初一不等式组练习题30道
(完整版)初一不等式难题-经典题训练(附答案)
初一不等式难题,经典题训练(附答案)1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0521x a x ->⎧⎨-≥-⎩无解,则a 的取值范围是_________3. 若关于x 的不等式(a-1)x-2a +2>0的解集为x<2,则a 的值为( )A 0B 2C 0或2D -1 4. 若不等式组220x a b x ->⎧⎨->⎩的解集为11x -<<,则2006()a b +=_________5. 已知关于x 的不等式组的解集41320x xx a +⎧>+⎪⎨⎪+<⎩为x<2,那么a 的取值范围是_________6. 若方程组的解满足4143x y k x y +=+⎧⎨+=⎩条件01x y <+<,则k 的取值范围是( )A. 41k -<<B. 40k -<<C. 09k <<D. 4k >- 7. 不等式组9511x x x m +<+⎧⎨>+⎩的解集是2x >,则m 的取值范围是( )A. 2m ≤B. 2m ≥C. 1m ≤D. 1m f 8.不等式()()20x xx +-<的解集是_________9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______10.已知a,b 为常数,若ax+b>0的解集是13x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <11.如果关于x 的不等式组的整7060x m x n -≥⎧⎨-⎩p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共有( )对A 49B 42C 36D 13 12.已知非负数x,y,z 满足123234x y z ---==,设345x y z ω=++,求的ω最大值与最小值12.不等式A 卷1.不等式2(x + 1) -12732-≤-xx 的解集为_____________。
初一不等式组练习题30道
一、选择题(4×8=32)1、下列数中是不等式> 的解的有(A )76, 73, 79, 80, 74.9, 75.1, 90, 60A、5个B、6个C、7个D、8个2、下列各式中,是一元一次不等式的是(C )A、5+4>8B、C、≤5D、≥03、若,则下列不等式中正确的是(D )A、B、C、D、4、用不等式表示与的差不大于,正确的是(D )A、B、C、D、5、不等式组的解集为(D )A 、> B、< < C、< D、空集6、不等式> 的解集为(C )A、> B 、<0 C、>0 D、<7、不等式<6的正整数解有(C )A 、1个B 、2个C、3 个D、4个8、下图所表示的不等式组的解集为(A )A 、B、C、D、二、填空题(3×6=18)9、“ 的一半与2的差不大于”所对应的不等式是0.5x-2≤-110、不等号填空:若a<b<0 ,则>;>;<11、当a>1 时,大于212、直接写出下列不等式(组)的解集①x>6 ②x>-2③-1<x<213、不等式的最大整数解是 214、某种品牌的八宝粥,外包装标明:净含量为330g 10g,表明了这罐八宝粥的净含量的范围是320<x<340三、解下列不等式,并把它们的解集在数轴上表示出来.四、解方程组(6×2=12)五、解答题(8×2=16)19、代数式的值不大于的值,求的20、方程组的解为负数,求的范围六、列不等式(组)解应用题(10)22、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。
某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?。
不等式与不等式组练习题
不等式与不等式组练习题
一、选择题
1.如果x>5,那么下列哪个不等式是正确的?
A.x+2<7
B.x-3>2
C.4x<20
D.3x>15
2.哪个数是不等式2x-1<9 的解?
A.4
B.5
C.3
D.2
二、填空题
1.解不等式3x-7>8,那么x应满足的条件是x>
2.如果4(x-3)+6>10,那么x的取值范围是
三、解答题
1.解不等式5-2x>3 并写出解集
2.解不等式组:
x+3>7
2x-5<5
并确定不等式组的解集
四、应用题
1.一个数的3倍减去4大于10,求这个数的取值范围
2.某校规定学生每天的阅读时间不少于30分钟,小华一周阅读了
3.5小时,问小华每天的阅读时间是否满足学校规定?
五、探究题
1.探讨不等式ax+b>c(其中a,b,c是常数,a≠0)的解集与a 的符号之间的关系
2.如果一个不等式的解集是x<5,另一个不等式的解集是x>3,求这两个不等式组成的不等式组的解集
六、拓展题
1.已知x 满足2x-1<7 和 3x+1>11,求 x 的值
2.一个数加上8后,乘以2得到的结果是20,求这个数的取值范围。
解不等式组50道题
解不等式组50道题一、简单一元一次不等式组(1 - 10题)1. 解不等式组:x + 3>2 2x - 1<5- 解第一个不等式x + 3>2,移项可得x>2 - 3,即x>- 1。
- 解第二个不等式2x-1 < 5,移项得到2x<5 + 1,2x<6,两边同时除以2,得x < 3。
- 所以不等式组的解集为-1 < x < 3。
2. 解不等式组:3x-2≤slant1 x+1>0- 解第一个不等式3x-2≤slant1,移项得3x≤slant1 + 2,3x≤slant3,两边同时除以3,得x≤slant1。
- 解第二个不等式x + 1>0,移项得x>-1。
- 所以不等式组的解集为-1 < x≤slant1。
3. 解不等式组:2x+3≥slant1 -x + 2>0- 解第一个不等式2x+3≥slant1,移项得2x≥slant1 - 3,2x≥slant - 2,两边同时除以2,得x≥slant - 1。
- 解第二个不等式-x + 2>0,移项得x<2。
- 所以不等式组的解集为-1≤slant x<2。
4. 解不等式组:4x-1<7 3x+2≥slant - 1- 解第一个不等式4x-1<7,移项得4x<7 + 1,4x<8,两边同时除以4,得x < 2。
- 解第二个不等式3x+2≥slant - 1,移项得3x≥slant - 1-2,3x≥slant - 3,两边同时除以3,得x≥slant - 1。
- 所以不等式组的解集为-1≤slant x<2。
5. 解不等式组:5x-3>2x x+4<2x - 1- 解第一个不等式5x-3>2x,移项得5x-2x>3,3x>3,两边同时除以3,得x > 1。
- 解第二个不等式x + 4<2x-1,移项得x-2x<-1 - 4,-x<-5,两边同时乘以-1,不等号变向,得x>5。
2021年七年级数学下册第九单元《不等式与不等式组》经典练习题(答案解析)
一、选择题1.已知关于x 的不等式组5210x x a -≥-⎧⎨->⎩无解,则a 的取值范围是( )A .a <3B .a ≥3C .a >3D .a ≤32.程序员编辑了一个运行程序如图所示,规定:从“输入一个值x 到结果是否75>”为一次程序操作,如果要程序运行两次后才停止,那么x 的取值范围是( )A .18x >B .37x <C .1837x <<D .1837x <≤3.若关于x 的不等式组0122x a x x ->⎧⎨->-⎩只有两个整数解,则a 的取值范围是( )A .21a -≤<-B .21a -≤≤-C .21a -<<-D .21a -<≤- 4.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥5.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<- D .1162a --6.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥D .56x ≤7.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数 答错题数得分 A20 0 100 B18 2 88 C14 6 64 D15570E9 11 34下列说法有误的是( ) A .胜一场积5分,负一场扣1分 B .某参赛选手得了80分 C .某参赛选手得了76分D .某参赛选手得分可能为负数8.整数a 使得关于x ,y 的二元一次方程组931ax y x y -=⎧⎨-=⎩的解为正整数(x ,y 均为正整数),且使得关于x 的不等式组()1211931x x a ⎧+≥⎪⎨⎪-<⎩无解,则a 的值可以为( )A .4B .4或5或7C .7D .119.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b< 10.若关于x 的方程 332x a += 的解是正数,则a 的取值范围是( )A .23a <B .23a >C .a 为任何实数D .a 为大于0的数11.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m12.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( ) A .100厘米B .101厘米C .102厘米D .103厘米13.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .14.下列命题是假命题的是( ).A .两条直线被第三条直线所截,如果同位角相等,那么内错角的角平分线互相平行B .在实数7.5-15327-,π-,22中,有3个有理数,2个无理数C .在平面直角坐标系中,点(21,7)P a a -+在x 轴上,则点P 的坐标为(7,0)-D .不等式组513(1)131722x x x x ->+⎧⎪⎨-≤-⎪⎩的所有整数解的和为715.下列不等式说法中,不正确的是( ) A .若,2x y y >>,则2x >B .若x y >,则22x y -<-C .若x y >,则22x y >D .若x y >,则2222x y --<--二、填空题16.a b ≥,1a -+_____1b -+17.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.18.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.19.若不等式2(x+3)>1的最小整数解是方程2x-ax=3的解,则a 的值为__________________. 20.若关于x 的不等式组2()12153xm x 的解集为76x -<<-,则m 的值是______.21.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.22.已知a 、b 的和,a 、b 的积及b 的相反数均为负,则a ,b ,a -,+a b ,b a -的大小关系是________.(用“<”把它们连接起来)23.不等式组()2x 15x 742x 31x 33⎧+>-⎪⎨+>-⎪⎩的解集为______24.方程组43165x y k x y -=+⎧⎨+=⎩的解x 、y 满足条件0783x y ,则k 的取值范围_____.25.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.26.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.三、解答题27.解不等式:431132x x +-->,并把解集在数轴上表示出来.28.(1)解方程组26m n m n =⎧⎨+=⎩ (2)解不等式组26015a a +<⎧⎨-≤⎩(3)计算:()33532a a a a ⋅⋅+ (4)计算:()()34++x x29.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x+⎧-<⎪⎨⎪-⎩30.解不等式(组),并将解集表示在数轴上: (1)6194x x ->-(2)13215232(3)4x x x x -+⎧-≥⎪⎨⎪-->⎩。
初一不等式难题-经典题训练(附答案)
初一不等式难题-经典题训练(附答案)1.已知不等式 $3x-a\leq 0$ 的正整数解正好是 1,2,3,则$a$ 的取值范围是多少?2.已知关于 $x$ 的不等式组 $\begin{cases} x-a>\dfrac{1}{5-2x}-1 \\ 5-2x\geq -1 \end{cases}$ 无解,则 $a$ 的取值范围是多少?3.若关于 $x$ 的不等式 $(a-1)x-a+2>0$ 的解集为 $x<2$,则 $a$ 的值为多少?4.若不等式组 $\begin{cases} x-a>2 \\ b-2x>\dfrac{x+4}{x+1} \end{cases}$ 的解集为 $-1<x<1$,则$\dfrac{a+b}{b-2}$ 的值为多少?5.已知关于 $x$ 的不等式组的解集为 $\begin{cases}3x+2a<0 \\ x+a<2 \end{cases}$,若 $x<2$,则 $a$ 的取值范围是多少?6.若方程组 $\begin{cases} 4x+y=k+1 \\ x+4y=3\end{cases}$ 的解满足 $x+y<1$,则 $k$ 的取值范围是多少?7.不等式组 $\begin{cases} x+9m+1 \end{cases}$ 的解集是$x>2$,则 $m$ 的取值范围是多少?8.不等式 $(x+x)(2-x)<0$ 的解集是什么?9.当 $a>3$ 时,不等式 $ax+2<3x+b$ 的解集是 $x<2$,则$b$ 等于多少?10.已知 $a,b$ 为常数,若 $ax+b>0$ 的解集是$x<\dfrac{1}{3}$,则不等式 $bx-a<0$ 的解集是什么?11.不等式组 $\begin{cases} 7x-m\geq 0 \\ 6x-n\leq 0\end{cases}$ 的正整数解仅为 1,2,3,则合适的整数对$(m,n)$ 有多少个?12.已知非负数 $x,y,z$ 满足$\dfrac{x}{2}+\dfrac{3y}{4}+\dfrac{5z}{6}=\dfrac{1}{2}$,设$\omega=3x+4y+5z$,求 $\omega$ 的最大值和最小值。
精品 七年级数学下册 不等式及不等式组 练习题
不等式及不等式组 练习题一、选择题:1.若方程x x m x m 5)3(1)1(3--=++的解是负数,则m 的取值范围是( )A. 25.1->mB. 25.1-<mC. 25.1>mD. 25.1<m2.若x x 3223-=-,则( ) A. 32=x B. 32>x C.32≤x D. 32≥x 3.下图所表示的不等式组的解集为( )A.3>xB.32<<-xC.2->xD.32>>-x4.若不等式1)5(<-x a 的解集是51->a x ,则a 的取值范围是( ) A. 5>a B.5<a C. 5≠a D. 以上都不对5.三个连续自然数的和不大于18,则符合要求的自然数有( )A.3组B.4组C.5组D.6组6.一元一次不等式组⎩⎨⎧>>b x a x 的解集是a x >,则a 与b 的关系为( ) A. b a ≥ B. b a ≤ C. 0>≥b a D. 0<≤b a7.若关于x 的不等式组⎩⎨⎧->+>-xx a x 14)1(202的解集是a x 2>,则a 的取值范围是( ) A.4>a B.2>a C. 2=a D. 2≥a8.如果不等式组⎩⎨⎧>-<+n x x x 737的解集是x>7,则n 的取值范围是( ) A. 7≥n B. 7≤n C. 7=n D. 7<n9.若abcd>0,a+b+c+d>0,则a 、b 、c 、d 中负数的个数至多有( )A. 1B. 2C. 3D. 410.已知关于x 的不等式⎪⎩⎪⎨⎧>->>a x x x 12无解,则a 的取值范围是( )A.1-≤aB. 2≥aC.21<<-aD. 21>-<a a 或11.如果0<<n m ,那么下列结论不正确的是( )A. 99-<-n mB. n m ->-C.m n 11< D. 1>mn12.如果关于x 的不等式1232->-a a x 与5<a x 同解,则a( ) A. 不等式 B.等于-3 C.等于52-D. 大于52- 二、填空题:13.一轮船从甲地到乙地顺流行驶需4h ,从乙地到甲地逆流行驶需6h ,有一木筏由甲地漂流到乙地,需 h 。
解不等式组计算专项练习60题 (有答案)
解不等式组专项练习60题(有答案) 1. 2..3..4.,5..6..7.8.. 9. 10. 11. 12., 13.. 14., 15. 16. 17.. 18. 19. 20..21.. 22.. 23.24.25.,.26. 27., 28.29..30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围.31..32..33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34.35., 36.,并将其解集在数轴上表示出来.37..38.,并把解集在数轴上表示出来.39.已知关于x、y的方程组的解满足x>y>0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上表示出来.41.42.43..44..45..46..47.关于x、y的二元一次方程组,当m为何值时,x>0,y≤0.48.并将解集表示在数轴上.49.已知关于x、y的方程组的解是一对正数,求m的取值范围. 50.已知方程组的解满足,化简.51..52. 53..54.. 55.. 56.57.58. 59.60.解不等式组60题参考答案:1、 解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3,5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1,8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4, 10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1,12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3,13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4.14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3<x≤315.解:由(1)得:x+4<4,x<0由(2)得:x﹣3x+3>5,x<﹣1∴不等式组解集是:x<﹣116.解:,解不等式(1),得x<5,解不等式(2),得x≥﹣2,因此,原不等式组的解集为﹣2≤x<5. 17.解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4 ∴原不等式组的解集为:1≤x<4.18.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解集为﹣1≤x<3.19.解:解不等式(1)得x<1解不等式(2)得x≥﹣2所以不等式组的解集为﹣2≤x<1.20.解:解不等式①,得x>﹣.解不等式②,得x≤4.所以,不等式组的解集是﹣<x≤4.21.解:①的解集为x≥1②的解集为x<4原不等式的解集为1≤x<4.22.解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.23.解:解不等式2x+5≤3(x+2),得x≥﹣1解不等式x﹣1<x,得x<3.所以,原不等式组的解集是﹣1≤x<3.24.解:解不等式①,得x≥﹣1,解不等式②,得x<3,∴原不等式组的解是﹣1≤x<3. 25.解:由题意,解不等式①,得x<2,解不等式②,得x≥﹣1,∴不等式组的解集是﹣1≤x<2.26.:由不等式①得:x≥0由不等式②得:x<4原不等式组的解集为0≤x <427.解:由不等式①得:2x≤8,x≤4.由不等式②得:5x﹣2+2>2x,3x >0,x>0.∴原不等式组的解集为:0<x≤4.28.解:解不等式①,得x≤﹣1,解不等式②,得x>﹣2,所以不等式组的解集为﹣2<x≤﹣1. 29.解:解不等式①,得x≤2.解不等式②,得x>﹣3.所以原不等式组的解集为x≤2.30. 解:由2a﹣3x+1=0,3b﹣2x﹣16=0,可得a=,b=,∵a≤4<b,∴,由(1),得x≤3.由(2),得x>﹣2.∴x的取值范围是﹣2<x≤3. 31.解:由①得:x≤2.由②得:x>﹣1.∴不等式组的解集为﹣1<x≤2.32.解:解不等式①,得x>;解不等式②,得x≤4.∴不等式的解集是<x≤4.33.解:把a,b代入得:2×.化简得:6x﹣21≤15<2x+8.解集为:3.5<x≤6.34.解:解不等式①,得x≤2.5,解不等式②,得x>﹣1,解不等式③,得x≤2,所以这个不等式组的解集是﹣1<x≤2.35.解:解不等式①,得x≥﹣1.解不等式②,得x<2.所以不等式组的解集是﹣1≤x<2.36.解:由①,得x<2.由②,得x≥﹣1.∴这个不等式组的解集为﹣1≤x<2.37.解:由①得:x>﹣1由②得:x所以解集为﹣1<x.38.解:由①得:﹣2x≥﹣2,即x≤1,由②得:4x﹣2<5x+5,即x>﹣7,所以﹣7<x≤1.在数轴上表示为:39.解:由方程组,解得.由x>y>0,得.解得a>2当2<a≤3时,|a|+|3﹣a|=a+3﹣a=3;当a>3时,|a|+|3﹣a|=a+a﹣3=2a﹣3.40.解:由(1)得x<8由(2)得,x≥4故原不等式组的解集为4≤x<8.41.解:由①得2x<6,即x<3,由②得x+8>﹣3x,即x>﹣2,所以解集为﹣2<x<3.42.解:(1)去括号得,10﹣4x+12≥2x﹣2,移项、合并同类项得,﹣6x≥﹣24,解得,x≤4;(2)去分母得,3(x﹣1)>1﹣2x,去括号得,3x﹣3>1﹣2x,移项、合并同类项得,5x>4,化系数为1得,x>.∴不等式组的解集为:<x≤4.43.解:解第一个不等式得:x<;解第二个不等式得:x≥﹣12.故不等式组的解集是:﹣12≤x<.44.解:原方程组可化为:,由(1)得,x<﹣3由(2)得,x≥﹣4根据“小大大小中间找”原则,不等式组的解集为﹣4≤x<﹣3.45.由①得:x<2,由②得:x≥﹣1∴﹣1≤x<2.46.整理不等式组得解之得,x>﹣2,x≤1∴﹣2<x≤147.解:①+②×2得,7x=13m﹣3,即x=③,把③代入②得,2×+y=5m﹣3,解得,y=,因为x>0,y≤0,所以,解得<m≤848. 解不等式①,得x≤,解不等式②,得x≥﹣8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为﹣8≤x≤.49.解:由题意可解得,解得,故<m<1350.解:由2x﹣2=5得x=,代入第一个方程得+2y=5a;则y=a﹣,由于y<0,则a<(1)当a<﹣2时,原式=﹣(a+2)﹣[﹣(a﹣)]=﹣2;(2)当﹣2<a<时,原式=a+2﹣[﹣(a﹣)]=2a+;(3)当<a<时,原式=a+2﹣(a﹣)=2;51.解不等式(1)得:2﹣x﹣1≤2x+4 ﹣3x≤3 x≥﹣1解不等式(2),得:x2+x>x2+3x ﹣2x>0 x<0 ∴原不等式组的解集为:﹣1≤x<0. 52.解不等式(1)得:x≥-1 解不等式(2),得:x<2 ∴原不等式组的解集为:﹣1≤x<2. 53.解①得x<解②得x≥3,∴不等式组的解集为无解.54.解第一个不等式得x<8解第二个不等式得x≥2∴原不等式组的解集为:2≤x<8.55.解:由①得:1﹣2x+2≤5∴2x≥﹣2即x≥﹣1由②得:3x﹣2<2x+1∴x<3.∴原不等式组的解集为:﹣1≤x<3.56.解:原不等式可化为:即在数轴上可表示为:∴不等式的解集为:1≤x<357.解:,解不等式①,得x<3,解不等式②,得x≥﹣1,把不等式的解集在数轴上表示出来,如图所示.不等式组的解集是﹣1≤x<358.解:由题意,解不等式①得x>2,不等式②×2得x﹣2≤14﹣3x解得x≤4,∴原不等式组的解集为2<x≤4.59.解:解不等式①,得x<2.(2分)解不等式②,得x≥﹣1.(4分)所以,不等式组的解集是﹣1≤x<2.(5分)解集在数轴上表示为:60.解:由①,得x≥﹣,由②,得x<3,所以不等式组的解集为﹣≤x<3.。
解不等式组计算专项练习60题(有答案)
解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。
3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。
4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。
5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。
6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。
7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。
9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。
10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。
11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。
12.删除此段。
13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。
14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。
15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。
初一不等式习题及答案
1初一数学不等式习题一、填空:(每小题2分,共32分)1.若a<0,下列式子不成立的是 ( )A.-a+2<3-aB.a+2<a+3C.-2a <-3aD.2a>3a 2. 若a 、b 、c 是三角形三边的长,则代数式a2+ b 2—c 2—2ab 的值 ( ).A.大于0B.小于0C.大于或等于0D.小于或等于0 3.若方程7x+2m=5+x 的解在-1和1之间,则m 的取值范围是 ()A.3>m>12 B.3>m>-12 C.112>m>-12 D.12>m>-112 4.若方程35x a -=26b x-的解是非负数,则a 与b 的关系是 ( )A.a ≤56bB.a ≥56bC.a ≥-56bD.a ≥528b5.下列不等式中,与不等式2x+3 ≤7有相同解集的是 ( )A. 1+22x -≥3x B. 722x - -23x -≥2(x+1) C. 3x -2(2)3x -≤6 D.1-13x -≤12x-6.如果不等式(m+1)x>m+1的解集是x<1,那么m 必须满足 ()A.m ≤-1B.m<-1C.m ≥1D.m>1.7.若方程组3133x y k x y +=+⎧⎨+=⎩的解、满足01x y <+<,则k 的取值范围是 ( )A .40k-<< B. 10k -<< C.08k << D. 4k >-8.设a 、b 、c 的平均数为M ,a 、b 的平均数为N ,N 、c 的平均数为P ,若a >b >c ,则M 与P 的大小关系是( ).A. M = PB. M > PC. M < PD. 不确定二、填空:(每小题2.5分,共40分)9.若不等式2123x a x b -<⎧⎨->⎩ 的解集为 11x -<<,那么(3)(3)a b -+的值等于 .10. 不等式5121216415x x x-+->- 的负整数解的积是 . 11. 代数式|x-1|-|x+4|- 5 的最大值为 . 12. 不等式3(x +1)≥5 x -2,则|2x -5| =________.13. 若关于x 的方程5x -2m =-4-x 解在1和10之间,则m 的取值为___________. 14. 不等式|x |>3的解集为_______________. 三、解答题:(各题的分值见题后,共78分)15.解列不等式,并把解集在数轴上表示出来。
初一数学不等式与不等式组30道典型题(含答案和解析及相关考点)
初一数学不等式与不等式组30道典型题(含答案和解析)1、在式子 -3<0,x ≥2,x=a,x 2-2x,x ≠3,x+1>y 中,是不等式的有( ).A. 2个B. 3个C. 4个D. 5个 答案:C.解析:式子 -3<0,x ≥2,x ≠3,x+1>y 这四个是不等式.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的定义.2、下列结论正确的有 (填序号).①如果a >b,c <d,那么a-c >b-d. ②如果a >b,那么ab >1.③如果a >b,那么1a <1b.④如果a c2<bc2,那么a <b.答案:①④.解析:①∵c <d,∴-c >-d,∵a >b,∴a-c >b-d, 故①正确.②当b <0时,ab <1, 故②错.③若a=2,b= -1,满足a >b,但1a >1b , 故③错. ④∵ac2<bc 2,∴c 2>0,∴a <b.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.3、若0<m <1,m ,m 2,1m的大小关系是( ).A. m <m 2<1m B. m 2<m <1m C. 1m <m <m 2D. 1m <m 2<m答案:B.解析:可用特殊值.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.4、若a <b,则下列各式中一定成立的是( ).A.a-1<b-1B. a 3>b3 C.-a <-b D.ac <bc 答案:A.解析:根据不等式的性质可得:不等式两边加(或减)同一个数(或式子),不等号的方不变.A. a-1<b-1,故A 选项是正确的.B.a >b,不成立,故B 选项是错误的.C. a >-b,不一定成立,故 选项是错误的.D. C 的值不确定,故D 选项是错误的.考点:方程与不等式——不等式与不等式组——不等式的基础——不等式的性质.5、下列式子中,是一元一次不等式的有( ).①x 2+x <1 ②1x +2>0 ③x-3>y+4 ④2x+3<8 A.1个 B.2个 C.3个 D.4个 答案:A.解析:①不是,因为它的未知数的最高次数是2.②不是,因为不等式的左边是1x +2,它不是整式.③不是,因为不等式中含有两个未知数.④是,因为它符合一元一次不等式定义中的三个条件. 故答案为A.考点:方程与不等式——不等式与不等式组——一元一次不等式的定义.6、如果(m+1)x >2是一元一次不等式,则m = . 答案:1. 解析:∵(m+1)x∣m ∣>2是一元一次不等式.∴m+1≠0.︱m ︱=1,解得:m=1.考点:数——有理数——绝对值——方程与不等式——不等式与不等式组——一元一次不等式的定义.7、解不等式3-4(2x-3)≥3(3-2x),并把它的解集在数轴上表示出来.答案:原不等式的解集为x≤3.画图见解析.解析:去括号,得3-8x+12≥9-6x.移项,得-8x+6x≥9-3-12.合并同类项,得-2x≥-6.系数化1 ,得x≤3.把它的解集在数轴上表示为:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.8、当a<3时,不等式ax≥3x+7的解集是..答案:x≤7a−3解析:ax≥3x+7.ax-3x≥7.(a-3)x≥7.∵a<3.∴a-3<0..∴x≤7a−3考点:方程与不等式-不等式与不等式组-含参不等式(组)-解含参不等式.(x-5)-1>x+m的解集为x<2,则m的值为.9、已知不等式12答案:-4.5.解析:1(x-5)-1>x+m.212x-52-1-x >m.-12x >m+72. x <-2m-7. ∵解集为x <2. 则-2m-7=2. m=-4.5.考点:方程与不等式——不等式与不等式组——含参不等式(组)——已知解集反求参数.10、若不等式4x-a <0只有三个正整数解,则 的取值范围 . 答案:12<a ≤16.解析::将4x-a <0变形为x <a4.不等式只有三个正整数解.即x 的正整数解为1,2,3,所以3<a4≤4,解得a 的取值范围为12<a ≤16.考点:方程与不等式——不等式与不等式组——一元一次不等式的整数解.11、若关于x 的不等式mx-n >0的解集是x <15,则关于x 的不等式(m+n )x >n-m 的解集是( ).A. x <-23B. x >-23C. x <23D. x >23答案:A.解析:∵不等式mx-n >0的解集是x <15.∴m <0且n m= 15.∴m=5n,n <0.∴不等式(m+n )x >n-m 可整理为6nx >-4n 的解集是x <-23.考点:方程与不等式——不等式与不等式组——解一元一次不等式.12、若方程3(x+1)-m = 3m-5x 的解是负数,则 的取值范围是( ).A. m <34 B. m >34 C. m <−34 D. m >−34答案:A.解析:3(x+1)-m = 3m-5x.3x+5x = 3m+m-3. 8x = 4m-3. ∵解是负数. ∴8x <0. ∴4m-3<0. m <34.考点:方程与不等式—一元一次方程—含字母参数的一元一次方程—含参一元一次方程.不等式与不等式组—一元一次不等式的应用.13、若关于x ,y 的二元一次方程组 {3x +y =1+ax +3y =3的解满足x+y <2,则a 的取值范围是 . 答案:a <4.解析:将二元一次方程组两个等式相加,得4x+4y=a+4,即x+y=a+44.∵x+y <2. ∴a+44<2.∴a <4.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.14、关于x,y 的二元一次方程组{3x −y =ax −3y =5−4a的解满足x <y,则a 的取值范围是( ).A. a >35B. a <13C. a <53D. a >53答案:D. 解析:解法一:解不等式组得{x =7a−58y =13a−158.∵x <y.∴7a−58<13a−158.解得a >53. 解法二:两式相加得4(x-y )=5-3a. ∵x <y. ∴x-y <0. ∴5-3a <0. ∴a >53.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.15、解不等式2x−13-5x+12≥1,并把它的解集在数轴上表示出来.答案:不等式的解集为x ≤-1,在数轴上表示如图所示:解析:去分母,得2(2x-1)-3(5x+1)≥6.去括号,得4x-2-15-3≥6. 移项合并同类项,得-11x ≥11. 系数化为1,得x ≤-1.∴此不等式的解集为x ≤-1,在数轴上表示如图所示:考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.16、解不等式12(x+1)≤23x-1,并把它的解集表示在数轴上,再写出它的最小整数解. 答案:最小整数解为x=9. 解析:12(x+1)≤23x-1.3(x+1)≤4x-6.3x+3≤4x-6.3x-4x≤-6-3.-x≤-9.x≥9.将它的解集表示在数轴上:∴它的最小整数解为x=9.考点:方程与不等式——不等式与不等式组——解一元一次不等式.17、若m>6,则(6-m)x<m-6的解集为.答案:x>-1.解析:∵m>6.∴(6-m)x<m-6.∴x>-1.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式. 18、关于x的不等式2x-a≤-1的解集如图所示,则a的值是( ).A.4B.3C.2D.1答案:B.解析:解不等式2x-a≤-1得,x≤a−1,根据数轴可知x≤1.2=1,即a=3.∴a−12考点:方程与不等式——不等式与不等式组——在数轴上表示不等式的解集——解一元一次不等式.19、已知a、b为常数,若ax+b>0的解集是x<1,则bx-a<0的解集是( ).4A.x >-4B.x <-4C.x >4D.x <4 答案:B.解析:∵ax+b >0的解集x <14.∴x <-ba . 则-ba = 14. ∴a <0. 又∵a=-4b. ∴b >0. ∴bx-a <0. ∴bx+4b <0. ∴x+4<0. ∴x <-4.考点:方程与不等式——不等式与不等式组——含参不等式(组)——解含参不等式.20、已知方程组{2x +3y =3m +72x +y =4m +1的解满足x+y >0,求m 的取值范围.答案:m >-87.解析:{2x +3y =3m +7①2x +y =4m +1 ②.解:①+②得. 4x+4y=7m+8. 4(x+y)=7m+8. x+y=7m+84.∵x+y >0. ∴7m+84>0.∴7m+8>0. ∴7m >-8. ∴m >-87.考点:方程与不等式——二元一次方程组——含字母参数的二元一次方程组.不等式与不等式组——一元一次不等式的应用.21、解不等式组{2(x +8)≤10−4(x −3)x+12−4x+16<1,并写出该不等式组的整数解. 答案:-4<x ≤1,整数解有-3,-2,-1,0,1. 解析:{2(x +8)≤10−4(x −3)①x+12−4x+16<1 ②. 由①得:x ≤1. 由②得:x >-4. ∴-4<x ≤1.整数解有-3,-2,-1,0,1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.22、解不等式组:{7(x −5)+2(x +1)>−152x+13−3x−12<0答案:x >2.解析:{7(x −5)+2(x +1)>−15①2x+13−3x−12<0②. 解①得:x >2. 解②得:x >1. ∴x >2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.23、解不等式组:{2(x +1)>5x −7x+103>2x 答案:x <2.解析:解不等式2(x+1)>5x-7得.2x+2>5x-7. 3x <9.x <3. 解不等式x+103>2x 得.x+10>6x. 5x <10. x <2.∴原不等式的解集为x <2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.24、不等式组{x +9<5x +1x >m +1的解集是x >2,则m 的取值范围是 .答案:m ≤1.解析:由不等式组可得{x >2x >m +1,其解集为x >2,则m+1≤2,m ≤1.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.25、若关于x 的不等式组{x −2<5x −a >0无解,则 的取值范围是 .答案:a ≥7.解析:解不等式组得{x <7x >a,由不等式组无解可知a ≥7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.26、已知关于x 的不等式组{x −a ≥b 2x −a <2b +1的解集为3≤x <5,则ba 的值为 .答案:-2.解析::由x-a ≥b 得x ≥a+b.由2x-a <2b+1得x <a+2b+12.∵解集为3≤x <5. ∴{a +b =3a+2b+12=5.解b=6,a=-3.∴ba = 6−3= -2.考点:方程与不等式——不等式与不等式组——解一元一次不等式组.27、已知方程组{x+y=m+3x−y=3m−1的解是一对正数,试化简∣2m+1∣+∣2-m∣.答案:化简得:m+3.解析:{x+y=m+3①x−y=3m−1②.①+②:2x=4m+2.x=2m+1.①-②:2y=-2m+4.y=-m+2.∵方程组的解是一对正数.∴{x>0 y>0.∴{2m+1>0−m+1>0.解得:-12<m<2.∴∣2m+1∣+∣2-m∣.=2m+1+2-m.=m+3.考点:数——有理数——绝对值化简——已知范围化简绝对值.方程与不等式——二元一次方程组——含字母参数的二元一次方程组——含参方程组解的分类讨论.不等式与不等式组——含参不等式(组)——方程根的取值范围.28、若关于x的不等式组{x−m<07−2x≤1的整数解有且只有4个,则m的取值范围是( ).A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 答案:D解析:{x −m <07−2x ≤1.由x-m <0得:x <m . 有7-2x ≤1得:x ≥3. ∴不等式的解集为:3≤x <m .∴不等式的整数解为:3 、4 、5 、6 . ∴m 的取值范围是6<m ≤7.考点:方程与不等式——不等式与不等式组——解一元一次不等式组——一元一次不等式组的整数解.29、对x,y 定义一种新运算T,规定:T(x,y )= ax+by2x+y (其中a 、b 均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)= a×0+b×12×0+1 = b .(1) 已知T(1,-1)= -2,T(4,2)= 1.① 求 a,b 的值.② 若关于m 的不等式组{T(2m,5−4m )≤4T(m,3−2m )>p恰好有3个整数解,求实数p 的取值范围.(2) 若T(x,y )=T(y,x )对任意实数x,y 都成立(这里T(x,y )和T(y,x )均有意义),则a,b 应满足怎样的关系式?答案: (1) ① a=1,b=3 .② -2≤p <−13 . (2) a=2b .解析: (1)① 根据题意得:T(1,-1)=a−b 2−1=-2,即a-b=-2.T(4,2)=4a+2b 8+2=1,即2a+b=5.解得: a=1,b=3.② 根据题意得:{2m+(5−4m )4m+(5−4m )≤4 ①m+3(3−2m )2m+3−2m>p ②.由①得:m ≥−12. 由②得:m <−9−3p 5.∴不等式组的解集为−12≤m <−9−3p 5.∵不等式组恰好有3个整数解,即m=0,1,2. ∴2<9−3p 5≤3.解得: -2≤p <-13.(2) 由T(x,y )=T(y,x ),得到ax+by 2x+y = ay+bx2y+x .整理得:(x 2-y 2)(2b-a )=0.∵T(x,y )=T(y,x )对任意实数x,y 都成立. ∴2b-a=0,即 a=2b.考点:式——探究规律——定义新运算.方程与不等式——不等式与不等式组——解一元一次不等式组.30、如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1) 在方程① 3x-1=0,② 23x+1=0,③ x-(3x+1)=-5中,不等式组{−x +2>x −53x −1>−x +2的关联方程是 .(填序号) (2)若不等式组{x −12<11+x >−3x +2的一个关联方程的根是整数,则这个关联方程可以是 (写出一个即可).(3)若方程3-x=2x,3+x=2(x+12)都是关于x 的不等式组{x <2x −m x −2≤m的关联方程,直接写出m 的取值范围.答案: (1) ③.(2)2x-1=1.(3)m 的取值范围为0≤m <1 .解析: (1)解不等式组{−x +2>x −53x −1>−x +2.解−x +2>x −5得x <312. 解3x −1>−x +2得x >34. ∴不等式的解为34<x <312.解方程① 3x-1=0得x=13,② 23x+1=0得x=-32 ,③ x-(3x+1)=-5得x=2. 根据一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. ∴关联方程为③. (2) 解不等式{x −12<11+x >−3x +2.解x −12<1,得x <112. 解1+x >−3x +2,得x >14. ∴不等式得解集为14<x <112.∵关联方程的根是整数,∴方程的根为1. ∵2x-1=1的方程的解为1. ∴2x-1=1满足.答案不唯一,只要解为1一元一次方程即可. (3) 解方程3-x=2x,得x=1.解方程3+x=2(x+12),得x=2.∵方程3-x=2x,3+x=2(x+12),都是关于x 的不等式组{x <2x −m x −2≤m的关联方程.∴满足{1<2×1−m 1−2≤m ,即-1<m <1.且{2<2×2−m 2−2≤m ,即0≤m <2.∴m 的取值范围为0≤m <2.考点:方程与不等式——一元一次方程——一元一次方程的解.不等式与不等式组——解一元一次不等式组.。
初中不等式计算题
初中不等式计算题一、不等式计算题1. 解不等式2x - 1 > 3- 解析:- 首先对不等式进行求解,将-1移到右边得到2x>3 + 1。
- 即2x>4,两边同时除以2,解得x > 2。
2. 解不等式3x+2≤slant8- 解析:- 先将2移到右边,得到3x≤slant8 - 2。
- 即3x≤slant6,两边同时除以3,解得x≤slant2。
3. 解不等式(x)/(2)+1<3- 解析:- 先将1移到右边,得到(x)/(2)<3 - 1。
- 即(x)/(2)<2,两边同时乘以2,解得x < 4。
4. 解不等式4 - (x)/(3)≥slant2- 解析:- 先将4移到右边,得到-(x)/(3)≥slant2 - 4。
- 即-(x)/(3)≥slant - 2,两边同时乘以-3,注意此时不等号方向要改变,解得x≤slant6。
5. 解不等式2(x - 1)+3>5- 解析:- 先展开括号得到2x-2 + 3>5。
- 即2x + 1>5,将1移到右边得到2x>5 - 1。
- 即2x>4,两边同时除以2,解得x > 2。
6. 解不等式3(x+2)-1≤slant8- 解析:- 先展开括号得到3x+6 - 1≤slant8。
- 即3x + 5≤slant8,将5移到右边得到3x≤slant8 - 5。
- 即3x≤slant3,两边同时除以3,解得x≤slant1。
7. 解不等式(2x - 1)/(3)<1- 解析:- 两边同时乘以3得到2x-1<3。
- 将-1移到右边得到2x<3 + 1。
- 即2x<4,两边同时除以2,解得x < 2。
8. 解不等式(3x+2)/(2)≥slant4- 解析:- 两边同时乘以2得到3x+2≥slant8。
- 将2移到右边得到3x≥slant8 - 2。
初中数学--不等式与不等式组练习题
初中数学 不等式与不等式组练习一、 填空题1. 不等式325x +≥的解集是.2. 关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是3. 不等式23x x >-的解集为 .4. 把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .5.不等式组40320x x ->⎧⎨+>⎩的解集是 .6. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .7. 甲、乙两位同学参加跳高训练,在相同条件下各跳10次,统计各自成绩的方差得22S S <乙甲,则成绩较稳定的同学是___________.(填“甲”或“乙”)8.不等式5(1)31x x -<+的解集是 .9. 不等式5(1)31x x -<+的解集是 .10. 不等式组103x x +>⎧⎨>-⎩,的解集是 .11. 不等式组6020x x -<⎧⎨->⎩的解是 .12. 不等式组210x ox -≤⎧⎨>⎩的解是 13. 不等式组23732x x +>⎧⎨->-⎩,的解集是 .14. 如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号)15. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .16. 不等式组6020x x -<⎧⎨->⎩的解是 .17. 某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x (张)满足的不等式为 .18.关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = .19.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.20. 如图,直线y kx b =+经过(21)A ,,(12)B --,两点,则不等式122x kx b >+>-的解集为 .21. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .22. 若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .23. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .24.函数y =x 的取值范围是( )A .2x >-B .2x -≥C .2x ≠-D .2x -≤25. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个二、选择题26. 不等式组2131x x -<⎧⎨≥-⎩ 的解集是A.2x <B.1-≥xC.12x -≤< D .无解27. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm28.不等式260x -<的解集是( )A .3x >B .3x <C .3x >-D .3x <-29.据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )A .33t >B .24t ≤C .2433t <<D .2433t ≤≤30. 不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )31. 不等式组2410x x <⎧⎨+>⎩,的解集在数轴上表示正确的是( )32. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )-10 12A -11 2B .-11 2C .-11 2D .1 2 A .B .1 2C .1 2 D .1 233. 不等式﹣2x <4的解集是 ( )A .x >﹣2 B.x <﹣2 C. x >2 D. x <234. 不等式组11223x x ⎧⎪⎨⎪-<⎩≤的解集在数轴上表示为( )35. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩36. 如果一元一次不等式组3x x a>⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <37. 如图,直线y kx b =+经过点(12)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为( )A .2x <-B .21x -<<-C .20x -<<D .10x -<<38. 解不等式组5125431x x x x ->+⎧⎨-<+⎩,.yOxB A-1 0 1 2 A .-1 0 1 2 B .-1 0 1 2 C .D .39. 若01x <<,则21x x x,,的大小关系是( )A .21x x x << B .21x x x << C .21x x x << D .21x x x<< 40. 不等式组⎪⎩⎪⎨⎧≤<-15112x xx 的解集在数轴上表示正确的是 ( )41. 不等式26x ≤的解集为( )A .3x ≥B . 3x ≤C . 13x ≥D . 13x ≤42. 不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .43.不等式组103x x +>⎧⎨>-⎩,的解集是 .44. 不等式2x ≥的解集在数轴上表示为( )45. 不等式组1021x x +>⎧⎨-<⎩,的解集是( )A .1x >-B .3x <C .13x -<<D .31x -<<46. 若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是( )1 1- 023 A .1 1- 02 3B . 1 1- 0 2 3C .1 1- 02 3D .A .1a >-B .1a -≥C .1a ≤D .1a <47. 不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是()A .1,2B .1,2,3C .331<<xD .0,1,248. 一个不等式的解集为12x -<≤,那么在数轴上表示正确的是( )49. 若b a <,则下列各式中一定成立的是()A .11-<-b aB .33b a>C . b a -<-D . bc ac <50. 已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是()A .13cmB .6cmC .5cmD .4cm51. 不等式325x +≥的解集是.52. 不等式组1024x x ->⎧⎨<⎩的解集是( )A .x >1B .x <2C .1<x <2D .无解53. 不等式组13x x ⎧-⎪⎨⎪⎩<≤,的解集在数轴上可以表示为( )A .B .C .D .54. 如果ab <0,那么下列判断正确的是( ).A .a <0,b <0B . a >0,b >0C . a ≥0,b ≤0D . a <0,b >0或a >0,b <055. 不等式组260,58x x x +>⎧⎨+⎩≤ 的解集在下列数轴上表示正确的是( )ABCD56. 如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .57. 下列哪个不等式组的解集在数轴上表示如图2所示 ( )A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩58. 已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是 ( )59. 如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <60. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y>61. 据佛山日报报道,2009年6月1日佛山市最高气温是33℃,最低气温是24℃,则当天佛山市气温t (℃)的变化范围是( )B . 3 1 0 2 4 5D .3 1 0 24 5A .3 1 0 24 5C . 3 1 0 2 4 5A .33t >B .24t ≤C .2433t <<D .2433t ≤≤62. 若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 63. 不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )64. 不等式组⎪⎩⎪⎨⎧≤<-15112x x x 的解集在数轴上表示正确的是 ( )65. 不等十足⎩⎨⎧--≥-81312 x x 的解集在数轴上可表示为 ( )0 1 2 3 4 A. 01 2 3 4 B.0 1 2 3 4C.0 1234D. A-3 10 BC-3 10 D-1 366. 不等式组⎩⎨⎧≤-31<x x 的解集在数轴上可以表示为( )67. 不等式20x -≤的解集在数轴上表示正确的是( )A .B .C .D .68.不等式组⎪⎩⎪⎨⎧≥--+2321123x ,x x >的解集在数轴上表示正确的是( )69. 不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )70. 不等式组21x ⎨-<⎩的整数解共有( )A .3个B .4个C .5个D .6个三、 解答题71. 解下列不等式组,并把解集在数轴上表示出来.ABCDABCD⎩⎨⎧≥+-<- x x x )2(33)1(2)1(0272. 解不等式组3(2)8,1.23x x x x ++⎧⎪-⎨⎪⎩<≤73. 解不等式组⎩⎨⎧≥--1232x x x ,并把解集在数轴上表示出来.74. 解不等式:13x -1<0,并把它的解集在数轴上表示出来;75. (1)化简:2211x x x x +-÷; (2)解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤76. 解不等式:5x –12≤2(4x -3)77. 解不等式组⎩⎨⎧->+<-.)1(215,02x x x78.解不等式组:303(1)21x x x +>⎧⎨--⎩,①≤.②79. 解不等式:322x x -≥-80. 解不等式组:351(1)13(2)2x x x +-⎧⎪⎨->⎪⎩≥81. 解不等式组20537x x x -<⎧⎨+≤+⎩;并写出它的整数解。
七年级数学不等式与不等式组练习题及答案
七年级数学不等式与不等式组练习题及答案(满分 100 分,答卷时间90 分钟)一、选择题:本大题共8 小题,每小题2 分,共16 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填在题后括号内.1 若m >n ,下列不等式不一定成立的是【】A .m+2>n+2B .2m>2nC .>D .m2 >n22 在- ,- 1 ,-2 ,0 ,-3 ,,- 中,能使不等式x + 3 < 2 成立的有【】A .4 个B .3 个C .2 个D .1个3 如下图所示,在数轴上表示x < - 1的解集,正确的是【】-2 - 1 0 1 2 -2 - 1 0 1 2 -2 - 1 0 1 2 -2 - 1 0 1 2A .B .C .D.4. 下列变形中,不正确的是【】A .由x - 5 > 0 ,可得x > 5B .由x > 0 ,可是x > 0C .由-3x > -9 ,可得x > 3D .由- x > 1 ,可得x < -5. 已知关于x 的不等式2x - a > -3 的解集如下图所示,则a 的值是【】-4-3-2- 1 0 1 2 3 4A .0B .—1C .1D .26. 若点P(m+3 ,m - 1 )在第四象限,则m 的取值范围为【】A .-3<m<1B . m>1C .m<-3D .m>-37. 若关于x 的不等式组〈无解,则a 的取值范围为【】l x < aA .a<4B .a=4C .a≤4 D.a≥48. 某大型超市从生产基地购进一批水果,运输过程中质量损失10% ,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高【】1 1A .B .40%C .D .30%2 3(x > - 1, 二、填空题:本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填写在题中横线. 9 用不等号填空:(1)若 m 为非负数,则 m 0 ; (2) a + 2 a - 2 . 10 不等式y + 3 > 4 变形为 y > 1 ,依据是不等式的性质 . 11若 (m +1)x m + 2 > 0 是关于x 的一元一次不等式,则 m 的取值是 .12 不等式 2x -4>0 的解集是 .13 不等式 3(x +1)≥5x -9 的正整数解有: .14 不等式组〈 的解集是 .15 用 20 元钱买钢笔和铅笔,如果钢笔每支 5 元,铅笔每支5 角,已知买了11支铅笔,那么最多还 可以买钢笔 支.16 已知 a >5 ,不等式 (5 - a )x > a - 5 解集为 .17 关于x 的方程 3x +k = 2 的解是非负数,则k 的取值范围是 .18 已知不等式 4x -a ≤0 ,只有四个正整数解 1 ,2 ,3 ,4 ,那么正数 a 的取值范围是 .三、解答题:本大题共 8 小题,共 64 分.解答时应写出文字说明、证明过程或演算步骤.19 (本小题满分 8 分)(1)解不等式: < - 1(-2x < 6, ① (2)解不等式组〈 并将解集在数轴上表示出来.l 3(x +1) < 2x + 5,② l x ≤3(x + 3y = 2 + a l 3x + y = -4a 当 x 为何值时,代数式 - 的值小于 1?21 (本小题满分 8 分)已知不等式组〈x 2x -b a 31,的解集为 - 1 < x < 1 ,则 (a +1)(b - 1) 的值等于多少?22 (本小题满分 8 分)关于 x 、y 的二元一次方程组〈 的解满足x +y >2 ,求 a 的取值范围.23 (本小题满分 8 分)在一次绿色环保知识竞赛中,共有 20 道题,对于每一道题,答对了得 10 分,答错了或不答扣5 分,则至少要答对几道题,其得分才会不少于 80 分?苏通大桥维修工程中,拟由甲、乙两个工程队先后共同完成某项目.已知甲工程队单独完成此项目需40 天,每天施工费为0.6 万元;乙工程队单独完成此项目需60 天,每天施工费为0.3 万元.要使该项目总的施工费用不超过22 万元,则乙工程队最少施工多少天?25 (本小题满分8 分)有一群猴子,一天结伴去偷桃子,在分桃子时,如果每个猴子分了3 个,那么还剩55 个;如果每一个猴子分5 个,都能分得桃子,但剩下一个猴子分得的桃子不够4 个,你能求出有几只猴子,几个桃子吗?26 (本小题满分8 分)某公司决定从厂家购进甲、乙两种不同型号的显示器共50 台,购进显示器的总金额不超过77000 元,已知甲、乙显示器的价格分别为1000 元和2000 元.求该公司至少购进甲型显示器多少台?若要求甲型显示器的台数不超过乙型显示器的台数,则有哪些购买方案?一、选择题1. D2. B3. B4. C5. C6. A7. C8. C二、填空题9.(1)≥(2)﹥ 10.不等式性质1 11.1 12. 2>x13.1,2,3,4,5,6, 14. 31≤<-x 15.2 16. 1-<x17. 2≤k 18. 2016<≤a三、解答题19. (1)2≥x ,(2)23≤<-x解集在数轴上表示为:20. 解:根据题意得31232+-+x x <1 解不等式得41-<x 答:当41-<x 时,代数式31232+-+x x 的值小于1. 21. 由(1)得,21+<a x ,由(2)得,323b x +> ∵原不等式组的解集为11x -<< ∴112321a b +⎧=⎪⎨⎪+=-⎩解得12a b =⎧⎨=-⎩∴(1)(1)a b +-=(11)(21)6+⨯--=-22. 解法一: 解方程组3234x y a x y a +=+⎧⎨+=-⎩(1)(2) 解得⎪⎪⎩⎪⎪⎨⎧+=--=8678213a y a x ∵原方程组的解满足x +y >2∴28678213>++--a a 解得2a <-解法二: (1)+(2)得,a y x 3244-=+又∵原方程组的解满足x +y >2,∴844>+y x ,∴832>-a ,∴2a <-.23. 解:设要答对x 道题,其得分才会不少于80分,根据题意得80)20(510≥--x x解这个不等式得,12≥x答:至少要答对12道题,其得分才会不少于80分.24.解:乙工程队施工x 天,则甲工程队的工作量为601x -,甲工程队施工的天数为401)601(÷-x 天,根据题意得 22)601(406.03.0≤-⨯⨯+x x 解这个不等式得,20≥x答:要使该项目总的施工费用不超过22万元,则乙工程队最少施工20天.25.设有x 只猴子,则有(3x +55)个桃子,根据题意得:4)1(5)553(0<--+<x x解这个不等式组得,3028<<x∵x 为正整数∴x =29当x =29时,3x +55=142(个).答:有29只猴子,142个桃子.26.(1)设该公司购进甲型显示器x 台,则购进乙型显示器(50-x )台,由题意,得1000x +2000(50-x )≤77000解得:x ≥23.∴该公司至少购进甲型显示器23台.(2)依题意可列不等式:x ≤50-x ,解得:x ≤25.∴23≤x ≤25.∵x 为整数,∴x =23,24,25.∴购买方案有:①甲型显示器23台,乙型显示器27台;②甲型显示器24台,乙型显示器26台;③甲型显示器25台,乙型显示器25台.。
不等式(组)练习题
不等式(组)练习题1.解不等式组,并把解集在数轴上表示出来:2.解不等式组3.解不等式组:,并把此不等式组的解集在数轴上表示出来.4.解方程组或不等式组(1)(2)解不等式组,并把解集在数轴上表示出来.5.解不等式组,并把解集在数轴上表示出来.6.解下列不等式(组):(1)3(1﹣x)+4≥10(2)7.解不等式,并利用数轴确定该不等式组的解.8.解不等式组:,并求出它的最小整数解.9.(1)计算:(﹣1)2020+(﹣)﹣2﹣|2﹣|+(2)求满足不等式组的所有整数解.10.解不等式组:.11.解不等式组:12.解方程或不等式(1)(2)2(x+3)>4x﹣(x﹣3)13.解下列不等式(组)(1)2x﹣1>x﹣3(2)14.计算:(1)|﹣2|++(﹣3)0(2)不等式组:15.解不等式+1≥,并把它的解集在数轴上表示出来.16.解不等式组:并在数轴表示它的解集.17.解不等式组:18.若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.19.解不等式组并求出最大整数解.20.解一元一次不等式组.21.(1)解方程组;(2)解不等式组,并写出不等式组的最大整数解.22.解一元一次不等式组:.23.解不等式组,并写出该不等式组的所有整数解.24.解不等式(组)(1);(2).25.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)x﹣≤;(2)26.解不等式组,并把它的解集在数轴上表示出来.27.(1)解方程组:(2)解不等式:28.计算:(1)﹣12018+(﹣6)2×()(2)﹣|﹣3|(3)关于x的不等式组恰好有三个整数解,求a的取值范围.29.解不等式组:.30.已知:实数x满足﹣≥x﹣,并且关于x的函数y=2|x﹣a|+a2的最小值为4,求常数a的值.31.已知关于x的不等式≤的解是x≥,求m的值.32.解不等式组:,并写出它的所有整数解.33.解绝对值不等式:|x﹣2|+|x﹣4|≤3.34.解不等式组,并把解集在数轴上表示出来.35.解不等式组,并把解集在数轴上表示出来.36.若关于x的不等式组只有4个整数解,求a的取值范围.37.解不等式组,并把解集在数轴上表示出来.38.已知有正整数k,使得<<成立,求正整数n的最小值.39.不等式的解集是关于x的一元一次不等式ax>﹣1解集的一部分,求a的取值范围.40.解关于x的不等式组:.41.如图,在数轴上被墨汁覆盖的整数部分恰好是关于x的不等式组的所有整数解.求m、n的取值范围.42.已知关于x.y的方程组的解是一对异号的数.(1)求k的取值范围;(2)化简:;(3)设t=,则t的取值范围是.43.解不等式组,并把解集在数轴上表示出来.44.解不等式组把它的解集在数轴上表示出来,并写出它的自然数解.45.解不等式并把解集在数轴上表示出来.不等式(组)练习题1146.解不等式组:,并把解集在数轴上表示出来.47.解不等式组:.48.解关于x 的不等式组的解集中含有3个整数,求m 的取值范围.49.解不等式组50.解不等式组,并把它的解集在数轴上表示出来.。
七年级数学不等式练习题及标准答案
七年级数学不等式练习题及标准答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一.选择题(共20小题)1.实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A .ab>0B.a+b<0C.<1D.a﹣b<02.据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A .t<17B.t>25C.t=21D.17≤t≤253.若x>y,则下列式子错误的是()A .x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.4.如果a<b<0,下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<05.如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A .a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A .1个B.2个C.3个D.4个7.一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A .B.C.D.8.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A .x<4 B.x<2 C.2<x<4 D.x>29.不等式>1的解集是()A .x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣10.不等式2x>3﹣x的解集是()A .x>3 B.x<3 C.x>1 D.x<111.不等式2x﹣7<5﹣2x正整数解有()A1个B2个C3个D4个....12.不等式12﹣4x≥13的正整数解的个数是()A .0个B.1个C.2个D.3个13.“x的2倍与3的差不大于8”列出的不等式是()A .2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>814.用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A .a=b>c B.b>a>c C.a>c>b D.c>b>a15.根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A .a<c B.a<b C.a>c D.b<c16.不等式组的解集在数轴上表示正确的是()A .B.C.D.17.不等式组的解集在数轴上表示正确的是()A .B.C.D.18.不等式组的整数解共有()A .3个B.4个C.5个D.6个19.不等式组的正整数解的个数是()A .1个B.2个C.3个D.4个20.若使代数式的值在﹣1和2之间,x可以取的整数有()A .1个B.2个C.3个D.4个二.填空题(共2小题)21.关于x的不等式组的解集是x>﹣1,则m=_________.22.若不等式组的解集是﹣1<x<1,则(a+b)2009=_________.三.解答题(共8小题)23.解不等式组把解集表示在数轴上,并求出不等式组的整数解.24.解不等式组,并写出不等式组的整数解.25.解不等式组,并求其整数解.28.解不等式组:,并判断是否满足该不等式组.30.某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲 45乙 752014年06月01日49的初中数学组卷参考答案与试题解析一.选择题(共20小题)1.(2009?枣庄)实数a,b在数轴上的对应点如图所示,则下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<0考点:不等式的定义;实数与数轴.分析:先根据数轴上点的特点确定a、b的符号和大小,再逐一进行判断即可求解.解答:解:由实数a,b在数轴上的对应点得:a<b<0,|a|>|b|,A、∵a<b<0,∴ab>0,故选项正确;B、∵a<b<0,∴a+b<0,故选项正确;C、∵a<b<0,∴>1,故选项错误;D、∵a<b<0,∴a﹣b<0,故选项正确.故选C.点评:本题考查的知识点为:两数相乘,同号得正;同号两数相加,取相同的符号;两数相除,同号得正.确定符号为正后,绝对值大的数除以绝对值小的数一定大于1较小的数减较大的数一定小于0.2.(2005?丽水)据丽水气象台“天气预报”报道,今天的最低气温是17℃,最高气温是25℃,则今天气温t(℃)的范围是()A .t<17 B.t>25 C.t=21 D.17≤t≤25考点:不等式的定义.分析:读懂题意,找到最高气温和最低气温即可.解答:解:因为最低气温是17℃,所以17≤t,最高气温是25℃,t≤25,则今天气温t(℃)的范围是17≤t≤25.故选D.点评:解答此题要知道,t包括17℃和25℃,符号是≤,≥.3.(2009?临沂)若x>y,则下列式子错误的是()A .x﹣3>y﹣3 B.3﹣x>3﹣y C.x+3>y+2 D.考点:不等式的性质.分析:看各不等式是加(减)什么数,或乘(除以)哪个数得到的,用不用变号.解答:解:A、不等式两边都减3,不等号的方向不变,正确;B、减去一个大数小于减去一个小数,错误;C、大数加大数依然大,正确;D、不等式两边都除以3,不等号的方向不变,正确.故选B.点评:主要考查不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.(2008?恩施州)如果a<b<0,下列不等式中错误的是()A .ab>0 B.a+b<0 C.<1D.a﹣b<0考点:不等式的性质.分析:根据不等式的性质分析判断.解答:解:A、如果a<b<0,则a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,则|a|>|b|,则>1,也可以设a=﹣2,b=﹣1代入检验得到<1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;故选:C.点评:利用特殊值法验证一些式子错误是有效的方法.5.(2006?镇江)如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A .a>b>﹣b>﹣aB.a>﹣a>b>﹣bC.b>a>﹣b>﹣aD.﹣a>b>﹣b>a考点:不等式的性质.专题:压轴题.分析:先确定a,b的符号与绝对值,进而放到数轴上判断4个数的大小即可.解答:解:∵a<0,b>0∴﹣a>0﹣b<∵a+b<0∴负数a的绝对值较大∴﹣a>b>﹣b>a.故选D.点评:本题主要考查了异号两数相加的法则,数的大小的比较可以借助数轴来比较,右面的数总是大于左边的数.6.下列说法:①x=0是2x﹣1<0的一个解;②不是3x﹣1>0的解;③﹣2x+1<0的解集是x>2;④的解集是x>1.其中正确的个数是()A .1个B.2个C.3个D.4个考点:不等式的解集.分析:分别解不等式就可以得到不等式的解集,就可以判断各个选项是否成立.解答:解:①不等式2x﹣1<0的解集是x<包括0,正确;②不等式3x﹣1>0的解集是x>不包括,正确;③不等式﹣2x+1<0的解集是x>,不正确;④不等式组的解集是x>2,故不正确;故选B.点评:解答此题的关键是分别解出各不等式或不等式组的解集,再与已知相比较即可得到答案正确与否,解不等式是解决本题的关键.7.(2009?河池)一个不等式的解集为﹣1<x≤2,那么在数轴上表示正确的是()A .B.C.D.考点:在数轴上表示不等式的解集.分析:根据数轴上的点表示的数,右边的总是大于左边的数.这个解集就是不等式x>﹣1和x≤2的解集的公共部分.解答:解:数轴上﹣1<x≤2表示﹣1与2之间的部分,并且包含2,不包含﹣1,在数轴上可表示为:故选A.点评:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.(2007?武汉)如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为()A .x<4 B.x<2 C.2<x<4 D.x>2考点:在数轴上表示不等式的解集.分析:根据不等式组解集在数轴上的表示方法可知,不等式组的解集是指它们的公共部分,公共部分是2左边的部分.解答:解:不等式组的解集是指它们的公共部分,公共部分是2左边的部分.因而解集是x<2.故选B.点评:不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.(2008?无锡)不等式>1的解集是()A .x>﹣B.x>﹣2 C.x<﹣2 D.x<﹣考点:解一元一次不等式.分析:利用不等式的基本性质,将两边不等式同时乘以﹣2,不等号的方向改变.得到不等式的解集为:x<﹣2.解答:解:不等式3x+2≥5得,3x≥3,解得x≥1.故选C.点评:本题考查不等式的性质3,在不等式的两边乘以﹣2,不等号要改变方向.此题容易错解选B.10.(2007?双柏县)不等式2x>3﹣x的解集是()A .x>3 B.x<3 C.x>1 D.x<1考点:解一元一次不等式.专题:计算题.分析:由一元一次不等式的解法知:解此不等式只需移项,系数化1两步即可得解集.解答:解:不等式2x>3﹣x移项得,2x+x>3,即3x>3,系数化1得;x>1.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.11.(2007?枣庄)不等式2x﹣7<5﹣2x正整数解有()A .1个B.2个C.3个D.4个考点:一元一次不等式的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到正整数解.解答:解:不等式2x﹣7<5﹣2x的解集为x<3,正整数解为1,2,共两个.故选B.点评:解答此题要先求出不等式的解集,再确定正整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.不等式12﹣4x≥13的正整数解的个数是()A .0个B.1个C.2个D.3个考点:一元一次不等式的整数解.分析:首先确定不等式组的解集,然后再找出不等式的特殊解.解答:解:移项得:﹣4x≥13﹣12,合并同类项得:﹣4x≥1,系数化为1得:x≤﹣,所以不等式12﹣4x≥13没有正整数解.故选A.点评:正确解不等式,求出解集是解答本题的关键,解不等式应根据不等式的基本性质.13.“x的2倍与3的差不大于8”列出的不等式是()A .2x﹣3≤8 B.2x﹣3≥8 C.2x﹣3<8 D.2x﹣3>8考点:由实际问题抽象出一元一次不等式.分析:理解:不大于8,即是小于或等于8.解答:解:根据题意,得2x﹣3≤8.故选A.点评:应注意抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.14.(2008?赤峰)用abc表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么abc这三种物体按质量从大到小的顺序排列应为()A .a=b>c B.b>a>c C.a>c>b D.c>b>a考点:一元一次不等式的应用.专题:压轴题.分析:根据图示三种物体的质量列出不等关系式是关键.解答:解:依据第二个图得到a+c=b+c?a=b,依图一得:a+c+c<a+b+c,则b>c,则a=b>c;故选A.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.(2009?鄂州)根据下面两图所示,对a、b、c三种物体的重量判断不正确的是()A .a<c B.a<b C.a>c D.b<c考点:一元一次不等式的应用.分析:找出不等关系是解决本题的关键.解答:解:由第一图可知:3a=2b,b>a;由第二图可知:3b=2c,c>b,故a<b<c.∴A、B、D选项都正确,C选项错误.故选C.点评:解决问题的关键是读懂图意,进而列出正确的不等式.16.(2012?呼伦贝尔)不等式组的解集在数轴上表示正确的是()A .B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集再求出其公共解集.解答:解:该不等式组的解集为1<x≤2,故选C.点评:本题考查了不等式组解集表示.按照不等式的表示方法1<x≤2在数轴上表示如选项C所示,解答这类题时常常因表示解集时不注意数轴上圆圈和黑点所表示意义的区别而误选D.17.(2010?东阳市)不等式组的解集在数轴上表示正确的是()A .B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:不等式可化为:.∴在数轴上可表示为.故选A.点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.(2009?崇左)不等式组的整数解共有()A .3个B.4个C.5个D.6个考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,在取值范围内可以找到整数解.解答:解:由①式解得x≥﹣2,由②式解得x<3,∴不等式组的解集为﹣2≤x<3,∴不等式组的整数解为x=﹣2,﹣1,0,1,2共5个.故选C.点评:解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.(2005?泰州)不等式组的正整数解的个数是()A .1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组的解集,在取值范围内可以找到正整数解.解答:解:解①得x>0解②得x≤3∴不等式组的解集为0<x≤3∴所求不等式组的整数解为1,2,3.共3个.故选C.点评:本题考查不等式的解法及整数解的确定.解不等式组应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.20.(2005?菏泽)若使代数式的值在﹣1和2之间,x可以取的整数有()A .1个B.2个C.3个D.4个考点:一元一次不等式组的整数解.专题:计算题.分析:由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.解答:解:由题意可得,由(1)x>﹣,由(2)得x<,所以不等式组的解集为﹣<x<,则x可以取的整数有0,1共2个.故选B.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二.填空题(共2小题)21.(2009?孝感)关于x的不等式组的解集是x>﹣1,则m=﹣3.考点:解一元一次不等式组.分析:易得m+2>m﹣1.那么不等式组的解集为x>m+2,根据所给的解集即可判断m的取值.解答:解:根据“同大取大”确定x的范围x>m+2,∵解集是x>﹣1,∴m+2=﹣1,m=﹣3.点评:求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.22.(2009?凉山州)若不等式组的解集是﹣1<x<1,则(a+b)2009=﹣1.考点:解一元一次不等式组;代数式求值.专题:计算题;压轴题.分析:解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.解答:解:由不等式得x>a+2,x<,∵﹣1<x<1,∴a+2=﹣1,=1∴a=﹣3,b=2,∴(a+b)2009=(﹣1)2009=﹣1.点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.三.解答题(共8小题)23.(2007?滨州)解不等式组把解集表示在数轴上,并求出不等式组的整数解.考点:解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.解答:解:由①得由②得x<3∴原不等式组的解集为≤x<3数轴表示:不等式组的整数解是﹣1,0,1,2.点评:本题考查不等式组的解法,需要注意不等式组解的解集在数轴上的表示方法,当包括原数时,在数轴上表示应用实心圆点表示方法,当不包括原数时应用空心圆圈来表示.24.(2005?南京)解不等式组,并写出不等式组的整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.解答:解:解不等式①得x≥1解不等式②得x<3∴原不等式组的解集是1≤x<3∴原不等式组的整数解是1,2.点评:本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.25.(2002?潍坊)解不等式组,并求其整数解.考点:一元一次不等式组的整数解.专题:计算题.分析:首先解不等式组,再从不等式组的解集中找出适合条件的整数即可.解答:解:不等式组可化成,解不等式①得x>解不等式②得x≤4,∴不等式组的解集<x≤4,整数解为4,3.点评:此题考查了一元一次不等式组的整数解,正确解出不等式组的解集是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.26.(2010?楚雄州)某地区果农收获草莓30吨,枇杷13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往省城,已知甲种货车可装草莓4吨和枇杷1吨,乙种货车可装草莓、枇杷各2吨.(1)该果农安排甲、乙两种货车时有几种方案请您帮助设计出来;(2)若甲种货车每辆要付运输费2 000元,乙种货车每辆要付运输费1 300元,则该果农应选择哪种运输方案才能使运费最少,最少运费是多少元?考点:一元一次不等式组的应用.专题:应用题;压轴题;方案型.分析:先设甲种货车为x辆,则乙种货车为(10﹣x)列出一元一次不等式组.再根据答案设计出方案.解答:解:(1)设应安排x辆甲种货车,那么应安排(10﹣x)辆乙种货车运送这批水果,由题意得:,解得5≤x≤7,又因为x是整数,所以x=5或6或7,方案:方案一:安排甲种货车5辆,乙种货车5辆;方案二:安排甲种货车6辆,乙种货车4辆;方案三:安排甲种货车7辆,乙种货车3辆.(2)在方案一中果农应付运输费:5×2000+5×1300=16500(元)在方案二中果农应付运输费:6×2000+4×1300=17 200(元)在方案三中果农应付运输费:7×2000+3×1300=17 900(元)答:选择方案一,甲、乙两种货车各安排5辆运输这批水果时,总运费最少,最少运费是16 500元.点评:本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.27.(2008?自贡)解不等式组.考点:解一元一次不等式组.专题:计算题.分析:分别求出两个不等式的解集,求其公共解.解答:解:解不等式(1),得2x+4<x+4,x<0,不等式(2),得4x≥3x+3,x≥3.∴原不等式无解.点评:求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.28.(2008?苏州)解不等式组:,并判断是否满足该不等式组.考点:解一元一次不等式组;估算无理数的大小.分析:首先分别解出两不等式的解集,再求其公共解即可得到不等式组的解集,然后利用无理数的估算即可解集问题.解答:解:不等式组可化成,由①得:x>﹣3.由②得:x≤1.∴原不等式组的解集是:﹣3<x≤1.∴满足该不等式组.点评:此题主要考查求不等式组的解集即无理数的估算,解题时应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.29.(2009?天津)解不等式组考点:解一元一次不等式组.分析:先解不等式组中的每一个不等式的解集,再利用求不等式组解集的口诀“同大取较大”来求不等式组的解集.解答:解:∵,由①得,x>2,由②得,x>﹣.∴原不等式组的解集为x>2.点评:主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取较大,同小取小,大小小大中间找,大大小小找不到(无解).30.(2009?太原)某公司计划生产甲、乙两种产品共20件,其总产值w(万元)满足:1150<w<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案?产品名称每件产品的产值(万元)甲 45乙 75考点:一元一次不等式组的应用.专题:方案型;图表型.分析:设计划生产甲产品x件,生产乙产品(20﹣x)件,直接根据“1150<w<1200”列出不等式组求解即可.解答:解:设计划生产甲产品x件,则生产乙产品(20﹣x)件.根据题意,得,解得.∵x为整数,∴x=11,此时,20﹣x=9(件).答:公司应安排生产甲产品11件,乙产品9件.点评:本题属于基础题,解决本题的关键是找到相等及不等关系列出方程或不等式.注意本题的不等关系为:1150<w<1200.。
七年级数学不等式练习题及参考标准答案【人教版】
七年级数学《不等式与不等式(组)》练习题A 卷 ·基础知识(一)一、选择题(4×8=32)1、下列数中是不等式x 32>50的解的有( )A 、5个 B、6个 C、7个 D、8个 76, 73, 79, 80, 74.9, 75.1, 90, 60 2、下列各式中,是一元一次不等式的是( )A 、5+4>8 B、12-x C、x 2≤5 D、x x 31-≥0 3、若b a ,则下列不等式中正确的是( )A、b a +-+-33 B、0 b a - C 、b a 3131D 、b a 22-- 4、用不等式表示与的差不大于2-,正确的是( )A 、2-- e dB 、2-- e dC 、e d -≥2-D 、e d -≤2-5、不等式组⎩⎨⎧22 x x 的解集为( )A 、x >2- B、2-<x <2 C 、x <2 D 、 空集 6、不等式86+x >83+x 的解集为( )A 、x >21 B 、x <0 C 、x >0 D、x <21 7、不等式2+x <6的正整数解有( )A 、1个 B 、2个 C、3 个 D、4个8、下图所表示的不等式组的解集为( )A 、x 3 B 、32 x - C 、 2- x D 、32 x --234210-1二、填空题(3×6=18)9、“x 的一半与2的差不大于1-”所对应的不等式是10、不等号填空:若a<b<0 ,则5a - 5b -;a 1 b1;12-a 12-b 11、当a 时,1+a 大于212、直接写出下列不等式(组)的解集①42 -x ②105 x - ③ ⎩⎨⎧-21 x x13、不等式03 +-x 的最大整数解是14、某种品牌的八宝粥,外包装标明:净含量为330g ±10g,表明了这罐八宝粥的净含量x 的范围是三、解下列不等式,并把它们的解集在数轴上表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(4×8=32)
1、下列数中是不等式> 的解的有(A )
76, 73, 79, 80, 74.9, 75.1, 90, 60
A、5个
B、6个
C、7个
D、8个
2、下列各式中,是一元一次不等式的是(C )
A、5+4>8
B、
C、≤5
D、≥0
3、若,则下列不等式中正确的是(D )
A、B、C、D、
4、用不等式表示与的差不大于,正确的是(D )
A、B、C、D、
5、不等式组的解集为(D )
A 、> B、< < C、< D、空集
6、不等式> 的解集为(C )
A、> B 、<0 C、>0 D、<
7、不等式<6的正整数解有(C )
A 、1个
B 、2个C、3 个D、4个
8、下图所表示的不等式组的解集为(A )
A 、B、C、D、
二、填空题(3×6=18)
9、“ 的一半与2的差不大于”所对应的不等式是0.5x-2≤-1
10、不等号填空:若a<b<0 ,则>;>;<
11、当a>1 时,大于2
12、直接写出下列不等式(组)的解集
①x>6 ②x>-2
③-1<x<2
13、不等式的最大整数解是 2
14、某种品牌的八宝粥,外包装标明:净含量为330g 10g,表明了这罐八宝粥的净含量的范围是320<x<340
三、解下列不等式,并把它们的解集在数轴上表示出来.
四、解方程组(6×2=12)
五、解答题(8×2=16)
19、代数式的值不大于的值,求的
20、方程组的解为负数,求的范围
六、列不等式(组)解应用题(10)
22、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分。
某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?。