线解析式、函数图象交点、图形面积的求法等知识.不规则图形的面积通常转化为规则图形的面积的和差.25.二次函数y=x2的图象如图所示,请将此图象向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图象,并写出函数的解析式;(2)求经过两次平移后的图象与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?【考点】二次函数图象与几何变换;二次函数的图象;抛物线与x轴的交点.【专题】压轴题;开放型.【分析】(1)由平移规律求出新抛物线的解析式;(2)令y=0,求出x的值,即可得交点坐标.抛物线开口向上,当x的值在两交点之外y 的值大于0.【解答】解:(1)画图如图所示:依题意得:y=(x﹣1)2﹣2=x2﹣2x+1﹣2=x2﹣2x﹣1∴平移后图象的解析式为:x2﹣2x﹣1(2)当y=0时,x2﹣2x﹣1=0,即(x﹣1)2=2,∴,即∴平移后的图象与x轴交于两点,坐标分别为(,0)和(,0)由图可知,当x<或x>时,二次函数y=(x﹣1)2﹣2的函数值大于0.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.26.有一条长7.2米的木料,做成如图所示的“日”字形的窗框,问窗的高和宽各取多少米时,这个窗的面积最大?(不考虑木料加工时损耗和中间木框所占的面积)【考点】二次函数的应用.【专题】几何图形问题.【分析】设窗框的宽为x米,窗框的高为,则窗框的面积为S=x•,再求得面积的最大值即可.【解答】解:设窗框的宽为x米,则窗框的高为米.则窗的面积S=x•S=.当x==1.2(米)时,S有最大值.此时,窗框的高为=1.8(米)【点评】本题考查了二次函数在实际生活中的运用.27.某公司生产的A种产品,每件成本是2元,每件售价是3元,一年的销售量是10万件.为了获得更多的利润,公司准备拿出一定资金来做广告.根据经验,每年投入的广告费为x(万元)时,产品的年销售量是原来的y倍,且y是x的二次函数,公司作了预测,知x与y之间的对应关系如下表:x(万元)0 1 2 …y 1 1.5 1.8 …(1)根据上表,求y关于x的函数关系式;(2)如果把利润看成是销售总额减去成本和广告费,请你写出年利润S(万元)与广告费x(万元)的函数关系式;(3)从上面的函数关系式中,你能得出什么结论?【考点】二次函数的应用.【专题】应用题;图表型.【分析】(1)设所求函数关系式为y=ax2+bx+c,代入三点求出a、b、c,(2)由利润看成是销售总额减去成本和广告费列出关系式,(3)把二次函数化成顶点坐标式,观察S随x的变化.【解答】解:(1)设所求函数关系式为y=ax2+bx+c,把(0,1),(1,1.5),(2,1.8)分别代入上式,得解得∴y=﹣x2+x+1(2)S=(3﹣2)×10y﹣x=(﹣x2+x+1)×10﹣x=﹣x2+5x+10.(3)∵S=﹣x2+5x+10=﹣.∴当0≤x≤2.5时,S随x的增大而增大.因此当广告费在0﹣2.5万元之间时,公司的年利润随广告费的增大而增大【点评】本题考查的是二次函数在实际生活中的应用,比较简单.28.在直角坐标系中,抛物线y=x2﹣2mx+n+1的顶点A在x轴负半轴上,与y轴交于点B,抛物线上一点C的横坐标为1,且AC=3.(1)求此抛物线的函数关系式;(2)若抛物线上有一点D,使得直线DB经过第一、二、四象限,且原点O到直线DB的距离为,求这时点D的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)欲求抛物线的解析式,需求出m、n的值,根据抛物线的解析式,易得顶点A 的坐标,然后将x=1代入抛物线的解析式中,可得点C的坐标,即可根据AC的长得到第一个关于m、n的等量关系式;由于抛物线的顶点在x轴上,即抛物线与x轴只有一个交点,即根的判别式△=0,联立两个关于m、n的式子即可求出m、n的值,从而得到该抛物线的解析式.(2)根据(1)的抛物线解析式可求得点B的坐标,即可得到OB的长;过O作OM⊥BD于M,根据题意可知OM=,进而可利用勾股定理求得BM的长;在△EOF中,OM⊥EF,易证得△OBM∽△FOM,根据相似三角形所得比例线段即可求得OF的长,也就得到了F 点的坐标,进而可利用待定系数法求得直线BD的解析式,联立抛物线的解析式即可求出点D的坐标.【解答】解:(1)根据题意,画出示意图如答图所示,过点C作CE⊥x轴于点E;∵抛物线上一点C的横坐标为1,且AC=3,∴C(1,n﹣2m+2),其中n﹣2m+2>0,OE=1,CE=n﹣2m+2;∵抛物线的顶点A在x轴负半轴上,∴A(m,0),其中m<0,OA=﹣m,AE=OE+OA=1﹣m;由已知得,由(1)得n=m2﹣1;(3)把(3)代入(2),得(m2﹣2m+1)2+(m2﹣2m+1)﹣90=0,∴(m2﹣2m+11)(m2﹣2m﹣8)=0,∴m2﹣2m+11=0(4)或m2﹣2m﹣8=0(5);对方程(4),∵△=(﹣2)2﹣4×11=﹣40<0,∴方程m2﹣2m+11=0没有实数根;由解方程(5),得m1=4,m2=﹣2,∵m<0,∴m=﹣2.把m=﹣2代入(3),得n=3,∴抛物线的关系式为y=x2+4x+4(2)∵直线DB经过第一、二、四象限;设直线DB交x轴正半轴于点F,过点O作OM⊥DB于点M,∵点O到直线DB的距离为,∴OM=,∵抛物线y=x2+4x+4与y轴交于点B,∴B(0,4),∴OB=4,∴BM=;∵OB⊥OF,OM⊥BF,∴△OBM∽△FOM,∴,∴,∴OF=2BO=8,F(8,0);∴直线BF的关系式为y=﹣x+4;∵点D既在抛物线上,又在直线BF上,∴,解得,∵BD为直线,∴点D与点B不重合,∴点D的坐标为.【点评】此题是二次函数的综合题,涉及到勾股定理、根的判别式、二次函数解析式的确定、相似三角形的判定和性质以及函数图象交点坐标的求法等重要知识,综合性强,难度较大.。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题(每题3分,共30分)1. 二次函数y=ax^2+bx+c(a≠0)的图象开口向上,则a的取值范围是()。
A. a>0B. a<0C. a=0D. a≠0答案:A2. 抛物线y=x^2-4x+3的顶点坐标是()。
A. (1,0)B. (2,1)C. (2,-1)D. (4,3)答案:C3. 若抛物线y=-2x^2+4x-1与x轴有两个交点,则这两个交点的坐标是()。
A. (1/2,0) 和 (3/2,0)B. (1,0) 和 (3,0)C. (1,0) 和 (-3,0)D. (-1,0) 和 (3,0)答案:B4. 二次函数y=ax^2+bx+c(a≠0)的对称轴是直线x=1,则b的值是()。
A. -2aB. 2aC. -aD. a答案:B5. 抛物线y=x^2-6x+8与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C6. 二次函数y=-x^2+2x+3的图象与y轴的交点坐标是()。
A. (0,3)B. (0,-3)C. (0,2)D. (0,-2)答案:A7. 二次函数y=x^2-2x-3与x轴的交点个数是()。
A. 0B. 1C. 2D. 3答案:C8. 抛物线y=-2x^2+4x+1的顶点坐标是()。
A. (1,3)B. (2,5)C. (-1,3)D. (-2,5)答案:A9. 二次函数y=x^2-4x+c的图象经过点(2,0),则c的值是()。
A. 0B. 4C. 8D. 16答案:C10. 抛物线y=x^2-6x+8与直线y=2x-4的交点坐标是()。
A. (2,0) 和 (4,4)B. (2,0) 和 (4,0)C. (2,4) 和 (4,0)D. (0,2) 和 (4,4)答案:A二、填空题(每题3分,共15分)11. 二次函数y=2x^2-4x+1的顶点坐标是()。
答案:(1,-1)12. 二次函数y=-3x^2+6x-3与x轴的交点坐标是()。
二次函数单元测试题及答案
二次函数单元测试题及答案一、选择题1. 已知二次函数\( y = ax^2 + bx + c \),当\( a < 0 \)时,抛物线的开口方向是:A. 向上B. 向下C. 向左D. 向右答案:B2. 对于二次函数\( y = -2x^2 + 3x + 1 \),其顶点的横坐标是:A. \( -\frac{1}{2} \)B. \( -\frac{3}{2} \)C. \( \frac{3}{4} \)D. \( \frac{1}{4} \)答案:C3. 若二次函数\( y = x^2 + 2x + 1 \)与x轴有交点,则交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题4. 二次函数\( y = 3x^2 - 6x + 5 \)的对称轴方程是\_\_\_\_\_\_\_\_\_\_\_\_。
答案:\( x = 1 \)5. 当\( x = 2 \)时,二次函数\( y = x^2 - 4x + 3 \)的值为\_\_\_\_\_\_\_\_\_\_\_\_。
答案:-1三、解答题6. 已知二次函数\( y = -x^2 + 2x + 3 \),求其与x轴的交点坐标。
解:令\( y = 0 \),得\( -x^2 + 2x + 3 = 0 \)。
解此方程,我们可以使用求根公式:\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]代入\( a = -1, b = 2, c = 3 \),得:\[ x = \frac{-2 \pm \sqrt{4 + 12}}{-2} = \frac{-2 \pm\sqrt{16}}{-2} = 1 \pm 2 \]因此,与x轴的交点坐标为\( (-1, 0) \)和\( (3, 0) \)。
7. 已知抛物线\( y = 2x^2 - 4x + 1 \),求其顶点坐标。
解:顶点的横坐标可以通过公式\( x = -\frac{b}{2a} \)求得,代入\( a = 2, b = -4 \),得:\[ x = -\frac{-4}{2 \times 2} = 1 \]将\( x = 1 \)代入原方程求得\( y \)值:\[ y = 2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1 \]因此,顶点坐标为\( (1, -1) \)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数全章测试题
一、填空题
1.已知函数m m mx y -=2,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.
2.抛物线2ax y =经过点(3,-1),则抛物线的函数关系式为 .
3.抛物线9)1(22-++=k x k y ,开口向下,且经过原点,则k= .
4.点A (-2,a )是抛物线2x y =上的一点,则a= ; A 点关于原点的对称点B 是 ;A 点关于y 轴的对称点C 是 ;其中点B 、点C 在抛物线2x y =上的是 .
5.若抛物线c x x y +-=42的顶点在x 轴上,则c 的值是 .
6.把函数26
1x y -=的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 . 7.已知二次函数m x x y +-=82的最小值为1,那么m 的值等于 .
8.二次函数322++-=x x y 的图象在x 轴上截得的两交点之间的距离为 .
9.抛物线122--=x x y 的对称轴是 ,根据图象可知,当x 时,y 随x 的增大而减小.
10.已知抛物线的顶点在原点,对称轴是y 轴,且经过点(-2,-2),则抛物线的函数关系式为 .
11.若二次函数c bx x y ++=2
的图象经过点(2,0)和点(0,1),则函数关系式为 .
12.抛物线322--=x x y 的开口方向向 ,顶点坐标是 ,对称轴是 ,与x 轴的交点坐标是 ,与y 轴的交点坐标是 ,当x=
时,y 有最 值是 .
13.抛物线c x x y ++=2与x 轴的两个交点坐标分别为)0,(1x ,)0,(2x ,若
32221=+x x ,那么c 值为 ,抛物线的对称轴为 .
14.已知函数42)1(22-++-=m x x m y .当m 时,函数的图象是直线;当m 时,函数的图象是抛物线;当m 时,函数的图象是开口向上,且经过原点的抛物线.
15.一条抛物线开口向下,并且与x 轴的交点一个在点A (1,0)的左边,一个在点A (1,0)的右边,而与y 轴的交点在x 轴下方,写出这条抛物线的函数关系式 .
二、选择题
16.下列函数是二次函数的有 ( )
①221x y -= ②21x
y = ③)1(x x y -= ④)21)(21(x x y +-= A 、1个 B 、2个 C 、3个 D 、4个 17.若二次函数32)1(22--++=m m x m y 的图象经过原点,则m 的值必为
( )
A 、-1或3
B 、-1
C 、3
D 、无法确定
18二次函数m x m x y 4)1(22++-=的图象与x 轴( )
A 、没有交点
B 、只有一个交点
C 、只有两个交点
D 、至少有一个交点
19.二次函数222+-=x x y 有( )
A 、最大值1
B 、最大值2
C 、最小值1
D 、最小值2
20.在同一坐标系中,作函数23x y =,23x y -=,23
1x y =的图象,它们的共同特点是
A 、都是关于x 轴对称,抛物线开口向上 ( )
B 、都是关于y 轴对称,抛物线开口向下
C 、都是关于原点对称,抛物线的顶点都是原点
D 、都是关于y 轴对称,抛物线的顶点都是原点
21已知二次函数772
--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( ) A 、47-
>K B 、4
7-≥K 且0≠k C 、47-≥K D 、47->K 且0≠k
22.二次函数2)1(212+-=x y 的图象可由22
1x y =的图象 ( )
A .向左平移1个单位,再向下平移2个单位得到
B .向左平移1个单位,再向上平移2个单位得到
C .向右平移1个单位,再向下平移2个单位得到
D .向右平移1个单位,再向上平移2个单位得到
23.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费提
高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以
每次提高2元的这种方法变化下去.为了投资少而获利大,每床每晚应提高 ( )
A 、4元或6元
B 、4元
C 、6元
D 、8元
24若抛物线c bx ax y ++=2
的所有点都在x 轴下方,则必有 ( )
A 、04,02>-<ac b a
B 、04,02>->ac b a
C 、04,02<-<ac b a
D 、04,02<->ac b a
25.抛物线1422-+=x x y 的顶点关于原点对称的点的坐标是( ) A 、(-1,3) B 、(-1,-3) C 、(1,3) D 、(1,-3)
三、解答题
26.已知二次函数122
12++=x x y . (1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;
(2)求抛物线与x 轴、y 轴的交点;
(3)作出函数图象的草图;
(4)观察图象,x 为何值时,y >0;x 为何值时,y= 0;x 为何值时,y <0?
27.已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式.28.已知二次函数,当x=2时,y有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.
29.已知二次函数的图象与x轴交于A(-2,0),B(3,0)两点,且函数有最大值2.
(1)求二次函数的函数关系式;
(2)设此二次函数图象的顶点为P,求⊿ABP的面积.
30.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数:m=162-3x.
(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?。