中考数学复习练习题——不等式及不等式组

合集下载

中考数学专题复习题 不等式与不等式组(含解析)

中考数学专题复习题 不等式与不等式组(含解析)

xx中考数学专题复习题:不等式与不等式的组一、选择题1.下列给出四个式子,;;;,其中是不等式的是A. B. C. D.2.下列四个不等式:;;;,一定能推出的有A. 1个B. 2个C. 3个D. 4个3.若不等式组的解集为,则m的取值范围是A. B. C. D.4.关于x的不等式组有四个整数解,则a的取值范围是A. B. C. D.5.某工程队计划在10天内修路8km,前两天一共修完了2km,由于计划发生变化,准备提前两天完成修路任务,以后几天内平均每天至少要修路A. 1kmB.C.D.6.解不等式的下列过程中错误的是A. 去分母得B. 去括号得C. 移项,合并同类项得D. 系数化为1,得7.若是关于x的一元一次不等式,则A. B. 1 C. D. 08.已知点在第四象限,则a的取值范围在数轴上表示正确的是A. B. C. D.9.设a,b,c,d都是整数,且,,,,则a的最大值是A. 480B. 479C. 448D. 44710.小明要制作一个长方形的相片框架,这个框架的长为25cm,面积不小于,则宽的长度xcm应满足的不等式组为A. B. C. D.二、填空题11.用不等号“、、、”填空: ______12.不等式组的解集是,则a的取值范围是______ .13.若不等式组只有2个整数解,则m的取值范围是______ .14.如果是关于x的一元一次不等式,则其解集为______ .15.若不等式的解集是,则m的取值范围是______.16.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张17.关于x的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______ .18.有背面完全相同的9张卡片,正面分别写有这九个数字,将它们洗匀后背面朝上放置,任意抽出一张,记卡片上的数字为a,则数字a使不等式组有解的概率为______ .19.在,2,0,,,中能使不等式成立的数是______ .20.运行程序如图所示,从“输入实数x”到“结果是否”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是______ .三、计算题21.解不等式组.22.解不等式组:;并将解集在数轴上表示出来.23.已知一元一次不等式.若它的解集是,求m的取值范围;若它的解集是,试问:这样的m是否存在?如果存在,求出它的值;如果不存在,请说明理由.24.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:求出足球和篮球的单价;若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?在的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【答案】1. D2. A3. A4. C5. A6. D7. B8. C9. D10. A11.12.13.14.15.16. 15217.18.19.20.21. 解:,由得:;由得:;不等式组的解集是.22. 解:,由不等式解得,,由不等式解得,,在数轴上表示如下:所以,原不等式组的解集是.23. 解:不等式,移项合并得:,由解集为,得到,即;由解集为,得到,即,且,解得:,不合题意,则这样的m值不存在.24. 解:设足球的单价为x元,则篮球的单价为元,根据题意,得,解得:,.即足球的单价为60元,则篮球的单价为80元;设购进足球y个,则购进篮球个.根据题意,得,解得:,为整数,,39,40.当,;当,;当,.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;商家售方案一的利润:元;商家售方案二的利润:元;商家售方案三的利润:元.故第二次购买方案中,方案一商家获利最多.。

中考数学不等式与不等式祖专题训练50题含参考答案

中考数学不等式与不等式祖专题训练50题含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.若不等式(1)1a x a 的解集是1x <,则a 必满足( ) A .1a <-B .1a >-C .1a <D .1a >2.判断下列各式中不等式有( )个(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -. A .2B .3C .4D .63.x 与3的和的一半是负数,用不等式表示为( ) A .1302x +> B .1302x +<C .()1302x +> D .()1302x +< 4.若关于x 的方程311x ax +=-的解是正数,则a 的取值范围是( ) A .a >﹣1 B .a >﹣1且a ≠0 C .a <﹣1 D .a <﹣1且a ≠﹣35.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A .41x x >⎧⎨≤-⎩B .41x x ≤⎧⎨>-⎩C .41x x >⎧⎨>-⎩D .41x x <⎧⎨≥-⎩6x 的取值范围是( ) A .4x ≥B .>4xC .4x ≤D .4x <7.若a >b ,则下列不等式不成立的是( ) A .a +m >b +m B .a (m 2+1)>b (m 2+1) C .22a b -<-D .a 2>b 28.如果不等式组7x x m <⎧⎨>⎩无解,那么m 的取值范围是( )A .7m >B .7m ≥C .7m <D .7m ≤9.如果a b >,那么下列式子一定正确的是( ) A .22a b >B .55a b -<-C .510ba > D .22ab ->+10.若a b > ,则下列不等式变形错误的是A .11a b +>+B .22a b > C .D .11.若m <n ,则下列各式中正确的是() A .m -2>n -2B .2m >2nC .-2m >-2nD .22m n > 12.下列说法不正确的是( ) A .2x =-是不等式21x ->的一个解 B .2x =-是不等式21x ->的一个解集 C .728x x ->+与15x <的解集不相同D .3x <-与721x ->的解集相同13.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品( ) A .9件B .10件C .11件D .12件14.若整数a 使关于x 的分式方程2311a x x+=--的解为正数,且使关于y 的不等式组21324()0y yy a +⎧->⎪⎨⎪-⎩的解集为2y <-,则符合条件的所有整数a 之和为( ) A .3 B .5 C .7 D .915.对于题目:“已知点A (﹣6,4),B (3,4),若抛物线2121y x x a=-+与线段AB 恰有一个公共点,求a 的取值范围”,嘉嘉的结果是4a ,淇淇的结果是1a >,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .嘉嘉、淇淇的结果合在一起才正确D .嘉嘉、淇淇的结果合在一起也不正确16.适合|2a+5|+|2a -3|=8的整数a 的值有( ) A .4个B .5个C .7个D .9个17.若()11a x a +>+的解集是1x <,则a 必须满足是( ) A .a<0B .1a >-C .1a <-D .1a ≤18.已知,a b c 、、是实数,且a b >,则以下四个式子中,正确的是( ) A .ac bc >B .22a b -->C .11a b>D .11a b -+-+>19.不等式组30312x x +≥⎧⎨-≤⎩的解集是( )A .x ≤﹣1B .x ≥3C .﹣3≤x ≤1D .﹣3≤x <120.关于x ,y 的方程组21431x y p x y p +=+⎧⎨+=-⎩的解满足x y ≤,则p 的范围是( )A .p ≤52B .p ≥52C .p ≥-52D .p ≤-52二、填空题21.用不等式表示:y 的3倍与1的和大于8;_____________.22.语句“x 的18与y 的和不超过5”可以表示为 _____.23.如果关于x ,y 的二元一次方程组22522x y m x y m +=+⎧⎨+=-+⎩的解满足1x y +>,那么m 的取值范围是_______.24.已知关于x 、y 的方程组3522323x y m x y m +=+⎧⎨+=-⎩的解满足不等式23x y +≥,则m 的取值范围为___.25.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.26.解不等式组()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩,它的解集为___________________.27.关于x 的正比例函数y =(m +2)x ,若y 随x 的增大而增大,则m 的取值范围是________.28.如图所示的不等式的解集是________.29.不等式组1123(7)x x x ≥⎧⎨--⎩>的整数解的和为_____.30.已知式子413a -的值小于2,则a 的最大整数值是_______. 31.不等式组2352x x -≥⎧⎨->-⎩的解集是__________.32.不等式组1012x x x ->⎧⎪⎨+≥⎪⎩的解集是________.33.若关于x 的分式方程11222k x x--=--的解是正数,则k 的取值范围是______. 34.若3x my n =⎧⎨=+⎩和121x m y n =+⎧⎨=-⎩都是方程y =kx +k +1的解,且k <7,则n 的取值范围是______.35.不等式组253(3)121035x x x +<+⎧⎪-⎨+≥⎪⎩的整数解有________个.36.定义运算[x ]表示求不超过x 的最大整数.如[0.5]=0,[1.3]=1,[﹣1.2]=﹣2,[﹣2.5]=﹣3.若[﹣2.5]•[2x ﹣1]=﹣6,则x 的取值范围是 _____. 37.不等式组1221113x x x⎧-≥⎪⎨⎪--⎩>的解集是________.38.已知||4(5)21k k x y ---=是关于x ,y 的二元一次方程,则1k +________(填“是”或“不是”)不等式221x x +<-的解.39.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3 个整数解,那么a 的取值范围是_____.40.据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.三、解答题41.解不等式组:()2132324x x x x +<-⎧⎨--≤⎩.42.某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?43.下面是小明同学解不等式的过程,请认真阅读并完成相应任务. 213232x x -->-1. 解:2(2x -1)>3(3x -2)-6……第一步 4x -2>9x -6-6……第二步 4x -9x >-6-6+2……第三步 -5x >-10……第四步 x >2……第五步(1)任务一:填空:①以上解题过程中,第二步是依据______________(运算律)进行变形的;①第______步开始出现错误,这一步错误的原因是______. (2)任务二:请直接写出该不等式的正确解集.44.解不等式组: 215238x x x x +-⎧<⎪⎨⎪≥-⎩并将解集在如图所示的数轴上表示出来.45.解不等式组: ()12221x x x ->⎧⎪⎨+≥-⎪⎩①②46.解不等式或不等式组,并在数轴上表示解集. (1)5341x x +>-; (2)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩.47.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同. (1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.48.某服装专卖店计划购进,A B 两种型号的精品服装.已知2件A 型服装和3件B 型服装共需4600元;1件A 型服装和2件B 型服装共需2800元. (1)求,A B 型服装的单价;(2)专卖店要购进,A B 两种型号服装60件,其中A 型件数不少于B 型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?49.萧红中学校去年在商场购买甲、乙两种不同品牌的篮球则买甲种篮球花费1500元,购买乙种篮球花费4000元,购买乙种篮球的数量是购买甲种篮球数量的2倍.且购买一个乙种篮球比购买一个甲种篮球多花50元(1)求每个甲种篮球和每个乙种篮球的单价各是多少元?(2)为响应国家“五育并举”的号召.今年学校决定再次购买甲、乙两种篮球共60个.恰逢商场这两种篮球的售价进行调整.两种篮球售价比去年购买时提高了20%、乙种篮球售价比去年购买时降低了20%.如果今年购买甲、乙两种篮球的总费用不超过10350元,那么学校今年至少可购买多少个乙种篮球?50.一次函数y=-3x+b的图像经过点(-1,2).(1)求这个一次函数表达式;(2)若点A(2m,y1),B(m-1,y2)在该一次函数的图像上,且y1<y2,求实数m的取值范围.参考答案:1.A【分析】由不等式(1)1a x a 的解集是1x <,不等式的方向发生了改变,从而可得:1a +<0,于是可得答案.【详解】解:不等式(1)1a x a 的解集是1x <,1a ∴+<0,a ∴<1-,故选:A .【点睛】本题考查的是不等式的基本性质,不等式的解集,掌握“不等式的两边都除以同一个负数,不等号的方向要改变.”是解题的关键 2.C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:(1)1>0a +;(2)0a b +=;(3)89<;(4)31x x -≤;(5)42x -;(6)>1x y -中(1)1>0a +;(3)89<;(4)31x x -≤;(6)>1x y -是不等式,共4个,故选C .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠. 3.D【分析】理解:和的一半,应先和,再一半;负数,即小于0. 【详解】根据题意得:12(x +3)<0.故选D .【点睛】本题考查了列不等式.解题的关键是找准关键字,把文字语言转换为数学语言. 4.D【分析】先求出方程的解,根据解是正数列出不等式,即可解答 【详解】在方程两边同乘x ﹣1得:3x+a=x ﹣1, 解得:x=-1-a2①方程的解是正数,①102112aa --⎧>⎪⎪⎨--⎪≠⎪⎩解得a <﹣1且a≠﹣3. 故选D .【点睛】本题考查了分式方程的解、一元一次不等式,解决本题的关键是根据方程的解是正数得出不等式 5.D【分析】根据不等式的解集在数轴上的表示方法即可得出. 【详解】解:由数轴可知,4x <且1x ≥-,①这个不等式组可能是41x x <⎧⎨≥-⎩故答案为:D .【点睛】本题考查了不等式组的解集在数轴上的表示方法,解题的关键是熟知数轴表示不等式组解集的方法. 6.C【分析】根据二次根式的非负性质列出不等式来求解. 【详解】解:①①40x -≥, ①4x ≤. 故选:C .【点睛】本题主要考查了二次根式有意义的条件,理解二次根式的非负性质是解答关键. 7.D【详解】A. ①a >b , ①a+m >b+m ,故正确; B. ①a >b ,① a (m 2+1)>b (m 2+1),故正确; C. ①a >b ,①-22ab <-,故正确;D. ①a=1,b=-2时,满足a >b ,但 a 2<b 2,故不正确; 故选D .8.B【分析】根据不等式组无解,判断m 与7的大小关系.【详解】解:①不等式组7x x m <⎧⎨>⎩无解,①m ≥7, 故选:B .【点睛】主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 9.B【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不妨设a =-1,b =-2,则a 2<b 2,本选项不一定成立,故本选项不符合题意; B .①a >b ,①-5a <-5b ,故本选项符合题意; C .不妨设a =-5,b =-10, 则510ab=,故本选项不符合题意; D .不妨设a =1,b =2,则a -2<b +2,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 10.D【详解】试题分析:根据不等式的基本性质依次分析各选项即可作出判断. A .11a b +>+,B .22a b>,C .,均正确,不符合题意;D .,故错误,本选项符合题意.考点:不等式的基本性质点评:本题属于基础应用题,只需学生熟练掌握不等式的基本性质,即可完成. 11.C【详解】若m <n ,不等两边都乘以—2,不等号方向改变得, -2m >-2n,①答案是C.-2m >-2n.故答案为 C.点睛:本题考查不等式的性质,不等式两边同加或同减同一个数,不等号方向不变;不等式两边同乘同一个正数,不等号方向不变;不等式两边同乘同一个负数,不等号方向改变.12.B【分析】利用不等式解与解集的定义判断即可.【详解】解:A、x=-2是不等式-2x>1的一个解,说法正确,不符合题意;B、x=-2是不等式-2x>1的一个解,原说法错误,符合题意;C、x-7>2x+8的解集为x<-15与x<15的解集不相同,说法正确,不符合题意;D、x<-3与-7x>21的解集相同,说法正确,不符合题意,故选:B.【点睛】本题考查了不等式的解集,熟练掌握不等式解集的定义是解本题的关键.13.C【分析】购买5件需要15元,30元超过15元,则购买件数超过5件,设可以购买x件这样的商品,根据:5件按原价付款数+超过5件的总钱数≤30,列出不等式求解即可得.【详解】设可以购买x(x为整数)件这样的商品.3×5+(x-5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选C.【点睛】此题考查了一元一次不等式的应用,关键是读懂题意,找出题目中的数量关系,列出不等式,注意x只能为整数.14.B【分析】解分式方程,检验根得出a的范围;根据分式方程的解为正数,列出不等式求得a的范围;解不等式组,根据解集为y<-2,的出a的范围;根据a为整数,得出a的值,最后求和即可.【详解】解:分式方程的两边都乘以(x-1)得:2-a=3(x-1),解得53ax-=,①x-1≠0,①51 3a-≠,①a ≠2,①方程的解为正数, ①503a ->, ①a<5且a ≠2;21?324()0?y y y a +⎧->⎪⎨⎪-≤⎩①②, 解不等式①得:y<-2,解不等式①得:y ≤a ,①不等式组的解集为y<-2,①a ≥-2.①-2≤a<5且a ≠2①整数a 的和为(-2)+(-1)+0+1+3+4=5;故选:B .【点睛】本题考查了分式方程的解,一元一次不等式组的解集,考核学生的计算能力,注意分式方程一定要检验.15.D【分析】分两种情况进行分析讨论:a >0与a <0,根据抛物线的顶点位置和开口方向,结合题意,列出不等式求解即可.【详解】解:当a >0时,1-a <1,①抛物线的对称轴在y 轴右边,顶点在y =4的下方,若抛物线与线段AB 恰有一个公共点,则()()22162614132314a a⎧--⨯-+≥⎪⎪⎨⎪⨯-⨯+<⎪⎩, 解得,a >1;当a <0时,1-a >1,若1<1-a <4,即-3<a <0时,抛物线开口向下,顶点在直线y =4的下方,则抛物线与线段AB 无交点;若1-a =4,即a =-3时,抛物线的顶点在线段AB 上,此时抛物线与线段AB 只有一个公共点;若1-a >4,即a <-3时,抛物线的对称轴在直线x =-3的左边,顶点在直线y =4的上方, 若抛物线与线段AB 恰有一个公共点,则()()2216261132314a a⎧--⨯-+>⎪⎪⎨⎪⨯-⨯+≤⎪⎩, 解得,a <一4,综上,a <-4或a =-3或a >1.故嘉嘉、淇淇的结果合在一起也不正确,故选:D .【点睛】题目主要考查二次函数的基本性质及解不等式组,理解题意,根据题意列出不等式组是解题关键.16.A【详解】①|2a +5|+|2a -3|=8,①250230a a +>⎧⎨-<⎩ , ①5322a -<<, ①整数a 的值有:-2,-1,0,1共4个.故选A.点睛:本题考查了绝对值的化简和一元一次不等式组的解法.根据绝对值的运算法则:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,可得250230a a +>⎧⎨-<⎩,解不等式组求出a 的整数解.17.C【分析】由()1a b x a +>+的解集是1x <,可得0a b +<,再利用不等式的解集可得11a a b+=+,再利用两数相除,同号得正,可得10a +<,从而可得答案. 【详解】解: ()1a b x a +>+的解集是1x <,∴ 0a b +<,∴ 不等式的解集为:x <1,a a b++∴11 aa b+=+,①10a+<,①a<1,-故选:.C【点睛】本题考查的是利用不等式的基本性质解不等式,以及利用不等式的解集确定字母系数的范围,掌握不等式的基本性质是解题的关键.18.D【分析】分别利用不等式的基本性质判断得出即可.【详解】A、由a>b,当c<0时,得ac<bc,原变形错误,故这个选项不符合题意;B、由a>b,得-2a<-2b,原变形错误,故这个选项不符合题意;C、由a>b,得11a b>或11a b<,原变形错误,故这个选项不符合题意;D、由a>b,得-1+a>-1+b,原变形正确,故这个选项符合题意;故选:D.【点睛】此题主要考查了不等式的基本性质,正确掌握不等式基本性质是解题关键.19.C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:30 312 xx+≥⎧⎨-≤⎩①②解不等式①,得:x≥﹣3,解不等式②,得:x≤1,则不等式组的解集为:﹣3≤x≤1.故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.D【分析】根据x y≤,列出不等式,即可求出p的取值范围.【详解】方程组21 431 x y px y p+=+⎧⎨+=-⎩①②①×2得:4x+2y=2p+2①,①-①得:-y=p+3,解得:y=-p-3,把y=-p-3代入①得:x=p+2,①方程组得解为:23x p y p =+⎧⎨=--⎩; ①方程组的解满足条件x y ≤,①p+2≤-p-3解得:p≤52- 故选:D .【点睛】本题考查了解一元一次不等式,以及解二元一次方程组,弄清题意是解题的关键.21.318y +>.【分析】关系式为:y 的3倍18+>,把相关数值代入即可.【详解】解:根据题意,可列不等式:318y +>,故答案为:318y +>.【点睛】考查列一元一次不等式,根据关键词得到相应的关系式是解决本题的关键.22.18x +y ≤5 【分析】x 的18即x 乘18,与y 的和不超过5,就是小于或等于5,据此解答即可. 【详解】解:语句“x 的18与y 的和不超过5”可以表示为18x +y ≤5. 故答案为:18x +y ≤5. 【点睛】本题主要考查了不等式的意义,关键是明白不超过5,就是小于或等于5. 23.4m >-##-4<m【分析】直接把两个方程相加,求出,根据1x y +>得出关于m 的不等式,解之即可.【详解】解:22522x y m x y m +=+⎧⎨+=-+⎩, 直接把两个方程相加,得337x y m +=+,①73m x y ++=, ①1x y +>, ①713m +>, ①4m >-.故答案为:4m >-.【点睛】本题考查了解二元一次方程组、一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.2m ≤【分析】先利用加减消元法解二元一次方程组,求得用m 表示的x 、y ,根据方程组的解满足不等式x +2y ≥3可得关于m 的不等式,解不等式即可.【详解】解:3522323x y m x y m +=+⎧⎨+=-⎩①②, ①×2-①×3,得:134y m =-,将134y m =-代入①,得:721x m =-,①方程组的解为721134x m y m =-⎧⎨=-⎩, ①方程组的解满足不等式x +2y ≥3,①()72121343m m -+-≥,解得:2m ≤,故答案为:2m ≤.【点睛】本题主要考查了解二元一次方程组和一元一次不等式,熟练掌握解二元一次方程组的基本方法和解不等式的基本步骤是解题的关键.25.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.26.3<x≤4【分析】先分别解出各不等式的解集,再找到其公共解集即可求解. 【详解】解()()1225104321x x x x -+⎧>⎪⎨⎪--≥-⎩①② 解不等式①得x >3;解不等式①得x≤4故不等式组的解集为3<x≤4故答案为:3<x≤4.【点睛】此题主要考查不等式组的求解,解题的关键是熟知不等式的求解方法. 27.m >-2【分析】先根据正比例函数的性质列出关于m 的不等式,求出m 的取值范围即可.【详解】解:①正比例函数()2y m x =+中,y 随x 的增大而增大,①2m +>0,解得-2m >.故答案为;-2m >.【点睛】本题考查的是正比例函数的性质,即正比例函数y =kx (k ≠0)中,当k >0时,y 随x 的增大而增大.28.x ≤2【分析】本题考查不等式的解集在数轴上表示,左边表示小于,实心圆点表示等于.【详解】解:由图得,x ≤2.故答案为x ≤2.29.10【详解】试题解析:解不等式1−2x >3(x −7),得:225x <, 则不等式组的解集为2215x ≤<, ①不等式组的整数解的和为1+2+3+4=10,故答案为1030.1 【分析】根据题意列一元一次不等式4123a -<,解此不等式的解集为74a <,再找到其中最大的整数解即可.【详解】解:由题意得,4123a -<, 416a ∴-<,47a <,74a ∴<, ∴a 的最大整数值是1,故答案为:1.【点睛】本题考查解一元一次不等式、不等式的整数解等知识,准确解出一元一次不等式的解集是解答本题的关键.31.57x ≤【分析】先求出两个不等式的解集,再求其公共解.【详解】2352x x ①②-≥⎧⎨->-⎩, 由①得,x≥5,由①得,x<7,所以,不等式组的解集是:5≤x <7.故答案为5≤x <7.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 32.12x <≤【分析】分别求出两个不等式的解集,即可求解.【详解】解①1012x x x ->⎧⎪⎨+≥⎪⎩①②, 解不等式①得① 1x >解不等式①得①2x ≤,①不等式组的解集为12x <≤ 故答案为① 12x <≤【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.33.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠ ①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.34.n <11【分析】将方程的解代入方程中,得到关于k 、m 、n 的方程组,可求k =n -4,根据k <7即可求n 的取值范围.【详解】解:由题意可得:()312111n km k n k m k +=++⎧⎨-=+++⎩解得:k =n -4①k <7①n -4<7①n <11故答案为:n <11【点睛】本题考查了二元一次方程的解,求出k =n -4是本题的关键.35.4 【分析】先解不等式组,得到该不等式组的解集为445x -<≤,即可得到其整数解的个数.【详解】解:253(3)121035x x x +<+⎧⎪⎨-+≥⎪⎩①②, 解不等式①可得:4x >-;解不等式①可得:45x ≤, 所以该不等式组的解集为:445x -<≤, 所以该不等式组的整数解为3-,2-,1-,0,共4个,故答案为:4.【点睛】本题考查不等式组的整数解,正确解一元一次不等式组是解题的关键. 36.1.52x ≤<【分析】根据题意得出﹣3•[2x ﹣1]=﹣6,即[2x ﹣1]=2,据此可得2≤2x ﹣1<3,解之即可.【详解】解:根据题意,得:﹣3•[2x ﹣1]=﹣6,①[2x ﹣1]=2,则2≤2x ﹣1<3,解得1.52x ≤<.故答案为:1.52x ≤<.【点睛】本题主要考查解一元一次不等式组,解题的关键是根据新定义列出关于x 的不等式组.37.-5<x≤-4【分析】先分别求出不等式组中每一个不等式的解集,然后再根据不等式组解集的确定方法即可求得解集. 【详解】解不等式1x 22-≥得:x≤-4, 解不等式11-x >1-3x 得:x>-5,所以不等式组的解集是:-5<x≤-4,故答案为-5<x≤-4.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组解集的确定方法是关键. 不等式组解集的确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了. 38.不是【分析】先根据二元一次方程的定义求出k 值,从而得k +1的值,再把k +1代入不等式检验,即可求解.【详解】解:①||4(5)21k k x y ---=是关于x ,y 的二元一次方程, ①5041k k -≠⎧⎨-=⎩,解得:k =-5, ①k +1=-5+1=-4,把x =k +1=-4代入不等式左边得-4+2=-2,把x =k +1=-4代入不等式右边得2×(-4)-1=-9,①-2>-9,①k +1不是不等式221x x +<-的解,故答案为:不是.【点睛】本题考查二元一次方程的定义,判定一个数是否是不等式的解,求出k 值是解题的关键.39.-3≤a <-2.【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式3-2x >2,得:x <12 ,解不等式x-a >0,得:x >a ,则不等式组的解集为a <x <12,①不等式组恰有3个整数解,①不等式组的整数解为-2、-1、0,则-3≤a <-2.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.40.28.25【分析】设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.【详解】解:设《长津湖》的销售单价为m 元,则《五个扑水的少年》销售单价为n 元;《长津湖》的日销售量a 本,《铁道英雄》日销售量为b 本,则《我和我的父辈》销售单价为m 元,《铁道英雄》的销售单价为3n 元;《五个扑水的少年》的日销售量为a 本,《我和我的父辈》的日销售量为3b 元,①《长津湖》与《铁道英雄》的日销售量和为450本,①a +b =450,即b =450-a ,①《长津湖》的日销售量不低于《铁道英雄》的日销售量的23且小于230本, ①22303b a ≤< ,即()24502303a a -≤<, 解得:180230a ≤< ,①《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,①5060m n <+≤ ,①《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,①()()332205ma nb mb na +-+= ,①b =450-a ,①()()345034502205ma n a m a na +---+=⎡⎤⎡⎤⎣⎦⎣⎦,①()()13503135032205n a m a ma na ---+-= ,①()()413502205m n a --= ,①180230a ≤<,①413500a -<,①0m n -< ,即m n < ,①当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即()3345013503ma nb ma n a ma n na +=+-=+- 最大,①此时3na 的值最小,则m 最大,①180230a ≤<,①a 的最小值为180,将a =180代入()()413502205m n a --=,解得: 3.5m n -=- ,即 3.5n m =+ ,①5060m n <+≤,①50 3.560m m <++≤,即23.2528.25m <≤ ,①m 最大,①28.25m = ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为28.25元.故答案为:28.25【点睛】本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.41.35x <≤【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:()2132324x x x x +<-⎧⎪⎨--≤⎪⎩①② 由①得,3x >,由①得,5x ≤,故不等式组的解集为:35x <≤.【点睛】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解题的关键.42.(1)最多可以购买甲种树苗40棵;(2)该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵【分析】(1)设购买甲种树苗x 棵,由购买两种树苗的总费用不超过3400元,列出不等式,可求解;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,由总费用不超过500元,列出不等式,即可求解.【详解】解:(1)设购买甲种树苗x 棵,由题意可得:()30202303400x x ++≤,解得:40x ≤,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m 棵,则购买乙种树苗()24m -棵,依题意得:()302024500m m +≤﹣, 解得:2m ≤.又①m 为正整数,①m 可以取1,2,①该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.【点睛】本题考查的是一元一次不等式的应用,正确理解题目意思是解决本题的关键. 43.(1)①乘法分配律;①五,不等式两边都除以-5,不等号的方向没有改变(2)x <2【分析】(1)①由题意可得依据乘法分配律(运算律)进行变形的;①由题意根据不等式的基本性质3进行分析即可;(2)由题意根据不等式的基本性质3进行分析计算即可.(1)解:①以上解题过程中,第二步是依据乘法分配律(运算律)进行变形的;①第五步开始出现错误,这一步错误的原因是不等式两边都除以-5,不等号的方向没有改变;故答案为:乘法分配律;五,不等式两边都除以-5,不等号的方向没有改变;(2)213232x x -->-1. 解:2(2x -1)>3(3x -2)-64x -2>9x -6-64x -9x >-6-6+2-5x >-10x <2该不等式的正确解集是x <2.【点睛】本题考查解一元一次不等式,注意掌握其一般步骤:①去分母;①去括号;①移项;①合并同类项;①化系数为1.44.3<x ≤4【分析】先解每个不等式,再将不等式解集表示在数轴上,再取公共解集即可.【详解】解:21{5238x x x x +-<≥-①②,由①得:x >3,由②得:x ≤4,将解集在数轴上表示出来如下:∴原不等式组的解集为:3<x ≤4.【点睛】本题考查解一元一次不等式组,解题的关键是掌握解一元一次不等式的一般步骤和正确的取不等式组的解集.45.34x <≤【分析】分别求不等式的解,再找公共部分,就是不等式组的解.【详解】解:由①式得:3x >.由①式得:4x ≤.①不等式组的解集为: 34x <≤.【点睛】本题主要考查解一元一次不等式组,掌握“同小取小”, “同大取大”, “大小小大取中间”,“小小大大无解”是关键.46.(1)x >−4,数轴见详解;(2)x ≤1,数轴见详解【分析】(1)根据解一元一次不等式的方法,可以求得该不等式的解集,然后在数轴上表示出其解集即可;(2)先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示即可.【详解】解:(1)5x +3>4x −1,移项,得5x −4x >−1−3,合并同类项,得x >−4,其解集在数轴上表示如下,。

初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)

初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)

初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、填空题(共50题)1、关于的不等式的解集如图所示,则的值是________.2、用不等式表示“x 与 5 的差不大于1”:________.3、不等式组的解集是________。

4、关于x的分式方程的解为正数,则m的取值范围是________.5、已知不等式≥3,那么这个不等式的解集是________6、若关于x的不等式的解集在数轴上表示如图,请写出此解集为________.7、不等式组的正整数解的乘积为________.8、若关于x的一元二次方程没有实数解,则关于x的不等式的的解集为________.(用含的式子表示)9、不等式组的解集是________.10、已知关于x的不等式>x-1,当m=1时,该不等式的解集为________;若该不等式的解集中的每一个x都能使关于x的不等式x>a成立,则此时m的取值范围为________,a的取值范围是________.11、不等式的解集是________.12、不等式组的解集是________ .13、不等式组的解集是________.14、“a的2倍减去b不小于2”用不等式表示是________.15、不等式组的解集是________.16、点 P(1,a﹣3)在第四象限,则a的取值范围是________.17、将不等式“ ”化为“ ”的形式为:________.18、若x>y,且(m-5)x <(m-5)y ,则m的取值范围是________.19、不等式组的解集是________.20、已知关于x的一元一次不等式与2﹣x<0的解集相同,则m=________.21、抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是________.22、若式子在实数范围内有意义,则x的取值范围是________.23、关于、的二元一次方程组的解满足,则的取值范围是________.24、不等式3x-6≤9的解是________.25、某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是________km.26、不等式组的解集是________.27、关于的不等式的解集是写出一组满足条件的的值________.28、苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克________元.29、x与y的平方和一定是非负数,用不等式表示为________30、若m<n,则不等式组的解集是________.31、一元二次方程x2+2x+a=0有实根,则a的取值范围是________.32、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣 5 分.小明得分要超过90分,他至少要答对________道题.33、已知不等式x﹣1≥0,此不等式的解集在数轴上表示为________34、若不等式组的解集是,则m的取值范围是________.35、我们定义,例如,若均为整数,且满足,则的值是________.36、不等式组的解集是________.37、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是________.38、若关于x的一元二次方程有实数根,则n的取值范围是________.39、若关于x的不等式组无解,则a的取值范围为________.40、关于x的不等式组只有4个整数解,则a的取值范围是________.41、要使式子在实数范围内有意义,则实数a的取值范围是________.42、已知关于x的不等式组无解,则实数a的取值范围是________43、如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________44、用不等号连接下列各组数:(1)π________ 3.14;(2)(x﹣1)2________ 0;(3)﹣________ ﹣45、若不等式(m-2)x>2的解集是,则m的取值范围是________.46、不等式-3x+2≥5的解集是________。

中考数学总复习《不等式与不等式组》专项测试卷-附参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.若 x >y ,则下列式子中错误的是 ( )A . x −3>y −3B . x 3>y 3C . x +3>y +3D . −3x >−3y2.“数 x 不大于 3”可以表示为 ( )A . x ≤3B . x <3C . x =3D . x ≥33.把不等式组 {x +1≤0,−x >0 的解集表示在数轴上,正确的是 ( ) A . B .C .D .4.关于 x 的不等式组 {x−13≤1,a −x <2 恰好只有四个整数解,则 a 的取值范围是 ( ) A . a <3 B . 2<a ≤3 C . 2≤a <3 D . 2<a <35.已知关于 x 的不等式组 {x −1<0,x −a ≥0有以下说法: ①如果 a =−2,那么不等式组的解集是 −2≤x <1;②如果不等式组的解集是 −3≤x <1,那么 a =−3;③如果不等式组的整数解只有-2,-1,0,那么 a =−2;④如果不等式组无解,那么 a ≥1.其中所有正确说法的序号是 ( )A .①②③B .①②④C .①③④D .②③④6.如图,要使输出 y 的值大于 100,则输入的最小正整数 x 的值是 ( )A . 22B . 21C . 20D .以上答案都不对7.不等式 3(1−x )>2−4x 的解集在数轴上表示正确的是 ( ) A .B .C .D .8.下列不等式中,是一元一次不等式的是 ( )A . 4x −5y <1B . 4y +2≤0C . −1<2D . x 2−3>5二、填空题(共5题,共15分)9.据某气象台发布信息,2020 年 6 月 12 日该地最高气温是 32∘C ,最低气温是 25∘C ,则当天气温 t(℃)的变化范围是 .10.不等式组 {2−x ≥0,2x >x −1的最小整数解是 .11.若代数式y+15−y−12 的值不小于 −3,则 y 的取值范围是 .12.若关于 x 的不等式 x−m 2≥−1 的解集如图所示,则 m 的值为 .13.有一个两位数,它的十位数比个位数大 1,并且这个两位数大于 30 且小于 42,则这个两位数是 .三、解答题(共3题,共45分)14.解不等式组:{x −3(x −1)<7,x −2x ≤2x−33.并把解集在数轴上表示出来.15.某花农培育甲种花木 10 株,乙种花木 8 株,共需成本 6400 元;培育甲种花木 4 株,乙种花木 5 株,共需成本 3100 元.(1) 求甲乙两种花木成本分别是多少元?(2) 若 1 株甲种花木售价为 700 元,一株乙种花木售价为 500 元.该花农决定在成本不超过 29000 元的情况下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的 3 倍还多 10 株,那么要是总利润不少于 18200 元,花农有哪几种具体的培育方案?16.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为 40 元,用 90 元购进甲种玩具的件数与用 150 元购进乙种玩具的件数相同.(1) 求每件甲种、乙种玩具的进价分别是多少元?(2) 商场计划购进甲、乙两种玩具共 48 件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过 1000 元,求商场共有几种进货方案?参考答案1. 【答案】D2. 【答案】A3. 【答案】A4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】A8. 【答案】B9. 【答案】 25≤t ≤3210. 【答案】 011. 【答案】 y ≤37312. 【答案】 413. 【答案】 3214. 【答案】{x −3(x −1)<7, ⋯⋯①x −2x ≤2x−33. ⋯⋯②由①得,x >−2.由②得,x ≥35.故此不等式组的解集为:x ≥35.在数轴上表示为:15. 【答案】(1) 设甲种花木的成本价是 x 元,乙种花木的成本价为 y 元.由题意得:{10x +8y =6400,4x +5y =3100,解得:{x =400,y =300. (2) 设种植甲种花木为 a 株,则种植乙种花木为 (3a +10) 株.{400a +300(3a +10)≤29000,(700−400)a +(500−300)(3a +10)≥18200,解得:18≤a ≤20因为 a 为整数所以 a 可取 18 或 19 或 20.所以有三种具体方案:①植甲种花木 18 株,种植乙种花木 3a +10=64 株;②种植甲种花木 19 株,种植乙种花木 3a +10=67 株;③种植甲种花木 20 株,种植乙种花木 3a +10=70 株.16. 【答案】(1) 设甲种玩具进价 x 元/件,则乙种玩具进价为 (40−x ) 元/件90x =15040−x x =15经检验 x =15 是原方程的解.∴40−x =25甲、乙两种玩具分别是 15 元/件,25 元/件;(2) 设购进甲种玩具 y 件,则购进乙种玩具 (48−y ) 件{y <48−y,15y +25(48−y )≤1000,解得20≤y <24∵y 是整数,甲种玩具的件数少于乙种玩具的件数∴y 取 20,21,22,23共有 4 种方案.。

中考数学不等式与不等式祖专题训练50题-含参考答案

中考数学不等式与不等式祖专题训练50题-含参考答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.已知a <0, -1<b <0.则a ,ab ,ab 2 由小到大的排列顺序是( ). A .a <ab <ab 2B .ab 2<ab <aC .a <ab 2<abD .ab <a <ab 22.据气象台预报,2020年5月某日大埔最高气温27℃,最低气温21℃,则当天气温t (℃)的变化范围是( ) A .t >21B .t ≤27C .21<t <27D .21≤t ≤273.若a >b ,则下列不等式正确的是( ) A .2a <2b B .ac >bc C .-a+1>-b+1D .3a +1>3b +14.不等式123x x +>-的最大整数解为:( ) A .1B .2C .3D .45.我国从2011年5月1日起在公众场所实行“禁烟”.为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对多少道题( ). A .13B .14C .15D .166.如果不等式(a -2)x>a -2的解集是x<1,那么a 必须满足( ) A .a<0B .a>1C .a>2D .a<27.不等式组1020x x +>⎧⎨-≥⎩的解集在数轴上表示正确的是( )A .B .C .D .8.如果成立,则实数的取值范围是( ) A .B .C .D .9.如果 x > y ,那么下列结论错误的是( ) A .x + 2 > y + 2B .x - 2 > y - 2C .2x > 2 yD .-2x > -2 y10.下列不等式中是一元一次不等式的是( )A .3y x +≥B .3-4<0C .2241x -≥D .24x -≤11.把不等式组30322x x -<⎧⎪⎨+≥⎪⎩的解集表示在数轴上,正确的是( )A .B .C .D .12.若关于x 的不等式()11a x ->的解集是11x a <-,则a 的取值范围是( ) A .1a >B .1a <C .1a ≠D .1a <且0a ≠13.如果a >b ,那么下列不等式中一定成立的是( ) A .a +m <b +mB .am <bmC .am 2>bm 2D .m ﹣a <m ﹣b14.函数12y x =+-,当4m x ≤≤,对应y 的取值范围为23y -≤≤,则m 的取值范围为( ) A .1m =-B .1m ≤-C .61m -≤≤-D .14m -≤<15.若关于x 的不等式组023115x ax x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,且关于y 的方程2433a y a y y -=---的解是正数,则所有满足条件的整数a 的值之和是( ) A .﹣8B .﹣4C .﹣3D .﹣116.将一箱苹果分给若干个学生,每个学生都分到苹果.若每个学生分5个苹果,则还剩12个苹果;若每位学生分8个苹果,则有一个学生所分苹果不足8个.若学生的人数为x ,则列式正确的是( ) A .05128(1)8x x ≤+--< B .05128(1)8x x <+--≤ C .15128(1)8x x ≤+--< D .15128(1)8x x <+--≤17.下列各式中正确的是( ) A .若a >b ,则a ﹣1<b ﹣1 B .若a >b ,则a 2>b 2 C .若a >b ,则ac >bcD .若a c >bc,则a >b18.某商品的进价是1000元,标价为1500元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打( )折出售此商品. A .9B .8C .7D .619.不等式组()11{?22213x x -<++≥的解集是( ) A .﹣1<x≤3 B .1≤x <3 C .﹣1≤x <3 D .1<x≤320.不等式2x 97x ≤-的解集在数轴上表示出来,正确的是( ) A . B . C .D .二、填空题21.若(1)30k k x -+≥是关于x 的一元一次不等式,则k 的值为______. 22.满足一元一次不等式组101203x x -≤⎧⎪⎨->⎪⎩的最大整数值为___.23.有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使总收入不低于15.6万元,则至多安排______人种甲种蔬菜.24.若不等式组1>125x ax x -⎧⎨-≥-⎩的解为1<2x ≤-,则a 的取值是_____________25.不等式组10324x x x ->⎧⎨>-⎩所有整数解的和为_____.26.不等式2x <4x ﹣6的最小整数解为_____.27.x 的3倍与15的差不小于8,用不等式表示为 ________28.小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有 _____种.29.不等式组23348x x ⎧>-⎪⎨⎪-≤⎩的最小整数解为_____.30.一辆公共汽车上原有(54)a -名乘客,到某一车站有(92)a -名乘客下车,车上原来可能有_____名乘客.31.已知实数x ,y ,a 满足x +3y +a =4,x ﹣y ﹣3a =0.若﹣1≤a ≤1,则2x +y 的取值范围是_____.32.已知将直线y kx =向上平移2个单位后,恰好经过点(1,0)-,则不等式42x kx -<+的解集为_____.33.不等式2x-6≥0的解集为________.34.为了方便同学们进行丰富阅读,南开中学图书馆订购了A ,B ,C 三类新书,共900本,其中A 类数量是B 类数量的4倍,C 类数量不超过A 类数量的5528倍,且A 类数量不超过400本.新书开始借阅后,深受同学欢迎,图书管理员提供了两种方案来增订这三类书若干本(两种方案增订的图书总量相同),方案一:按2:3:5的比例增订A ,B ,C 三类书;方案二:按4:1:5的比例增订A ,B ,C 三类书,经计算,若按方案一增订,则增订后A ,B 两类书总数量之比为7:2,那么按方案二增订时,增订后A ,C 两类书总数量之比为______.35.不等式了()133x m m ->-的解集为5x >,则m 的值为_______. 36.已知一次函数(2) 3y m x m =-+-的图象经过第一、二、四象限,则化简=__________.37.若关于x 的不等式组324x a x a <+⎧⎨>+⎩无解,则a 的取值范围是__.38.弟弟上午八点钟出发步行去郊游,速度为每小时4千米;哥哥上午十点钟从同一地点骑自行车去追弟弟.如果哥哥要在上午十点四十分之前追上弟弟,那么哥哥的速度至少是__________. 39.若关于x 的不等式组123354413x x xa x a恰有两个整数解,则a 的取值范围是_____.三、解答题 40.解不等式(组) (1)()2332x x +≥+ (2)12323x x -+< (3)2130x x >⎧⎨-<⎩(4)273(1)423133x x x x -<-⎧⎪⎨+≥-⎪⎩41.某商品经销店计划购进A ,B 两种纪念品,若购进A 种纪念品7件,B 种纪念品8件共需380元;若购进A 种纪念品10件,B 种纪念品6件共需380元. (1)求A ,B 两种纪念品每件的进价分别为多少元;(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备购进A ,B 两种纪念品共40件,且这两种纪念品全部售出后总获利不低于216元,求该商店最多可以购进A 种纪念品多少件.42.根据下列语句列不等式并求出解集:x 与4的和不小于6与x 的差.43.某文具店王老板用240元购进一批笔记本,很快售完;王老板又用600元购进第二批笔记本,所购本数是第一批的2倍,但进价比第一批每本多了2元. (1)第一批笔记本每本进价多少元?(2)王老板以每本12元的价格销售第二批笔记本,售出60%后,为了尽快售完,决定打折促销,要使第二批笔记本的销售总利润不少于48元,剩余的笔记本每本售价最低打几折?44.解不等式组()()3151124x x x x ⎧-<+⎪⎨-≥-⎪⎩并求它的所有的非负整数解.45.如图甲所示的A 型(11⨯)正方形板材和B 型(31⨯)长方形板材,可用于制作成图乙所示的竖式和横式两种无盖箱子.已知板材每平方米20元.(1)若用2860元的资金去购买A 、B 两种型号板材,并全部制作竖式箱子,问可以制作竖式箱子多少只?(2)若有A 型板材67张、B 型板材135张,用这批板材制作两种类型的箱子共40只.问有哪几种制作方案? 46.计算(1)解不等式组312(1)212x x x +≥-⎧⎪⎨-<⎪⎩(2)解方程:53.212x x =-+ 47.飞盘运动由于门槛低、限制少,且具有较强的团体性和趣味性,在全国各地悄然兴起,深受年轻人喜爱.某商家购进了海绵和橡胶两种飞盘进行销售,已知一个橡胶飞盘比一个海绵飞盘的进价多30元,其中购买海绵飞盘花费4000元,购买橡胶飞盘花费3200元,且购买海绵飞盘的数量是购买橡胶飞盘数量的2倍.(1)求一个海绵飞盘的进价是多少元;(2)商家第一次购进的飞盘很快售完,决定再次购进同种类型的海绵和橡胶两种飞盘共80个,但海绵飞盘的进价比第一次购买时提高了16%,而橡胶飞盘的进价在第一次购买时进价的基础上打9折,如果商家此次购买海绵和橡胶两种飞盘的总费用不超过4800元,那么此次最多可购买多少个橡胶飞盘?48.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金y(元)与x(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?49.为了抓住文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A 种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,那么该商店至少要购进A种纪念品多少件?参考答案:1.C【分析】根据:不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得到的不等式成立.两边同时乘以负数a,得到:0>ab2>a,据此即可求得各数的大小关系.【详解】℃a<0,b<0,℃ab>0,℃−1<b<0,℃b2<1;℃a<ab2<ab.故选C.【点睛】不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.2.D【分析】变化范围是指在最低值和最高值之间,且包含最高值和最低值,根据题意用不等式表示.【详解】最高气温27℃,最低气温21℃,则t的变化范围为:21≤t≤27.故选D.【点睛】本题考查不等式表示生活中的应用,知道这个量的最大值和最小值,便可确定变量的变化范围,从而可用不等式表示,理解题意是解题的关键.3.D【分析】根据不等式的性质,逐项判断即可.【详解】解:℃a>b,℃2a>2b,℃选项A不符合题意;℃a>b,c<0时,ac<bc,℃选项B不符合题意;℃a>b,℃-a <-b , ℃-a +1<-b +1, ℃选项C 不符合题意; ℃a >b , ℃3a >3b ,℃3a +1>3b+1,℃选项D 符合题意. 故选:D .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 4.C【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出最大整数解即可.【详解】解:123x x +>- 移项得231x x ->-- 合并同类项得4x ->- 系数化为1得4x <故该不等式的最大整数解为3,故选C.【点睛】本题考查一元一次不等式的整数解.解本题注意在第三步系数化为1时需改变不等号的方向. 5.B【分析】竞赛得分=10×答对的题数+(-5)×未答对(不答)的题数,根据本次竞赛得分要超过100分,列出不等式求解即可. 【详解】解:设要答对x 道. 10x+(-5)×(20-x )>100, 10x-100+5x >100, 15x >200,解得x >403=1133,他至少要答对14道题, 故选B .【点睛】本题考查一元一次不等式的应用,得到得分的关系式是解决本题的关键. 6.D【详解】试题分析:根据两边同时除以(a -2),不等号的方向改变,可得(a -2)<0,解得a <2.考点:解一元一次不等式 7.B【分析】先分别求出各不等式的解集,再求其公共解集,然后把解集在数轴上表示出来即可.【详解】解:解10x +>得x >−1, 解20x -≥得x≤2,℃不等式组的解集为−1<x≤2, 在数轴上表示解集为:故选:B .【点睛】本题考查了解一元一次不等式组以及在数轴上表示不等式组的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.求不等式组的解集应遵循“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则. 8.C 【详解】如果成立那么必须30,30,0mm m m-〉-≥≥可得9.D【分析】根据不等式的基本性质来分别判断求解.【详解】解:A .因为x y >,在不等边两边同时加上2,不等式方向不变,故原选项正确,此项不符合题意;B .因为x y >,在不等边两边同时减去2,不等式方向不变,故原选项正确,此项不符合题意;C.因为x y>,在不等边两边同时乘2,不等式方向不变,故原选项正确,此项不符合题意;D.因为x y>,在不等边两边同时除以-2,不等式方向要改变,故原选项错误,此项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质,理解等式的基本性质是解答关键.不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变.10.D【分析】利用一元一次不等式的定义判断即可.【详解】下列不等式中是一元一次不等式的是2-x≤4,故选D.【点睛】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.11.A【分析】先求出不等式组的解集,再根据解集画图即可.【详解】解:30322xx-<⎧⎪⎨+≥⎪⎩①②,由℃得,x<3,由℃得,x≥-2,故不等式组的解集为-2≤x<3.故选:A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式的解集,每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12.B【分析】根据不等式()11a x ->的解集是11x a <-,得出关于a 的不等式,求出a 的取值范围即可. 【详解】解:℃原不等式两边同时除以1a -,不等号方向改变,℃10a -<,解得1a <,故B 正确.故答案选:B .【点睛】本题考查的是解一元一次不等式,熟知不等式的基本性质,是解答此题的关键. 13.D【分析】根据不等式的基本性质,对每个选项分别进行判断,即可得到答案.【详解】解:A .℃a >b ,℃a +m >b +m ,故本选项不合题意;B .如果a >b ,m >0,则am >bm ,故本选项不合题意;C .如果a >b ,m =0,则am 2=bm 2,故本选项不合题意;D ..℃a >b ,℃﹣a <﹣b ,℃m ﹣a <m ﹣b ,故本选项符合题意;故选:D .【点睛】本题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质进行判断. 14.C【分析】求出当y =3和y =-2时的x 的值,根据函数图像即可求出m 的取值. 【详解】解:画出函数12y x =+-图象如图所示.把3y =代入12y x =+-得312x =+-,解得4x =或6-,把=2y -代入12y x =+-得212x -=+-,解得=1x -,当4m x ≤≤,对应y 的取值范围为23y -≤≤,=由图可知61m -≤≤-.故选:C .【点睛】本题主要考查了带绝对值的一次函数的图像和性质,熟练掌握一次函数图像上点的坐标特征是解题的关键.15.B【分析】先解不等式组,根据关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解,可得a 的取值范围,再解分式方程,关于y 的方程2433a y a y y-=---的解是正数,可得a 的取值范围,进一步求和即可.【详解】解: 023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩①②, 解不等式℃得,x a >,解不等式℃得,3x ≤,关于x 的不等式组023115x a x x -⎧>⎪⎪⎨+⎪≥-⎪⎩有解, 3a ∴<,解分式方程 2433a y a y y-=---, 去分母得,24(3)a y y a =-+-, 解得:3125a y +=, 关于y 的方程2433a y a y y-=---的解是正数, y ∴>0且3y ≠,31205a +∴>且31235a +≠, 解得4a ->,且1a ≠,43a ∴-<<且1a ≠,∴满足条件的整数a 的值:32102---、、、、;3(2)(1)024-+-+-++=-,故选:B .【点睛】本题考查了分式方程的解,和解一元一次不等式组,熟练掌握解不等式组的方法以及解分式方程的步骤是解题的关键.16.C【分析】根据每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友所分苹果不到8个.由此得出不等式组.【详解】解:根据小朋友的人数为x ,根据题意可得:15128(1)8x x ≤+--<,故选:C .【点睛】此题主要考查了一元一次不等式的应用,根据题意找出不等式的取值范围是解决问题的关键.17.D【详解】A 、不等式的两边都减1,不等号的方向不变,故A 错误;B 、当a=-1,b=-2时,a 2<b 2,故B 错误;C 、当c=0时,ac=bc ,故C 错误;D 、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D 正确;故选D .18.C【分析】设售货员可以打x 折出售此商品,利用利润=售价-进价,结合利润率不低于5%,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设售货员可以打x 折出售此商品,依题意得:1500×10x -1000≥1000×5%, 解得:x ≥7,℃售货员最低可以打7折出售此商品.故选:C .【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.19.C【详解】分析:分别求出每一个不等式的解集,然后再确定不等式组的解集即可. 详解:解不等式112x -<,得:x <3, 解不等式2(x+2)+1≥3,得:x≥﹣1,℃不等式组的解集为﹣1≤x <3,故选C .点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 20.C【分析】先利用不等式的性质求出原不等式的解集,再把它的解集在数轴上表示出来即可.【详解】2x 97x ≤-,2x 7x 9+≤,9x 9≤,x 1≤.在数轴上表示如下图所示:故选C .【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,关键是明确解不等式的方法,会在数轴上表示不等式的解集.21.1- 【分析】根据一元一次不等式的定义可得1k =且10k -≠,分别进行求解即可.【详解】解:℃(1)30k k x -+≥是关于x 的一元一次不等式, ℃1k =且10k -≠,解得:1k =-,故答案为:1-.【点睛】本题主要考查一元一次不等式定义的“未知数的最高次数为1次”这一条件;还要注意,未知数的系数不能是0,掌握一元一次不等式的定义是解题的关键.22.1【分析】根据解不等式组的方法可以求得原不等式组的解集,从而可以求得满足不等式组的整数解.【详解】解:由不等式x ﹣1≤0,得x ≤1,由不等式2﹣13x >0,得x <6, 故原不等式组的解集是x ≤1,℃最大整数x =1,故答案为:1.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.23.4【分析】设最多安排x 人种甲种蔬菜,根据有10名菜农,每人可种甲种蔬菜3公顷或乙种蔬菜2公顷,已知甲种蔬菜每公顷可收入0.5万元,乙种蔬菜每公顷可收入0.8万元,若要使收入不低于15.6万元,可列不等式求解.【详解】解:设安排x 人种甲种蔬菜,3x ×0.5+2(10﹣x )×0.8≥15.6,解得:x ≤4.所以最多安排4人.故答案为:4.【点睛】本题考查了一元一次不等式的应用,关键设出种植甲的人数,以总收入作为不等量关系列不等式求解.24.2-【分析】先解不等式组得出12a a +≤<,然后根据不等式组的解集为1<2x ≤-,列出关于a 的方程,是解题的关键.【详解】解:解不等式组1>125x a x x -⎧⎨-≥-⎩得:12x a x ≤>+⎧⎨⎩, ℃不等式组的解集为1<2x ≤-,℃11a +=-,解得:2a =-.故答案为:2-.【点睛】本题主要考查了解不等式组,解题的关键是根据不等式组的解集列出关于a 的方程,是解题的关键.25.﹣6【分析】根据一元一次不等式组求出不等式组的解集,进而即可得到所有整数解的和.【详解】解:解不等式10x ->,得:1x <解不等式324x x >-,得:4x >-则不等式组的解集为41x -<<其整数解得和为32106---+=-,故答案为:6-.【点睛】本题主要考查了一元一次不等式组的解,熟练掌握相关计算技巧是解决本题的关键.26.4【详解】移项,合并同类项,系数化成1,即可求出不等式的解集,即可得出答案.解:℃2x<4x-6,℃2x-4x<-6,℃-2x<-6,℃x>3,℃不等式2x<4x-6的最小整数解为4,故答案为4.27.3x﹣15≥8【分析】首先表示“x的3倍”为3x,再表示“与15的差”为3x-15,最后再表示“不小于8”为3x-15≥8.【详解】由题意可知:3x-15≥8故答案为:3x-15≥8.28.3【分析】设购买A种玩具x件,则购买B种玩具102x-⎛⎫⎪⎝⎭件.根据题意即可列出关于x的一元一次不等式组,解出x的解集,再根据x为整数,102x-为整数,即得出答案.【详解】设购买A种玩具x件,则购买A种玩具用x元,℃购买B种玩具用(10-x)元,℃购买B种玩具102x-⎛⎫⎪⎝⎭件,根据题意可知11012102xxxx⎧⎪≥⎪-⎪≥⎨⎪-⎪>⎪⎩,解得:1383x<≤.℃x为整数,102x-为整数,℃x的值为4或6或8,即可购买A种玩具4件,B种玩具3件,可购买A种玩具6件,B种玩具2件,可购买A种玩具8件,B种玩具1件.故小明的购买方案有3种.故答案为:3.【点睛】本题考查一元一次不等式组的应用.正确的用x表示出购买B种玩具的数量和正确的列出不等式组是解题关键.29.0【分析】先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值,进而得出最小整数解.【详解】解:23348xx⎧>-⎪⎨⎪-≤⎩①②,解℃得x>23 -,解℃得3x<12,即x≤4,由上可得23-<x≤4,℃x为整数,故x可取0、1、2、3、4,℃最小整数解为0.故答案为:0.【点睛】此题考查的是一元一次不等式的解法和一元一次方程的解,根据x的取值范围,得出x的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.30.6,11,16【分析】关系式为:车上人数、下车人数一定都是非负整数,因而就可以得到一个关于a 的不等式组,求出a的范围,再根据车上人数、下车人数一定都是整数,则a一定是整数,从而求出a的值.【详解】解:根据题意,得5a−4≥9−2a解得a≥137,又℃540920aa-≥⎧⎨-≥⎩,解得:4952a≤≤,℃139 72a≤≤因为a为整数,所以a=2,3,45a−4分别为6,11,16即客车上原有乘客6人或11人或16人.故答案为:6,11,16【点睛】解决本题的关键是理解所有的人数均为自然数.根据这一条件求出a的范围.31.0≤2x +y ≤6【分析】把a 当作参数,联立方程组求出x ,y 的值,然后用x 表示出2x +y ,利用不等式的性质求解.【详解】联立方程组3430x y a x y a ++=⎧⎨--=⎩①②,将a 作为参数解得:121x a y a =+⎧⎨=-⎩, ℃﹣1≤a ≤1,℃2x +y =3a +3,可得:0≤2x +y ≤6.故答案为0≤2x +y ≤6.【点睛】本题主要考查不等式的性质和解二元一次方程组,解题时要把a 当作参数,联立方程组求出x ,y 的值,然后利用不等式的性质求解.32.6x >-【分析】根据题意,先求出k 值,然后解不等式即可.【详解】直线y kx =向上平移2个单位后,解析式为2y kx =+,℃过点(1,0)-,℃20k -+=,解得:2k =,则不等式为:422x x -<+,解得:6x >-,故答案为:6x >-.【点睛】本题主要考查一次函数图象的平移,根据题意准确求出平移之后的解析式是解题关键.33.x≥3【分析】先移项,再将不等式的两边同时除以2,就可得到不等式的解集.【详解】解: 2x-6≥02x≥6解之:x≥3故答案为x≥3【点睛】考核知识点:解一元一次不等式.34.1825【分析】先按照方案一结合题意求解出增订前的各类书的数量,并求出增订的总数量,再按照方案二的比例分别解出按照方案二增订后的各类书的总量,进而求解比例即可.【详解】设原本有A 类新书4x 本,B 类新书x 本,则C 类新书有(900-5x )本, 由题意:4400559005428x x x ≤⎧⎪⎨-≤⨯⎪⎩,解得:70100x ≤≤, 设两种方案都增订m 本书,方案一:增订A 类15m 本,B 类310m 本,C 类12m 本, 则增订后共计:A 类145x m +本,B 类310x m +本,C 类190052x m ⎛⎫-+ ⎪⎝⎭本, 按方案一增订,则增订后A ,B 两类书总数量之比为7:2, 可得:1475=3210x m x m ++,解得:1710x m =,即:10=17m x , 由70100x ≤≤,且m 和x 均为正整数,得x =85,m =50,℃求得增订前:A 类340本,B 类85本,C 类475本,方案二:增订A 类2205m =本,B 类1510m =本,C 类1252m =本, 则增订后共计:A 类360本,B 类90本,C 类500本,增订后A ,C 两类书总数量之比为36018=50025, 故答案为:1825. 【点睛】本题考查列方程及不等式解决问题,解题关键在于根据题意建立不等式,求解出范围中符合题意的数据.35.2【分析】解一元一次不等式如下步骤:℃去分母;℃去括号;℃移项;℃合并同类项;℃化系数为1.以上步骤中,只有℃去分母和℃化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向. 【详解】解:解不等式()133x m m ->- ℃x-m >9-3m℃x >9-2m ,℃解集为x >5,℃9-2m=5,解得m=2,故答案为2.【点睛】本题考查了解一元一次不等式,熟练解一元一次不等式是解题的关键. 36.5-2m【分析】首先根据一次函数y=(m-2)x+3-m 的图象不经过第三象限,可得m-2<0,30m ->,进而得到m <2,再根据二次根式的性质进行计算即可.【详解】方法一:一次函数(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩,23m m =-+-52m =-.故答案为:52m -.方法二:(2)3y m x m =-+-的图象经过第一、二、四象限,℃2030m m -<⎧⎨->⎩解得23m m <⎧⎨<⎩, ℃2m <,|2||3|m m =-+-23m m =-+-52m =-故答案为52m -.【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:℃k >0,b >0⇔y=kx+b 的图象在一、二、三象限;℃k >0,b <0⇔y=kx+b 的图象在一、三、四象限;℃k <0,b >0⇔y=kx+b 的图象在一、二、四象限;℃k <0,b <0⇔y=kx+b 的图象在二、三、四象限.37.1a.【分析】把a当作已知条件,根据不等式组无解求出a的取值范围即可.【详解】解:324x ax a<+⎧⎨>+⎩①②,不等式组无解,432a a∴++.解得:1a故答案为1a【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.38.16千米/时【详解】设哥哥的速度至少为x千米/时,根据题意可得:40404206060x-⨯≥,解得:16x≥.答:哥哥的速度至少是16千米/时.故答案为16千米/时.39.1a1 2<【分析】先求出不等式组的解集,再根据不等式组有且只有两个整数解,求出实数a的取值范围.【详解】解:123354413x xx a x a①②,由℃得:25 x>-,由℃得:2x a<,不等式组的解集为:225x a -<<,不等式组只有两个整数解为0、1,122a,∴1a1 2<.故答案为1a 12<. 【点睛】此题考查的是一元一次不等式的解法和特殊解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.40.(1)3x ≤-(2)9x >- (3)132x << (4)1x ≥-【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式; (3)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集;(4)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】(1)去括号得:2x +3≥3x +6,移项得:2x -3x ≥6-3,合并同类项得:-x ≥3,系数化1得:x ≤-3;(2)去分母得:3(x -1)<2(2x +3),去括号得:3x -3<4x +6,移项得:3x -4x <6+3,合并同类项得:-x <9,系数化1得:x >-9;(3)解第一个不等式得:x >12,解第二个不等式得:x <3, 所以不等组得解集为:12<x <3;(4)解第一个不等式得:x >-4,解第二个不等式得:x ≥-1,。

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案

中考数学总复习《不等式与不等式组》专项测试卷-附带参考答案(测试时间60分钟 满分100分)学校:___________姓名:___________班级:___________考号:___________一、选择题(共8题,共40分)1.解不等式x−32<2x+13−1,下列去分母正确的是 ( )A . 3(x −3)<2(2x +1)−1B . 2(x −3)<3(2x +1)−6C . 3(x −3)<2(2x +1)−2D . 3(x −3)<2(2x +1)−62.关于 x 的不等式组 {x −1≤3,a −x <2有 5 个整数解,则 a 的取值范围是 ( )A . 1<a ≤2B . 1<a <2C . 1≤a <2D . −1≤a <03.如果 a >b ,那么下列不等式不一定成立的是 ( )A . a −3>b −3B . −2a <−2bC . a 2<b 2D . a 2>b 24.不等式组 {x −1>0,5−2x ≥1的解集在数轴上表示正确的是 ( ) A . B . C .D . 5.不等式x+12>2x+13−1 的正整数解的个数是 ( )A . 0 个B . 4 个C . 6 个D . 7 个 6.已知关于 x 的不等式组 {x −1<0,x −a ≥0有以下说法: ①如果 a =−2,那么不等式组的解集是 −2≤x <1;②如果不等式组的解集是 −3≤x <1那么 a =−3;③如果不等式组的整数解只有 −2,−1,0那么 a =−2;④如果不等式组无解,那么 a ≥1.其中所有正确说法的序号是 ( )A .①②③B .①②④C .①③④D .②③④7.a,b为实数,且a>b,则下列不等式的变形正确的是( )A.a+b<b+x B.−a+2>−b+2C.3a>3b D.a2<b28.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是( )A.八折B.八四折C.八五折D.八八折二、填空题(共5题,共15分)9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了 5.5万元,这批电话手表至少有块.10若关于x的不等式x−m2≥−1的解集如图所示,则m的值为.11.将不等式“−2x>−2”中未知数的系数化为“1”可得到“x<1”,该步的依据是.12.“b与15的和小于27”,用不等式表示为.13.在一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,得分不低于60分者得奖.得奖者至少应答对道题.三、解答题(共3题,共45分)14.某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多 2 万元.(1) 求甲、乙两种机器每台各多少万元?(2) 如果工厂购买机器的预算资金不超过 34 万元,那么你认为该工厂有哪几种购买方案?15.关于 x 的不等式组 {x <3a +2,x >a −4无解,求 a 的取值范围.16.若点 P 的坐标为 (x−13,2x −9),其中 x 满足不等式组 {5x −10≥2(x +1),12x −1≤7−32x, 求点 P 所在的象限.参考答案1. 【答案】D2. 【答案】C3. 【答案】D4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】A8. 【答案】B9. 【答案】10510. 【答案】0<a<211. 【答案】不等式两边都乘以(或除以)同一个负数,不等号的方向改变12. 【答案】b+15<2713. 【答案】2014. 【答案】(1) 甲型机器每台7万元,乙型机器每台5万元.(2)方案1:购买乙型机器6台;方案2:购买甲型机器1台,乙型机器5台;方案3;购买甲型机器2台,乙型机器4台.15. 【答案】a≤−3.16. 【答案】点P在第四象限。

中考数学一轮复习《不等式与不等式组》练习题(含答案)

中考数学一轮复习《不等式与不等式组》练习题(含答案)

中考数学一轮复习《不等式与不等式组》练习题(含答案)一、单选题1.关于x 的一元一次不等式3x ≤4+x 的解集在数轴上表示为( )A .B .C .D . 2.若a b >,则下列不等式不一定成立的是( )A .20222022+>+a bB .()()2220222022+>+a m b mC .20222022-<-a bD .20222022>a b3.关于x 的不等式组()3141x x x m ⎧->-⎨<⎩的解集为3x <,那么m 的取值范围是( ) A .3m ≥ B .3m > C .3m < D .3m = 4.关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .35.若二次根式36x -有意义,则x 的取值范围是( )A .0x ≥B .2x ≥C .2x ≥-D .2x ≤6.某次知识竞赛共20道题,每一题答对得10分,不答得0分,答错扣5分,小聪有一道题没答,竞赛成绩超过90分.设他答对了x 道题,则根据题意可列出不等式为( )A .10x ﹣5(19﹣x )≥90B .10x ﹣5(19﹣x )>90C .10x ﹣(19﹣x )≥90D .10x ﹣(19﹣x )>907.不等式组2030x x +>⎧⎨-≥⎩的解在数轴上表示正确的是( ) A . B .C .D .8.若3y =,则2022()x y +等于( )A .1B .5C .5-D .1-9.已知点P (2﹣m ,m ﹣5)在第三象限,则整数m 的值是( )A .4B .3,4C .4,5D .2,3,410.若整数a 使关于y 的不等式组2513330y y a y -⎧≤-⎪⎨⎪-+≥⎩至少有3个整数解,且使得关于x 的分式方程()3211a x x x x-=--的解为正数,则所有符合条件的整数a 的和为( ) A .-6 B .-9 C .-11 D .-1411.已知关于x 的不等式组0320x a x -≥⎧⎨->⎩的整数解共有4个,则a 的取值范围是( ) A .32a -≤<- B .32a -<≤- C .32a -<<- D .2a <-12.若关于x 的不等式组222310y y y m -⎧-≤⎪⎨⎪+-≥⎩有解,且关于x 的分式方程1311m x x -=--有非负整数解,则满足条件的所有整数m 的和为( )A .9B .10C .11D .12二、填空题13.若m >n ,则﹣2m ________﹣2n (填>,<)14.不等式2x ﹣6<0的正整数解是______.15.不等式组()283221x x x x ≤-⎧⎨+>-⎩的整数解之和为__________. 16.不等式组1022x x x -≤⎧⎪⎨-<⎪⎩的解集是______. 17.若关于x 的不等式32x a +≤只有2个正整数解,则a 的取值范围为___________.18.若不等式组2123x a x b -<⎧⎨->⎩的解集为﹣1<x <1,那么(a +1)(b ﹣1)的值等于________. 19.某产品进价为每件200元,商店标价为每件300元.现商店准备将这批服装打折出售,但要保证毛利润不低于5%,则商店最低可按______折出售.20.在平面直角坐标系xOy 中,对于P ,Q 两点给出如下定义:若点P 到x ,y 轴的距离中的最大值等于点Q到x,y轴的距离中的最大值,则称P,Q两点为“等距点”.例如P(1,3),Q(3,2)两点即为“等距点”.若T1(-1,-k-3),T2(4,4k-3)两点为“等距点”,则k的值为______.三、解答题21.学校近期举办了一年一度的经典诵读比赛.某班级因节目需要,须购买A、B两种道具.已知购买1件A道具比购买1件B道具多10元,购买2件A道具和3件B道具共需要45元.(1)购买一件A道具和一件B道具各需要多少元?(2)根据班级情况,需要这两种道具共60件,且购买两种道具的总费用不超过620元.求道具A最多购买多少件?22.冰墩墩是2022年北京冬奥会的吉祥物,其敦厚、可爱的形象深入人心,制作的奥运纪念品很受大家喜爱。

中考数学《不等式组》专题训练(附答案解析)

中考数学《不等式组》专题训练(附答案解析)

中考数学《不等式组》专题训练(附答案解析)一、单选题(共10小题 每小题3分 共计30分)1.不等式组23112(2)x x x -≥-⎧⎨-≥-+⎩的解集为( ) A .无解 B .1x ≤ C .1x ≥- D .11x -≤≤【答案】D 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−3x≥−1 得:x≤1解不等式x−1≥−2(x +2) 得:x≥−1则不等式组的解集为−1≤x≤1故选:D .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.2.不等式组()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩的解集是( )A .0x 2<≤B . 0x 6<≤C . x 0>D .x 2≤【答案】A 分别解不等式组中的两个不等式 再取解集的公共部分即可.【详解】解:()2222323x x x x ⎧-≤-⎪⎨++>⎪⎩①② 由①得:242x x -≤-36,x ∴≤2,x ∴≤由②得:3(2)2(3)x x ++>x ∴>0,∴ 不等式组的解集是0 2.x ≤<故选A .【点睛】本题考查的是解不等式组 掌握解不等式组的方法是解题的关键.3.(贵州贵阳市·)已知a b < 下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb > 【答案】D 根据不等式的性质解答.【详解】解:A 、不等式a <b 的两边同时减去1 不等式仍成立 即a−1<b−1 故本选项不符合题意; B 、不等式a <b 的两边同时乘以-2 不等号方向改变 即22a b ->- 故本选项不符合题意; C 、不等式a <b 的两边同时乘以12 不等式仍成立 即:1122a b < 再在两边同时加上1 不等式仍成立 即111122a b +<+ 故本选项不符合题意; D 、不等式a <b 的两边同时乘以m 当m>0 不等式仍成立 即ma mb <;当m<0 不等号方向改变 即ma mb >;当m=0时 ma mb =;故ma mb >不一定成立 故本选项符合题意故选:D .【点睛】本题考查了不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时 一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时 一定要对字母是否大于0进行分类讨论.4.不等式213x -≤的解集在数轴上表示正确的是( )A .B .C .D .【答案】C 先求出不等式的解集 再在数轴上表示出来即可.【详解】解:移项得 2x ≤3+1合并同类项得 2x ≤4系数化为1得 x ≤2在数轴上表示为:故选:C .【点睛】 本题考查的是在数轴上表示不等式的解集 熟知“小于向左 大于向右 在表示解集时≥ ≤要用实心圆点表示;< >要用空心圆点表示”是解答此题的关键.5.关于x 的不等式0721x m x ->⎧⎨->⎩的整数解只有4个 则m 的取值范围是( ) A .21m -<≤- B .21m -≤≤- C .21m -≤<- D .32m -<≤-【答案】C 不等式组整理后 表示出不等式组的解集 根据整数解共有4个 确定出m 的范围即可.【详解】解:不等式组整理得:3x m x >⎧⎨<⎩ 解集为m <x <3由不等式组的整数解只有4个 得到整数解为2 1 0 -1∴-2≤m<-1故选:C .【点睛】本题主要考查对解一元一次不等式 不等式的性质 解一元一次不等式组 一元一次不等式组的整数解等知识点的理解和掌握 能根据不等式组的解集得到-2≤m<-1是解此题的关键. 6.若关于x 的不等式组35128x x a -⎧⎨-<⎩有且只有3个整数解 则a 的取值范围是( ) A .02a ≤≤ B .02a ≤< C .02a <≤ D .02a <<【答案】C 先求出不等式组的解集(含有字母a ) 利用不等式组有三个整数解 逆推出a 的取值范围即可.【详解】解:解不等式351x -得:2x ≥解不等式28x a -<得:82a x +<∴不等式组的解集为:822a x +≤<∵不等式组35128x x a -⎧⎨-<⎩有三个整数解 ∴三个整数解为:2 3 4 ∴8452a +<≤ 解得:02a <≤故选:C .【点睛】本题考查了解一元一次不等式组 一元一次不等式组的整数解的应用 解此题的关键就是根据整数解的个数得出关于a 的不等式组.7.某单位为响应政府号召 需要购买分类垃圾桶6个 市场上有A 型和B 型两种分类垃圾桶 A 型分类垃圾桶500元/个 B 型分类垃圾桶550元/个 总费用不超过3100元 则不同的购买方式有( ) A .2种 B .3种 C .4种 D .5种【答案】B 设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x ) 然后根据题意列出不等式组 确定不等式组整数解的个数即可.【详解】解:设购买A 型分类垃圾桶x 个 则购买B 型垃圾桶(6-x )个由题意得:500550631006x x x +-≤⎧⎨≤⎩() 解得4≤x ≤6 则x 可取4、5、6 即有三种不同的购买方式.故答案为B .【点睛】本题考查了一元一次方程组的应用 弄清题意、列出不等式组并确定不等式组的整数解是解答本题的关键.8.不等式组1051x x ->⎧⎨-≥⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个【答案】C 分别求出每一个不等式的解集 根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集 从而得出答案.【详解】解:解不等式x ﹣1>0 得:x >1解不等式5﹣x ≥1 得:x ≤4则不等式组的解集为1<x ≤4所以不等式组的整数解有2、3、4这3个故选:C .【点睛】此题考查求不等式组的整数解 正确求出每个不等式的解集得到不等式组的解集是解题的关键.9.(山东聊城市·)若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解 则m 的取值范围为( )A .2m ≤B .2m <C .2m ≥D .2m >【答案】A 求出第一个不等式的解集 根据口诀:大大小小无解了可得关于m 的不等式 解之可得.【详解】 解不等式1132x x +<- 得:x >8 ∵不等式组无解∴4m≤8解得m≤2故选A .【点睛】本题考查的是解一元一次不等式组 正确求出每一个不等式解集是基础 熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(四川广安市·)若m n > 下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >【答案】D 根据不等式的性质:不等式两边加(或减)同一个数(或式子) 不等号的方向不变;不等式两边乘(或除以)同一个正数 不等号的方向不变;不等式两边乘(或除以)同一个负数 不等号的方向改变 即可得到答案.【详解】解:A 、不等式的两边都加3 不等号的方向不变 故A 错误;B 、不等式的两边都乘以﹣3 不等号的方向改变 故B 错误;C 、不等式的两边都除以3 不等号的方向不变 故C 错误;D 、如2223m n m n m n =,=﹣,>,<;故D 正确;故选D .【点睛】主要考查了不等式的基本性质 “0”是很特殊的一个数 因此 解答不等式的问题时 应密切关注“0”存在与否 以防掉进“0”的陷阱.二、填空题(共5小题 每小题4分 共计20分)11.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩有四个整数解 则a 的取值范围是________________. 【答案】-114≤a <-52解不等式组求得不等式组的解集 根据不等式组有四个整数解 进而求出a 的范围.【详解】 ()2331324x x x x a ①②⎧<-+⎪⎨+>+⎪⎩解不等式①得 x >8;解不等式②得 x <2-4a ;∴不等式组的解集为8<x <2-4a.∵不等式组有4个整数解∴12<2-4a ≤13∴-114≤a <-5212.若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解 则m 的取值范围是______. 【答案】1≤m <4解不等式组得出其解集为﹣2<x ≤23m + 根据不等式组有且只有三个整数解得出1≤23m +<2 解之可得答案. 【详解】解不等式2143x x--<得:x>﹣2解不等式2x﹣m≤2﹣x得:x≤2 3 m+则不等式组的解集为﹣2<x≤2 3 m+∵不等式组有且只有三个整数解∴1≤23m+<2解得:1≤m<4故答案为:1≤m<4.13.若不等式52x+>﹣x﹣72的解都能使不等式(m﹣6)x<2m+1成立则实数m的取值范围是_______.【答案】236≤m≤6解不等式52x+>﹣x﹣72得x>﹣4据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立再分m﹣6=0和m﹣6≠0两种情况分别求解.【详解】解:解不等式52x+>﹣x﹣72得x>﹣4∵x>﹣4都能使不等式(m﹣6)x<2m+1成立①当m﹣6=0即m=6时则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0则不等式(m﹣6)x<2m+1的解要改变方向∴m﹣6<0即m<6∴不等式(m﹣6)x<2m+1的解集为x>216 mm+-∵x>﹣4都能使x>216mm+-成立∴﹣4≥216 mm+-∴﹣4m+24≤2m+1∴m≥23 6综上所述m的取值范围是236≤m≤6.故答案为:236≤m≤6.14.世纪公园的门票是每人5元一次购门票满40张每张门票可少1元.若少于40人时一个团队至少要有________人进公园买40张门反而合算.【答案】33先求出购买40张票 优惠后需要多少钱 然后再利用5x >160时 求出买到的张数的取值范围再加上1即可.【详解】解:设x 人进公园若购满40张票则需要:40×(5-1)=40×4=160(元) 故5x >160时解得:x >32∴当有32人时 购买32张票和40张票的价格相同则再多1人时买40张票较合算;∴32+1=33(人);则至少要有33人去世纪公园 买40张票反而合算.故答案为:33.15.《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝 并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数 同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4 则阅读过《水浒传》的人数的最大值为_____.【答案】6根据题中给出阅读过《三国演义》的人数 则先代入条件(3)可得出阅读过《西游记》的人数的取值范围 然后再根据条件(1)和(2)再列出两个不等式 得出阅读过《水浒传》的人数的取值范围 即可得出答案.【详解】解:设阅读过《西游记》的人数是a 阅读过《水浒传》的人数是b (,a b 均为整数)依题意可得:48a b b a >⎧⎪>⎨⎪<⎩且,a b 均为整数可得:47b <<b ∴最大可以取6;故答案为6.三、解答题(共5小题 每小题10分 共计50分)16.如图 “开心”农场准备用50m 的护栏围成一块靠墙的矩形花园 设矩形花园的长为()a m 宽为()b m .(1)当20a =时 求b 的值;(2)受场地条件的限制 a 的取值范围为1826a ≤≤ 求b 的取值范围.【答案】(1)b=15;(2)1216b ≤≤(1)根据等量关系“围栏的长度为50”可以列出代数式 再将a=20代入所列式子中求出b 的值;(2)由(1)可得a,b 之间的关系式 用含有b 的式子表示a,再结合1826a ≤≤ 列出关于b 的不等式组 接着不等式组即可求出b 的取值范围.【详解】解:(1)由题意 得250a b +=当20a =时 20250b +=.解得15b =.(2)∵1826a ≤≤ 502a b =-∴5021850226b b -≥⎧⎨-≤⎩解这个不等式组 得1216b ≤≤.答:矩形花园宽的取值范围为1216b ≤≤.【点睛】此题主要考查了列代数式 正确理解题意得出关系式是解题关键.还考查了解不等式组 难度不大.17.解不等式组:3512(21)34x x x x -<+⎧⎨--⎩ 并把它的解集在数轴上表示出来.【答案】-2≤x<3 解集在数轴上表示见解析.先求出两个不等式的解集 再求其公共解.【详解】解:3512(21)34x x x x -<+⎧⎨--⎩①② 解不等式① 得x<3.解不等式② 得x ≥-2.所以原不等式组的解集为-2≤x<3.在数轴上表示如下:【点睛】本题主要考查了一元一次不等式组解集的求法 其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大 同小取小 大小小大中间找 大大小小找不到(无解).18.第33个国际禁毒日到来之际 贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动 某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下 为什么说学习委员搞错了;(2)学习委员连忙拿出发票 发现的确错了 因为他还买了一本笔记本 但笔记本的单价已模糊不清 只能辨认出单价是小于10元的整数 那么笔记本的单价可能是多少元?【答案】(1)方程见解析 因为钢笔的数量不可能是小数 所以学习委员搞错了;(2)可能是2元或者6元(1)根据题意列出方程解出答案判断即可;(2)根据题意列出方程得出x 与a 的关系,再由题意中a 的条件即可判断x 的范围,从而得出单价.【详解】解:(1)设单价为6元的钢笔买了x 支 则单价为10元的钢笔买了(100x -)支根据题意 得610(100)1300378x x +-=-解得:19.5x =.因为钢笔的数量不可能是小数 所以学习委员搞错了(2)设笔记本的单价为a 元 根据题意 得610(100)1300378x x a +-+=-整理 得13942x a =+ 因为010a << x 随a 的增大而增大 所以19.522x << ∵x 取整数∴20,21x =.当20x 时 420782a =⨯-=当21x =时 421786a =⨯-=所以笔记本的单价可能是2元或者6元.【点睛】本题考查方程及不等式的列式和计算,关键在于理解题意找到等量关系.19.解不等式31212x x -->. 解:去分母 得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数 不等号的方向不变;B .不等式两边都乘(或除以)同一个负数 不等号的方向改变.【答案】(1)余下步骤见解析;(2)A .(1)按照去括号、移项、合并同类项的步骤进行补充即可; (2)根据不等式的性质即可得.【详解】(1)31212x x --> 去分母 得2(21)31x x ->-去括号 得4231x x ->-移项 得4312x x ->-+合并同类项 得1x >;(2)不等式的性质:不等式两边都乘(或除以)同一个正数 不等号的方向不变31212x x -->两边同乘以正数2 不等号的方向不变 即可得到2(21)31x x ->- 故选:A .【点睛】本题考查了解一元一次不等式、不等式的性质 熟练掌握一元一次不等式的解法是解题关键. 20.某水果店销售苹果和梨 购买1千克苹果和3千克梨共需26元 购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克 且总价不超过100元 那么最多购买多少千克苹果?【答案】(1)每千克苹果售价8元 每千克梨6千克;(2)最多购买5千克苹果(1)设每千克苹果售价x 元 每千克梨y 千克 由题意列出x 、y 的方程组 解之即可;(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意列出a 的不等式 解之即可解答.【详解】(1)设每千克苹果售价x 元 每千克梨y 千克 由题意得:326222x y x y +=⎧⎨+=⎩解得:86x y =⎧⎨=⎩ 答:每千克苹果售价8元 每千克梨6千克(2)设购买苹果a 千克 则购买梨(15-a )千克 由题意得:8a+6(15-a)≤100解得:a ≤5∴a 最大值为5答:最多购买5千克苹果.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用 解答的关键是认真审题 分析相关信息 正确列出方程组和不等式.。

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(附答案)

2023年九年级数学中考复习《不等式和不等式组》分类专题集训(一)不等式过关训练➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<20202.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<22.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<53.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<125.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是.(二)不等式组过关训练➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=22.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<196.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.219.(2022•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.3610.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤32.若关于x的不等式组的解集是x≤a,则a的取值范围是()二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣364.若关于x的不等式组无解,则a的取值范围是.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.16.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤17.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.18.(2022秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.109.(2022秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()A.7B.8C.9D.1010.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是.(三)方程与不等式组综合过关训练➢典例精讲1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.62.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()A.﹣22B.﹣18C.11D.123.(2021秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.304.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10➢课后训练1.(2022秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.102.(2022秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.103.(2021春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为.参考答案与试题解析➢典例精讲1.如果关于x的不等式(a+2020)x﹣a>2020的解集为x<1,那么a的取值范围是()A.a>﹣2020B.a<﹣2020C.a>2020D.a<2020【解答】解:∵不等式(a+2020)x﹣a>2020的解集为x<1,∴a+2020<0,解得,a<﹣2020,故选:B.2.已知关于x的不等式(a+3b)x>a﹣b的解集为x<﹣,则关于x的一元一次不等式bx﹣a>0的解集为x<﹣.【解答】解:∵不等式(a+3b)x>a﹣b的解集是x<﹣,∴a+3b<0,即a<﹣3b,∵,即8a=﹣12b,,∵a+3b<0,2a+3b=0,则a>0,b<0,∴bx﹣a>0的解集为x<﹣.故答案为:x<﹣.3.若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是x >﹣1.【解答】解:ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.4.已知关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,则满足条件的整数a的个数是()A.3个B.4个C.5个D.6个【解答】解:解不等式3x﹣2a<4﹣5x得:x<,∵关于x的不等式3x﹣2a<4﹣5x有且仅有三个正整数解,是1,2,3,∴3<≤4,解得:10<a≤14,∴整数a可以是11,12,13,14,共4个,故选:B.5.若关于x的不等式7x+9>2x+a的负整数解为﹣2,﹣1,则a的取值范围是﹣6≤a<﹣1.【解答】解:解不等式得:x>,∵负整数解是﹣1,﹣2,∴﹣3≤<﹣2.∴﹣6≤a<﹣1.故答案为:﹣6≤a<﹣1.➢课后训练1.已知关于x的不等式(2﹣a)x>3的解集为,则a的取值范围是()A.a>0B.a<0C.a>2D.a<2【解答】解:根据题意得:2﹣a<0,解得:a>2.故选:C.2.若关于x的不等式(2m﹣n)x﹣m>5n的解集为x<,则关于x的不等式(m﹣n)x>m+n的解集为()A.x<B.x>C.x>5D.x<5【解答】解:不等式(2m﹣n)x﹣m>5n,变形得:(2m﹣n)x>5n+m,根据已知解集为x<,得到=,且2m﹣n<0,即2m<n,整理得:4m+20n=26m﹣13n,即33n=22m,整理得:3n=2m,即m=1.5n,n<0,代入所求不等式得:0.5nx>2.5n,解得:x<5.故选:D.3.已知关于x的不等式3(a﹣b)x+a﹣5b>0的解集为x<1,则关于x的不等式ax≥4b的解集为x≤2.【解答】解:不等式移项得:3(a﹣b)x>5b﹣a,由不等式的解集为x<1,得到a﹣b<0,且=1,整理得:a<b,且4a=8b,即a=2b,∴a<0,则不等式ax≥4b变形得:x≤=2,故答案为:x≤2.4.若关于x的不等式3x﹣m≤0的正整数解是1,2,3,则m的取值范围是()A.m≥9B.9<m<12C.m<12D.9≤m<12【解答】解:移项,得:3x≤m,系数化为1,得:x≤,∵不等式的正整数解为1,2,3,∴3≤<4,解得:9≤m<12,故选:D.5.若关于x的不等式2x﹣m≥0的负整数解为﹣1,﹣2.﹣3.则m的取值范围是﹣8<m≤﹣6.【解答】解:∵2x﹣m≥0,∴2x≥m,∴x≥,∵不等式组的负整数解为﹣1,﹣2.﹣3,∴﹣4<≤﹣3,则﹣8<m≤﹣6,故答案为:﹣8<m≤﹣6.➢典例精讲一、两同问题1.若关于x的不等式组的解集为x≥2,则m的取值范围是()A.m≥﹣2B.m≤2C.m<2D.m=2【解答】解:,解x﹣m>0,得:x>m,解5﹣2x≤1,得:x≥2,∵不等式组的解集是x≥2,∴m<2,故选:C.2.若关于x的不等式组的解集是x<2,则a的取值范围是()A.a≥2B.a<﹣2C.a>2D.a≤2【解答】解:解不等式组,由①可得:x<2,由②可得:x<a,因为关于x的不等式组的解集是x<2,所以,a≥2,故选:A.二、有解、无解问题3.若不等式组有解,则a的取值范围是()A.a≤B.a≤4C.1≤a≤4D.a≥【解答】解:,解不等式①得:x≥1,解不等式②得:x≤4a,又∵不等式组有解,∴4a≥1,解得:a≥,故选:D.4.若不等式组无解,则m的取值范围为()A.m≤8B.m<8C.m≥8D.m>8【解答】解:解不等式<﹣1得:x>8,又∵不等式组无解,∴m≤8,故选:A.三、整数解问题5.关于x的不等式组的解中恰有4个整数解,则a的取值范围是()A.18≤a≤19B.18≤a<19C.18<a≤19D.18<a<19【解答】解:不等式组整理得:,解得:a﹣2<x<21,由不等式组恰有4个整数解,得到整数解为17,18,19,20,∴16≤a﹣2<17,解得:18≤a<19,故选:B.6.关于x的不等式组有且只有4个整数解,则常数m的取值范围是.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<m+5,∴原不等式组的解集为﹣1≤x<m+5,由不等式组的整数解只有4个,得到整数解为﹣1,0,1,2,∴2<m+5≤3,∴﹣2<m≤﹣故答案为﹣2<m≤﹣.7.若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.2C.D.【解答】解:解不等式x﹣a≤0,得:x≤a,解不等式2x+3a≥0,得:x≥﹣a,则不等式组的解集为﹣a≤x≤a,∵不等式至少有6个整数解,则a+a≥5,解得a≥2.a的最小值是2.故选:B.8.(2019•沙坪坝区校级二模)若数m使关于x的一元一次不等式组至多有4个整数解,则非负整数m的值之和是()A.6B.10C.15D.21【解答】解:解不等式组,得﹣1<x≤,∵至多有4个整数解,<4,解得m<7;∴故满足条件的所有非负整数m的值之和为0+1+2+3+4+5+6=21,故选:D.9.(2019•渝中区校级模拟)如果关于x的不等式组有且仅有2个奇数解,则符合条件的所有整数m的和是()A.15B.21C.28D.36【解答】解:解不等式组,得:﹣<x<,∵不等式组有且仅有2个奇数解,∴-1<≤1,解得:0<m≤8,所以所有满足条件的整数m的值为1,2,3,4,5,6,7,8,和为36.故选:D.10.已知关于x的不等式组的所有整数解的和为7,则a的取值范围是7≤a<9或﹣3≤a<﹣1.【解答】解:,∵解不等式①得:x,解不等式②得:x≤4,∴不等式组的解集为<x≤4,∵关于x的不等式组的所有整数解的和为7,∴当时,这两个整数解一定是3和4,∴,∴7≤a<9,当时,整数解是﹣2,﹣1,0,1,3和4,∴﹣3,∴﹣3≤a<﹣1,∴a的取值范围是7≤a<9或﹣3≤a<﹣1.故答案为:7≤a<9或﹣3≤a<﹣1.➢课后训练一、两同问题1.不等式组的解集是x>3,则m的取值范围是()A.m>3B.m≥3C.m<3D.m≤3【解答】解:解不等式3(x+1)>12,得:x>3,∵不等式组的解集为x>3,∴m≤3,故选:D.2.若关于x的不等式组的解集是x≤a,则a的取值范围是()A.a≤2B.a>﹣2C.a<﹣2D.a≤﹣2【解答】解:解不等式﹣2x﹣1>3,得:x<﹣2,解不等式a﹣x≥0,得:x≤a,∵不等式组的解集为x≤a,∴a<﹣2,故选:C.二、有解、无解问题3.若不等式组有解,则实数a的取值范围是()A.a<﹣36B.a≤﹣36C.a≥﹣36D.a>﹣36【解答】解:不等式组整理得:,由不等式组有解,得到a﹣1>﹣37,解得:a>﹣36.故选:D.4.(2020春•陇西县期末)若关于x的不等式组无解,则a的取值范围是a≥﹣2.【解答】解:,解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥﹣2.故答案是:a≥﹣2.三、整数解问题5.若关于x的不等式组恰好只有2个整数解,则所有满足条件的整数a的值之和是()A.3B.4C.6D.1【解答】解:解不等式组得:<x<2,由关于x的不等式组恰好只有2个整数解,得﹣1≤<0,即0≤a<4,满足条件的整数a的值为0、1、2、3,整数a的值之和是0+1+2+3=6,故选:C.6.关于x的不等式组恰有三个整数解,那么m的取值范围为()A.﹣1<m≤0B.﹣1≤m<0C.0≤m<1D.0<m≤1【解答】解:,解不等式①可得x>m,解不等式②可得x≤3,由题意可知原不等式组有解,∴原不等式组的解集为m<x≤3,∵该不等式组恰好有三个整数解,∴整数解为1,2,3,∴0≤m<1.故选:C.7.关于x的不等式组的解集中至少有7个整数解,则整数a的最小值是()A.4B.3C.2D.1【解答】解:,解①得x≤2a,解②得x>﹣a.则不等式组的解集是﹣a<x≤2a.∵不等式至少有7个整数解,则2a+a>7,解得a>2.整数a的最小值是3.故选:B.8.(2019秋•沙坪坝区校级月考)若数m使关于x的一元一次不等式组至多5个整数解,则则整数m的最大值是()A.7B.8C.9D.10【解答】解:不等式组的解为,∵至多5个整数解,∴<5,∴m<,故选:B.9.(2020秋•渝中区校级月考)若数a使关于y的不等式组恰好有两个奇数解,则符合条件的所有整数a的和是()【解答】解:不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个奇数解,得到奇数解为3,1,∴﹣1≤<1,∴﹣3≤a<5,则满足题意a的值有﹣3,﹣2,﹣1,0,1,2,3,4,5四个,则符合条件的所有整数a的和是9.故选:C.10.若关于x的不等式组的所有整数解的和是﹣7,则m的取值范围是﹣3<m≤﹣2或2<m≤3.【解答】解:解不等式+3>﹣1,得:x>﹣4.5,∵不等式组的整数解的和为﹣7,∴不等式组的整数解为﹣4、﹣3或﹣4、﹣3、﹣2、﹣1、0、1、2,则﹣3<m≤﹣2或2<m≤3,故答案为:﹣3<m≤﹣2或2<m≤3.➢典例精讲方程与不等式综合含参问题1.(2020春•渝中区校级期末)关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为()A.5B.2C.4D.6【解答】解:解方程3﹣2x=3(k﹣2)得x=,∵方程的解为非负整数,∴≥0,即k≤3,即非负整数k=1,3,不等式组整理得:,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,当k=0时,x=4.5,不是整数;当x=2时,k=1.5,不是整数,两个k的值不符合题意,舍去;综上,k=1,3,则符合条件的整数k的值的和为4.故选:C.2.若数a使关于x的方程=﹣﹣1有非负数解,且关于y的不等式组恰好有两个偶数解,则符合条件的所有整数a的和是()【解答】解:去分母得:3ax+3=﹣14x﹣6,解得:x=﹣,∵关于x的方程=﹣﹣1有非负数解,∴3a+14<0,∴a<﹣,不等式组整理得:,解得:<y<4,由不等式组有解且恰好有两个偶数解,得到偶数解为2,0,∴﹣2≤<﹣1,∴﹣7≤a<﹣3,则满足题意a的值有﹣7,﹣6,﹣5,则符合条件的所有整数a的和是﹣18.故选:B.3.(2019秋•渝中区校级期末)整数a使得关于x,y的二元一次方程组的解为正整数(x,y均为正整数),且使得关于x的不等式组无解,则所有满足条件的a的和为()A.9B.16C.17D.30【解答】解:解方程组得:,∵方程组的解为正整数,∴a﹣3=1或a﹣3=2或a﹣3=5或a﹣3=10,解得a=4或a=5或a=8或a=13;解不等式(2x+8)≥7,得:x≥10,解不等式x﹣a<2,得:x<a+2,∵不等式组无解,∴a+2≤10,即a≤8,综上,符合条件的a的值为4、5、8,则所有满足条件的a的和为17,故选:C.4.如果关于x的不等式组的解集为x>4,且整数m使得关于x,y的二元一次方程组的解为整数(x,y均为整数),则符合条件的所有整数m的和是()A.﹣2B.2C.6D.10【解答】解:解不等式>0,得:x>m,解不等式﹣x<﹣4,得:x>4,∵不等式组的解集为x>4,∴m≤4,解方程组得,∵x,y均为整数,∴m=4或m=10或m=2或m=﹣4,又m≤4,∴m=﹣4或m=4或m=2,则符合条件的所有整数m的和是2,故选:B.➢课后训练1.(2019秋•九龙坡区校级月考)若整数a使关于x的方程x+2a=1的解为负数,且使关于的不等式组无解,则所有满足条件的整数a的值之和是()A.5B.7C.9D.10【解答】解:解方程x+2a=1得:x=1﹣2a,∵方程的解为负数,∴1﹣2a<0,解得:a>0.5,∵解不等式①得:x<a,解不等式②得:x≥4,又∵不等式组无解,∴a≤4,∴a的取值范围是0.5<a≤4,∴整数和为1+2+3+4=10,故选:D.2.(2020秋•沙坪坝区校级期末)若关于x的一元一次不等式组的解集为x≥,且关于y 的方程3y﹣2=的解为非负整数,则符合条件的所有整数m的积为()A.2B.7C.11D.10【解答】解:解不等式≤2x,得:x≥,解不等式2x+7≤4(x+1),得:x≥,∵不等式组的解集为x≥,∴≤,解得m≤5,解方程3y﹣2=,得:y=,∵方程的解为非负整数,∴符合m≤5的m的值为2和5,则符合条件的所有整数m的积为10,故选:D.3.(2019春•沙坪坝区期末)关于x、y的方程组的解是正整数,且关于t的不等式组有解,则符合条件的整数m的值的和为5.【解答】解:,①﹣②得:3y=7﹣m,解得:y=,把y=代入①得:x=,由方程组的解为正整数,得到7﹣m与8+m都为3的倍数,∴m=1,4,不等式组整理得:,即﹣1≤t≤m,由不等式组有解,得到m=1,4,综上,符合条件的整数m的值的和为1+4=5.故答案为:5.。

中考数学不等式与不等式祖专题训练50题-含答案

中考数学不等式与不等式祖专题训练50题-含答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.截至6月10日24时,广东新冠病毒疫苗累计接种超过6340万人,若接种人数为x ,x 为自然数,则“超过6340万”用不等式表示为( ) A .x <6340万B .x ≤6340万C .x >6340万D .x ≥6340万2.贵阳市今年5月份的最高气温为,270C 最低气温为180C ,已知某一天的气温为tC ,则下面表示气温之间的不等关系正确的是( )A .1?827t <<B .1?827t ≤<C .1?827t <≤D .1?827t ≤≤3.不等式组3122x x -≥⎧⎨-⎩>的解集在数轴上表示正确的是( )A .B .C .D .4.将“x 的2倍与5的和不是正数”用不等式表示为( ) A .250x +>B .250x +≥C .250x +<D .250x +≤5.将不等式组 422113x x -<⎧⎪⎨≤⎪⎩的解集在数轴上表示出来应是( )A .B .C .D .6.在“中国共产党建党百年知识竞赛”中共有20道题,每一题答对得10分,答错或不答都扣5分.墩墩得分要超过90分,设他答对了x 道题,则根据题意可列不等式为( )A .105(20)90x x --≥B .105(20)90x x -->C .10(20)90x x --≥D .10(20)90x x -->7.下列说法不一定成立的是( ) A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >①内错角相等,两直线平行; ①若33x y ->-,则x y >;①三角形的一个外角大于任何一个与之不相邻的内角; ①若1a <-,则21a > A .1个B .2个C .3个D .4个9.关于x ,y 的方程组3249x y ax y -=⎧⎨+=⎩,已知40a ,则x y +的取值范围为( )A .02x y <+<B .13x y -<+<C .04x y <+<D .12x y -<+<10.小明和爸爸妈妈三人玩跷跷板,爸爸坐在跷跷板的一端,小明和妈妈一同坐在跷跷板的另一端,他们都不用力时,爸爸那端着地,已知爸爸的体重为70千克,妈妈的体重为50千克,那么小明的体重可能是( ) A .18千克B .22千克C .28千克D .30千克11.如果点()391M m m --,在第二象限,则m 的取值范围是( ) A .1m <B .3m <C .13m <<D .3m >12.若关于x ,y 的方程组2822mx y x y +=⎧⎨-=-⎩的解为整数,且关于x 的不等式组11324x xx m +⎧<-⎪⎨⎪<⎩无解,则满足条件的非负整数m 的值有( ) A .4个B .3个C .2个D .1个13.不等式组315,26x x ->⎧⎨≤⎩的解集在数轴上表示正确的是( )A .AB .BC .CD .D14.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥D .0x ≤,0y ≤15.不等式215x +>的解集是( ) A 2x <BCD 3x >16.对于任意实数x ,现规定[]x 表示不大于x 的最大整数,例如][2122],1[1=-=-...若325x +⎡⎤=⎢⎥⎣⎦,则x 的取值范围是( ) A .7x ≥ B .12x ≤ C .712x ≤< D .712x <≤17.不等式组213{34x x +≤+>的解集是( ) A .x >1 B .x ≤1 C .x =1 D .无解18.已知a b <,则下列不等式一定成立的是( ) A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <19.已知二次函数2243y x x =-++,当3m x m ≤≤+时,函数y 的最大值为5,则m 的取值范围是( ) A .1m ≥-B .2m ≥-C .21m -≤≤D .12m -≤≤20.关于x 的不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,那么a 的取值范围( )A .4<a <6B .4≤a <6C .4<a≤6D .2<a≤4二、填空题21.不等式210x ->的解集是______.22.不等式组372510x x -<⎧⎨-≤⎩的解集是________.23.不等式组12x x m ≤≤⎧⎨>⎩无解,求m 的取值范围______.24.不等式组31534x x -<⎧⎨+>⎩的解是____________.25.若不等式组1241x ax +>⎧⎨-≤⎩有解,则a 的取值范围是________.262=成立,则x 的取值范围是___________. 27.不等式10->的解集是____________.28.把“a 的3倍与2的和不小于6”用不等式表示得______. 29.不等式13-3x >0的正整数解是______________________ . 30.不等式215x -≤的正整数解的个数有_______个.31.若0m n<<,则2{22x mx nx n>>-<的解集为.32.某品牌电脑的成本为2000元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,请依据题意列出关于x的不等式:_____.33.不等式-3x-1≥-10的正整数解为______________34.不等式3x-7<0的非负整数解是________________.35.如果x=2是不等式2x a2->3的一个解,则a的取值范围______.36.若关于x的分式方程11222kx x--=--的解是正数,则k的取值范围是______.37.设a,b是任意两个实数,max{a,b}表示a,b两数中较大的数.例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{﹣4,﹣3}=﹣3.若max{3x+1,﹣x+2}=﹣x+2,则x的取值范围是_____.38.已知关于x,y的方程组22324x y mx y m-=⎧⎨+=+⎩的解满足不等式组3050x yx y+≤⎧⎨+>⎩,则满足条件的m的整数值为________.39.我国已研制出新型新冠疫苗一一重组亚单位疫苗(CHO细胞),预计4月初开始接种.3月底我市部分小区率先开始了新型新冠疫苗接种预约,这部分小区平均每个小区有144名业主申报,其中申报人数低于120名的小区平均每个小区有112名业主申报,申报人数不低于120名的小区平均每个小区有168名业主申报.根据统计结果发现,若每个小区同时新增20名业主申报,则此时申报人数低于120名的小区平均每个小区有116名,申报人数不低于120名的小区平均每个小区有180名业主申报,且该市这部分小区个数高于100,且低于130,则这部分小区有______个.40.已知﹣1<a<0___.三、解答题41.解不等式组:12256xx x+⎧⎨≤+⎩,并把它的解集在数轴上表示出来.42.已知整数x同时满足不等式211132x x+--<和3x-4≤6x-2,并且满足方程3(x+a)-5a+2=020212a-的值43.解不等式组:12 382xx+<⎧⎨-<-⎩44.某花店准备购进甲、乙两种花卉,若购进甲种花卉20盆,乙种花卉50盆,需要720元;若购进甲种花卉40盆,乙种花卉30盆,需要880元.(1)求购进甲、乙两种花卉,每盆各需多少元?(2)该花店销售甲种花卉每盆可获利6元,销售乙种花卉每盆可获利1元,现该花店准备拿出800元全部用来购进这两种花卉,考虑到顾客需求,要求购进乙种花卉的数量不少于甲种花卉数量的6倍,且不超过甲种花卉数量的8倍,那么该花店共有几种购进方案?在所有的购进方案中,哪种方案获利最大?最大利润是多少元?45.解不等式组(121(1)2-⎛⎫∏++ ⎪⎝⎭(2)32123x xxx>-⎧⎪+⎨>⎪⎩46.(1)解方程:31122xx x-+=--(2)解不等式组:426,{21136x xx x≥-++<+.47.某校在五一期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且余30个座位.(1)求外出旅游的学生人数是多少,单租45座的客车需多少辆?(2)已知45座的客车每辆租金250元,60座的客车每辆租金300元,为节省租金,并且保证每个学生都有座,决定同时租用两种客车,使得租车总数比单租45座的客车少一辆,问45座的客车和60座的客车分别租多少辆才能使得租金最少?48.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A、B两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:设营销商计划购进A型电脑x台,电脑全部销售后获得的利润为y元.(1)试写出y与x的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?49.某学校准备为“中国传统文化知识竞赛”购买奖品,已知在某商场购买3个甲种奖品和2个乙种奖品需要65元,购买4个甲种奖品和3个乙种奖品需要90元.(1)求甲、乙两种奖品的单价各是多少元;(2)该校计划购买甲、乙两种奖品共60个,且购买奖品的总费用不超过600元.恰逢该商场搞促销,所有商品一律八折销售,求该校在该商场最多能购买多少个甲种奖品.50.春节将至,洪崖洞的某礼品店准备将腊肉、香肠、野生葛根粉以礼盒形式销售,腊肉、香肠、野生葛根粉的成本之比为4:5:7.商家打算将3斤腊肉、2斤香肠、4斤野生葛根粉作为甲礼盒;将4斤腊肉、2斤香肠、4斤野生葛根粉作为乙礼盒;将2斤腊肉、4斤香肠、4斤野生葛根粉作为丙礼盒.已知每个礼盒的成本价是这三种年货的成本价之和,每个甲礼盒在成本价的基础上提高20%之后进行销售,每个乙礼盒的利润等于2斤野生葛根粉的成本价,每个丙礼盒的售价为1斤腊肉成本价的18倍.腊月二十九当天,该礼品店销售了40个甲礼盒,销售乙礼盒与丙礼盒的数量之和不少于55个,不超过58个.该礼品店通过核算,当天订单的利润率为25%,则腊月二十九当天一共销售了______个礼盒.参考答案:1.C【分析】根据关键词“超过”就是大于,然后列出不等式即可. 【详解】解:由题意得:x >6340万, 故选:C .【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词语,选准不等号. 2.D【详解】【分析】根据题意,用不等式表示.【详解】一天的最高气温为270C ,最低气温为180C ,一天的气温为t 0C ,用不等关系表示为1827t ≤≤. 故选D【点睛】本题考核知识点:不等式. 解题关键点:用不等式表示题意. 3.C【分析】先求出不等式组的解集,再根据解集中是否含有等号确定圆圈的虚实,方向,表示即可.【详解】① 不等式组3122x x -≥⎧⎨-⎩①>②中,解①得,x ≤2, 解①得,x >-1,①不等式组3122x x -≥⎧⎨-⎩①>②的解集为-1<x ≤2,数轴表示如下:故选C .【点睛】本题考查了一元一次不等式组的解集的数轴表示方法,熟练掌握解不等式的基本要领,准确用数轴表示是解题的关键. 4.D【分析】根据题意可直接列出不等式排除选项.【详解】解:由题意得:250x +≤; 故选D .【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键. 5.B【分析】分别求出两个不等式的解集,即可求解. 【详解】解:422113x x -<⎧⎪⎨≤⎪⎩①②,解不等式①得:1x >, 解不等式①得:3x ≤, ①不等式组的解集为13x <≤,把不等式组的解集在数轴上表示出来,如下: 故选:B【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键. 6.B【分析】设他答对了x 道题,根据题意列出不等式即可求解. 【详解】解:设他答对了x 道题,则根据题意可列不等式为, 105(20)90x x -->,故选B .【点睛】本题考查了列一元一次不等式,理解题意,找到不等关系是解题的关键. 7.C【详解】解:A .在不等式a b >的两边同时加上c ,不等式仍成立,即a c b c +>+,说法正确,不符合题意;B .在不等式a c b c +>+的两边同时减去c ,不等式仍成立,即a b >,说法正确,不符合题意;C .当c =0时,若a b >,则不等式22ac bc >不成立,符合题意;D .在不等式22ac bc >的两边同时除以不为0的2c ,该不等式仍成立,即a b >,说法正确,不符合题意 故选C . 8.A【分析】根据平行线的判定可以判断①;根据不等式的性质可以判定①①;根据三角形外角的性质可以判定①.【详解】解:①内错角相等,两直线平行,故①是真命题,不符合题意; ①若33x y ->-,则x y <,故①是假命题,符合题意;①三角形的一个外角大于任何一个与之不相邻的内角,故①是真命题,不符合题意; ①若1a <-,则21a >,故①是真命题,不符合题意; 故选A .【点睛】本题主要考查了,判断命题真假,平行线的判定,不等式的性质,三角形外角的性质,熟知相关知识是解题的关怀. 9.B【分析】两方程相加、化简可得3x y a +=+,结合40a 知133a -<+<,据此可得答案.【详解】解:3249x y ax y -=⎧⎨+=⎩,3339x y a ∴+=+, 3x y a ∴+=+,40a -<<,133a ∴-<+<,即x y +的取值范围为13x y -<+<, 故选:B .【点睛】本题考查的是解一元一次不等式组,根据方程组得出3x y a +=+,并结合a 的取值范围得出3a +的范围是解题的关键. 10.A【详解】解:设小明的体重为m 千克,依题意得m+50<70 解得m <20即小明的体重<20千克①18<20①小明的体重可能是18千克. 故选A . 11.A【分析】根据点P (3m -9,1-m )在第二象限及第二象限内点的符号特点,可得一个关于m 的不等式组,解之即可得m 的取值范围. 【详解】解:①点P (3m -9,1-m )在第二象限, ①坐标符号是(-,+),①39010m m -<⎧⎨->⎩,解得m <1. 故选:A .【点睛】本题考查各象限内点的坐标的符号,解决本题的关键是转化为不等式或不等式组的问题. 12.C【分析】解方程组得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x +<-得8x >,结合4x m <且不等式组无解知2m ≤,继而从在2m ≤的非负整数中找到使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的个数.【详解】解:解方程组2822mx y x y +=⎧⎨-=-⎩得6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩,解不等式1132x x+<-,得:8x >, 又4x m <且不等式组无解,48m ∴≤, 解得2m ≤,在2m ≤的非负整数中使6141x m m y m ⎧=⎪⎪+⎨+⎪=⎪+⎩为整数的有0、2共2个, 故选:C .【点睛】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握解二元一次方程组和一元一次不等式组,并根据不等式组无解得出m 的取值范围. 13.C【详解】31526x x ->⎧⎨≤⎩①②, 解①得,2x >;解①得,3x ≤;①原不等式组的解集是23x <≤,故选C.14.C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果.【详解】解:根据题意得,20x y ≥,①20x ≥,①0y ≥,①0xy ≤,①0x ≤,故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.15.C【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【详解】解:移项,得:2x >5-1,合并同类项,得:2x >4,系数化为1,得:x >2,故选:C .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.C【详解】①325x +⎡⎤=⎢⎥⎣⎦,①3235x +≤<,解得712x ≤<. 17.D【详解】21 3......{3 4......x x +≤+>①②解不等式①,得x≤1,解不等式①,得x>1,所以不等式组无解集;故选D .18.A【分析】根据不等式的性质逐项判断即可.【详解】A 、a b <,22a b ∴+<+,故本选项正确;B 、a b <,22a b ∴->-,故本选项错误;C 、a b <,c a c b ∴->-,故本选项错误;D 、a b <,22a b ∴<或22a b >,故本选项错误.故选A .【点睛】本题考查不等式的性质,不等式的基本性质1 :若a<b 和b<c ,则a<c (不等式的传递性);不等式的基本性质2:不等式的两边都加上(或减去)同一个数,所得到的不等式仍成立;不等式的基本性质3:不等式的两边都乘以(或除以)同一个正数,所得的不等式仍成立;不等式的两边都乘以(或除以)同一个负数,必须把不等号的方向改变,所得的不等式成立.19.C【分析】先根据二次函数的解析式确定对称轴及最大值,再结合图象判断:当自变量m +3在对称轴上或在对称轴右侧即m +3≥1时且自变量m 在对称轴上或在对称轴左侧即m ≤1时,函数能取到最大值5,由此列出不等式组,解不等式组即可.【详解】解:()22243=215y x x x =-++--+,①对称轴是x =1,①﹣2<0,①函数的最大值为5.又①当m ≤x ≤m +3时,函数y 的最大值为5, ①311m m +≥⎧⎨≤⎩, 解得:﹣2≤m ≤1.故选:C .【点睛】本题考查二次函数的最值问题,熟练掌握二次函数的图象和性质是解题的关键. 20.C【详解】分析:先根据一元一次不等式组解出x 的取值,再根据不等式组20113x a x x +>⎧⎪-⎨-≤⎪⎩的整数解有4个,求出实数a 的取值范围. 详解:2011,3x a x x +>⎧⎪⎨--≤⎪⎩①② 解不等式①,得 2a x ;>- 解不等式①,得1x ≤;原不等式组的解集为12a x -<≤. ①只有4个整数解,①整数解为:2,101--,,, 322a ∴-≤-<-, 4 6.a ∴<≤故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a 的取值范围.21.5x -<【分析】不等式两边都除以-2即可得出答案;【详解】解:210x ->,不等式两边都除以-2得:5x -<故答案为:x <-5【点睛】本题考查了解不等式,熟练掌握不等式的性质是解题的关键22.x <3【分析】分别求出每个不等式的解,再取各个解的公共部分,即可求解.【详解】解:372510x x -<⎧⎨-≤⎩①②, 由①得:x <3,由①得:x ≤15,①不等式的解为:x <3,故答案是:x <3.【点睛】本题主要考查解不等式组,掌握“大大取大,小小取小,大小小大取中间,大大小小无解”,是解题的关键.23.2m ≥【分析】根据不等式组12x x m ≤≤⎧⎨>⎩无解,可得12x ≤≤与x >m 在数轴上没有公共部分,即可求解. 【详解】不等式组12x x m≤≤⎧⎨>⎩无解, 12x ∴≤≤与x >m 在数轴上没有公共部分,2m ∴≥,故答案为:2m ≥.【点睛】本题考查了一元一次不等式组无解的情况,熟练掌握知识点是解题的关键. 24.1<x <2【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:31534x x -<⎧⎨+>⎩①②, 解不等式①,得x <2,解不等式①,得x >1,所以 原不等式组的解集为1<x <2,故答案为:1<x <2.【点睛】本题考查的是一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.25.72a < 【分析】先解不等式组,再根据题意,“大小小大”列关于a 的不等式求解.【详解】解:1241x a x +>⎧⎨-≤⎩①②, 由①得:-1x a >,由①得:25x ≤,52x ≤①不等式组有解, ①5-12a <, 解得:72a <, 故答案为:72. 【点睛】本题考查了含参数不等式组的问题,首先要先解不等式组,再根据题意列出参数所满足的不等式,再进行计算求解.26.1x ≥【分析】根据二次根式有意义的条件分别求出等号两边被开方数中x 的范围,再取其公共部分即可.2(–10)x ≥,则x 为任意实数;2要满足10x -≥,则1x ≥,所以1x ≥.故答案为:1x ≥.【点睛】本题考查了二次根式有意义的条件,属于基本知识题型,熟知二次根式的被开方数非负是解题关键.27.x <【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以x <故答案为:x <【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.28.3a +2≥6##236a +≥【分析】由“a 的3倍与2的和不小于6”得出关系式为:a 的3倍+2≥6,把相关数值代入即可.【详解】解:①a 的3倍为3a ,①a 的3倍与2的和不小于6:3a +2≥6.故答案为:3a +2≥6.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.29.36125402x y x y +=⎧⎪⎨=⨯⎪⎩【详解】先求出不等式解集,再找出满足条件的正整数解即可.解:1330x ->的313x ->-133x < 满足条件的正整数解为:1,2,3,4故答案为x=1,2,3,430.3【分析】先求出不等式的解,再找出其正整数解即可得.【详解】215x -≤,251x ≤+,26x ≤,3x ≤,则不等式的正整数解为1,2,3,共有3个,故答案为:3.【点睛】本题考查了求一元一次不等式的整数解,掌握不等式的解法是解题关键. 31.无解.【详解】试题考查知识点:解不等式组思路分析:根据条件确定2m 、2n 、-2n 的大小关系具体解答过程:①0m n <<①2m <2n <0<-2n①x >-2n >0,x <2n <0没有交集①x >-2n 与x <2n 没有交集①原不等式组无解试题点评:32.2800×10x ﹣2000≥2000×5%. 【分析】设最低可打x 折,根据品牌手机的利润率不低于5%,可列出不等式求解.【详解】设这种品牌的电脑打x 折销售,依据题意得:2800200020005%10x ⨯-≥⨯, 故答案为:2800200020005%10x ⨯-≥⨯. 【点睛】本题考查了一元一次不等式的应用,根据利润=售价-进价,可列不等式求解. 33.1,2,3【分析】先求出不等式的解集,再求出不等式的正整数解即可.【详解】解:-3x -1≥-10,-3x≥-10+1,-3x≥-9,x≤3,①不等式-3x -1≥-10的正整数解为1,2,3.故答案为1,2,3【点睛】本题考查了解一元一次不等式和不等式的整数解.求出不等式的解集是解题的关键.34.0,1,2【分析】先确定不等式的解集,后确定非负整数解.【详解】①3x -7<0,①x <73,①要确定非负整数解,①0≤x <73, ①非负整数解有0,1,2;故答案为:0,1,2.【点睛】本题考查了一元一次不等式的解集和特解问题,规范求不等式的解集是解题的关键.35.a <-2.【分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得出不等式的解,再结合x=2是不等式的一个解列出关于a 的不等式,解之可得.【详解】解:①22x a ->3, ①2x-a >6,2x >a+6,则x >62a +, ①x=2是不等式的一个解, ①62a +<2, 解得a <-2,故答案为:a <-2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.36.4k <且0k ≠【分析】根据题意,将分式方程的解x 用含k 的表达式进行表示,进而令0x >,再因分式方程要有意义则2x ≠,进而计算出k 的取值范围即可.【详解】解: 2(2)11x k -+-=420x k --=42k x -= 根据题意0x >且2x ≠①402422k k -⎧>⎪⎪⎨-⎪≠⎪⎩ ①40k k <⎧⎨≠⎩①k 的取值范围是4k <且0k ≠.【点睛】本题主要考查了分式方程的解及分式方程有意义的条件、一元一次不等式组的求解,熟练掌握相关计算方法是解决本题的关键.37.14x ≤##0.25x ≤ 【分析】根据max {3x +1,﹣x +2}=﹣x +2,即可得出关于x 的一元一次不等式,解之即可得出结论.【详解】解:①max {3x +1,﹣x +2}=﹣x +2,①3x +1≤﹣x +2,解得:14x ≤, 故答案为:14x ≤. 【点睛】本题考查了解一元一次不等式,解题的关键是根据max {3x +1,﹣x +2}=﹣x +2,找出关于x 的一元一次不等式.38.-3和-2【分析】根据题意,先求出方程组的解,然后解代入不等式组,即可求出m 的取值范围,然后得到m 的整数解即可.【详解】解:由题意得:x-2y=m 2x+3y=2m+4⎧⎨⎩①② 由①2-⨯①,解得:4y=7, 把4y=7代入①,得:8x=m+7, 把8x=m+7,4y=7代入不等式组,得: 843(m+)+07784m++5>077⎧⨯≤⎪⎪⎨⎪⨯⎪⎩③④, 解不等式①,得:4m -3≤,解不等式①,得:m>-4,①不等式组的解集为:4-4m -3<≤, ①满足条件的m 的整数解有:-3和-2,故答案为:-3和-2.【点睛】本题考查了解二元一次方程组,解一元一次不等式组,解题的关键是熟练掌握解方程组和解不等式组的方法和步骤.39.112【分析】先设低于120名的有x 个小区,不低于120名的有y 个小区,每个小区增加20名业主,则设低于120名的会在x 个小区的基础上减少e 个,根据“这部分小区平均每个小区有144名业主参加”可知一共有()144x y +名业主,再根据增加20户前与后两种情况的等量关系列式,可以得到x ,y 含有e 的关系式,再结合“该市这部分小区个数高于100,且低于130”即可得出答案.【详解】解:设低于120名的有x 个小区,不低于120名的有y 个小区,再设每个小区增加20名业主后,低于120名的会在x 个小区的基础上减少e 个小区,不低于120名的会在y 个小区的基础上增加e 个小区①增加20名业主后,低于120名的有()x e -个小区,不低于120户的有()y e +个小区, 由题意得:()144112168x y x y +=+,①43x y =①,同时有:()()()()11618020144x e y e x y x y -++=+++,化简得:34x y e -=①,由①①解得: 2.4 3.2x e y e ==,,①x ,y ,e 都是正整数,且100130x y <+<①100 5.6130e <<,①20e =,①4864x y ==,,①112x y +=故答案为:112.【点睛】本题主要考查方程与实际问题,能够读懂题意,找到等量关系并准确的表达出来是解题的关键.40.2a- 【分析】根据题意得到10a a->,10a a +<,根据完全平方公式把被开方数变形,根据二次根式的性质计算即可.【详解】解:原式==①10a -<<,①201a <<, ①1a a>, 210a +>, ①10a a->,2110a a a a ++=<,原式112a a a a a ==---=- 故答案为:2a -. 【点睛】本题考查二次根式的化简和不等式的性质,解题关键是熟练掌握二次根式的性质.41.﹣2≤x ≤1,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式x +1≤2,得:x ≤1,解不等式2x ≤5x +6,得:x ≥﹣2,则不等式组的解集为﹣2≤x ≤1,将不等式组的解集表示在数轴上如下:【点睛】此题主要考查在数轴上表示不等式组的解集,熟练掌握,即可解题.42.0【分析】先解两个不等式,确定解集的公共部分,再确定不等式组的整数解,把整数解代入方程解方程求解a 的值,从而可得答案.【详解】解:由两个不等式组成不等式组:2111323462x x x x +-⎧-<⎪⎨⎪-≤-⎩①② 解不等式①,得x <1,解不等式①,得x ≥-23①不等式组的解集为-23≤x <1①整数x 为0,①3(0+a )-5a +2=0,解得a =1202121120a -=+-=【点睛】本题考查的是一元一次不等式组的解法,求一个数的立方根,一元一次方程的解与解法,代数式的值,掌握以上知识是解题的关键.43.1x <【分析】直接根据一元一次不等式的解法进行求解即可. 【详解】解: 12382x x +<⎧⎨-<-⎩①② 解不等式①,得:1x <;解不等式①,得2x <;∴不等式组的解集为1x <.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握不等式组的解法是解题的关键.44.(1)购进甲种花卉每盆16元,乙种花卉每盆8元;(2)10≤x ≤12.5,故有三种购买方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【分析】(1)根据题意设购进甲种花卉每盆x 元,乙种花卉每盆y 元,列出相应的二元一次方程组,从而可以求得购进甲、乙两种花卉,每盆各需多少元;(2)根据题意可以列出相应的不等式组,从而可以得到有几种购进方案,利用一次函数的性质得到哪种方案获利最大,最大利润是多少.【详解】解:(1)设购进甲种花卉每盆x 元,乙种花卉每盆y 元,20507204030880x y x y +=⎧⎨+=⎩, 解得:168x y =⎧⎨=⎩, 即购进甲种花卉每盆16元,乙种花卉每盆8元;(2)设甲种花卉购进m 盆,则 80016688001688m m m m -⎧≥⎪⎪⎨-⎪≤⎪⎩, 解得,10≤m ≤12.5,又m 为整数,m ∴=10,11,12,故有三种购买方案,由利润W=80016614100,8m m m -+⨯=+ 40,∴>W 随m 的增大而增大,故当m =12时, 80016768m -=, 即购买甲种花卉12盆,乙种花卉76盆时,获得最大利润,此时W=4×12+100=148,即该花店共有几三种购进方案,在所有的购进方案中,购买甲种花卉12盆,乙种花卉76盆时,获利最大,最大利润是148元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式组的应用,解题的关键是明确题意、列出相应的方程组或不等式组.45.(1)5;(2) 115x -<<. 【分析】(1)分别计算算数平方根,0指数幂,负指数幂,再把结果相加减;(2)依据解不等式的步骤分别计算两个不等式,求公共解.【详解】(1)原式2145=-+=(2)32(1)12(2)3x x x x >-⎧⎪+⎨>⎪⎩ 分别解两个一元一次不等式,过程如下:解①得,32x x ->-22x >-1x >-解①得,16x x +>51x <,15x < ①115x -<< 【点睛】本题考查0指数幂,算术平方根,负指数幂,解不等式组.(1)中熟记0指数幂,算术平方根,负指数幂的计算公式并能正确运用是解题的关键;(2)在解不等式时,需注意去分母和系数化为1时,要用到等式的性质2或者性质3,应注意不等号的方向改不改变.46.(1)解得x=2,检验,无解;(2)33x ≤<-【详解】试题分析:(1) 分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2) 先求出①的解集,再求出①的解集,求两者的公共部分.试题解析: (1)31 122x x x-+=-- 去分母得:3−x −1=x −2,移项合并得:2-2x =-2,解得:x =2,经检验x =2是分式方程的增根,原方程无解. (2)426, 2x x 1136x x ①②≥-⎧⎪⎨++<+⎪⎩由①得,2x ≥-6所以x ⩾−3由①得,4+2x <x +1+6。

中考数学专题训练之不等式与不等式组(01)

中考数学专题训练之不等式与不等式组(01)

中考数学专题训练之不等式与不等式组(01)一.选择题(共10小题)1.如果a 、b 为有理数,且a 、b 两数的和小于a 与b 的差,则( )A .a 、b 同号B .a 、b 异号C .a 、b 为负数D .b 为负数2.某商店的老板销售一种商品,他要以不低于进价130%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价( ),可以买到这件商品.A .80元B .100元C .120元D .160元3.下列四个不等式:(1)ac >bc ;(2)2a >2b ;(3)ac 2>bc 2;(4)a b >1,一定能推出a>b 的有( )A .1个B .2个C .3个D .4个4.某种药品说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是x ~ymg ,则x ,y 的值分别为( )用法用量:口服,每天30〜60mg ,分2〜3次服用.规格:□□□□□□贮藏:□□□□□□A .x =15,y =30B .x =10,y =20C .x =15,y =20D .x =10,y =305.网课期间,琪琪同学花整数元购买了一个手机支架,让同学们猜价格.甲说:“至少20元”,乙说“至多18元”,丙说:“至多15元”.琪琪说:“你们都猜错了.”则这个支架的价格为( )A .15元B .18元C .19元D .20元6.若关于x 的方程4(2﹣x )+x =ax 的解为正整数,且关于x 的不等式组{x−16+2>2x a −x ≤0有解,则满足条件的所有整数a 的值之和是( )A .3B .0C .﹣2D .﹣37.已知集合A ={x |x <a },B ={x |1≤x ≤2},且A ∪B =A ,则实数a 的取值范围是( )A .a ≤2B .a <2C .a ≥2D .a >28.若数m 使关于x 的不等式组{5(x −m)≤0x+23−x 2>1的解集为x <﹣2,且使关y 的方程32m −6=4y +m 2的解为负整数,则符合条件的所有整数m 的和为( ) A .1 B .2 C .5 D .09.不等式﹣3(x +1)>﹣6的解集表示在数轴上正确的是( )A .B .C .D .10.如图,学校要在领奖台上铺红地毯,地毯每平米40元,至少花多少钱才能铺满整个领奖台( )A .1200元B .1320元C .1440元D .1560元二.填空题(共10小题)11.一个数位大于等于4的多位数,如果其末三位数与末三位数以前的数之差(大数减小数)能被13整除,则这个多位数一定能被13整除;则672906 (能或不能)被13整除.若一个五位数S ,其前两位数为A =46+n ,后三位数为B =320+10m +n (0≤m ≤7,0≤n ≤9且为整数).现将五位数S 的后两位数放在最左边得到一个新的五位数S 1,再交换S 1百位上的数字与十位上的数字后得到S 2,S 2能被13整除,则满足条件的最大五位数与最小五位数的差为 .12.设[x ]表示不超过x 的最大整数{例如:[3]=3,[﹣5]=﹣5,[2.5]=2,[﹣2.7]=﹣3}请你认真理解[x ]的意义,当0<a <1,若[a +180]+[a +280]+…+[a +7880]+[a +7980]=32,则[10a ]的值为 .13.点A 在数轴上的位置如图所示,机器人从点A 的位置开始移动.第1次,机器人向左移动2个单位长度,描述这一变化的算式为:1﹣2,则此时机器人在数轴上的位置表示的数是 ;第2次,机器人向右移动3个单位长度,第3次,机器人向左移动4个单位长度,第4次,机器人向右移动5个单位长度,…,以此类推,至少移动 次后,机器人在数轴上的位置表示的数的绝对值比6大.14.把m 个练习本分给n 个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n 的值为 .15.若关于x 的不等式组{4−2x >03(x −m)≥5+x只有3个整数解,则m 的取值范围是 .16.若关于x 的一元一次不等式组{4k +1>4(x +14)5x−34≤x +1的解集是x <k ,且关于y 的方程2(y ﹣3)=k ﹣4y +5有正整数解,则符合条件的所有整数k 的和为 .17.关于x 的分式方程ax−9x−2+1=32−x 的解为正数,且关于y 的不等式组{12y −1≤13y −238y +7>a −y 恰好有三个整数解,则所有满足条件的整数a 的值之和为 .18.若关于x 的一元一次不等式组{x −2a >03−2x >x −6无解,则a 的取值范围是 .19.若关于x 的一元一次方程ax−12=7有正整数解,且使关于x 的不等式组{2x −a ≥0x−22<x+13至少有4个整数解,求出满足条件的整数a 的所有值的积为 .20.已知不等式(2a ﹣4)x <4﹣2a 的解集为x <﹣1,则a 的取值范围是 .三.解答题(共5小题)21.某汽车有油和电两种驱动方式,两种驱动方式不能同时使用,该汽车从A 地行驶至B 地,全程用油驱动需96元油费,全程用电驱动需16元电费,已知每行驶1千米,用油比用电的费用多0.8元.(1)求该汽车用电驱动方式行驶1千米的电费;(2)从A 地行驶至B 地,若用油和用电的总费用不超过39元,则至少需用电行驶多少千米?22.若A 、B 两点在数轴上分别表示数a 、b ,则A 、B 两点间的距离等于|a ﹣b |.(1)|x﹣2|=1可理解为数轴上表示x的点到表示2的点的距离等于1,则x=;(2)同理|x﹣2|+|x﹣5|可理解为数轴上表示x的点到表示2、5的点的距离之和;借助数轴(如图1)不难发现,当表示x的点在A的左侧时,|x﹣2|+|x﹣5|大于3,当表示x的点在A、B之间时,|x﹣2|+|x﹣5|等于3,当表示x的点在B的右侧时,|x﹣2|+|x﹣5|大于3;综上,当x满足时,|x﹣2|+|x﹣5|有(填“最大”或“最小”)值3;(3)如图2所示,某公共汽车运营线路上依次有A1,A2,A3三个汽车站,现要在路旁修建一个加油站M,使得三个汽车站到加油站M的路程总和最小,加油站M建在何处最好;(4)如果公共汽车运营线路上依次有A1,A2,A3,…,A n共n个汽车站,为使得n个汽车站到加油站M的路程总和最小,加油站M建在何处最好.23.对于任意实数a,b,定义一种新运算:a⊕b=a﹣3b+7,等式右边是通常的加减运算,例如:3⊕5=3﹣3×5+7=﹣5.(1)7⊕4=;√2⊕(√2−1)=.(2)若2x⊕y=12,x⊕3=2y,求xy的平方根;(3)若3m<2⊕x<7,且解集中恰有3个整数解,求m的取值范围.24.某商家销售A,B两种果苗,进货单价分别为70元,50元,下表是近两天的销售情况.销售量/棵销售收入/元A果苗B果苗第一天43625第二天55875(1)求A,B两种果苗的销售单价;(2)若该商家购进这两种果苗总计50棵,购进费用不超过2900元,则最多购进A种果苗多少棵?(3)某天商家销售A,B两种果苗,要使获得的总利润是900元,求这一天共有几种销售方案.25.为加强校园阳光体育活动,某中学计划购进一批篮球和排球,经过调查得知每个篮球的价格比每个排球的价格贵40元,买5个篮球和10个排球共用1100元.(1)求每个篮球和排球的价格分别是多少?(2)某学校需购进篮球和排球共120个,总费用不超过9000元,但不低于8900元,问有几种购买方案?最低费用是多少?。

【中考复习】2022-2023年人教版中考数学专题复习 不等式与不等式组

【中考复习】2022-2023年人教版中考数学专题复习 不等式与不等式组

2023年中考数学专题复习--不等式与不等式组一.选择题(共10小题)1.如果a>b,那么下列不等式中正确的是()A.a﹣2>b+2B.C.ac<bc D.﹣a+3<﹣b+3 2.若a>b,则下列式子中正确的是()A.B.a﹣3<b﹣3C.﹣3a<﹣3b D.a﹣b<03.关于x、y的方程组的解为整数,关于m的不等式组有且仅有一个偶数解,则所有满足条件的整数a的和为()A.﹣4B.﹣6C.﹣14D.﹣164.若m>n,则下列各式中错误的是()A.m+3>n+3B.﹣6m>﹣6n C.5m>5n D.5.已知a<b,则下列式子错误的是()A.a+1<b+1B.2a<2b C.﹣3a<﹣3b D.a<b+16.如图,小明想到A站乘公交车,发现他与公交车的距离为720m.假设公交车的速度是小明速度的5倍.若要保证小明不会错过这辆公交车,则小明到A站之间的距离最大为()A.100m B.120m C.180m D.144m7.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5 8.对于三个数a、b、c的最小的数可以给出符号来表示,我们规定min{a,b,c}表示a、b、c这三个数中最小的数,例如:min{0,﹣2,3}=﹣2,min{1,﹣2,﹣2}=﹣2.若min{3x+4,2,4﹣2x}=2,则x的取值范围是()A.﹣<x<1B.﹣≤x≤1C.﹣1≤x≤1D.1<x<29.若a<b,则下列式子中一定成立的是()A.a+2<b+2B.2﹣a<2﹣b C.ac<bc D.am2<bm2 10.若a>b,则下列不等式成立的是()A.a﹣1<b﹣1B.﹣3a<﹣3b C.a+m<b+m D.<二.填空题(共5小题)11.若不等式(m﹣1)x+1<m的解是x>1,则m的取值范围是.12.用不等式表示“x的3倍与2的和小于1”.13.不等式2x﹣1<7的解集是.14.不等式13﹣4x≥3x﹣8的非负整数解有个.15.若m与7的和是正数,则可列出不等式.三.解答题(共6小题)16.解不等式,并将解集在数轴上表示出来.(1)4x﹣1>3x;(2).17.解下列不等式(组),并把解在数轴上表示出来.(1);(2).18.解下列方程组或不等式组:(1);(2).19.解不等式﹣3+x≥2x﹣4,并把解在已画好的数轴上表示出来.20.解下列不等式,并写出该不等式的非正整数解.2﹣5x≤8﹣2x21.解下列不等式,并把解表示在数轴上.(1)3x+1<2(x+1);(2)<6﹣.2023年中考数学专题复习--不等式与不等式组参考答案与试题解析一.选择题(共10小题)1.如果a>b,那么下列不等式中正确的是()A.a﹣2>b+2B.C.ac<bc D.﹣a+3<﹣b+3【分析】根据不等式的性质逐项计算可判定求解.【解答】解:A.不妨设a=2,b=1,掌握a﹣2<b+2,故A不符合题意.B.根据不等式的性质,由a>b,得,故B不符合题意.C.根据不等式的性质,由a>b,当c>0,得ac>bc;当c=0时,ac=bc;当a<0时,ac<bc,故C不符合题意.D.根据不等式的性质,由a>b,得﹣a<﹣b,进而推断出﹣a+3<﹣b+3,那么D正确,故D符合题意.故选:D.【点评】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.2.若a>b,则下列式子中正确的是()A.B.a﹣3<b﹣3C.﹣3a<﹣3b D.a﹣b<0【分析】根据不等式的性质进行判断.【解答】解:A、不等式a>b的两边同时除以2,不等式仍成立,即>,故本选项不符合题意;B、不等式a>b的两边同时减去3,不等式仍成立,即a﹣3>b﹣3,故本选项不符合题意;C、不等式a>b的两边同时乘﹣3,不等式仍成立,即﹣3a<﹣3b,故本选项符合题意;D、不等式a>b的两边同时减去b,不等式仍成立,即a﹣b>0,故本选项不符合题意.故选:C.【点评】本题主要考查了不等式的性质,运用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.3.关于x、y的方程组的解为整数,关于m的不等式组有且仅有一个偶数解,则所有满足条件的整数a的和为()A.﹣4B.﹣6C.﹣14D.﹣16【分析】由方程组的解为整数,可得a是偶数,由不等式组有且仅有一个偶数解,知这个偶数解为m=﹣4,从而﹣6<≤﹣4,可得﹣10<a≤﹣6,即可得到答案.【解答】解:由方程组可得,∵方程组的解为整数,∴a是偶数,由不等式组可得≤m<﹣2,∵不等式组有且仅有一个偶数解,∴这个偶数解为m=﹣4,∴﹣6<≤﹣4,∴﹣10<a≤﹣6,∴a可取﹣6,﹣8,∴所有满足条件的整数a的和为﹣6+(﹣8)=﹣14,故选:C.【点评】本题考查二元一次方程组和一元一次不等式组,解题的关键是根据已知求出a 的范围,从而得到a的值.4.若m>n,则下列各式中错误的是()A.m+3>n+3B.﹣6m>﹣6n C.5m>5n D.【分析】依据不等式的基本性质进行判断,即可得出结论.【解答】解:A.不等式m>n的两边都加上3,不等号的方向不变,原变形正确,故本选项不符合题意;B.不等式m>的两边都乘以﹣3,不等号的方向改变,原变形错误,故本选项符合题意;C.不等式m>n的两边都乘5,不等号的方向不变,原变形正确,故本选项不符合题意;D.不等式m>n的两边都除以2,不等号的方向不变,原变形正确,故本选项不符合题意.故选:B.【点评】本题考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.5.已知a<b,则下列式子错误的是()A.a+1<b+1B.2a<2b C.﹣3a<﹣3b D.a<b+1【分析】根据不等式的性质对各选项进行逐一分析即可.【解答】解:∵a<b,∴a+1<b+1,2a<2b,a<b+1,,故A,C,D不符合题意;∵a<b,∴﹣3a>﹣3b,故C符合题意.故选:C.【点评】本题考查的是等式的性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解题的关键.6.如图,小明想到A站乘公交车,发现他与公交车的距离为720m.假设公交车的速度是小明速度的5倍.若要保证小明不会错过这辆公交车,则小明到A站之间的距离最大为()A.100m B.120m C.180m D.144m【分析】设小明到A站之间的距离为xm,小明的速度为vm/s(v>0),则公交车到A站之间的距离为(720﹣x)m,公交车的速度为5vm/s,利用时间=路程÷速度,结合小明不会错过这辆公交车,即可得出关于x的一元一次不等式,解之取其中的最大值,即可得出结论.【解答】解:设小明到A站之间的距离为xm,小明的速度为vm/s(v>0),则公交车到A站之间的距离为(720﹣x)m,公交车的速度为5vm/s,根据题意得:≤,即5x≤720﹣x,解得:x≤120,∴小明到A站之间的距离最大为120m.故选:B.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.7.已知关于x的不等式组的整数解共有3个,则a的取值范围是()A.﹣6<a<﹣5B.﹣6≤a<﹣5C.﹣6<a≤﹣5D.﹣6≤a≤﹣5【分析】分别求出每一个不等式的解集,根据不等式组的整数解情况可得a的范围.【解答】解:由x﹣a≥0得x≥a,由2+x<0,得:x<﹣2,∵不等式组整数解共有3个,∴不等式组的整数解为﹣3、﹣4、﹣5,∴﹣6<a≤﹣5,故选:C.【点评】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.对于三个数a、b、c的最小的数可以给出符号来表示,我们规定min{a,b,c}表示a、b、c这三个数中最小的数,例如:min{0,﹣2,3}=﹣2,min{1,﹣2,﹣2}=﹣2.若min{3x+4,2,4﹣2x}=2,则x的取值范围是()A.﹣<x<1B.﹣≤x≤1C.﹣1≤x≤1D.1<x<2【分析】先根据新定义列出关于x的不等式组,再解之即可.【解答】解:根据题意,得:,解不等式3x+4≥2,得:x≥﹣,解不等式4﹣2x≥2,得:x≤1,∴﹣≤x≤1,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.若a<b,则下列式子中一定成立的是()A.a+2<b+2B.2﹣a<2﹣b C.ac<bc D.am2<bm2【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式两边都加2,得a+2<b+2,故A符合题意;B、不等式的两边都乘以﹣1,再两边都加2,得2﹣a>2﹣b,故B不符合题意;C、不等式的两边都乘以c,c可正可负可为0,所以不等号的方向不确定,故C不符合题意;D、不等式的两边都乘以m2,m2可正可为0,所以不等号的方向不确定,故D不符合题意;故选:A.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.10.若a>b,则下列不等式成立的是()A.a﹣1<b﹣1B.﹣3a<﹣3b C.a+m<b+m D.<【分析】根据不等式的性质逐一判断即可.【解答】解:A.由a>b,得a﹣1>b﹣1,故本选项不合题意;B.由a>b,得﹣3a<﹣3b,故本选项符合题意;C.由a>b,得a+m>b+m,故本选项不合题意;D.由a>b,得,故本选项不合题意.故选:B.【点评】本题考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二.填空题(共5小题)11.若不等式(m﹣1)x+1<m的解是x>1,则m的取值范围是m<1.【分析】先移项得(m﹣1)x<m﹣1,结合不等式的解集为x>1,知m﹣1<0,解之即可.【解答】解:∵(m﹣1)x+1<m,∴(m﹣1)x<m﹣1,∵不等式的解集为x>1,∴m﹣1<0,则m<1,故答案为:m<1.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.用不等式表示“x的3倍与2的和小于1”3x+2<1.【分析】先表示出x的3倍,然后根据题意即可得出不等式.【解答】解:根据题意可得:3x+2<1.故答案为:3x+2<1.【点评】本题考查由实际问题抽象一元一次不等式的知识,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13.不等式2x﹣1<7的解集是x<4.【分析】利用不等式的基本性质,把常数移到不等式的右边,然后同时除以系数就可得到不等式的解集.【解答】解:2x﹣1<7,2x<8,x<4.故答案为:x<4.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.不等式13﹣4x≥3x﹣8的非负整数解有4个.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:13﹣4x≥3x﹣8,移项得,﹣4x﹣3x≥﹣8﹣13,合并同类项得,﹣7x≥﹣21,系数化为1得,x≤3.∴不等式的非负整数解为0,1,2,3共4个,故答案为:4.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.15.若m与7的和是正数,则可列出不等式m+7>0.【分析】根据“m与7的和是正数”,即可得出关于m的一元一次不等式,此题得解.【解答】解:根据题意得m+7>0.故答案为:m+7>0.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共6小题)16.解不等式,并将解集在数轴上表示出来.(1)4x﹣1>3x;(2).【分析】(1)先移项,再合并得到x>1,然后利用数轴表示其解集;(2)先去分母、去括号得到6x﹣3﹣2﹣2x≥12,,再移项、合并得到4x≥17,接着系数化为1得x≥,然后利用数轴表示其解集.【解答】解:(1)4x﹣1>3x,移项得4x﹣3x>1,合并得x>1,用数轴表示为:(2),去分母得3(2x﹣1)﹣2(1+x)≥12,去括号得6x﹣3﹣2﹣2x≥12,移项得6x﹣2x≥12+3+2,合并得4x≥17,系数化为1得x≥,用数轴表示为:【点评】本题考查了解一元一次不等式:灵活运用不等式的性质是解决问题的关键.也考查了数轴.17.解下列不等式(组),并把解在数轴上表示出来.(1);(2).【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵,∴3(2+x)≥4(2x﹣1),6+3x≥8x﹣4,3x﹣8x≥﹣4﹣6,﹣5x≥﹣10,∴x≤2,将不等式的解集表示在数轴上如下:(2)由2x﹣4<0,得:x<2,由(x+8)﹣2>0,得:x>﹣4,则不等式组的解集为﹣4<x<2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.解下列方程组或不等式组:(1);(2).【分析】(1)利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1),①×2+②,得:7x=7,解得x=1,将x=1代入①,得:2﹣y=3,解得:y=﹣1,则方程组的解为;(2)由t≥2t,得t≤0,由﹣3≤t,得:t≥﹣7,则不等式组的解集为﹣7≤t≤0.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.解不等式﹣3+x≥2x﹣4,并把解在已画好的数轴上表示出来.【分析】根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:∵﹣3+x≥2x﹣4,∴x﹣2x≥﹣4+3,﹣x≥﹣1,则x≤1,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.20.解下列不等式,并写出该不等式的非正整数解.2﹣5x≤8﹣2x【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非正整数即可.【解答】解:2﹣5x≤8﹣2x,移项,得2x﹣5x≤8﹣2,合并同类项,得﹣3x≤6,系数化为1,得x≥﹣2.故不等式的非正整数解为﹣2,﹣1,0.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.21.解下列不等式,并把解表示在数轴上.(1)3x+1<2(x+1);(2)<6﹣.【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)∵3x+1<2(x+1),∴3x+1<2x+2,3x﹣2x<2﹣1,x<1,将不等式的解集表示在数轴上如下:(2)∵<6﹣,∴x﹣3<24﹣2(3﹣4x),x﹣3<24﹣6+8x,x﹣8x<24﹣6+3,﹣7x<21,则x>﹣3,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.。

中考数学压轴题专题-不等式与不等式组

中考数学压轴题专题-不等式与不等式组

专题03不等式与不等式组【考点1】不等式的基本性质【例1】(2020·江苏宿迁·中考真题)若a >b ,则下列等式一定成立的是()A .a >b +2B .a +1>b +1C .﹣a >﹣bD .|a |>|b |【变式1-1】若m n >,下列不等式不一定成立的是()A .33m n +>+B .33m n-<-C .33m n>D .22m n >【变式1-2】(2020·贵州贵阳·中考真题)已知a b <,下列式子不一定成立的是()A .11a b -<-B .22a b->-C .111122a b +<+D .ma mb>【考点2】解一元一次不等式(组)【例2】(2020·江苏淮安·中考真题)解不等式31212x x -->.解:去分母,得2(21)31x x ->-.……(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A ”或“B ”)A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.【变式2-1】(2019•呼和浩特)若不等式25123x x +-- 的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是()A .35m >-B .15m <-C .35m <-D .15m >-【变式2-2】(2020·四川绵阳·中考真题)若不等式52x +>﹣x ﹣72的解都能使不等式(m ﹣6)x <2m +1成立,则实数m 的取值范围是_______.【变式2-3】(2020·贵州黔西·中考真题)不等式组26321054x xx x -<⎧⎪+-⎨-⎪⎩﹐ 的解集为________.【变式2-4】(2020·台儿庄)若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m的取值范围是____.【考点3】不等式的含参及特殊解问题【例3】(2020·黑龙江鹤岗·中考真题)若关于x 的一元一次不等式组1020x x a ->⎧⎨->⎩的解是1x >,则a 的取值范围是_______.【变式3-1】(2020·山东滨州·中考真题)若关于x 的不等式组12420x a x ⎧->⎪⎨⎪-≥⎩无解,则a 的取值范围为________.【变式3-2】(2020·四川内江·中考真题)若数a 使关于x 的分式方程2311x ax x ++=--的解为非负数,且使关于y 的不等式组()3113431220y y y a -+⎧-≥-⎪⎨⎪-<⎩的解集为0y ≤,则符合条件的所有整数a 的积为_____________【变式3-3】(2020·黑龙江鸡西·中考真题)若关于x 的一元一次不等式组1020x x a ->⎧⎨-<⎩有2个整数解,则a的取值范围是______.【考点4】一元一次不等式的应用问题【例4】(2011·江苏南通·中考真题)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x 天的总销量y 1(千克)与x 的关系为y 1=﹣x 2+40x ;乙级干果从开始销售至销售的第t 天的总销量y 2(千克)与t 的关系为y 2=at 2+bt ,且乙级干果的前三天的销售量的情况见下表:t123y 2214469(1)求a 、b 的值;(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)【变式4-1】(2020·广西中考真题)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【变式4-2】8.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:鞋号(正整数)222324252627……脚长(毫米)1602±1652±1702±1752±1802±1852±……为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据n b 定义为[]n b 如表2:序号n123456……鞋号n a 222324252627……脚长n b 1602±1652±1702±1752±1802±1852±……脚长[]n b 160165170175180185……定义:对于任意正整数m 、n ,其中2m >.若[]n b m =,则22n m b m -+ .如:[]4175b =表示417521752b -+,即4173177b .(1)通过观察表2,猜想出n a 与序号n 之间的关系式,[]n b 与序号n 之间的关系式;(2)用含n a 的代数式表示[]n b ;计算鞋号为42的鞋适合的脚长范围;(3)若脚长为271毫米,那么应购鞋的鞋号为多大?【考点5】不等式组的应用问题【例5】(2020·湖南郴州·中考真题)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共540吨,甲物资单价为3万元/吨,乙物资单价为2万元吨,采购两种物资共花费1380万元.(1)求甲、乙两种物资各采购了多少吨?(2)现在计划安排,A B 两种不同规格的卡车共50辆来运输这批物资.甲物资7吨和乙物资3吨可装满一辆A 型卡车;甲物资5吨和乙物资7吨可装满一辆B 型卡车.按此要求安排,A B 两型卡车的数量,请问有哪几种运输方案?【变式5-1】(2020·四川雅安·中考真题)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)【变式5-2】(2020·湖南湘潭·中考真题)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.(1)求这两种书的单价;(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?1.(2020·云南昆明·中考真题)不等式组1031212x x x +>⎧⎪⎨+-⎪⎩ ,的解集在以下数轴表示中正确的是()A .B.C.D .2.(2020·黑龙江鹤岗·中考真题)已知关于x 的分式方程433x kx x-=--的解为非正数,则k 的取值范围是()A .12k ≤-B .12k -≥C .12k >-D .12k <-3.(2020·山东博山·初三二模)关于x 的不等式21x a +≤只有2个正整数解,则a 的取值范围为()A .53a -<<-B .53a -≤<-C .53a -<≤-D .53a -≤≤-4.(2020·浙江杭州·中考真题)若a >b ,则()A .a ﹣1≥bB .b +1≥aC .a +1>b ﹣1D .a ﹣1>b +15.(2020·四川攀枝花·中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.6.(2020·辽宁沈阳·初三一模)不等式组341025143x x x x +≤+⎧⎪+⎨-<⎪⎩的解集是_____.7.(2019·广西玉林·中考真题)设01b a <<,则22242a b m a ab-=+,则m 的取值范围是_____.8.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.9.(2020·四川遂宁·中考真题)若关于x 的不等式组214322x x x m x--⎧<⎪⎨⎪-≤-⎩有且只有三个整数解,则m 的取值范围是______.10.(2020·山东德城·初三二模)对于三个数a ,b ,c ,用M {a ,b ,c }表示这三个数的中位数,用max{a ,b ,c }表示这三个数中最大的数.例如:M {–2,–1,0}=–1;max{–2,–1,0}=0,max{–2,–1,a }=(1)1(1)a a a ≥-⎧⎨--⎩<,根据以上材料,解决下列问题:若max{3,5–3x ,2x –6}=M {1,5,3},则x 的取值范围为______.11.(2020·山东沂源·)关于x 的不等式组3515-12x x a ->⎧⎨≤⎩有2个整数解,则a 的取值范围是____________.12.(2020·山东岱岳·初三一模)若关于x 的不等式组2223x x x m +⎧≥-⎪⎨⎪<⎩①②的所有整数解的和是﹣9,则m 的取值范围是__________.13.(2020·四川绵阳·中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)14.(2020·山东威海·中考真题)解不等式组,并把解集在数轴上表示出来423(1)5132x x x x -≥-⎧⎪⎨-+>-⎪⎩15.(2020·内蒙古通辽·中考真题)用※定义一种新运算:对于任意实数m 和n ,规定23m n m n mn n =--※,如:2121212326=⨯-⨯-⨯=-※.(1)求()2-(2)若36m ≥-※,求m 的取值范围,并在所给的数轴上表示出解集.16.(2020·湖南张家界·中考真题)阅读下面的材料:对于实数,a b ,我们定义符号min{,}a b 的意义为:当a b <时,min{,}a b a =;当a b时,min{,}a b b =,如:min{4,2}2,min{5,5}5-=-=.根据上面的材料回答下列问题:(1)min{1,3}-=______;(2)当2322min ,233x x x -++⎧⎫=⎨⎬⎩⎭时,求x 的取值范围.17.(2019·青海中考真题)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明()1中哪种运输方案费用最低?最低费用是多少元?18.(2020·黑龙江穆棱·朝鲜族学校中考真题)某商场准备购进A 、B 两种型号电脑,每台A 型号电脑进价比每台B 型号电脑多500元,用40000元购进A 型号电脑的数量与用30000元购进B 型号电脑的数量相同,请解答下列问题:(1)A ,B 型号电脑每台进价各是多少元?(2)若每台A 型号电脑售价为2500元,每台B 型号电脑售价为1800元,商场决定同时购进A ,B 两种型号电脑20台,且全部售出,请写出所获的利润y (单位:元)与A 型号电脑x (单位:台)的函数关系式,若商场用不超过36000元购进A ,B 两种型号电脑,A 型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A ,B 两种型号电脑捐赠给某个福利院,请直接写出捐赠A ,B 型号电脑总数最多是多少台.19.(2020·湖南邵阳·中考真题)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A 、B 两种类型的便携式风扇到地摊一条街出售.已知2台A 型风扇和5台B 型风扇进价共100元,3台A 型风扇和2台B 型风扇进价共62元.(1)求A 型风扇、B 型风扇进货的单价各是多少元?(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?20.(2020·山东济宁·中考真题)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?。

中考数学复习不等式与不等式组专题练习

中考数学复习不等式与不等式组专题练习

中考数学-不等式与不等式组专题练习〔含答案〕一、单项选择题1.以下各数为不等式组整数解的是〔〕A. -1B. 2C.0D. 42.点P〔3﹣a,a﹣5〕在第三象限,那么整数a 的值是〔〕A. 4B. 3,4C. 4,5D. 3,4,53.假设关于x 的不等式2x﹣m≤0的正整数解只有4 个,那么m 的取值范围是〔〕A. 8<m<10B. 8≤m<10C. 8≤m≤10D. 4≤m<54.整数x,y,z 满足x≤<y z,且,那么x 2+y2+z2的值等于〔〕A. 2B. 14C. 2 或14D. 14 或175.数学表达式①﹣5<7;②3y ﹣6>0;③a=6 ;④2x ﹣3y;⑤a≠2;⑥7y ﹣6>y+2,其中是不等式的有〔〕A. 2 个B. 3 个C.4 个D. 5 个6.如图,是关于x 的不等式2x-a≤-1 的解集,那么a 的取值是〔〕A. 0B. -3C.-2D. -17.不等式2x﹣4≤0的解集在数轴上表示为〔〕A. B.C. D.8.不等式2x<6 的非负整数解为( )A. 0,1,2B. 1,2C. 0,-1,-2D. 无数个9.现在有住宿生假设干名,分住假设干间宿舍,假设每间住4 人,那么还有19 人无宿舍住;假设每间住 6 人,那么有一间宿舍不空也不满,假设设宿舍间数为x,那么能够列得不等式组为( )A. B.C. D.10.以下说法正确的选项是〔〕A.﹣a 比a 小B .一个有理数的平方是正数C.a 与b 之和大于bD.一个数的绝对值不小于这个数11.若是a-b+c>0,那么( )A. B. C.D.12.恩格尔系数表示家庭平常饮食开支占家庭经济总收入的比率,它反响了居民家庭的实质生活水平,各种种类家庭的恩格尔系数n 以下表所示:家庭贫困饱暖小康兴隆国家家最丰饶国家家种类家庭家庭家庭庭庭恩格尔系数〔n〕75%以上50%~75% 40%~49% 20%~39% 不到20%用含n 的不等式表示饱暖家庭的恩格尔系数为〔〕A. 50%<n<75%B. 50%<n≤75%C. 50%≤n<75%D. 50%≤n≤75%13.将不等式组的解集在数轴上表示,以下表示中正确的选项是〔〕A. B.C. D.二、填空题14.假设不等式组的解集是x>3,那么m 的取值范围是________.15.不等式的解是________.16.不等式组的解集是________.17.一次函数y=kx+b 的图象经过两点A〔0,1〕,B〔2,0〕,那么当x________时,y≤0.18.假设关于x 的不等式〔1﹣a〕x>2 可化为x>,那么a 的取值范围是________三、计算题19.解不等式组:.20.〔1〕+〔〕﹣1﹣2cos60°〔+2﹣π〕0〔2〕解不等式组.21.解不等式组:.四、解答题22.解不等式:-1<-<1〔a<0〕23.某种饮料重约300g,罐上注有“蛋白质含量≥0.5%,〞其中蛋白质的含量为多少克?24.解不等式组:并把解集在数轴上表示出来.答案解析局部一、单项选择题1.以下各数为不等式组整数解的是〔〕A. -1B. 2C.0D. 4【答案】 B【考点】一元一次不等式组的整数解【解析】【解答】解:,由①得,x>,由②得,x<4,∴不等式组的解集为<x<4.四个选项中在<x<4 中的只有2.应选:B.【解析】分别求出两个不等式的解集,再找到其公共局部即可.2.点P〔3﹣a,a﹣5〕在第三象限,那么整数a 的值是〔〕A. 4B. 3,4C. 4,5D. 3,4,5【答案】 A【考点】一元一次不等式组的整数解,点的坐标【解析】【解答】解:∴点P〔3﹣a,a﹣5〕在第三象限,∴,解得:3<a<5,∴a为整数,∴a=.4应选:A.【解析】点在第三象限的条件是:横坐标是负数,纵坐标是负数.列出式子后可获取相应的整数解.3.假设关于x 的不等式2x﹣m≤0的正整数解只有4 个,那么m 的取值范围是〔〕A. 8<m<10B. 8≤m<10C. 8≤m≤10D. 4≤m<5【答案】 B【考点】一元一次不等式的整数解【解析】【解答】解:∴2 x﹣m≤0,∴x≤m,而关于x 的不等式2x﹣m≤0的正整数解只有 4 个,∴不等式2x﹣m≤0的 4 个正整数解只能为1、2、3、4,∴4≤m<5,∴8≤<m10.应选B.【解析】先求出不等式的解集,尔后依照其正整数解求出m 的取值范围.4.整数x,y,z 满足x≤<y z,且,那么x 2+y2+z2的值等于〔〕A. 2B. 14C. 2 或14D. 14 或17【答案】 A【考点】解三元一次方程组,解一元一次不等式组,绝对值的非负性【解析】解:∴x≤<y z,∴|x﹣y|=y ﹣x,|y ﹣z|=z﹣y,|z ﹣x|=z﹣x,所以第二个方程能够化简为:2z﹣2x=2,即z=x+1,∴,x y,z 是整数,依照条件,那么两式相加获取:﹣3≤x≤,3两式相减获取:﹣1≤y≤,1同理:,获取﹣1≤z≤,1依照x,y,z 是整数谈论可得:x=y=﹣1,z=0 或x=1,y=z=0 此时第二个方程不成立,故舍去.∴2x+y2+z2=〔﹣1〕2+〔﹣1〕2+0=2.应选:A.【解析】依照绝对值的定义和条件,得出|x+y| ,|x ﹣y| 式子的范围,得出的不等式组进行计算,从而确定x,y,z 的范围即可求解.5.数学表达式①﹣5<7;②3y ﹣6>0;③a=6 ;④2x ﹣3y;⑤a≠2;⑥7y ﹣6>y+2,其中是不等式的有〔〕A. 2 个B. 3 个C.4 个D. 5 个【答案】 C【考点】不等式的解集【解析】【解答】解:数学表达式①﹣5<7;②3y ﹣6>0;⑤a≠2;⑥7y ﹣6>y+2 是不等式,应选:C.【解析】依照用不等号连接的式子是不等式,可得答案.6.如图,是关于x 的不等式2x-a≤-1 的解集,那么a 的取值是〔〕A. 0B. -3C.-2D. -1【答案】 D【考点】在数轴上表示不等式的解集,解一元一次不等式【解析】【解答】由数轴上表示不等式解集的方法可知,此不等式的解集为x≤-1,解不等式2x-a≤-1 得,x≤,即=-1,解得a=- 1.应选D.【解析】先依照在数轴上表示不等式解集的方法求出不等式的解集,再列出关于 a 的方程,求出 a 的取值范围即可.此题观察的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的差异是解答此题的要点.7.不等式2x﹣4≤0的解集在数轴上表示为〔〕A. B.C. D.【答案】 B【考点】在数轴上表示不等式的解集【解析】【解答】解:2x﹣4≤02x≤4x≤2应选B.【解析】先移项再系数化1,尔后从数轴上找出.8.不等式2x<6 的非负整数解为( )A. 0,1,2B. 1,2C. 0,-1,-2D. 无数个【答案】 A【考点】一元一次不等式的整数解【解析】【解析】先依照不等式的根本性质求得不等式的解集,即可获取结果。

中考数学不等式和不等式组30题专练

中考数学不等式和不等式组30题专练

中考数学不等式和不等式组30题专练方程和不等式1. 解不等式,并用数轴表示解集:x≤12. 解不等式,并用数轴表示解集:x≤73. 解不等式,并用数轴表示解集:x≤34. 解不等式,并用数轴表示解集:x≤85. 解不等式,并用数轴表示解集:x≤56. 解不等式,并用数轴表示解集:x≤47. 解不等式,并用数轴表示解集:3x+8x-1-5(−4x+7)≤42+−2(−3x+3)≤68. 解不等式,并用数轴表示解集:−6x-x+57-7(−2x+4)≤49. 解不等式,并用数轴表示解集:−6x+2x+5510. 解不等式,并用数轴表示解集:6x-x+21+2x+8≤211. 解不等式,并用数轴表示解集:−3x+−5x-63-−1(−2x-4)≤112. 解不等式,并用数轴表示解集:3x+−5x-16+8(−5x+4)≤813. 解不等式,并用数轴表示解集:−1x+−8x-34-−4(3x+8)≤714. 解不等式,并用数轴表示解集:−7x+7x-31-2(4x+1)≤515. 解不等式,并用数轴表示解集:−7x+8x+27-8(8x-2)≤116. 解不等式,并用数轴表示解集:x+7x-12+6(−1x+4)≤517. 解不等式,并用数轴表示解集:−63x+−75x-31-−5(72x-5)≤1-(7x+5)+32x+2118. 解不等式,并用数轴表示解集:18x+−16x+73-76(−67x-8)≤7+(77x+1)+−6x+4519. 解不等式,并用数轴表示解集:18x+−83x-22+−83(−65x+4)≤2+(−36x+3)+−27x+3420. 解不等式,并用数轴表示解集:−54x+75x+85-−17(82x-5)≤5-(−76x-2)+−46x+6121. 解不等式,并用数轴表示解集:−84x+−84x-32-24(83x-6)≤7-(7x+4)-−87x-7222. 解不等式,并用数轴表示解集:24x-−75x-17+−85(−2x+1)≤3-(16x+3)-−42x+4523. 解不等式,并用数轴表示解集:−1x+23x-85+45(2x-3)≤8-(66x+2)-74x+5724. 解不等式,并用数轴表示解集:−17x+−32x+43+52(46x+4)≤3+(−45x+7)-76x+3525. 解不等式,并用数轴表示解集:86x+−16x-28+−85(−88x+3)≤7+(−23x+8)-33x-5626. 解不等式,并用数轴表示解集:−88x-−6x+71+28(−64x+6)≤3-(53x+7)+−23x-6427. 解不等式,并用数轴表示解集:−33m-−17m-24-−46(76m+8)≥5-(72m+6)-57m+3328. 解不等式,并用数轴表示解集:−74m+−43m+68+85(26m+5)≥2-(−88m-3)-12m-1629. 解不等式,并用数轴表示解集:−57m+−27m-51+−44(68m-3)≥4-(−82m-7)+26m+3330. 解不等式,并用数轴表示解集:33m+25m+22+2(73m-5)≥1-(−73m-2)+−13m-28----答案----方程和不等式1. 解不等式,并用数轴表示解集:x≤1化简:x+−1≤0解:x≤12. 解不等式,并用数轴表示解集:x≤7化简:x+−7≤0解:x≤73. 解不等式,并用数轴表示解集:x≤3化简:x+−3≤0解:x≤34. 解不等式,并用数轴表示解集:x≤8化简:x+−8≤0解:x≤85. 解不等式,并用数轴表示解集:x≤5化简:x+−5≤0解:x≤56. 解不等式,并用数轴表示解集:x≤4化简:x+−4≤0解:x≤47. 解不等式,并用数轴表示解集:3x+8x-1-5(−4x+7)≤42化简:27x+−792≤0解:x≤79548. 解不等式,并用数轴表示解集:−6x-x+57+−2(−3x+3)≤6化简:−17x+−897≤0解:x≥−899. 解不等式,并用数轴表示解集:−6x+2x+55-7(−2x+4)≤4化简:425x+−31≤0解:x≤1554210. 解不等式,并用数轴表示解集:6x-x+21+2x+8≤2化简:7x+4≤0解:x≤−4711. 解不等式,并用数轴表示解集:−3x+−5x-63-−1(−2x-4)≤1化简:−203x+−7≤0解:x≥−212012. 解不等式,并用数轴表示解集:3x+−5x-16+8(−5x+4)≤8化简:−2276x+1436≤0解:x≥14322713. 解不等式,并用数轴表示解集:−1x+−8x-34-−4(3x+8)≤7化简:9x+974≤0解:x≤−973614. 解不等式,并用数轴表示解集:−7x+7x-31-2(4x+1)≤5化简:−8x+−10≤0解:x≥−5415. 解不等式,并用数轴表示解集:−7x+8x+27-8(8x-2)≤1化简:−4897x+1077≤0解:x≥10748916. 解不等式,并用数轴表示解集:x+7x-12+6(−1x+4)≤5化简:−32x+372≤0解:x≥37317. 解不等式,并用数轴表示解集:−63x+−75x-31-−5(72x-5)≤1-(7x+5)+32x+21化简:985x+−26≤0解:x≤654918. 解不等式,并用数轴表示解集:18x+−16x+73-76(−67x-8)≤7+(77x+1)+−6x+45化简:457360x+4315≤0解:x≤−103245719. 解不等式,并用数轴表示解集:18x+−83x-22+−83(−65x+4)≤2+(−36x+3)+−27x+34化简:2153840x+−20912≤0解:x≤14630215320. 解不等式,并用数轴表示解集:−54x+75x+85-−17(82x-5)≤5-(−76x-2)+−46x+61化简:−629700x+−42435≤0解:x≥−848062921. 解不等式,并用数轴表示解集:−84x+−84x-32-24(83x-6)≤7-(7x+4)-−87x-72化简:4421x+−5≤0解:x≤1054422. 解不等式,并用数轴表示解集:24x-−75x-17+−85(−2x+1)≤3-(16x+3)-−42x+45化简:113x+−2335≤0解:x≤6938523. 解不等式,并用数轴表示解集:−1x+23x-85+45(2x-3)≤8-(66x+2)-74x+57化简:11960x+−657≤0解:x≤390083324. 解不等式,并用数轴表示解集:−17x+−32x+43+52(46x+4)≤3+(−45x+7)-76x+35化简:7235x+2915≤0解:x≤−20321625. 解不等式,并用数轴表示解集:86x+−16x-28+−85(−88x+3)≤7+(−23x+8)-33x-56化简:899240x+−125360≤0解:x≤501289926. 解不等式,并用数轴表示解集:−88x-−6x+71+28(−64x+6)≤3-(53x+7)+−23x-64化简:15524x≤0解:x≤027. 解不等式,并用数轴表示解集:−33m-−17m-24-−46(76m+8)≥5-(72m+6)-57m+33化简:895252m+476≥0解:m≥−197489528. 解不等式,并用数轴表示解集:−74m+−43m+68+85(26m+5)≥2-(−88m-3)-12m-16化简:−2310m+4312≥0解:m≤21513829. 解不等式,并用数轴表示解集:−57m+−27m-51+−44(68m-3)≥4-(−82m-7)+26m+33化简:−21136m+−14≥0解:m≤−50421130. 解不等式,并用数轴表示解集:33m+25m+22+2(73m-5)≥1-(−73m-2)+−13m-28化简:14340m+−474≥0解:m≥470143。

中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练50题含答案

中考数学不等式与不等式祖专题训练含答案一、单选题1.一个不等式的解集在数轴上表示如图,则这个不等式可能是( )A .10x -≤B .10x ->C .10x -≥D .10x -<2.已知不等式组3010x x -<⎧⎨+≥⎩,则两个不等式的解集在同一数轴上表示正确的是( )A .B .C .D .3.若a b >,则下列不等式中正确的是( ) A .33a b >B .22a b ->-C .11+<+a bD .0a b -<4.已知点A (x +3,2﹣x )在第四象限,则x 的取值范围是( ) A .x >2 B .x >﹣3C .﹣3<x <2D .x <25.把不等式组的解集在数轴上表示,正确的是( )A .B .C .D .6.如果不等式组5x x a >⎧⎨>⎩的解集是5x >,则a 的取值范围是( )A .5a ≥B .5a ≤C .5a =D .5a <7.已知关于x 的一次函数y =mx+2m ﹣3在﹣1≤x≤1上的函数值总是正的,则m 的取值范围在数轴上表示正确的是( ) A . B . C .D .吉祥物礼品,借价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是( )A .()1008010900x x +->B .()1008010900x x +-<C .()1008010900x x +-≥D .()1008010900x x +-≤9.已知直线31y x 经过点2,3A m ⎛⎫⎪⎝⎭,则关于x 的不等式31x m 的解集为( )A .32x <B .23x <C .32x >-D .23x >-10.不等式组2{5x x >-≤的解集在数轴上可表示为( )A .B .C .D .11.若关于x 的不等式组214333x x x m x--⎧<⎪⎨⎪-≤-⎩恰有2个整数解,且关于x 、y 的方程组430mx y x y +=⎧⎨-=⎩也有整数解,则所有符合条件的整数m 的和为( ) A .-18B .-6C .-3D .012.平面直角坐标系中,过点32-(, )的直线l 经过第一、二、三象限,若点()0a ,,1b -(,),1c -(,)都在直线l 上,则下列判断正确的是() A .a b <B .2a <C .2b <D .3c -<13.2015年4月份的尼泊尔强震曾经导致珠峰雪崩,在珠峰抢险时,需8组登山队员步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( ) A .10B .11C .12D .1314.不等式组38023x x -<⎧⎨-<⎩的非负整数解有( ).15.当x =﹣2时,下列不等式成立的是( ) A .x ﹣5>﹣7B .x ﹣2<0C .2(x ﹣2)>﹣2D .3x >2x16.若a b >,则下列四个不等式中正确的是( ) A .33a b >B .55a b +<+C .55a b ->-D .22a b -<-17.不等式组2≤3x-7<9的所有整数解为( ) A .3,4B .4,5C .3,4,5D .3,4,5,618.已知a<b ,则下列不等式中不正确的是( ) A .a 44b < B .a+4<b+4 C .-4a>-4b D .a 2<b 219.(2017届河南安阳滑县中考二模数学试卷)若不等式组2123x a x b -⎧⎨-⎩<>的解集为−1<x<1,则(a −3)(b+3)的值为 A .1B .−1C .2D .−220.如图,正比例函数y x =的图象与反比例函数()0ky k x=≠的图象交于A ,B 两点,90CAD ∠=︒,两边分别交x 轴,y 轴于点D ,C ,四边形OCAD 的面积为1,AE x ⊥轴于点E .有下列结论:①OA OB =;①三角形OAE 的面积为12;①线段AB 的;①不等式kx x>的解集是1x >或1x <-.其中正确结论的个数是( ).A .1B .2C .3D .4二、填空题 21.不等式1-2x≥-1的解集是____. 22﹣3<2x 的解集是 ___.23.“a 的3倍与12的差是一个非负数”用不等式表示为______24在实数范围内有意义,则实数x 的取值范围是______.25.不等式的解是______.26.已知关于x 的不等式20(0)kx k ->≠的解集是3x >,则直线2y kx =-+与x 轴的交点坐标是________.27.已知m 是整数,且一次函数y =(m +3)x +m +2的图象不过第二象限,则m =______. 28.已知关于x 的不等式(a-2)x >1的解集为x <12a -,则a 的取值范围____________. 29.如果ab <,要使ac bc >,则___0c ;30.如果m <n ,则关于x 的一元一次不等式组x mx n ≤⎧⎨<⎩的解集为______.31.不等式组37x x ≤-⎧⎨>-⎩的解集为_______________.32.先化简,再求值:211933x x x -⎛⎫-⋅ ⎪+⎝⎭,其中x 为偶数且满足不等式组23213x x -<⎧⎨-≤⎩. 33.不等式350x -≤的正整数解是_________.34.某班数学兴趣小组对不等式组2x x m >⎧⎨≤⎩的解集进行讨论,得到以下结论:①若 m = 4,则不等式组的解集为 2<x ≤ 4; ①若 m = 1,则不等式组无解;①若原不等式组无解,则 m 的取值范围为 m <2;①若 7 ≤ m <8,则原不等式组有 5 个整数解.其中,结论正确的有______. 35.不等式组583(1)131722{x x x x ++-≤-的最大整数解为________.36.不等式1132x x +-<的解集是_____. 37.如果不等式组2{223xa xb +≥-<的解集是01x ≤<,那么a b +的值为 . 38.抛物线2222y x bx b b =++-+与x 轴没有交点,则b 的取值范围为 _____. 39.已知一次函数y =ax +6,当-2≤x≤3时,总有y >4,则a 的取值范围为______.三、解答题 40.解不等式4312163x x++≤+,并写出它的非正整数解. 41.(1)计算:2﹣2﹣2cos60°+|(π﹣3.14)0(2)解不等式数()295131x xx x --⎧⎨->+⎩,并把它的解集在数轴上表示出来.42.把下列不等式的解集在数轴上表示出来. (1)x≥-3;(2)x >-1;(3)x≤3;(4)x<-32.43.先化简,再求值2222221211x x x x x x x x x ⎛⎫+--+⎪--++⎝⎭,且x 是不等式2192136x x -+-≤的最小整数解.44.解不等式3(3)24->-x x ,并将解集在数轴上表示出来.45.解不等式组1211123x x x -≤⎧⎪+-⎨+<⎪⎩,并把解集在数轴上表示出来.46.在疫情期间,学校购买甲、乙两种消毒液,已知购买3桶甲种消毒液和4桶乙种消毒液共需170元,购买2桶乙种消毒液比购买3桶甲种消毒液少用50元. (1)求购买甲、乙两种消毒液每桶各需多少元?(2)若要购买甲、乙两种消毒液共21桶,且总费用不超过540元,求至多可购进甲种消毒液多少桶?47.某班到毕业时有经费1800元,决定拿出不少于270元但不超过300元的资金为老师买纪念品,其余资金用于给50名同学每人买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册. (1)求每件文化衫和每本相册的价格分别为多少元? (2)有几种购买文化衫和相册的方案?48.解不等式组4713112x x x -<⎧⎪⎨+≥-⎪⎩49.国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,求符合此规定的行李箱的高的最大值.参考答案:1.B【分析】分别得出每个选项的解集,继而得出答案.【详解】解:由数轴可得:1x >, A.10x -≤的解集是1x ≤,故不符合题意; B.10x ->的解集是1x >,故符合题意; C.10x -≥的解集是1x ≥,故不符合题意; D.10x -<的解集是1x <,故不符合题意; 故选:B .【点睛】本题主要考查解一元一 次不等式的基本能力, 严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 2.C【分析】分别解出不等式的解集,再根据找不等式组的解集的规律即可求解. 【详解】解:不等式30x -<,解得3x >, 不等式10x +≥,解得1x ≥-, ①原不等式组的解集为:3x >, 故选:C .【点睛】本题考查了解不等式组并把解集在数轴上表示出来,熟练掌握找不等式组的解集的规律是解题的关键. 3.A【分析】不等式加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;乘或除以一个负数,不等号的方向改变.【详解】A. 不等式两边都乘以3,不等号的方向不变,故本选项正确; B. 不等式两边都乘以−2,不等号的方向改变,故本选项错误; C. 不等式两边都减1,不等号的方向不变,故本选项错误; D. 不等式两边同时减去b ,不等号的方向不变,故本选项错误; 故选A.【点睛】本题考查不等式的性质,解题的关键是掌握不等式的性质. 4.A【分析】根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.【详解】解:①点A(x+3,2﹣x)在第四象限,①30 20xx+>⎧⎨-<⎩,解得x>2.故选:A.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【详解】试题分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:解得,故选B.考点:在数轴上表示不等式的解集;解一元一次不等式组.6.B【分析】根据求解规律是:大大取大,小小取小,大小小大中间找,大大小小无解可得a≥5.【详解】①不等式组5xx a>⎧⎨>⎩的解集是x>5,①a≤5,故选:B.【点睛】此题主要考查了不等式的解集,关键是正确理解不等式组确定公共解集的方法.7.A【分析】由题意可知x取最小和最大值时函数的值总是正的,所以只要将x=﹣1和x=1代入函数式即可求m的取值范围,进而在数轴上表示即可.【详解】解:根据题意得:当x=﹣1时,y=﹣m+2m﹣3=m﹣3>0,①m >3;当x =1时,y =m+2m ﹣3=3m ﹣3>0, ①m >1,①m 的取值范围是m >3. ①m 的取值范围在数轴上表示为:故选:A .【点睛】本题考查了一次函数图象与系数的关系,在数轴上表示不等式的解集,一次函数的图象是直线,只要保证两个端点的函数值恒大于0,即可求得m 的取值范围. 8.D【分析】设购买冰墩墩礼品x 件,则购买雪容融()10x -件,再根据总共花费不超过900元,列出不等式即可.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融()10x -件, 由题意得()1008010900x x +-≤, 故选D .【点睛】本题主要考查了列不等式,正确理解题意找到不等关系是解题的关键. 9.B【分析】利用函数的解析式求得m =3,然后解不等式即可. 【详解】解:①直线y =3x +1经过点2,3A m ⎛⎫⎪⎝⎭,①m =3×23+1=3,①关于x 的不等式为3x +1<3, 解得:23x <, 故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,解一元一次不等式,根据函数的解析式求得m 的值是解题的关键. 10.D【分析】本题考查不等式组的解集在数轴上表示方法.【详解】不等式组的解集为-2<5x≤,在数轴上表示为.故选D.11.C【分析】先解不等式组求出m的取值范围,再解方程组,结合m的取值范围求出m满足不等式组恰有2个整数解,方程组也有整数解的值,然后再求出所有符合条件的整数m的和即可.【详解】解:不等式组214333x xx m x--⎧<⎪⎨⎪-≤-⎩①②,解不等式①得:x>−2,解不等式①得:34mx+≤,①不等式组的解集为324mx+-<≤.①不等式组恰有2个整数解,①3014m+≤<,解得:31m-≤<,解方程组4 30 mx yx y+=⎧⎨-=⎩,得:43123xmym ⎧=⎪⎪+⎨⎪=⎪+⎩①关于x、y的方程组430mx yx y+=⎧⎨-=⎩也有整数解,①m+3为4的因数,即m+3=±1或±2或±4,①−3≤m<1,①m的值为:−2、−1,①所有符合条件的整数m的和为(−2)+(−1)=−3.故选:C.【点睛】本题考查了一元一次不等式组的解法、二元一次方程组的解法,理解相关知识是解答关键.12.D【分析】设出一次函数解析式为y mx n +=,根据图象经过的象限确定0m >,把32-(, )代入解析式,得到用m 表示的函数关系式,把三个点代入解析式,判断各个选项是否正确.【详解】解:设直线l 的解析式为y =mx +n ,由于直线l 经过第一、二、三象限,所以0m >.由于点32-(, )在直线l 上,所以23m n -+=,即32n m +=,所以一次函数解析式为:32y mx m ++=,当0x =时,32a m +=,∵0m >,∴322a m +=>,故选项B 不合题意;当1x -=时,22b m +=,∵0m >,∴222b m +=>,故选项C 不合题意,∴3222m m ++>,即a b >,故选项A 不合题意,当1y -=时,321cm m ++-=,即33c m +-()=, 因为0m >.所以30c +<,即3c -<,故选项D 符合题意,故选:D .【点睛】本题考查了一次函数图象和性质以及不等式的性质,利用不等式的性质是解决本题的关键.13.C【分析】设预定每组分配的人数为x 人,若按每组人数比预定人数多分配1人,总人数为()81x +,若按每组人数比预定人数少分配1人,总人数为()81x -,根据题意列出不等式组,即可得解集,再根据实际情况得出预定每组分配的人数.【详解】解:设预定每组分配的人数为x 人,根据题意得()()81100,8190,x x ⎧+>⎪⎨-<⎪⎩解得232<x <494, 而x 为整数,所以x =12,即预定每组分配的人数为12人.故选:C.【点睛】此题主要考查不等式组的应用.14.C【详解】分析:求不等式组的解,再判断其中非负整数解.详解:38023x x -<⎧⎨-<⎩,解得32-<x <83,非负整数解有0,1,2,故选C. 点睛:①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”,如图所示:①若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”,如图所示:①若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集.若x 表示不等式的解集,此时一般表示为a<x<b ,或a≤x≤b .此乃“相交取中”,如图所示:①若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解.此乃“向背取空” 如图所示:15.B【分析】将x=-2代入计算得到结果,即可做出判断.【详解】A 、将x =﹣2代入得:﹣2﹣5=﹣7,故此选项错误;B 、将x =﹣2代入得:﹣2﹣2=﹣4<0,故此选项正确;C 、将x =﹣2代入得:2×(﹣2﹣2)=﹣8<﹣2,故此选项错误;D 、将x =﹣2代入得:﹣6<﹣4,故此选项错误,故选:B .【点睛】此题考查一元一次不等式的解集.解题的关键是掌握不等式的解集的定义,要注意不等式两边同乘以(或除以)同一个负数,不等号的方向改变.16.A【分析】本题可通过不等式两边同时乘或除一个数不等号方向是否变化,判断A 、C 选项;不等式两边同时加或减一个数,不等式大小不变与题意矛盾以判断B 、D 选项.【详解】A 选项:不等式两边同时乘一个正数,不等号方向不变,故A 选项正确; B 选项:由55a b +<+可推出a <b ,与题干a b >矛盾,故排除B 选项;C 选项:不等式两边同时乘一个负数,不等号方向改变,故正确表达应为5a -<5b -,故排除C 选项;D 选项:由22a b -<-可推出a <b ,与题干a b >矛盾,故排除D 选项;故选:A .【点睛】本题考查不等式相关性质,易错点在于不等式两边若乘或除一个负数,不等号方向必须改变.17.C【详解】试题解析:可以化为237{379x x ≤--①<②①解不等式①得:x ≥3,解不等式①得:x <163, ①不等式组的解集是3≤x <163, ①不等式组的整数解是3,4,5.故选C .【点睛】本题考查了解一元一次不等式,解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出不等式组的解集.18.D【分析】根据不等式的性质逐个判断即可.【详解】A 、①a <b , ①a 44b <,正确,故本选项不符合题意; B 、①a <b ,①a +4<b +4,正确,故本选项不符合题意;C 、①a <b ,①−4a >−4b ,正确,故本选项不符合题意;D 、由-3<2,得(-3)2>22,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键. 19.D【详解】解不等式2x −a <1,得:x <12a +,解不等式x −2b >3,得:x >2b+3,①不等式组的解集为−1<x <1,①112231a b +⎧=⎪⎨⎪+=-⎩,解得:a=1,b=−2,当a=1,b=−2时,(a −3)(b+3)=−2×1=−2,故选D .20.B【分析】根据正比例函数y x =的图象与反比例函数()0k y k x=≠的图象的性质,结合题意,可计算得OA OB =;根据90CAD ∠=︒和四边形OCAD 的面积为1,设点C 坐标为()0,m ,设点D 坐标为(),0n ,通过勾股定理和四边形面积解方程,即可得到k 的值,从而计算得AB 和三角形OAE 的面积,以及不等式k x x>的解集.【详解】①正比例函数y x =的图象与反比例函数()0k y k x=≠的图象交于A ,B 两点 ①0k > ①y x k y x =⎧⎪⎨=⎪⎩①x =结合题意,得A,(B①OAOB =①OA OB =,故①正确;设点C 坐标为()0,m ,设点D 坐标为(),0n ,结合题意,0m >且0n >①OC m =,OD n =①四边形OCAD 的面积为1①四边形OCAD的面积)11=122OAC OAD S S OC OD m n +=+=△△①m n +=结合题意,(22AC m =+,(22AD n =+ 又①90CAD ∠=︒,且90COD ∠=︒①22222AC AD OC OD CD +=+=①((2222+m n m n =+①m n =+①=①1k =①()1,1A ,()1,1B --,AB ==,故①错误;①AE x ⊥①()1,0E ,1AE =①1OE = ①1122OAE S OE AE =⨯=△,故①正确;当0x >时,k x x>即1x x > ①21x > ①1x >或1x <-(舍去)当0x <时,k x x >即1x x > ①21x <①10x -<<①不等式k x x >的解集是1x >或10x -<<,故①错误; 故选:B .【点睛】本题考查了正比例函数、反比例函数、勾股定理、分式、不等式的知识;解题的关键是熟练掌握正比例函数、反比例函数、勾股定理、分式、不等式的性质,从而完成求解.21.x ≤3【分析】由题意先去分母,再移项合并,进而化系数为1即可得出,注意化系数为1时改变符号方向. 【详解】解:1-2x ≥-1 去分母:12x -≥-,移项合并:3x -≥-,化系数为1:3x ≤. 所以不等式1-2x ≥-1的解集是3x ≤. 故答案为:3x ≤.【点睛】本题考查解一元一次不等式,熟练掌握解一元一次不等式运算法则是解答本题的关键.22.6x >-.【分析】先移项,然后系数化为1,即可求出不等式的解集.32x -<,23x -<,①2)3x <,①x >①2)x >-,①6x >-.故答案为:6x >-.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键. 23.3a ﹣12≥0.【详解】试题分析:理解:差是一个非负数,即是最后算的差应大于或等于0. 解:根据题意,得3a ﹣12≥0.故答案为3a ﹣12≥0.【点评】读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.24.13x ≥且3x ≠【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式组,解不等式组得到答案.【详解】解:由题意得:310x -≥且30x -≠, 解得:13x ≥且3x ≠, 故答案为:13x ≥且3x ≠.【点睛】本题考查的是代数式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.25. 【详解】试题分析:把x 的系数化为1即可;注意系数化为一(不等式性质—不等式左右两边同时乘或除以同一个正数,不等号的方向不变/不等式左右两边同时乘或除以同一个负数,不等号的方向改变).化x 的系数化为1得,.①原不等式的解为. 考点:解一元一次不等式.26.(3,0)【分析】解不等式,并结合不等式的解,即可求出k 的值,然后将k 的值代入直线解析式中,再将y=0代入直线解析式中,即可求出结论.【详解】解:()200kx k ->≠当k >0时,解得x >2k; 当k <0时,解得x <2k; ①关于x 的不等式20(0)kx k ->≠的解集是3x >,①k >0,且23k = 解得:23k =将23k =代入直线2y kx =-+中,得223y x =-+ 当y=0时,解得:x=3①直线2y kx =-+与x 轴的交点坐标是(3,0)故答案为(3,0).【点睛】此题考查的是解不等式和求直线与x 轴的交点坐标,掌握不等式的基本性质和坐标轴上点的坐标规律是解决此题的关键.27.﹣2.【分析】根据一次函数的图象不过第二象限可得到一个关于m 的不等式组,解不等式组确定出m 的取值范围,再根据m 是整数,即可确定m 的值.【详解】①一次函数y =(m +3)x +m +2的图象不过第二象限,①3020m m +>⎧⎨+⎩, 解得:﹣3<m ≤﹣2,而m 是整数,则m =﹣2.故答案为:﹣2.【点睛】本题主要考查一次函数的图象及不等式组的整数解,掌握一次函数的图象是解题的关键.28.a <2【分析】根据不等式的基本性质,由不等式(a-2)x >1的解集为x <12a -,可得:a-2<0,据此求出a 的取值范围即可.【详解】①不等式(a-2)x >1的解集为x <12a -, ①a-2<0,①a 的取值范围为:a <2.故答案为a <2. 【点睛】此题主要考查了不等式的解集,要熟练掌握,注意不等式的基本性质的应用. 29.<【分析】根据不等式的基本性质即可解答.【详解】如果a <b ,ac >bc,则c <0.【点睛】本题主要考查不等式的基本性质,熟记不等式的性质并应用是关键. 30.x ≤m【分析】根据同小取小,即可得到不等式的解集,从而可以解答本题.【详解】解:①不等式组x m x n≤⎧⎨<⎩,且m <n , ①x ≤m ,故答案为x ≤m .【点睛】此题考查不等式组的解集,根据不等式的解集求出即可,难度一般. 31.73x -<≤-【分析】根据:同大取较大,同小取较小,小大大小中间找,大大小小解不了,可得出不等式组的解集.【详解】不等式组的解集为:73x -<≤-.【点睛】本题考查了不等式组的解集,注意求解不等式解集的法则.32.3x x-,12-. 【分析】先化简211933x x x -⎛⎫-⋅ ⎪+⎝⎭,再求出不等式组的解集,代值计算即可. 【详解】解:211933x x x -⎛⎫-⋅ ⎪+⎝⎭ ()()3(3)(3)=333x x x x x x x x ⎡⎤++--⋅⎢⎥++⎣⎦()3(3)(3)=33x x x x x x +-+-⋅+ =3x x-, 又23213x x -<⎧⎨-⎩①② 解不等式①得x >-1,解不等式①得x ≤2,①-1<x ≤2,①x 为偶数且x ≠0,①x =2, 原式231==22--. 【点睛】此题考查的是分式的化简和求不等式组解集的综合题,掌握找分式的最简公分母的方法和不等式的性质是解题的关键.33.1【分析】先求出不等式的解集,然后求出其正整数解即可.【详解】解:①350x -≤, ①53x ≤, ①正整数解是1,故答案为:1.【点睛】本题主要考查了解一元一次不等式和解不等式的正整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.34.①①①【分析】将m =4和m =1代入不等式组,再根据口诀可得出不等式解集情况,从而判断①①;由不等式组无解,并结合大大小小的口诀可得a 的取值范围,此时注意临界值;由7≤m <8,可得不等式组3、4、5、6、7共5个整数解,从而判断①.【详解】解:①若m =4,则不等式组为24x x >⎧⎨≤⎩,此不等式组的解集为2<x ≤4,此结论正确;①若m=1,则不等式组为21xx>⎧⎨≤⎩,此不等式组无解,此结论正确;①若不等式组无解,则m的取值范围为m≤2,此结论错误;①若7≤m<8,则原不等式组有3、4、5、6、7共5个整数解,此结论正确;故答案为:①①①.【点睛】本题主要考查一元一次不等式组的整数解,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.35.4【详解】解①得,x>-2.5;解①得,x≤4;①-2.5<x≤4,①最大整数解为4.36.x>5【分析】先去分母,然后通过移项、化未知数系数为1来解不等式.【详解】解:在不等式的两边同时乘以6,得2x+2<3x﹣3,移项,得﹣x<﹣5,化系数为1,得x>5.故答案是:x>5.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.37.1【分析】先解不等式组,再根据条件得到a,b的值,然后可求出a+b的值.【详解】解2223x a x b ⎧+≥⎪⎨⎪-<⎩得3422b a x +-≤<, 因为01x ≤<,所以4202a a -==,,3112b b +==-,, 1a b +=.考点:不等式组.38.2b <【分析】根据抛物线2222y x bx b b =++-+与x 轴没有交点,可知当22220x bx b b ++-+=时,()()22241+20,b b b --⨯⨯<从而可以求得b 的取值范围. 【详解】解:①抛物线2222y x bx b b =++-+与x 轴没有交点,①22220x bx b b ++-+=无解,①()()22241+20,b b b --⨯⨯<解得:2,b <故答案为: 2.b <【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用一元二次方程根的判别式解答.39.01a <<或203a <<- 【分析】分当a<0时和当0a >时两种情况讨论,根据函数的增减性以及y >4即可求得a 的取值范围.【详解】解:当a<0时,一次函数y =ax +6,y 随x 增大而减小,在x=3时取得最小值,此时364a +>,解得23a >-,此时203a <<-; 当0a >时,一次函数y =ax +6,y 随x 增大而增大,在x=-2时取得最小值,此时264a -+>,解得1a <,此时01a <<;综上所述,01a <<或203a <<-. 故答案为:01a <<或203a <<-. 【点睛】本题考查一次函数的增减性,一次函数与一元一次不等式.能分类讨论是解题关键.40.4x ≥-,-4,-3,-2,-1,0.【分析】通过去分母,去括号,移项,合并同类项,未知数系数化为1,即可求解. 【详解】解:4312163x x ++≤+, 去分母得:()432126x x +≤++,去括号,移项得:34264x x -≤+-,合并同类项得:4x -≤,解得:4x ≥-,①它的非正整数解为:-4,-3,-2,-1,0.【点睛】本题主要考查解一元一次不等式,熟练掌握去分母,去括号,移项,合并同类项,未知数系数化为1,是解题的关键.41.(1)14+(2)x >2,见解析. 【分析】根据负整数指数幂的性质、特殊角的三角函数值、二次根式化简以及零指数幂的性质依次计算后,再根据实数的运算法则求得计算结果即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集即可.【详解】(1)原式=14﹣2×12+1=14﹣ =14 (2)()295131x x x x --⎧⎪⎨->+⎪⎩①② 解不等式①得:x≥﹣3,解不等式①得:x >2,则不等式组的解集为x >2,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是实数的运算和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.42.(1)(2)(3)(4)【详解】试题分析:将上述不等式的解集规范的表示在数轴上即可.试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点睛:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”.43.11x x +-,13【分析】先利用分式的加减乘除混合运算法则进行化简,然后把不等式2192136x x -+-≤的最小整数解代入求值即可.【详解】解:2222221211x x x x x x x x x ⎛⎫+--÷ ⎪--++⎝⎭ =()()()()()22111111x x x x x x x x x ⎡⎤+-+-⋅⎢⎥+--⎢⎥⎣⎦=2111x x x x x x+⎛⎫-⋅ ⎪--⎝⎭ =11x x x x+⋅-=11x x +-, 由不等式219236x x -+-≤1,得4x -2-9x -2≤6, ①x ≥-2,①使分式有意义的x 值是1x ≠±,0x ≠,且x 是不等式219236x x -+-≤1的最小整数解, ①x =-2,当x =-2时,原式=211213-+=--. 【点睛】此题主要考查分式的化简求值和解一元一次不等式,熟练掌握分式的混合运算法则和解一元一次不等式的步骤是解题关键.44.7x >-.在数轴上表示见解析【分析】先去括号,再移项,合并同类项,系数化为1,最后在数轴上表示出解集即可.【详解】解:去括号得:9324->-x x ,移项得:4329->-x x ,解得:7x >-.在数轴上表示如下:【点睛】此题主要考查了解一元一次不等式,以及在数轴上表示不等式的解集,解题关键是掌握不等式的性质.45.﹣1≤x <1【详解】试题分析:先求此不等式的解集,再根据不等式的解集在数轴上表示方法画出图示即可求得.试题解析:解:1211123x x x -≤⎧⎪⎨+-+⎪⎩①<② 解①得:x ≥﹣1,解①得:x <1.在数轴上表示如下:则不等式组的解集是:﹣1≤x <1.46.(1)购买甲种消毒液每桶需30元,乙种消毒液每桶需20元(2)12【分析】(1) 设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,列方程组求解即可.(2) 设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,列出不等式求解即可.(1)设甲种消毒液每桶x 元,乙种消毒液每桶y 元,根据题意,得341703250x y x y +=⎧⎨-=⎩, 解得3020x y =⎧⎨=⎩, 故购买甲种消毒液每桶需30元,乙种消毒液每桶需20元.(2)设购买甲种消毒液x 桶,则购买乙种消毒液(21-x )桶,根据题意,得30x +20(21-x )≤540,解得x ≤12,①x 是正整数,①至多可购进甲种消毒液12桶.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,熟练掌握方程组的求解,不等式整数解的求解是解题的关键.47.(1)每件文化衫和每本相册的价格分别为35元,26元(2)共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【分析】(1)设每件文化衫和每本相册的价格分别为x 元,y 元,然后根据每件文化衫比每本相册贵9元,用200元恰好可以买到2件文化衫和5本相册列出方程求解即可; (2)设购买文化衫m 件,购买相册(50)m -本,然后根据拿出不少于270元但不超过300元的资金为老师买纪念品列出不等式组求解即可.(1)解:设每件文化衫和每本相册的价格分别为x 元,y 元,由题意得:925200x y x y -=⎧⎨+=⎩, 解得3526x y =⎧⎨=⎩, 答:每件文化衫和每本相册的价格分别为35元,26元;(2)解:设购买文化衫m 件,购买相册(50)m -本,由题意得,180********(50)1800270m m -≤+-≤-, 解得25222599m ≤≤,且m 为整数, ①共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.答:共有3种方案:购买文化衫23件,购买相册27本;购买文化衫24件,购买相册26本;购买文化衫25件,购买相册25本.【点睛】本题主要考查了二元一次方程组和一元一次不等式组的应用,解题的关键在于正确理解题意.48.32x -≤<【分析】先求出每个不等式的解集,再求出不等式组的解集即可. 【详解】4713112x x x -<⎧⎪⎨+≥-⎪⎩①② 由①得2x <,。

中考数学专题复习训练不等式与不等式组

中考数学专题复习训练不等式与不等式组

中考复习专题训练不等式与不等式组一、选择题1. 不等式x+3>3x-5 的解集为〔〕A. x<1B. x>2 C. x<2 D. x<42. 若是,那么a 必定满足〔〕A. a≠0B. a<0 C. a>0 D. a 为任意数3. a,b,c 均为有理数,假设a>b,且b≠0,那么以下结论不用然成立的是〔〕2A. a >abB. a+c>b+cC. D. c﹣a<c﹣ b4. 假设不等式组的解集是x>3,那么m的取值范围是〔〕A. m≤3B. m>3 C. m<3 D. m=35. 关于不等式组〔a、b 是常数〕,以下说法正确的选项是〔〕A. 当a<b 时无解B. 当a≥b时无解 C. 当a≥b时有解 D. 当a=b 时有解6. 某种品牌的八宝粥,外包装注明:净含量为330±10 g,说了然这罐八宝粥的净含量x 的范围是〔〕A. 320<x<340B. 320≤x<340 C. 320<x≤340 D. 320≤x≤3407. 在代数式中,x 的取值范围是〔〕1A. x≥﹣1B. x>﹣1 C. x>﹣1 且x≠0D. x≠08. 假设点A〔m-3,1-3m〕在第三象限,那么m的取值范围是( ).A.B.C. D.9. 假设,那么a、b 的大小关系为〔〕A.B.C. D. 不能够确定10. 贵阳市今年5 月份的最高气温为27℃,最低气温为18℃,某一天的气温为t ℃,那么下面表示气温之间的不等关系正确的选项是〔〕A. 18<t <27B. 18≤t <27 C. 18<t ≤27 D. 18≤t ≤2711. 关于x 的不等式组有四个整数解,那么a 的取值范围是〔〕A.B.C. D.12. 如图,正比率函数y1 与反比率函数y2 订交于点E〔-1 ,2〕,假设y1 >y2>0,那么x 的取值范围在数轴上表示正确的选项是( )2A.B.C.D.二、填空题13. 关于x﹣a=2 的解为正数,那么a 的取值范围为________.14. 假设不等式组有解,那么a 的取值范围是________.15. 用一根铁丝围成一个长方形,使长方形的一边长为6 厘米且长方形的面积不小于12 平方厘米,那么该铁丝最少长________厘米.16. 假设不等式组的解集是﹣3<x<2,那么a+b=________.17. 一次函数y=kx+b 的图象经过两点A〔0,1〕,B〔2,0〕,那么当x________时,y≤0.18. 关于x 的不等式组的整数解共有4 个,那么a 的取值范围是________19. 不等式组的解集为x<6m+3,那么m的取值范围是________.20. 设二次函数y=x 2+ax+b 图像与x 轴有2 个交点,A(x 1,0) ,B(x 2,0) ;且0< x 1<1;1< x 2<2, 那么〔1〕a 的取值范围是________;b 的取值范围是________;那么〔2〕的取值范围是________.三、解答题21. 解不等式组:22. 为了丰富学生的体育生活,学校准备购进一些篮球和足球,篮球、足球的单价分别为100 元,90元.若是该校方案购进篮球、足球共52 个,总花销不高出5000 元,那么最少要购置多少个足球?323. 某校为美化校园,方案对面积为1800 平方米的地域进行绿化,安排甲、乙两个工程队完成.甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的 2 倍,并且在独立完成面积为400 平方米地域的绿化时,甲队比乙队少用 4 天.〔1〕求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?〔2〕假设学校每天付给乙队的绿化花销是0.25 万元,每天付给甲队的绿化花销比乙队多60%,要使此次学校付给甲、乙两队的绿化总花销不高出8 万元,最少应安排甲队工作多少天?24. 温州某学校迁居,教师和学生的寝室数量在增加,假设该校今年准备建筑三类不同样的寝室,分别为单人间〔供一个人住宿〕,双人间〔供两个人住宿〕,四人间〔供四个人住宿〕.因实质需要,单人间的数量在20 至于30 之间〔包括20 和30〕,且四人间的数量是双人间的 5 倍.〔1〕假设2021 年学校寝室数为64 个,2021 年建成后寝室数为121 个,求2021 至2021 年的平均增加率;〔2〕假设建成后的寝室可供600 人住宿,求单人间的数量;〔3〕假设该校今年建筑三类不同样的寝室的总数为180 个,那么该校的寝室建成后最多可供多少师生住宿?4参照答案一、选择题D C A A B D B D A D B A二、填空题13. a>﹣214. a>﹣115. 1616. 017. x≥218. ﹣2≤a<﹣119. m≤020. -3 ?a ?-1 ;0? b?2;< <2三、解答题21. 解:,解不等式①得x>﹣2,解不等式②得,原不等式组的解集为﹣2<x≤.22. 解:设购置足球m个,那么购置篮球〔52﹣m〕个,依照题意,得:〔52﹣m〕×100+90m≤5000,解得:m≥20,答:最少要购置20 个足球23. 〔1〕解:设乙工程队每天能完成绿化的面积是x 平方米,那么甲工程队每天能完成绿化的面积是2x 平方米,依照题意得﹣=4,解得:x=50,经检验x=50 是原方程的解,当x=50 时,2x=1005〔2〕解:设应安排甲队工作 a 天,依照题意得:0.25 ×〔1+60%〕a+ ×0.25 ≤8,解得a≥1024. 〔1〕解:设2021 至2021 年的平均增加率是x,依题意有64〔1+x〕2=121,解得x1=0.375 ,x2=﹣2.375 .故2021 至2021 年的平均增加率为37.5%〔2〕解:设双人间的数量为y 间,那么四人间的数量为5y 间,依题意有20≤600﹣2y﹣4×5y≤30,解得25 ≤y≤26,∵y为整数,∴y=26,600﹣2y﹣4×5y=600﹣52﹣520=28.故单人间的数量是28 间〔3〕解:由于四人间的数量是双人间的 5 倍,那么四人间和双人间的数量是5+1=6 的倍数,∵150~160 间6 的最大倍数是156,∴双人间156÷6=26〔间〕,四人间的数量26×5=130〔间〕,单人间180﹣156=24〔间〕,24+26×2+130×4=596〔名〕.答:该校的寝室建成后最多可供596 名师生住宿6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学一轮复习不等式(组)练习题命题人:康老师 考试时间:120分钟 满分:120分第Ⅰ卷 选择题 (共24分)一、选择题(本大题共l2个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、已知a >b ,若c 是任意实数,则下列不等式中总是成立的是( )A .a+c <b+cB .a ﹣c >b ﹣cC .ac <bcD .ac >bc2、已知不等式:①,1>x ②,4>x ③,2<x ④,12->-x 从这四个不等式中取两个,构成正整数解是2的不等式组是( )A.①与②B.②与③C.③与④D.①与④3、某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高( )A. 40%B. 33.4%C. 33.3%D. 30%4、有一根长40mm 的金属棒,欲将其截成x 根7mm 长的小段和y 根9mm 长的小段,剩余部分作废料处理,若使废料最少,则正整数x ,y 应分别为( )A. 1x =,3y =B. 3x =,2y =C. 4x =,1y =D. 2x =,3y =5、已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .6、一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( )A .B .C .D .的取值范围是则的解满足条件、已知方程组m y x y x m y x ,022127<+⎩⎨⎧=+-=+ A.1>m B. 2>m C. 3<m D. 3>m8、不等式211841x x x x -≥+⎧⎨+≤-⎩的解集是( ) A .3x ≥ B .2x ≥ C .23x ≤≤ D .空集9、有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、大砝码皆为1克,且图(三)是将糖果与砝码放在等臂天平上的两种情形。

判断下列哪一种情形是正确的?10、在x=﹣4,﹣1,0,3中,满足不等式组的x 值是( ) A .﹣4和0 B .﹣4和﹣1 C .0和3 D .﹣1和011、某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( )A .6.0元B .7.0元C .8.0元D .9.0元5 5 5 5 1 1 5 5 5 5 1(A) 5 1 5 1 1 (B) (C) (D) 5 5 5 5 1 圖(三)的取值范围是有实数解,则实数、若不等式组m m x x ⎩⎨⎧≥-≥003-512( ) A. 35≤m B.35<m C. 35>m D. 35≥m 第Ⅱ卷 非选择题 (共96分)二、填空题(本大题共6个小题,每小题3分,共l8分.把答案写在题中横线上)13、如图,a ,b ,c 三种物体的质量的大小关系是 .的取值范围是个,则的整数解共有的不等式组、已知关于a x a x x 301014⎩⎨⎧>->- 15、有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料重20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.16、我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对 道题.的值是那么的解集是、如果不等式组b a x b x a x +<≤⎪⎩⎪⎨⎧<-≥+,10322217 18、的最小值是则已知|1x |),2(2643+-+≤+x x三、解答题(本大题共8个小题,共78分.解答应写出文字说朋、证明过程或演算步骤)19、(本小题8分)解不等式组:,并判断﹣1、这两个数是否为该不等式组的解.20、(本小题8分)先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为;(2)分式不等式的解集为;(3)解一元二次不等式2x2﹣3x<0.21、(本小题10分)某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分.(1) 小明考了68分,那么小明答对了多少道题?(2) 小亮获得二等奖(70~90分),请你算算小亮答对了几道题?22、(本小题10分)某公园出售的一次性使用门票,每张10元,为了吸引更多游客,新近推出购买“个人年票”的售票活动(从购买日起,可供持票者使用一年).年票分A.B 两类:A类年票每张100元,持票者每次进入公园无需再购买门票;B类年票每张50元,持票者进入公园时需再购买每次2元的门票.某游客一年中进入该公园至少要超过多少次时,购买A类年票最合算?23、(本小题10分)筹建中的城南中学需720套担任课桌椅,光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.24、(本小题10分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?25、(本小题10分)某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只?(2分)(2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只?(3分)(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?(3分)26、(本小题12分)某楼盘一楼是车库(暂不销售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款). 方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式;(2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体的数据阐明你的看法。

答案一、选择题1、B2、D3、B4、B5、A6、C7、D 8、A 9、D 10、D 11、B 12、A二、填空题13、a>b>c14、-3≤a<-215、4216、1417、118、1三、解答题19、解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,所以﹣1是该不等式组的解,不是该不等式组的解.20、解:(1)∵x2﹣16=(x+4)(x﹣4)∴x2﹣16>0可化为(x+4)(x﹣4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x >4,解不等式组②,得x <﹣4,∴(x+4)(x ﹣4)>0的解集为x >4或x <﹣4,即一元二次不等式x 2﹣16>0的解集为x >4或x <﹣4.(2)∵ ∴或 解得:x >3或x <1(3)∵2x 2﹣3x=x (2x ﹣3)∴2x 2﹣3x <0可化为 x (2x ﹣3)<0由有理数的乘法法则“两数相乘,同号得正”,得或解不等式组①,得0<x <,解不等式组②,无解,∴不等式2x 2﹣3x <0的解集为0<x <.21、解:(1) 设小明答对了x 道题,依题意得:5x -3(20-x )=68.解得:x =16.答:小明答对了16道题.(2) 设小亮答对了y 道题,依题意得:⎩⎪⎨⎪⎧5y -3(20-y )≥705y -3(20-y )≤90. 因此不等式组的解集为1614≤y ≤1834.∵ y 是正整数,∴ y =17或18.答:小亮答对了17道题或18道题.22、解:设某游客一年中进入该公园x 次,依题意得不等式组:,解①得:x >10,解②得:∴不等数组的解集是:x >25.答:某游客一年进入该公园超过2x=25次时,购买A 类年票合算.23、解:(1)7206=120÷ ,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84)x -人生产椅子, 则125720,584245720,4x x ⨯⨯≥-⨯⨯≥⎧⎨⎩ 解得6060,60,8424x x x ≤≤∴=-=,∴生产桌子60人,生产椅子24人。

24、解:(1)设每台电脑机箱的进价是x 元,液晶显示器的进价是y 元,得1087000254120x y x y +=⎧⎨+=⎩,解得60800x y =⎧⎨=⎩答:每台电脑机箱的进价是60元,液晶显示器的进价是800元(2)设购进电脑机箱z 台,得60800(50)2224010160(50)4100x x x x +-≤⎧⎨+-≥⎩,解得24≤x ≤26因x是整数,所以x=24,25,26利润10x+160(50-x)=8000-150x,可见x越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。

相关文档
最新文档