实验四扫描-和电子探针
扫描电子显微分析与电子探针演示文稿
二、工作原理
由最上边电子枪发射出来的电子束,经栅极聚焦后,在加速电压作用下,经 过二至三个电磁透镜所组成的电子光学系统,电子束会聚成一个细的电子 束聚焦在样品表面。在末级透镜上边装有扫描线圈,在它的作用下使电子 束在样品表面扫描。 • 出于高能电子束与样品物质的交互作用,结果产生了各种信息:二次电子、背 散射电子、吸收电子、X射线、俄歇电子、阴极发光和透射电于等。
现在是18页\一共有114页\编辑于星期六
(4)样品室
现在是19页\一共有114页\编辑于星期六
2.信号收集和显示系统
• 信号收集和显示系统包括各种信号检测器,前置放大器和显示 装置,其作用是检测样品在入射电子作用下产生的物理信号, 然后经视频放大,作为显像系统的调制信号,最后在荧光屏上 得到反映样品表面特征的扫描图像。
现在是24页\一共有114页\编辑于星期六
三、扫描电子显微镜的主要性能
• 1.放大倍数(magnification) • 2.分辨率(resolution) • 3.景深(depth of field / depth of
focus)
现在是25页\一共有114页\编辑于星期六
1.放大倍数 (magnification)
现在是8页\一共有114页\编辑于星期六
特点
• 可做综合分析。
• SEM装上波长色散X射线谱仪(WDX)(简称波谱仪) 或能量色散X射线谱仪(EDX)(简称能谱仪)后, 在观察扫描形貌图像的同时,可对试样微区进行元 素分析。
• 装上半导体样品座附件,可以直接观察晶体管或集成 电路的p-n结及器件失效部位的情况。
• 其作用是把电子枪的束斑逐渐聚焦缩小,使原来直 径约50m的束斑缩小成一个只有数nm的细小束斑。
实验四 透射和扫描电镜的样品观察
实验四透射和扫描电镜的样品观察课程名称:细胞生物学实验实验日期:2014年10月27日班级:试验121(青岛)姓名学号:刘香凝sy0040一、实验原理用电子束成像的显微镜称为电子显微镜。
电子显微镜是一种高精密度的电子光学仪器,它具有较高的分辨力和放大倍数,是观察和研究物质微观结构的强大工具。
根据成像原理的不同,电镜分为透射电子显微镜和扫描电子显微镜。
(一)、透射电子显微镜原理透射电镜主要用于观察生物样品内部精细的结构,用于透射电镜观察的样品往往需制备成超薄切片。
1、透射电镜的基本构造1)电子束照明系统:照明系统由电子枪和聚光镜两部分组成。
电子枪位于镜筒顶端,由阴极——控制极——阳极构成三级电子枪。
电子枪是电子束的发射装置,由高频电流加热钨丝激发电子,并用高压使电子加速。
聚光镜的作用是将电子枪发出的电子束会聚于样品平面,并调节试样平面处电子束孔径角、电流密度和照明光斑半径.2) 电镜成像系统由样品室、物镜、中间镜和投影镜组成。
通过聚光镜会聚的电子束穿过样品,经物镜放大形成一级放大像,再经中间镜和投影镜进行二级和三级放大。
最后在荧光屏上形成最终的放大像,通过调节中间镜和投影镜电流,放大倍数能从几百倍连续改变到十几万到几十万倍。
聚光镜、物镜、中间镜与投影镜等都是电磁透镜。
电磁透镜是精密加工的中空圆柱体,里面置线圈,通过线圈电流的大小,调节磁场强度使电子束发生偏转,汇聚或发散,最终结果正如光线透过玻璃透镜一样,可以聚焦成像。
3)真空系统由气泵组成,保持镜筒内高真空,由于电镜是利用高速的电子束为照明源,在电子束的通道上不能有任何游离的气体存在,否则将发生电子与残余气体原子的碰撞,引起电离,放电等反应,易烧坏灯丝获污染样品。
4) 记录观察系统包括荧光界和照明系统。
镜筒最下面部位是观察窗。
窗口由防护X射线的一定厚度的铅玻璃组成。
观察窗内下方是荧光屏,荧光屏上的荧光物质通常由硫化锌或硫化锌与硫化镐的粉末组成。
它们在电子束的照射下产生荧光,使电子像转化为肉眼可见的可见光图像。
【最新2018】电子探针实验报告-word范文模板 (7页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==电子探针实验报告篇一:实验六电子探针结构原理及分析方法实验六电子探针结构原理及分析方法一、实验内容及实验目的1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。
2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。
二、电子探针的结构特点及原理电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。
电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。
电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。
本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。
三、电子探针的分析方法电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。
1.实验条件(1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。
实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。
(2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。
原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。
若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。
电子探针和扫描电镜常用的标准方法-25电子探针和扫描电
电子探针和扫描电镜常用的标准方法电子探针和扫描电镜涉及的标准方法及技术规范共有25个,有电子探针仪检定规程(JJG901-95)、扫描电子显微镜试行检定规程(JJG 550-88)、不同类型样品的定量分析方法、样品及标样的制备方法、微米长度的扫描电镜测量方法及X射线能谱成分定量分析方法等。
各单位计量认证分析检测的项目,必须有相应的标准检测方法。
要根据标准方法进行成分分析,要采用有效的国家标准。
没有国家标准的检测项目,可以采用行业标准或地方标准。
行业标准在相应的国家标准出台后自动作废,地方标准在相应的国家标准或行业标准出台后也自动作废。
企业标准及检测机构按用户要求制定的检测条件和试验方法,只能作参考数据。
当国家标准方法不能满足某些检测要求时,例如“方法通则”,可根据方法通则制定检测实施细则,经检验机构技术负责人批准后,可以实施。
检测报告中必须有检测依据,即检测的标准方法。
所以标准方法在认证过程中和检测过程中都是必须的。
现在电子探针和扫描电镜的标准方法,还不能满足所有样品测试的要求,特别是能谱分析方法,但基本都有通则,可根据通则制定实施细则,以满足一般检测工作的需要。
(1)GB/T 4930-93 电子探针分析标准样品通用技术条件(代替GB4930-85)(2)GB/T 15074-94 电子探针定量分析方法通则(3)GB/T 15075-94 电子探针分析仪的检测方法(4)GB/T 15244-94 玻璃的电子探针分析方法(5)GB/T 15245-94 稀土氧化物的电子探针定量分析方法(6)GB/T 15246-94 硫化物矿物的电子探针定量分析方法(7)GB/T 15247-94 碳钢和低合金钢中碳的电子探针定量分析方法(8)GB/T 14593-93 山羊绒、绵羊毛及其混合纤维定量分析方法(9)GB/T 15617-95 硅酸盐矿物的电子探针定量分析方法(10)GB/T 15616-95 金属及合金电子探针定量分析方法1(11)GB/T 16594-94 微米级长度的扫描电镜测量方法(12)GB/T 17359-98 电子探针和扫描电镜X射线能谱定量分析通则 (13)GB/T 17360-98 钢中低含量Si、Mn的电子探针定量分析方法(14)GB/T 17361-98 沉积岩中自生粘土矿物扫描电子显微镜及X射线能谱鉴定方法(15)GB/T17632-98 黄金饰品的扫描电镜X射线能谱分析方法(16)GB/T17363-98 黄金制品的电子探针定量测定方法(17)GB/T17364-98 黄金制品中金含量的无损定量分析方法(18)GB/T17365-98 金属与合金电子探针定量分析样品的制备方法(19)GB/T17366-98 矿物岩石的电子探针分析试样的制备方法(20)GB/T17506-98 船舶黑色金属腐蚀层的电子探针分析方法(21)GB/T17507-98 电子显微镜-X射线能谱分析生物薄标样通用技术条件 (22)GB/T17722-99 金覆盖层厚度的扫描电镜测量方法(23)GB/T17723-99 黄金制品镀层成分的X射线能谱测量方法 此外,还有以下一些其他标准可作参考,如:(24) 分析型扫描电子显微镜检定规程(JJG 011-1996)(25) 纳米级长度的扫描电镜测量方法(国家标准讨论稿)(26) 微束分析-扫描电镜-图像放大倍率校准导则(陈振宇编译)2。
扫描电子显微分析与电子探针演示文稿
扫描电子显微分析与电子探针演示文稿一、介绍电子显微分析技术是通过对物质进行扫描和分析,利用扫描电子显微镜和电子探针来获取材料的化学成分、晶体结构和显微结构等信息。
本文将介绍扫描电子显微分析和电子探针的原理、应用和相关技术。
二、扫描电子显微分析原理1.高能电子入射2.电子-物质相互作用当高能电子束与样品表面相互作用时,会产生多种次级电子、散射电子和反冲电子等。
通过检测和分析这些次级电子,可以推断出材料的表面形态、原子分布等信息。
3.映射制图三、电子探针电子探针是在扫描电子显微镜上配备的一个仪器,用于对样品进行微区分析,可以获得样品的化学成分、晶体结构和显微结构等信息。
1.材料组成分析电子探针可以通过扫描样品表面并测量X射线谱来确定样品的化学成分。
当高能电子束与样品相互作用时,会产生特定能量的X射线,通过测量和分析这些X射线的能量和强度,可以准确地确定样品中元素的类型和含量。
2.显微区结构分析电子探针还具有高空间分辨率,可以在显微区域内对样品的晶体结构进行分析。
利用电子束的扫描和集线系统结构,研究者可以选择一个很小的区域进行分析,从而得到显微区的晶体结构信息。
四、应用领域1.材料科学在材料科学中,扫描电子显微分析和电子探针技术可用于分析和表征各种材料的组成、晶体结构和显微结构,如金属材料、陶瓷材料、复合材料等。
这些信息有助于研究者了解材料的性能和性质。
2.地质学3.生物学五、技术发展1.分辨率的提高新一代的扫描电子显微镜和电子探针仪器分辨率更高,可实现更高精度的成分分析和显微观察。
例如,现在的仪器可以实现亚纳米级别的空间分辨率。
2.信号检测和处理技术的改进通过改进信号检测和处理技术,使得扫描电子显微分析和电子探针技术对噪声和干扰信号的抑制能力更强,从而提高了数据的准确性和可靠性。
六、总结扫描电子显微分析和电子探针技术是现代材料科学研究中不可或缺的工具。
它们在分析样品的化学成分、晶体结构和显微结构等方面具有重要作用,广泛应用于材料科学、地质学和生物学等领域。
电子探针实验报告
电子探针实验报告电子探针实验报告引言:电子探针是一种用于研究物质微观结构和性质的重要工具,它通过探测物质中的电子行为来获取有关其性质和组成的信息。
本实验旨在探究电子探针的原理、应用以及实验方法,并通过实际操作来验证其有效性。
一、电子探针的原理电子探针利用电子的波粒二象性以及其与物质的相互作用来获取信息。
其原理主要包括以下几个方面:1. 粒子性:电子作为一种粒子,具有质量和电荷,可以通过加速器获得足够的能量,进而穿透物质表面,与物质内部相互作用。
2. 波动性:电子也具有波动性,其波长与其动能有关。
通过测量电子的波长,可以推断出物质的晶格结构和间距。
3. 散射:电子与物质相互作用时,会发生散射现象。
通过测量散射角度和强度,可以了解物质的成分和结构。
二、电子探针的应用电子探针在材料科学、纳米技术、生物医学等领域具有广泛的应用。
以下是几个常见的应用案例:1. 材料分析:电子探针可以用于分析材料的成分和结构,如金属合金的成分分析、纳米材料的晶格结构分析等。
2. 表面形貌观察:电子探针可以用于观察物质表面的形貌,如纳米材料的形貌观察、生物细胞的表面形态观察等。
3. 薄膜测量:电子探针可以用于测量薄膜的厚度和成分,如薄膜的厚度测量、薄膜中元素分布的分析等。
三、电子探针实验方法本实验使用的电子探针为扫描电子显微镜(SEM),其操作方法如下:1. 样品制备:将待测样品制备成均匀的薄片或粉末,并固定在样品台上。
2. 调节参数:根据样品的性质和实验需求,调节加速电压、束流亮度等参数。
3. 扫描观察:将样品台放入SEM仪器中,通过控制电子束的扫描和探测系统,观察样品表面的形貌和特征。
4. 数据分析:根据SEM的观察结果,进行数据处理和分析,如测量样品尺寸、分析元素分布等。
四、实验结果与讨论本实验选择了一块金属合金样品进行观察和分析。
通过SEM观察,我们发现样品表面存在颗粒状的晶体结构,并且晶体之间存在一定的间隙。
通过测量晶体的尺寸和间距,我们可以推断出该金属合金的晶格结构和成分。
扫描电子显微分析与电子探针
2.偏转(piānzhuǎn)系统
作用:使电子束产生横向偏转,包括用于形成光栅(guāngshān)状扫描 的扫描系统,以及使样品上的电子束间断性消隐或截断的偏转系统。
偏转系统可以采用横向静电场,也可采用横向磁场。
精品文档
3.信号(xìnhào)检测放大系统
作用:收集(探测)样品在入射电子束作用下产生的各种物理信号,并进行放大。 不同的物理信号,要用不同类型的收集系统。 闪烁计数器是最常用的一种信号检测器,它由闪烁体、光导管、光电倍增管组成
电子探针仪是作为附件安装在扫描电镜或透射电镜镜简上, 以满足微区组织形貌、晶体结构及化学成分三位一体同位分 析的需要。
精品文档
图10-17 电子探针结构(jiégòu)示意图
精品文档
一、能谱仪
能谱仪全称为能量分散谱仪(EDS). 目前最常用的是Si(Li)X射线能谱仪,其关键部件是Si(Li)检测器,即锂
精品文档
二次电子运动轨迹(guǐjì)
背散射电子运动轨迹(guǐjì)
图10-7 二次电子和背散射电子的运动轨迹(guǐjì)
精品文档
二、应用(yìngyòng)
1.断口形貌观察(guānchá) 2.显微组织观察(guānchá) 3.其它应用(背散射电子衍射花样、电子通道花样等用于晶体学取向
精品文档
(二)、构造 以Si(Li)检测器为探头的能谱仪实际上是一整套复杂
(fùzá)的电子学装置。
图10-19 Si(Li)X射线能谱仪
精品文档
(三)、Si(Li)能谱仪的优点(yōudiǎn):
(1)分析速度快 能谱仪可以同时接受和检测所有不同能量的X射线光子信号, 故可在几分钟内分析和确定样品中含有的所有元素,带铍窗口的探测器可探测 的元素范围为11Na~92U,20世纪80年代推向市场的新型窗口材料可使能谱 仪能够分析Be以上的轻元素,探测元素的范围为4Be~92U。
扫描电镜及电子探针
4.3 扫描电镜 4.3.1 扫描电镜的特点和工作原理 自从1965年第一台商用扫描电镜问世后,它得到了迅速发展。
其原因在于扫描电镜弥补了透射电镜的缺点,是一种比较理想的表面分析工具。
透射电镜目前达到的性能虽然很高,如分辨本领优于0.2~0.3nm,放大倍数几十万倍,除放大成像外还能进行结构分析等,但其有一个最大的缺点就是对样品要求很高,制备起来非常麻烦。
而且,样品被支撑它的铜网蔽住一部分,不能进行样品欲测区域的连续观察。
扫描电镜则不然,它可直接观察大块试样,样品制备非常方便。
加之扫描电镜的景深大、放大倍数连续调节范围大,分辨本领比较高等特点,所以它成为固体材料样品表面分析的有效工具,尤其适合于观察比较粗糙的表面如材料断口和显微组织三维形态。
扫描电镜不仅能做表面形貌分析,而且能配置各种附件,做表面成分分析及表层晶体学位向分析等。
扫描电镜的成像原理,和透射电镜大不相同,它不用什么透镜来进行放大成像,而是象闭路电视系统那样,逐点逐行扫描成像。
图4.55 扫描电镜工作原理图4.55是扫描电镜工作原理示意图。
由三极电子枪发射出来的电子束,在加速电压作用下,经过2~3个电子透镜聚焦后,在样品表面按顺序逐行进行扫描,激发样品产生各种物理信号,如二次电子、背散射电子、吸收电子、X射线、俄歇电子等。
这些物理信号的强度随样品表面特征而变。
它们分别被相应的收集器接受,经放大器按顺序、成比例地放大后,送到显像管的栅极上,用来同步地调制显像管的电子束强度,即显像管荧光屏上的亮度。
由于供给电子光学系统使电子束偏向的扫描线圈的电源也就是供给阴极射线显像管的扫描线圈的电源,此电源发出的锯齿波信号同时控制两束电子束作同步扫描。
因此,样品上电子束的位置与显像管荧光屏上电子束的位置是一一对应的。
这样,在长余辉荧光屏上就形成一幅与样品表面特征相对应的画面——某种信息图,如二次电子像、背散射电子像等。
画面上亮度的疏密程度表示该信息的强弱分布。
扫描电镜组织观察及电子探针的应用
扫描电镜组织观察及电子探针的应用一、实验目的1. 了解扫描电镜的结构及工作原理。
2.通过实际分析, 明确扫描电镜和电子探针仪的用途。
二、结构与工作原理简介1.扫描电子显微镜(Scanning Electronic Microscopy, SEM)扫描电子显微镜(是介于透射电镜和光学显微镜之间的一种微观性貌观察手段, 扫描电镜的优点是, ①有较高的放大倍数, 20-30万倍之间连续可调;②有很大的景深, 视野大, 成像富有立体感, 可直接观察各种试样凹凸不平表面的细微结构;③试样制备简单。
目前的扫描电镜都配有X射线能谱仪装置, 这样可以同时进行显微组织性貌的观察和微区成分分析, 因此它像透射电镜一样是当今十分有用的科学研究仪器。
扫描电子显微镜是由电子光学系统, 信号收集处理、图象显示和记录系统, 真空系统三个基本部分组成。
其中电子光学系统包括电子枪、电磁透镜、扫描线圈和样品室。
扫描电子显微镜中的各个电磁透镜不做成相透镜用, 而是起到将电子束逐级缩小的聚光作用。
一般有三个聚光镜, 前两个是强磁透镜, 可把电子束缩小;第三个透镜是弱磁透镜, 具有较长的焦距以便使样品和透镜之间留有一定的空间, 装入各种信号接收器。
扫描电子显微镜中射到样品上的电子束直径越小, 就相当于成相单元的尺寸越小, 相应的放大倍数就越高。
扫描线圈的作用是使电子束偏转, 并在样品表面做有规则的扫动。
电子束在样品上的扫描动作和显相管上的扫描动作保持严格同步, 因为它们是由同一个扫描发生器控制的。
电子束在样品表面有两种扫描方式, 进行形貌分析时都采用光栅扫描方式, 当电子束进入上偏转线圈时, 方向发生转折, 随后又有下偏转线圈使它的方向发生第二次转折。
发生二次偏转的电子束通过末级透镜的光心射到样品表面。
在电子束偏转的同时还带用逐行扫描的动作, 电子束在上下偏转线圈的作用下, 在样品表面扫描出方形区域, 相应地在样品上也画出一帧比例图像。
09 扫描和电子探针
SEM样品制备
SEM样品喷金
二、应用
1. 二次电子像 (1)颗粒形态、大小、分布观察与分析 (2)断口形貌观察 (3)显微组织观察等 2. 背散射电子像 (1)分析晶界上或晶粒内部不同种类的析出相 (2)定性地判定析出物相的类型 (3)形貌观察等
32
第三节 电子探针X射线显微分析
(Electron Probe Micro-Analysis,EPMA)
38
二、波谱仪
波长分散(色散)谱仪简称波谱仪, WDS。 检测特征X射线的波长
样品被激发的特征X射线照
射到连续转动的分光晶体上 实现分光(色散),即不同波长 的X射线将在各自满足布拉格 方程的2方向上被(与分光晶 体以2:1的角速度同步转动的) 检测器接收。
39
波谱仪的特点:
优点: (1)波长分辨率很高 如可将波长十分接近的 VK(0.228434nm)、CrK1(0.228962nm)和 CrK2(0.229351nm) 3根谱线清晰地分开; (2)分析的元素范围宽 4Be~92U; (3)定量比能谱仪准确。 缺点: (1)X射线信号的利用率极低; (2)灵敏度低,难以在低束流和低激发强度下使用; (3)分析速度慢,不适合定性分析;
35
电子探针结构示意图
一、能谱仪
能量分散(色散)谱仪简称能谱仪,EDS。 检测特征X射线的能量
目前最常用的是Si(Li) X射线能谱仪,其关键部件是 Si(Li)检测器,即锂漂移硅固态检测器,它实际上是一个 以Li为施主杂质的n-i-p型二极管。
Si(Li)检测器探头结构示意图
36
微区成分分析(EDS)
14
第一节 扫描电子显微镜工作原理及构造
第四章 扫描电子显微与电子探针
第四章扫描电子显微镜与电子探针扫描电子显微镜(Scanning electron microscope--SEM)是继透射电子显微镜(TEM)之后发展起来的一种电子显微镜,成像原理与TEM完全不同,不用电磁透镜放大成像,是以类似电视摄影显像的方式,通过细聚焦电子束在样品表面扫描激发出的二次电子、背散射电子等各种物理信号来调制成像的显微分析技术。
第四章扫描电子显微镜与电子探针新式SEM的二次电子分辨率已达1 nm以下,放大倍数可从数倍原位放大到20万倍;景深大,可用于显微断口分析,不用复制样品;现在SEM都与能谱(EDS)组合,可以进行成分分析。
SEM也是显微结构分析的主要仪器,已广泛用于材料、冶金、矿物、生物学等领域。
§4.1 扫描电子显微镜(SEM)(一) 电子束与固体样品的相互作用区电子在样品中的扩散区:电子与固体样品的相互作用区。
高能电子入射固体样品后,与样品的原子核和核外电子相互作用发生弹性散射和非弹性散射;弹性散射使入射电子运动方向偏离初始的运动方向而引起电子在样品中的横向扩散。
非弹性散射不仅使入射电子改变运动方向,也使其能量不断衰减,直至被样品吸收,限制了入射电子在样品中的扩散范围。
§4.1 扫描电子显微镜(SEM)(一) 电子束与固体样品的相互作用区电子与固体样品的相互作用区:散射过程中,电子在样品中穿透的深度和侧向扩散的范围。
相互作用区的形状、大小主要取决于作用区内样品元素的原子序数、入射电子的能量(与加速电压有关)和样品的倾斜角。
(一)电子束与固体样品的相互作用区1. 原子序数Z的影响入射电子束能量一定时,作用区的形状主要与样品的Z有关。
弹性散射截面正比于照射样品的Z(Q∝Z2)。
高Z样品中,电子在单位距离内经历的弹性散射比低Z样品更多,其平均散射角也较大。
因此电子运动的轨迹更容易偏离起始方向,在固体中穿透深度随之减少;低Z样品中,电子偏离原方向的程度较小,而穿透得较深。
扫描探针显微镜实验
扫描探针显微镜实验实验目的1、学习和了解并掌握扫描探针显微镜的工作原理和仪器结构;2、观测和验证量子力学中的隧道效应以及原子间相互作用力;3、学习扫描探针显微镜的操作和调试过程,并以之来观测样品的表面形貌;4、学习使用计算机软件Imager 4.6 处理原始图象数据。
实验原理:在科学发展史上直接观察原子、分子一直是人们长期以来梦寐以求的愿望。
1982年IBM 公司瑞士苏黎士研究实验室的葛·宾尼(Gerd Bining)和海·罗雷尔(Heinrich Roher)研制出一种新型显微镜--扫描隧道显微镜(Scanning Tunnelling Microscope,简称STM),终于使这一愿成为现实。
这种新型显微仪器的诞生,使人类能够实时地观测到原子在物质表面的排列状态和与表面电子行为有关的物理化学性质,对表面科学、材料科学、生命科学以及微电子技术的研究有着重大意义和广泛的应用前景。
被国际科学界公认为20世纪80年代世界十大科技成就之一。
为表彰STM的发明者们对科学研究所作出的杰出贡献,宾尼和罗雷尔两位科学家与电子显微镜的创制者ERrska教授一起被授予1986年诺贝尔物理奖。
原子的概念至少可以追溯到一千年前的德莫克利特时代,但在漫长的岁月中,原子还只是假设而并非可观测到的客体. 人的眼睛不能直接观察到比10-4 m更小的物体或物质的结构细节,光学显微镜使人类的视觉得以延伸,人们可以观察到像细菌、细胞那样小的物体,但由于光波的衍射效应,使得光学显微镜的分辨率只能达到10-7 m电子显微镜的发明开创了物质微观结构研究的新纪元,扫描电子显微镜(SEM )的分辨率为10-9 m ,而高分辨透射电子显微镜(HTEM )和扫描透射电子显微镜STEM )可以达到原子级的分辨率——0.1nm ,但主要用于薄层样品的体相和界面研究,且要求特殊的样品制备技术和真空条件.场离子显微镜(FIM )是一种能直接观察表面原子的研究装置,但只能探测半径小于 100 nm 的针尖上的原子结构和二维几何性质,且样品制备复杂,可用来作为样品的材料也十分有限. X 射线衍射和低能电子衍射等原子级分辨仪器,不能给出样品实空间的信息,且只限于对晶体或周期结构的样品进行研究.扫描隧道显微镜的问世使得人类直接观测微观世界的大门被打开。
扫描电镜和电子探针的原理和应用
3、(2)电子探针的应用
• 断口分析
• 磨损失效分析 • 腐蚀失效
ห้องสมุดไป่ตู้
现代测试技术课题论文
扫描电镜和电子探针在
材料科学中的应用
指导老师:bbgcka 班 级:ssrhjh 姓 名:trsyrw
目 录
• 1、背景 • 2、工作原理 (1)扫描电镜的工作原理 (2)电子探针的工作原理 • 3、应用 (1)扫描电镜的应用 (2)电子探针的应用 • 4、参考资料
1、背 景
背 景
EPMA 一般以成分分析为主,必须有 WDS 进行元素成分 分析,真空腔体大,成分分析时电子束电流大,所以电子光路、 光阑等易污染,图像质量下降速度快,需经常清洗光路和光阑, 通常 EPMA 二次电子像分辨率为 6nm。EPMA 附有光学显微镜, 用于直接观察和寻找样品分析点,使样品分析点处于聚焦园(罗 兰园)上,以保证成分定量分析的准确度。 EPMA 和 SEM 都是用聚焦得很细的电子束照射被检测的 样品表面,用 X 射线能谱仪或波谱仪,测量电子与样品相互作 用所产生的特征 X 射线的波长与强度, 从而对微小区域所含元 素进行定性或定量分析,并可以用二次电子或背散射电子等进行 形貌观察。它们是现代固体材料显微分析(微区成份、 形貌和结 构分析)的最有用仪器之一,应用十分广泛。电子探针和扫描电 镜都是用计算机控制分析过程和进行数据处理,并可进行彩色图 像处理和图像分析工作,所以是一种现代化的大型综合分析仪。 现国内各种型号的电子探针和扫描电镜有近千台,分布在各个领
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四扫描电子显微镜的结构原理及图像衬度观察一、实验目的1.了解扫描电镜的基本结构和工作原理。
2.通过实际样品观察与分析,明确扫描电镜的用途。
二、基本结构与工作原理简介扫描电镜利用细聚电子束在样品表面逐点扫描,与样品相互作用产生各种物理信号,这些信号经检测器接收、放大并转换成调制信号,最后在荧光屏上显示反映样品表面各种特征的图像扫描电镜具有景深大、图像立体感强、放大倍数范围大且连续可调、分辨率高、样品室空间大且样品制备简单等特点,是进行样品表面研究的有效工具。
扫描电镜所需的加速电压比透射电镜要低得多,一般约在1~30kV,实验时可根据被分析样品的性质适当地选择,最常用的加速电压约在20kV左右。
扫描电镜的图像放大倍数在一定范围内(几十倍到几十万倍)可以实现连续调整。
放大倍数等于荧光屏上显示的图像横向长度与电子束在样品上横向扫描的实际长度之比。
扫描电镜的电子光学系统与透射电镜有所不同,其作用仅仅是为了提供扫描电子束,作为使样品产生各种物理信号的激发源。
扫描电镜最常使用的是二次电子信号和背散射电子信号,前者用于显示表面形貌衬度,后者用于显示原子序数衬度。
扫描电镜的基本结构可分为六大部分,电子光学系统、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。
图4-1是扫描电镜主机构造示意图。
试验时将根据实际设备具体介绍。
这一部分的实验内容可参照教材内容,并结合实验室现有的扫描电镜进行,在此不作详细介绍。
三、扫描电镜图像衬度观察1.样品制备扫描电镜的优点之一是样品制备简单,对于新鲜的金属断口样品不需要做任何处理,可直接进行观察。
但在有些情况下需对样品进行必要的处理。
(1) 样品表面附着有灰尘和油污,可用有机溶剂(乙醇或丙酮)在超声波清洗器中清洗。
(2) 样品表面锈蚀或严重氧化,采用化学清洗或电解的方法处理。
清洗时可能会失去一些表面形貌特征的细节,操作过程中应该注意。
(3) 对于不导电的样品,观察前需在表面喷镀一层导电金属或碳,镀膜厚度控制在5~10nm 为宜。
2.表面形貌衬度观察二次电子信号来自于样品表面层5~10nm,信号的强度对样品微区表面相对于入射束的取向非常敏感。
随着样品表面相对于入射束的倾角增大,二次电子的产额增多。
因此,二次电子像适合于显示表面形貌衬度。
二次电子像的分辨率较高,一般约在3~6nm。
其分辨率的高低主要取决于束斑直径,而实际上真正达到的分辩率与样品本身的性质、制备方法,以及电镜的操作条件如高压、扫描速度、光强度、工作距离、样品的倾斜角等因素有关。
在最理想的状态下,目前可达到的最佳分辨率为1nm。
扫描电镜图像表面形貌衬度几乎可以用于显示任何样品表面的超微信息,其应用已渗透到许多科学研究领域,在失效分析、刑事案件侦破、病理诊断等技术部门也得到广泛应用。
材料科学研究领域,表面形貌衬度在断口分析等方面显示有突出的优越性。
下面就以断口分析等方面的研究为例说明表面形貌衬度的应用。
利用试样或构件断口的二次电子像所显示的表面形貌特征,可以获得有关裂纹的起源、裂纹扩展的途径以及断裂方式等信息,根据断口的微观形貌特征可以分析裂纹萌生的原因,裂纹的扩展途径以及断裂机制。
图4-2是比较常见的金属断口形貌二次电子像。
较典型的解理断口形貌如图4-2a所示,在解理断口上存在有许多台阶。
在解理裂纹扩展过程中,台阶相互汇合形成河流花样,这是解理断裂的重要特征。
准解理断口的形貌特征见图4-2b,准解理断口与解理断口有所不同,其断口中有许多弯曲的撕裂棱,河流花样由点状裂纹源向四周放射。
沿晶断口特征是晶粒表面形貌组成的冰糖状花样,见图4-2c。
图4-2d显示的是韧窝断口的形貌,在断口上分布着许多微坑,在一些微坑的底部可以观察到夹杂物或第二相粒子。
由图4-2e可以看出,疲劳裂纹扩展区断口存在一系列大致相互平行、略有弯曲的条纹,称为疲劳条纹,这是疲劳断口在扩展区的主要形貌特征。
图4-2示出的具有不同形貌特征的断口,若按裂纹扩展途径分类,其中解理、准解理和韧窝型属于穿晶断裂。
显然沿晶断口的裂纹扩展是沿晶表面进行的。
图4-1 扫描电镜主机构造示意图图4-2 几种具有典型形貌特征的断口二次电子像a) 解理断口 b) 准解理断口 c)沿晶断口 d) 韧窝断口 e) 疲劳断口图4-3是显示灰铸铁显微组织的二次电子像,基体为珠光体加少量铁素体,在基体上分布着较粗大的片状石墨,与光学显微镜相比,利用扫描电镜表面形貌衬度显示材料的微观组织,具有分辨率高和放大倍数大的优点,适合于观察光学显微镜无法分辨的显微组织。
为了提高表面形貌衬度,在腐蚀试样时,腐蚀程度要比光学显微镜使用的金相试样适当的深一些。
表面形貌衬度还可用于显示表面外延生长层(如氧化膜、镀膜、磷化膜等)的结晶形态。
这类样品一般不需进行任何处理,可直接观察。
图4-4是低碳钢板表面磷化膜的二次电子像,它清晰地显示了磷化膜的结晶形态。
3.原子序数衬度观察原子序数衬度是利用对样品表层微区原子序数或化学成分变化敏感的物理信号,如背散射电子、吸收电子等作为调制信号而形成的一种能反映微区化学成分差别的像衬度。
实验证明,在实验条件相同的情况下,背散射电子信号的强度随原子序数增大而增大。
在样品表层平均原子序数较大的区域,产生的背散射信号强度较高,背散射电子像中相应的区域显示较亮的衬度;而样品表层平均原子序数较小的区域则显示较暗的衬度。
由此可见,背散射电子像中不同区域衬度的差别,实际上反映了样品相应不同区域平均原子序数的差异,据此可定性分析样品微区的化学成分分布。
吸收电子像显示的原子序数衬度与背散射电子像相反,平均原子序数较大的区域图像衬度较暗,平均原子序数较小的区域显示较亮的图像衬度。
原子序数衬度适合于研究钢与合金的共晶组织,以及各种界面附近的元素扩散。
图4-3 灰铸铁显微组织二次电子像图4-4 低碳钢板磷化膜结晶形态二次电子像图4-5是Al-Li合金铸态共晶组织的背散射电子像。
由图可见,基体α-Al固溶体由于其平均原子序数较大,产生背散射电子信号较强,显示较亮的图像衬度。
在基体种平行分布的针状相为铝锂化合物,因其平均原子序数小于基体而显示较暗的衬度。
图4-5 Al-Li合金铸态共晶组织的背散射电子像a) 横截面 b) 纵截面在此顺便指出,由于背散射电子是被样品原子反射回来的入射电子,其能量较高,离开样品表面后沿直线轨迹运动,因此,信号探测器只能检测到直接射向探头的背散射电子,有效收集立体角小,信号强度较低。
尤其是样品中背向探测器的那些区域产生的背散射电子,因无法到达探测器而不能被接收。
所以利用闪烁体计数器接收背散射电子信号时,只适合于表面平整的样品,实验前样品表面必须抛光而不需腐蚀。
四、实验报告要求1.扫描电镜的基本结构及特点2.说明扫描电镜表面形貌衬度和原子序数衬度的应用实验五电子探针结构原理及分析方法一、实验内容及实验目的1.结合电子探针仪实物,介绍其结构特点和工作原理,加深对电子探针的了解。
2.选用合适的样品,通过实际操作演示,以了解电子探针分析方法及其应用。
二、电子探针的结构特点及原理电子探针X射线显微分析仪(简称电子探针)利用约1μm的细聚焦电子束,在样品表层微区内激发元素的特征X射线,根据特征X射线的波长和强度,进行微区化学成分定性或定量分析。
电子探针的光学系统、真空系统等部分与扫描电镜基本相同,通常也配有二次电子和背散射电子信号检测器,同时兼有组织形貌和微区成分分析两方面的功能。
电子探针的构成除了与扫描电镜结构相似的主机系统以外,还主要包括分光系统、检测系统等部分。
本实验这部分内容将参照教材,并结合实验室现有的电子探针,简要介绍与X射线信号检测有关部分的结构和原理。
三、电子探针的分析方法电子探针有三种基本工作方式:点分析用于选定点的全谱定性分析或定量分析、以及对其中所含元素进行定量分析;线分析用于显示元素沿选定直线方向上的浓度变化;面分析用于观察元素在选定微区内的浓度分布。
1.实验条件(1) 样品:样品表面要求平整,必须进行抛光;样品应具有良好的导电性,对于不导电的样品,表面需喷镀一层不含分析元素的薄膜。
实验时要准确调整样品的高度,使样品分析表面位于分光谱仪聚焦圆的圆周上。
(2) 加速电压:电子探针电子枪的加速电压一般为3~50kV,分析过程中加速电压的选择,应考虑待分析元素及其谱线的类别。
原则上加速电压一定要大于被分析元素的临界激发电压,一般选择加速电压为分析元素临界激发电压的2~3倍。
若加速电压选择过高,导致电子束在样品深度方向和侧向的扩展增加,使X射线激发体积增大,空间分辨率下降。
同时过高的加速电压将使背底强度增大,影响微量元素的分析精度。
(3) 电子束流:特征X射线的强度与入射电子束流成线性关系。
为提高X射线信号强度,电子探针必须使用较大的入射电子束流,特别是在分析微量元素或轻元素时,更需选择大的束流,以提高分析灵敏度。
在分析过程中要保持束流稳定,在定量分析同一组样品时应控制束流条件完全相同,以获取准确的分析结果。
(4) 分光晶体:实验时应根据样品中待分析元素及X射线线系等具体情况,选用合适的分光晶体。
常用的分光晶体及其检测波长的范围见有关表。
这些分光晶体配合使用,检测X 射线信号的波长范围为0.1~11.4nm。
波长分散谱仪的波长分辨率很高,可以将波长十分接近(相差约0.0005nm)的谱线清晰地分开。
2.定点分析(1) 全谱定性分析:驱动分光谱仪的晶体连续改变衍射角θ,记录X射线信号强度随波长的变化曲线。
检测谱线强度峰值位置的波长,即可获得样品微区内所含元素的定性结果。
电子探针分析的元素范围可从铍(序数4)到铀(序数92)检测的最低浓度(灵敏度)大致为100ppm,空间分辨率约在微米数量级。
全谱定性分析往往需要花费很长时间。
(2) 半定量分析:在分析精度要求不高的情况下,可以进行半定量计算。
根据是元素的特征X射线强度与元素在样品中的浓度成正比的假设条件,忽略了原子序数效应、吸收效应和荧光效应对特征X射线强度的影响。
实际上,只有样品是由原子序数相邻的两种元素组成的情况下,这种线性关系才能近似成立。
在一般情况下,半定量分析可能存在较大的误差,因此其应用范围受到限制。
(3) 定量分析:在此仅介绍一些有关定量分析的概念,而不涉及计算公式。
样品原子对入射电子的背散射,使能激发X射线信号的电子减少;此外入射电子在样品内要受到非弹性散射,使能量逐渐损失,这两种情况均与样品的原子序数有关,这种修正称为原子序数修正。
由入射电子激发产生的X射线,在射出样品表面的路程中与样品原子相互作用而被吸收,使实际接收到的X射线信号强度降低,这种修正称为吸收修正。
在样品中由入射电子激发产生的某元素的X射线,当其能量高于另一元素特征X射线的临界激发能量时,将激发另一元素产生特征X射线,结果使得两种元素的特征X射线信号的强度发生变化。