解不等式组计算题1

合集下载

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)

完整版)解不等式组计算专项练习60题(有答案)1.解不等式组60题参考答案:1.解:由不等式①得2a-3x+1≥0,即x≤(2a+1)/3;由不等式②得3b-2x-16≥0,即x≤(3b-16)/2.又因为a≤4<b,所以2a+1≤9,3b-16≥8,所以x的取值范围为x≤3或x≥-11/2.2.解:由不等式①得x≤-1或x≥3;由不等式②得x≤4/3或x≥2.综合起来,x的取值范围为x≤-1或x≥3,或者4/3≤x≤2.3.解:由不等式①得x>(a+1)/2;由不等式②得x0,所以a/2>(a+1)/2,所以不等式组的解集为a/2<x<(a+1)/2.4.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.5.解:由不等式①得x≤-2;由不等式②得x>-3.所以不等式组的解集为-3<x≤-2.6.解:由不等式①得x>-1;由不等式②得x≤2.所以不等式组的解集为-1<x≤2.7.解:由不等式①得x≤-1;由不等式②得x≥-2.所以不等式组的解集为-2≤x≤-1.8.解:由不等式①得x>-3;由不等式②得x≤1.所以不等式组的解集为-3<x≤1.9.解:由不等式①得x>-1;由不等式②得x≤4.所以不等式组的解集为-1<x≤4.10.解:由不等式①得x-3.所以不等式组的解集为-3<x<2.11.解:由不等式①得x≥1;由不等式②得x<3.所以不等式组的解集为1≤x<3.1.由不等式组的①得x≥-1,由不等式组的②得 x<4,因此不等式组的解集为 -1≤x<4.2.由不等式①得x≤3,由不等式②得 x>0,因此不等式组的解集为0<x≤3.3.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.4.原不等式组可化为:x+45,x<-1.因此不等式组的解集为-3<x≤3.5.解不等式①得 x<5,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<5.6.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.7.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.8.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.9.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.10.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.11.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.12.解不等式组的①得-∞<x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.13.解不等式①得x≥1,解不等式②得 x<4,因此不等式组的解集为1≤x<4.14.原不等式组可化为:x>-3,x≤3.因此不等式组的解集为-3<x≤3.15.解不等式组的①得 x<1,因为②中的不等式没有解,所以不等式组的解集为 -∞<x<1.16.解不等式①得 x<2,解不等式②得x≥-1,因此不等式组的解集为 -1≤x<2.17.解不等式①得x≥1,解不等式②得1≤x<4,因此不等式组的解集为1≤x<4.18.解不等式①得x≥-1,解不等式②得 x<3,因此不等式组的解集为 -1≤x<3.19.解不等式①得 x<1,解不等式②得x≥-2,因此不等式组的解集为 -2≤x<1.20.解不等式①得 x>-1,解不等式②得x≤4,因此不等式组的解集为 -1<x≤4.21.不等式①的解集为x≥1,不等式②的解集为 x<4,因此原不等式的解集为1≤x<4.22.解不等式①得 x<0,解不等式②得x≥3,因此原不等式无解。

不等式组计算题(含答案)

不等式组计算题(含答案)

不等式组计算题一.解答题(共20小题)1.解一元一次不等式组:533(2)15126x xx x-+>-⎧⎪+-⎨-⎪⎩.2.解不等式组3142944637xxx x+⎧>-⎪⎨⎪++⎩3.解不等式组:2(1)51 3x xxx-<⎧⎪-⎨<+⎪⎩4.解不等式组:3(1)531152x xx x--⎧⎪-+⎨-⎪⎩.5.解不等式组3(1)563x xxx+>-⎧⎪-⎨>⎪⎩.6.解不等式组153742 xxx-<⎧⎪⎨++⎪⎩7.解不等式组:3(2)22123x xxx+->⎧⎪-⎨<+⎪⎩8.解不等式组315213x xxx-<-⎧⎪+⎨->⎪⎩.9.解不等式组:1054(1)1xx+>⎧⎨--<⎩.10.解不等式组:3(1)17212x xxx+>-⎧⎪⎨+-⎪⎩.11.解不等式组:3(1)21 212x xxx-<⎧⎪⎨-+>⎪⎩.12.解一元一次不等式组:317223(1)56xxx x⎧--⎪⎨⎪+>-⎩.13.解不等式组:223434xx x+⎧<⎪⎨⎪--⎩①②.14.解不等式组:351 123x xx->+⎧⎪⎨<⎪⎩15.解不等式组30215xx x-⎧⎨+>--⎩.16.解不等式组:3(2)22 254x xxx-<-⎧⎪⎨+<⎪⎩17.解不等式组:3122(2)5xx x--⎧⎨+<+⎩.18.解不等式组1(1)222323xx x⎧+⎪⎪⎨++⎪⎪⎩.19.解不等式组1123(2)2xx x+⎧⎪⎨⎪->-⎩.20.解不等式组:1122231xx⎧+<-⎪⎨⎪--⎩.不等式组计算题参考答案与试题解析一.解答题(共20小题)1.解一元一次不等式组:533(2)15126x xx x-+>-⎧⎪+-⎨-⎪⎩.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:() 533215126x xx x⎧-+>-⎪⎨+--⎪⎩①②,由①得:98x<,由②得:1x-,则不等式组的解集为1x-.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.2.解不等式组3142944637xxx x+⎧>-⎪⎨⎪++⎩【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:3142944637xxx x+⎧>-⎪⎨⎪++⎩①②,解①得:10x<,解②得:1x,故不等式组的解为:110x<.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.解不等式组:2(1)51 3x xxx-<⎧⎪-⎨<+⎪⎩【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:()21513x xxx⎧-<⎪⎨-<+⎪⎩①②,由①得:2x<,由②得:4x >-,则不等式组的解集为42x -<<.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.4.解不等式组:3(1)531152x x x x --⎧⎪-+⎨-⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集. 【解答】解:解不等式3(1)5x x --,得:1x -, 解不等式31152x x -+-,得:7x -, 则不等式组的解集为71x --.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.解不等式组3(1)563x x x x +>-⎧⎪-⎨>⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的方法部分即可.【解答】解:()31563x x x x ⎧+>-⎪⎨->⎪⎩①②, 由①得:4x >-,由②得:3x <-,则不等式组的解集为43x -<<-.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.6.解不等式组153742x x x -<⎧⎪⎨++⎪⎩ 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式15x -<,得:6x <;解不等式3742x x ++,得:1x , 则不等式组的解集为1x .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.解不等式组:3(2)22123x x x x +->⎧⎪-⎨<+⎪⎩【分析】根据解一元一次不等式组的方法可以解答本题.【解答】解:()3222123x x x x ⎧+->⎪⎨-<+⎪⎩①②, 由不等式①,得2x >,由不等式②,得5x <,故原不等式组的解集是25x <<.【点评】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法.8.解不等式组315213x x x x -<-⎧⎪+⎨->⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式315x x -<-,得:2x <-, 解不等式213x x +->,得:0.5x <-, 则不等式组的解集为2x <-.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.解不等式组:10?54(1)1x x +>⎧⎨--<⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()105411x x +>⎧⎪⎨--<⎪⎩①②, 由①得:1x >-,由②得:2x >,则不等式组的解集为2x >.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.10.解不等式组:3(1)17212x x x x +>-⎧⎪⎨+-⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3117212x x x x +>-⎧⎪⎨+-⎪⎩①②, 由①得:2x >-,由②得:3x ,∴不等式组的解集为23x -<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.解不等式组:3(1)21212x x x x -<⎧⎪⎨-+>⎪⎩. 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3121212x x x x -<⎧⎪⎨-+>⎪⎩①②, 由①得:3x <,由②得:1x >-,则不等式组的解集为13x -<<.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.12.解一元一次不等式组:317223(1)56x x x x ⎧--⎪⎨⎪+>-⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:()317223156x x x x ⎧--⎪⎨⎪+>-⎩①②, 解不等式①得,4x ,解不等式②得,92x <, ∴原不等式组的解集是4x .大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.解不等式组:223434x x x +⎧<⎪⎨⎪--⎩①②.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:4x <,解不等式②,得:0x ,则不等式组的解集为04x <.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.14.解不等式组:351123x x x ->+⎧⎪⎨<⎪⎩ 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式351x x ->+得:3x >, 解不能等式123x <得:6x <, 所以不等式组的解集为36x <<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.解不等式组30215x x x-⎧⎨+>--⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:30,215x x x -⎧⎨+>--⋅⎩①② 解不等式①,得3x ,解不等式②,得2x >-,所以这个不等式组的解集是23x -<.大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.解不等式组:3(2)22254x x x x -<-⎧⎪⎨+<⎪⎩ 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:()3222254x x x x -<-⎧⎪⎨+<⎪⎩①②, 由①得:4x <,由②得:52x >, 则不等式组的解集为542x <<. 【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.解不等式组:3122(2)5x x x --⎧⎨+<+⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式312x --,得:1x -,解不等式2(2)5x x +<+,得:1x <,则不等式组的解集为11x -<.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.解不等式组1(1)222323x x x ⎧+⎪⎪⎨++⎪⎪⎩. 【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1(1)22x +,得:3x , 解不等式2323x x ++,得:0x , 则不等式组的解集为03x .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同第11页(共11页)大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.解不等式组1123(2)2x x x+⎧⎪⎨⎪->-⎩.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式112x +,得:1x , 解不等式3(2)2x x ->-,得:2x >,则不等式组的解集为2x >.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.解不等式组:1122231x x ⎧+<-⎪⎨⎪--⎩.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式1122x +<-,得:6x <-, 解不等式231x --,得:1x ,则不等式组的解集为6x <-.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

一元一次不等式方程组的解法

一元一次不等式方程组的解法

课程要点:一元一次不等式(组)一元一次不等式(组)的解法及其应用题题型一:整数解例1 (2011江苏苏州,6,3分)不等式组30,32x x-⎧⎪⎨<⎪⎩≥的所有整数解之和是( )A 、9B 、12C 、13D 、15考点:一元一次不等式组的整数解.分析:首先求出不等式的解集,再找出符合条件的整数,求其和即可得到答案.解答:由①得:x≥3,由②得:x <6,∴不等式的解集为:3≤x <6,∴整数解是:3,4,5, 所有整数解之和:3+4+5=12.故选B .点评:此题主要考查了一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.练习 1.(2011山东泰安,18 ,3分)不等式组⎩⎨⎧3-x >04x 3+32 >- x 6的最小整数解为( ).A.0B.1C.2D.-1【答案】A(2011•南通)求不等式组的解集,并写出它的整数解.专题:探究型。

分析:分别求出各不等式的解集,再求出其公共解集,并找出其公共解集内x 的整数解即可. 解答:【解】解不等式3x -6≥x -4,得x ≥1.解不等式2x +1>3(x -1),得x <4.所以原不等式组的解集为1≤x <4. 它的整数解为1,2,3.点评:本题考查的是求一元一次不等式组的整数解,熟知解一元一次不等式遵循的法则是解答此题的关键.例2 ①(2011•恩施州14,3分)若不等式x <a 只有4个正整数解,则a 的取值范围是 4<a≤5 .364213(1)x x x x -≥-⎧⎨+>-⎩考点:一元一次不等式的整数解。

分析:首先根据题意确定四个正整数解,然后再确定a 的范围. 解答:解:∵不等式x <a 只有四个正整数解, ∴四个正整数解为:1,2,3,4, ∴4<a≤5,故答案为:4<a≤5,点评:此题主要考查了一元一次不等式的整数解,做此题的关键是确定好四个正整数解.②已知关于x 的不等式x -2a <3的最大整数解-5,求a 的取值范围. 解:x <2a +3,由题意,有-5<2a +3≤-4,-8<2a ≤-7,742a >≥.③关于x 的不等式组2(1)3(2)6,1, 2x x x a--+>-⎧⎪⎨+>⎪⎩①②恰好有两个整数解,求a 的取值范围. 解:由①,得2x -2-3x -6>-6,-x >2,x <-2,由②得x >2-a ,因为恰好有两个整数解-5≤2-a <-4,所以-7≤-a <-6,-7≥a >6.练习 1.关于x 的不等式组121,232,x x x a -+⎧-≤⎪⎨⎪->⎩只有3个整数解,求a 的取值范围.2.关于x 的不等式组2135,20,x x x a -<-⎧⎨-<⎩恰好有4个整数解,求a 的取值范围.题型二:不等式(组)的解集例3 已知不等式13a x ->的每一个解都是21122x -<的解,求a 的取值范围;解:由13a x ->,得x <a -3,由21122x -<得x <1,由题意有:a -3≤1,得a ≤4.点评:注意二者之区别.练习 1.若不等式132x a x a --->的解集与x <6的解集相同,求a 的取值范围.解:由132x a x a --->,得2x -2a -3x +3a >6,-x >6-a ,x <a -6,由题意,有a -6=6,所以a =12.2.(2011山东日照,6,3分)若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( )A .1<a≤7B .a≤7C .a <1或a≥7D .a=7 考点:解一元一次不等式组;不等式的性质。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

1.2.3.4. *解不等式组专项练习60题(有答案)2 (x+1) - 1>34+x<72K- 1>3 (x- 2)-2x<43x+l>x+3二一—.鼻+3>42F<6,X.12.13.14.15.16. x<2x+l:二-二■ :.. 1 .7.x+3>02 (x- 1) +3>3xf3xH<2 (x+2)_劭< 号十29.10.2x+3<x+G"-①:…二.一,,…②-3 (x- 2)<4-7*_ 1 3r4x- 3<5K汀x+2.^1,LrPT冷(计4) <2X- 3(K- 1) >516. 417.19.汨>-3Si - 12<2 (4x - 3)K - 3 (K- 2) <4蝶>_r l - 2 (x- 1) <5_ 2L2^>0 ①2 (s+5) >6 &-1)9<3 (x- 1)11. *2 (x - 3)盂5疋+54x<3x+lX.20.f5x+2>3 (x- 1),①73 -1.②22.3(K- 2) <41+2区、=[—>X - 1[2 (r+2) <x+413⑵30. 已知:2a -3x+ 仁0, 3b -2x - 16=0,且 a 詔< b ,求 爷〉斗⑴40. • 2 3,并把它的解集在5-2 (x- 3) <x- 1 (2)数轴上表示出来.sr+42x " 7号33.已知:a= , b=,并且2b < v a .请求出342x 的取值范围.2<3 (x+1)23. 24. 25. 26. 27. 28. 29. r 2x+5<3 (x+2) r3 (x+2) >x+4© r 2- x>0 5^十1」-」1 ,. ■f - 3Z <4(K +5) 6 b 2 (x+19)- 9x>5[x- 2 (x- 3)] - 2<x+6 Rv - 9 r 2x+2>3x+3®宁诗―② 忌+3 (x- 2) <10 号〉小35.5x - 1<3 (x+1)(3(X- 2) +4<5K37. if - 1—-—_ 耳>3計]fx - 3 (x- 2) >438. 2s- 1 ^.K +i,并把解集在数轴上表示出.5来.一 一: __ •一 -39.已知关于x 、y 的方程组 广 尸亘"的解满足x > yL2x+y=5a> 0,化简 |a|+|3- a|.1 _ 3 (y _ 2) <9- x ②f5K-2>3 (i+l),① 32. r5i - 2<3i+441. x+8\ K >_sflO-4 (x- 3) >2 (x- 1)©- 10<0 34. ' 5x+2>3虽 11 - 2x>l+3x43. ” X - 2~2~^2x+331.x 的取值范围.45.3 (1 - x) A2 (x+9)x- 314I 0.5f2- x>05s±l• 21 .3~-3 (x+l) - (x- 3)<846. ' 2 泄1I 347.关于x、y的二元一次方程组:'-"■,当^2x+y=5ir- 2m为何值时,x> 0, yO.2<3 (x+1)53.54.55.56.48.并将解集表示在数轴上. 57.49.已知关于y的方程组x+y=m+24蜀+5y=6m -3的解是58.对正数,求m的取值范围.x+2y=5a50.已知方程组n cl2x~ 2=5的解满足-x>0y<0化简59.I(x+1) >x (x+3)②- 1 _ 5^+j.52.- 1<3 (x+1)f5x+4<3 (x+1)x - 1 - 1A 52x+7>3x - 1x- 2.br>0r l-2 (x-1) <53x- 2「2r2 (K+2)<3X+3r3x- 1<2 (x+1)x+3、r3x- 2>x+2>-1<743x- l<2x+l1 - 2(K- 1) <3 (K+1)+5解不等式组60题参考答案:fx+3>0®由①得x >- 3;由②得x <1故此不等式组的解集为:2 (x- 1) +3>3x@- 3<5x ①6 _医+ +口<4②,解不等式 ①得x >- 3;解不等式 ②得x <3.所以-3<x <315. 解:由(1)得:x+4 v 4, x v 0 由(2)得:x - 3x+3 > 5, x v - 1「.不等式组解集是: x v - 1x —臂>「3 (1)16.解:'2 ,解不等式(1),得x v 5,解不等式(2),得x 》-2 ,12<2(4K - 3)(2)因此,原不等式组的解集为- 2<v 5.17. 解:由① 得:去括号得,x - 3x+6詔,移项、合并同类项得,- 2x <- 2,化系数为1得,X 》.由② 得:去分母得,1+2x > 3x - 3,移项、合并同类项得,- x >- 4, 化系数为1得,x v 4•••原不等式组的解集为:1<cv 4.1、 解:2 (x+1) - ①4+x<7 ② ,由①得2x 支,即x 昌;由②得x v 3;故不等式组的解集为:1強v 3.2. 解:11^3 (x _ 2) I -2i<4 ②…,由①得:x <5,由②得:x >- 2,不等式组的解集为-2v x <3. 解:触解不等式①,得x > 1.解不等式②,得x v 2.故不等式组的解集为:1v x v 2. 2x- l<x+l ②4. 解:x+f>:D ,解不等式 ①得,x > 1,解不等式 ②得,x v 3,故不等式的解集为:1v x v 3, 曲<6②5. 6. 解不等式 ①,得x<- 2,解不等式 ②,得x >- 3,故原不等式组的解集为- 3v x<- 2,x<2x+l ①,解不等式 ①得:x >- 1,解不等式②得:x <2,不等式组的解集为:-1v x 电, 3x- 2 (s-1) <4@解:7. 8. 解:9. 解: 10•解:r3i+l<2 (a+2;••由①得,x >- 1 ;由②得,x <4,•此不等式组的解集为:(- 9<3 (x- 1)①—V ,(1'解不等式①,得x v 3,解不等式 ②,得x1 .所以原不等式的解集为-1<<v 3. ②解不等式 ① 得:x v 3,解不等式 ② 得:X 》,不等式组的解集是1 < v 311 .解: 12.解: XA 「;由②得,x V 1,故此不等式组的解集为: ■丿• ••此不等式组的解集为: 0 v x <3,13.解:2心-引5+5①,由①得, \^<3i+l ②•••由①得,x <,由②得x >0,(-3 (y- 2) <4- x ①]1+2》:、_ 1②解不等式①,得X 》;解不等式 ②,得x v 4. • 1« v 4.解:14.解: 原不等式组可化为18•解:解不等式 ①,得x>- 1,解不等式 ②,得x v 3 ,•••原不等式组的解集为-1 <x < 3.23•解:解不等式2x+5 <3 (x+2 ),得xA 1解不等式x - 1 <- x ,得x < 3.所以,原不等式组的解集是-324.解:解不等式 ①,得x>- 1,解不等式 ②,得x < 3,•原不等式组的解是-1強< 3. [2- …①,.解不等式①,得x <2,解不等式②,得x I,•不等式组的解集是-1 $ < 2.26. :由不等式 ①得:X%由不等式②得:x < 4原不等式组的解集为 0纟< 427. 解:由不等式①得:2x<8, x<4 .由不等式②得:5x - 2+2 > 2x , 3x > 0, x > 0. •••原不等式组的解集为:0< x <4.31. 解:由① 得:x 电.由② 得:x >- 1.A 不等式组的解集为-1< X 电.5532.解:解不等式 ①,得x >「解不等式②,得x 詔.•••不等式的解集是,< x 詔.33. 解:把a , b 代入得:2严「匕|<¥.化简得:6x - 21<15< 2x+8 .解集为:3.5< x 詬.42 334. 解:解不等式①,得x<2.5,解不等式②,得x >- 1,解不等式③,得x <所以这个不等式组的解集是-1<x 电.35 .解:解不等式①,得x>- 1.解不等式②,得x < 2 .所以不等式组的解集是-1 «< 2.36 .解:由①,得x < 2 .由②,得x A 1 .-•这个不等式组的解集为-1 <« 2. 37.解:由①得:x >- 1由②得:x G -所以解集为-1<x ;'.38. 解:由① 得:-2x>- 2,即 x <,由② 得:4x - 2 < 5x+5,即 x >- 7,所以-7 < x < .19. 解: 解不等式 20. 解: 解不等式 21 . 解:(1)得x < 1解不等式(2)得x A 2所以不等式组的解集为-2纟< 1 . ①,得x >-'.解不等式②,得.所以,不等式组的解集是-2(x- 2) <4®①的解集为X 》②的解集为x < 4原不等式的解集为22. 解: \-3'孚S - 1®解不等式(1),得2x+4 < x+4 , x < 0,不等式(2),得4x 绍x+3 , x 為.•••原不等式无解.1$< 4.25.解:由题意,28. 29. 解: 解: 解不等式①,得 解不等式①,得30. 解: 2< x <- 1. 所以原不等式组的解集为x€.-2/+16b=,x<- 1,解不等式②,得x >- 2,所以不等式组的解集为- x 电.解不等式②,由 2a - 3x+仁0, 3b - 2x - 16=0,可得得 x >-3. 3x - 1a=,•/ a <4< b , /3x - 1 .<4 ,由(1),得 x <3.3 >42 2x+16 由(2),得 x >- 2 .•x 的取值范围是-2< x W .x - y=a+3 ” + x=2a+l,/口39.解:由方程组‘ ,解得- .由 x >y > 0,得,y=a- 2在数轴上表示为:2a+l>a - 2a _ 戈〉0 •解得a >2当 2v a<3 时,|a|+|3- a|=a+3 - a=3; 当 a > 3 时,|a|+|3- a|=a+a - 3=2a - 3. 40.解:由(1 )得x V 8由(2)得,x 羽故原不等式组的解集为 4纟V & 41 •解:由①得2x V 6,即X V 3,由② 得x+8 >- 3x ,即x >- 2,所以解集为-2 V x V 3. 42. 解:(1)去括号得,10 -4x+12丝x -2,移项、合并同类项得,- 6x A 24,解得,x 詔; (2)去分母得,3 (x - 1)> 1 - 2x ,去括号得,3x - 3> 1 - 2x ,移项、合并同类项得, 5x > 4, 化系数为1得,x >'.•••不等式组的解集为: V x 詔.5 5 5 5 43. 解:解第一个不等式得: x V —;解第二个不等式得:xA 12.故不等式组的解集是:-12纟V — 2 244.解:原方程组可化为: 3 - 3xZ>2x+18 -5 (xK) <-14,由("得,x V-3 由(2)得,x » 4根据 小大大小中间找”原则,不等式组的解集为-4$V- 3. 45 •由①得:x V 2,由②得: '-4K <846.整理不等式组得* x A 1 •- 1 纟V 2 . 解之得,x >- 2, x <1 2V x <1 47.解:①+②X 2得,7x=13m - 3,即x=一: --------- ③,把 ③代入②得,2X ; +y=5m - 3, 解得, 9m - 8尸丁 ,48. 49. 50. '13^-379m- 8因为x > 0, y 切,所以,解得 ②,得 -8-7-6-5-4-3-2-10 1 2 3 4 5 解不等式①,得x <:,解不等式 解: 解: (1)当(3)当XA 8.把不等式的解集在数轴上表示出来,如图:所以这个不等式组的解集为-8«< :.nri 13朗〉丄丄,故号V mV 13由2x - 2=5得x=£,代入第一个方程得 4+2y=5a ;贝卩y=T a -「,由于y V 0,贝U a v —: a v- 2 时,原式=-(a+2)- [ -( a - ) ]= - 2 ; (2)当-2V a v 时,原式=a+2 - [ -( a- ) ]=2a+ '; 2 2 2 2 2 1 7 1 1< a v —时,原式=a+2-( a - [) =2 ,;由题意可解得 -时13>0 I 一,解得51.解不等式(1)得:2 - x - 1€x+4- 3x<3 xA 1 2 2解不等式(2),得:x +x > x +3x - 2x > 0x v 0二原不等式组的解集为:-1 <x < 0.52•解不等式(1)得:x > -1解不等式(2),得:x<2 •••原不等式组的解集为:-1 << 2.53. 解①得x < •解②得x 绍,•不等式组的解集为无解.254. 解第一个不等式得 x < 8解第二个不等式得 x 呈■ ! r .: .••原不等式组的解集为:2$< 8.55•解:由 ①得:1 - 2x+2<5「. 2x>- 2 即 x A 1 由②得:3x - 2< 2x+1 • x < 3. •原不等式组的解集为:-1$ < 3.r2K+4<3x+3£59 .解:解不等式 ①,得x < 2 . (2分)解不等式②,得x >- 1. (4 分) 所以,不等式组的解集是-1纟< 2 . ( 5分),一----------- 4 ------- A 11 1>解集在数轴上表示为::5560.解:由①,得x A ,由②,得x < 3,所以不等式组的解集为-強< 3.57•解: r3x- 1<2 (x+1)①弯②,解不等式 ①,得x < 3,解不等式②,得x A 1 ,把不等式的解集在数轴上表示出来, 不等式组的解集是 如图所示. 58.解:由题意,I 2K•原不等式组的解集为1纟< 3〔如-2〉x+2…① 、小 3 金解不等式①得x >2,不等式②X 2得x -2胡4-3X 解得x 詔, —1=S*T -尹■② 56•解:原不等式可化为:即< 4X. _在数轴上可表示为:门•不等式的解集为:1$< 34 4。

不等式方程组的解集计算练习题

不等式方程组的解集计算练习题

不等式方程组的解集计算练习题1. 题目描述:解下列不等式方程组,并将其解集用图像表示出来:a) 3x + 2y ≥ 6x - 2y < 4b) 2x - 3y ≤ 123x + 4y > 10c) 5x + 2y > 86x - 3y ≤ 122. 解答:a) 第一步我们要将每个不等式方程写成一般式:3x + 2y ≥ 6 => y ≥ -3/2x + 3x - 2y < 4 => y > 1/2x - 2首先,我们画出第一个不等式的解集图形:以斜率-3/2和截距3为直线,然后在直线上面的区域上色。

由于不等号是大于等于,因此要将直线上的点也算在解集之中。

接下来,我们画出第二个不等式的解集图形:不等号是大于,因此将直线上的点排除在解集之外。

最后,我们将两个解集的交集即为最终的解集。

图片b) 第一步我们要将每个不等式方程写成一般式:2x - 3y ≤ 12 => y ≥ 2/3x - 43x + 4y > 10 => y > -3/4x + 5/2首先,我们画出第一个不等式的解集图形:以斜率2/3和截距-4为直线,然后在直线下面的区域上色。

由于不等号是小于等于,因此要将直线上的点也算在解集之中。

接下来,我们画出第二个不等式的解集图形:以斜率-3/4和截距5/2为直线,然后在直线上面的区域上色。

由于不等号是大于,因此将直线上的点排除在解集之外。

最后,我们将两个解集的交集即为最终的解集。

图片c) 第一步我们要将每个不等式方程写成一般式:5x + 2y > 8 => y > -5/2x + 46x - 3y ≤ 12 => y ≥ 2x - 4首先,我们画出第一个不等式的解集图形:不等号是大于,因此将直线上的点排除在解集之外。

接下来,我们画出第二个不等式的解集图形:以斜率2和截距-4为直线,然后在直线下面的区域上色。

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)

解不等式组计算专项练习60题(有答案)1.解不等式组专项练60题(附答案)2.解:2x+1≤3x,得x≥1;3x-16≥2x,得x≥16,综合得1≤x<16,即x∈[1,16)。

3.解:|a-1|<1,即-1<a-1<1,解得0<a<2;|a+2|<2,即-2<a+2<2,解得-4<a<-0.5.综合得-4<a<-0.5,0<a<2,即a∈(-4,-0.5)∪(0,2)。

4.解:x+1>0,即x>-1;x-3<0,即x<3,综合得-1<x<3,即x∈(-1,3)。

5.解:x-2≥0,即x≥2;2x+1≤3x-2,得x≥3,综合得x≥3,即x∈[3,∞)。

6.解:x+1>0,即x>-1;2x-3≤x+2,得x≤5,综合得-1<x≤5,即x∈(-1,5]。

7.解:x-3≥0,即x≥3;2x-1≤3x-4,得x≤3,综合得x=3.8.解:x+3>0,即x>-3;x-1≤0,即x≤1,综合得-3<x≤1,即x∈(-3,1]。

9.解:x+1>0,即x>-1;3x-2≤2x+8,得x≤10,综合得-1<x≤10,即x∈(-1,10]。

10.解:x-1≥0,即x≥1;x+2≥0,即x≥-2,综合得x≥1,即x∈[1,∞)。

11.解:x-3<0,即x<3;x-1≥0,即x≥1,综合得x∈(-∞,3)∩[1,∞),即x∈[1,3)。

12.删除此段。

13.解:x-2>0,即x>2;x+1≤0,即x≤-1,综合得x∈(2.-1]。

14.解:x+3≥0,即x≥-3;3x-2≤2x+5,得x≤7,综合得-3≤x≤7,即x∈[-3,7]。

15.解:x+1>0,即x>-1;2x-5≥0,即x≥2.5,综合得x>2.5,即x∈(2.5,∞)。

高中数学不等式解法15种典型例题

高中数学不等式解法15种典型例题

不等式解法15种典型例题例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(<x f )可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.典型例题二例2 解下列分式不等式:(1)22123+-≤-x x ; (2)12731422<+-+-x x x x 分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

含详细解析答案初中数学一元一次不等式组解法练习40道.pdf

初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。

解不等式例题50道

解不等式例题50道

解不等式例题50道一、一元一次不等式1. 解不等式:2x + 5>9- 解析:- 首先对不等式进行移项,将常数项移到右边,得到2x>9 - 5。

- 计算右边式子得2x>4。

- 两边同时除以2,解得x > 2。

2. 解不等式:3x-1<8- 解析:- 移项可得3x<8 + 1。

- 即3x<9。

- 两边同时除以3,解得x<3。

3. 解不等式:5x+3≤slant2x + 9- 解析:- 移项,把含x的项移到左边,常数项移到右边,得到5x-2x≤slant9 - 3。

- 计算得3x≤slant6。

- 两边同时除以3,解得x≤slant2。

4. 解不等式:4x-7≥slant3x+1- 解析:- 移项得4x - 3x≥slant1+7。

- 即x≥slant8。

5. 解不等式:(1)/(2)x+3>x - 1- 解析:- 移项可得(1)/(2)x-x>-1 - 3。

- 通分计算,((1)/(2)-(2)/(2))x>-4,即-(1)/(2)x>-4。

- 两边同时乘以 - 2,不等号变向,解得x < 8。

6. 解不等式:(2)/(3)x-1≤slant(1)/(3)x+2- 解析:- 移项得(2)/(3)x-(1)/(3)x≤slant2 + 1。

- 计算得(1)/(3)x≤slant3。

- 两边同时乘以3,解得x≤slant9。

7. 解不等式:2(x + 3)>3(x - 1)- 解析:- 先展开括号,得到2x+6>3x - 3。

- 移项得2x-3x>-3 - 6。

- 计算得-x>-9。

- 两边同时乘以 - 1,不等号变向,解得x < 9。

8. 解不等式:3(x - 2)≤slant2(x+1)- 解析:- 展开括号得3x-6≤slant2x + 2。

- 移项得3x-2x≤slant2+6。

- 计算得x≤slant8。

20道不等式组带解答过程

20道不等式组带解答过程

20道不等式组带解答过程篇一:不等式组是数学中非常重要的一个概念,用于求解具有不等性质的数列或不等式。

下面列出了20道不等式组题目,并附带解答过程。

1. 某项数列{a1, a2, a3, ...}的公差为2,首项为a1,求该数列的第10个数是多少?2. 已知数列{an}的前n项和为Sn,求数列{bn}的前n项和Sn"。

3. 某项数列{a1, a2, a3, ...}的前n项和为Sn,第n+1个数是a1,求数列{an}的前n+1个数是多少?4. 已知数列{an}的前n项和为Sn,求数列{bn}的前n+1项和Sn"。

5. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

6. 某项数列{an}的前n项和为Sn,第n+1个数是an+1,求数列{bn}的前n+2个数是多少?7. 已知数列{an}的前n项和为Sn,第n+1个数是an+2,求数列{bn}的前n+3个数是多少?8. 已知数列{an}的前n项和为Sn,第n+1个数是an+3,求数列{bn}的前n+4个数是多少?9. 已知数列{an}的前n项和为Sn,第n+1个数是an+4,求数列{bn}的前n+5个数是多少?10. 某项数列{an}的前n项和为Sn,第n+1个数是an+5,求数列{bn}的前n+6个数是多少?11. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

12. 已知数列{an}的前n项和为Sn,第n+1个数是an+6,求数列{bn}的前n+7个数是多少?13. 已知数列{an}的前n项和为Sn,第n+1个数是an+7,求数列{bn}的前n+8个数是多少?14. 某项数列{an}的前n项和为Sn,第n+1个数是an+8,求数列{bn}的前n+9个数是多少?15. 已知数列{an}的前n项和为Sn,第n+1个数是an+9,求数列{bn}的前n+10个数是多少?16. 已知数列{an}的公比为2,首项为a1,求数列{bn}的前n项和。

解不等式(组)

解不等式(组)

2017年03月04日1913457776的初中数学组卷一.解答题(共30小题)1.解不等式:3x﹣5<2(2+3x)2.解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.3.解不等式2x﹣1>,并把它的解集在数轴上表示出来.4.解不等式.5.解不等式:≤﹣1,并把解集表示在数轴上.6.解关于x的不等式:ax﹣x﹣2>0.7.解不等式组:.8.解不等式组,并写出它的所有整数解.9.解不等式组.10.解不等式组.11.解不等式组并在数轴上表示解集.12.解不等式组,并在数轴上表示不等式组的解集.13.解不等式组:.14.求不等式组的解集,并把它们的解集在数轴上表示出来.15.解不等式组:.16.解不等式组:.17.解不等式组:.18.解下列不等式组,并将它的解集在数轴上表示出来..19.解不等式组,并把解集表示在数轴上..20.解不等式组,并把解集在数轴上表示出来..21.解不等式组.22.解不等式组:.23.解不等式组,并把解集在数轴上表示出来.24.解不等式组,并写出它的整数解.25.解不等式组,并写出该不等式组的最大整数解.26.(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.27.解不等式组:,并把解集在数轴上表示出来.28.解不等式组,并写出它的所有非负整数解.29.解一元一次不等式组,并把解在数轴上表示出来.30.已知关于x的不等式组有四个整数解,数a的取值围.2017年03月04日1913457776的初中数学组卷参考答案与试题解析一.解答题(共30小题)1.(2016•)解不等式:3x﹣5<2(2+3x)【解答】解:3x﹣5<2(2+3x),去括号,得3x﹣5<4+6x,移项及合并同类项,得﹣3x<9,系数化为1,得x>﹣3.故原不等式组的解集是:x>﹣3.2.(2015•)解不等式2(x+1)﹣1≥3x+2,并把它的解集在数轴上表示出来.【解答】解:去括号,得2x+2﹣1≥3x+2,移项,得2x﹣3x≥2﹣2+1,合并同类项,得﹣x≥1,系数化为1,得x≤﹣1,这个不等式的解集在数轴上表示为:3.(2016•)解不等式2x﹣1>,并把它的解集在数轴上表示出来.【解答】解:去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,将不等式解集表示在数轴上如图:4.(2016•黄冈)解不等式.【解答】解:去分母得,x+1≥6(x﹣1)﹣8,去括号得,x+1≥6x﹣6﹣8,移项得,x﹣6x≥﹣6﹣8﹣1,合并同类项得,﹣5x≥﹣15.系数化为1,得x≤3.5.(2015•)解不等式:≤﹣1,并把解集表示在数轴上.【解答】解:去分母得,4(2x﹣1)≤3(3x+2)﹣12,去括号得,8x﹣4≤9x+6﹣12,移项得,8x﹣9x≤6﹣12+4,合并同类项得,﹣x≤﹣2,把x的系数化为1得,x≥2.在数轴上表示为:.6.(2015•)解关于x的不等式:ax﹣x﹣2>0.【解答】解:ax﹣x﹣2>0.(a﹣1)x>2,当a﹣1=0,则ax﹣x﹣2>0为空集,当a﹣1>0,则x>,当a﹣1<0,则x<.7.(2016•)解不等式组:.【解答】解:由①得,x<3,由②得,x>1,故不等式组的解集为:1<x<3.8.(2016•)解不等式组,并写出它的所有整数解.【解答】解:由①,得x<2,由②,得x>﹣4,故原不等式组的解集是﹣4<x<2,∴这个不等式组的所有整数解是x=﹣3,﹣2,﹣1,0,1.9.(2016•)解不等式组.【解答】解:解①得x>1,解②得x<3,所以不等式组的解集为1<x<3.10.(2016•)解不等式组.【解答】解:∵,∴解不等式①得:x>2,解不等式②得:x>﹣1,∴不等式组的解集为:x>2.11.(2016•)解不等式组并在数轴上表示解集.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:12.(2016•)解不等式组,并在数轴上表示不等式组的解集.【解答】解:解不等式①可得x<,解不等式②可得x≥﹣1,在数轴上表示出①②的解集如图,∴不等式组的解集为﹣1≤x<.13.(2016•宿迁)解不等式组:.【解答】解:由①得,x>1,由②得,x<2,由①②可得,原不等式组的解集是:1<x<2.14.(2016•)求不等式组的解集,并把它们的解集在数轴上表示出来.【解答】解:,解不等式①得:x<3,解不等式②得:x≥﹣2,则不等式组的解集是:﹣2≤x<3.解集在数轴上表示如下:.15.(2016•)解不等式组:.【解答】解:.由①得x≤1;由②得x<4;所以原不等式组的解集为:x≤1.16.(2016•)解不等式组:.【解答】解:,解①得x<2,解②得x≥﹣1,则不等式组的解集是﹣1≤x<2.17.(2016•)解不等式组:.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.18.(2016•)解下列不等式组,并将它的解集在数轴上表示出来..【解答】解:由①得,x<﹣1,由②得,x≤2,故此不等式组的解集为:x<﹣1在数轴上表示为:19.(2016•威海)解不等式组,并把解集表示在数轴上..【解答】解:由①得:x≥﹣1,由②得:x<,∴不等式组的解集为﹣1≤x<,表示在数轴上,如图所示:20.(2016•)解不等式组,并把解集在数轴上表示出来..【解答】解:,由①得:x≥﹣,由②得:x<4,∴不等式组的解集为﹣≤x<4,21.(2016•)解不等式组.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.22.(2016•)解不等式组:.【解答】解:解不等式5x+2≥3(x﹣1),得:x≥﹣,解不等式1﹣>x﹣2,得:x<,故不等式组的解集为:﹣≤x<.23.(2016•)解不等式组,并把解集在数轴上表示出来.【解答】解:,解①得x≤1,解②得x>﹣3,,不等式组的解集是:﹣3<x≤1.24.(2016•)解不等式组,并写出它的整数解.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.25.(2016•)解不等式组,并写出该不等式组的最大整数解.【解答】解:解不等式①得,x≥﹣2,解不等式②得,x<1,∴不等式组的解集为﹣2≤x<1.∴不等式组的最大整数解为x=0,26.(2015•)(1)解不等式:2(x﹣3)﹣2≤0(2)解方程组:.【解答】解:(1)去括号,得:2x﹣6﹣2≤0,移项,得:2x≤6+2,合并同类项,得:2x≤8,两边同乘以,得:x≤4;∴原不等式的解集为:x≤4.(2)由②得:2x﹣2y=1③,①﹣②得:y=4,把y=4代入①得:x=,∴原方程组的解为:27.(2015•)解不等式组:,并把解集在数轴上表示出来.【解答】解:,由不等式①移项得:4x+x>1﹣6,整理得:5x>﹣5,解得:x>﹣1,…(1分)由不等式②去括号得:3x﹣3≤x+5,移项得:3x﹣x≤5+3,合并得:2x≤8,解得:x≤4,…(2分)则不等式组的解集为﹣1<x≤4.…(4分)在数轴上表示不等式组的解集如图所示,…(6分)28.(2015•)解不等式组,并写出它的所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.29.(2015•)解一元一次不等式组,并把解在数轴上表示出来.【解答】解:由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:30.(2016•呼和浩特)已知关于x的不等式组有四个整数解,数a的取值围.【解答】解:解不等式组,解不等式①得:x>﹣,解不等式②得:x≤a+4,∵不等式组有四个整数解,∴不等式组的解集再数轴上表示为:∴1≤a+4<2,解得:﹣3≤a<﹣2.。

不等式组的练习题及答案

不等式组的练习题及答案

不等式组的练习题及答案不等式组是数学中的一个重要概念,它涉及到多个不等式的组合和求解。

以下是一些不等式组的练习题及其答案,供学生练习和教师参考。

练习题1:解不等式组:\[ \begin{cases}x + 2 > 0 \\3 - x \geq 0\end{cases} \]答案:首先解第一个不等式 \( x + 2 > 0 \),得到 \( x > -2 \)。

接着解第二个不等式 \( 3 - x \geq 0 \),得到 \( x \leq 3 \)。

综合两个不等式的解,不等式组的解集是 \( -2 < x \leq 3 \)。

练习题2:若不等式组:\[ \begin{cases}x - 5 \leq 7 \\2x + 1 > 10\end{cases} \]求 \( x \) 的取值范围。

答案:解第一个不等式 \( x - 5 \leq 7 \),得到 \( x \leq 12 \)。

解第二个不等式 \( 2x + 1 > 10 \),得到 \( x > 4.5 \)。

不等式组的解集是 \( 4.5 < x \leq 12 \)。

练习题3:解不等式组:\[ \begin{cases}3x - 1 \geq 5 \\x + 4 < 7\end{cases} \]答案:解第一个不等式 \( 3x - 1 \geq 5 \),得到 \( x \geq 2 \)。

解第二个不等式 \( x + 4 < 7 \),得到 \( x < 3 \)。

不等式组的解集是 \( 2 \leq x < 3 \)。

练习题4:若不等式组:\[ \begin{cases}-3x + 2 \leq 4 \\5 - 2x > 3x - 5\end{cases} \]求 \( x \) 的解集。

答案:解第一个不等式 \( -3x + 2 \leq 4 \),得到 \( x \geq -\frac{2}{3} \)。

初中不等式计算题

初中不等式计算题

初中不等式计算题一、不等式计算题1. 解不等式2x - 1 > 3- 解析:- 首先对不等式进行求解,将-1移到右边得到2x>3 + 1。

- 即2x>4,两边同时除以2,解得x > 2。

2. 解不等式3x+2≤slant8- 解析:- 先将2移到右边,得到3x≤slant8 - 2。

- 即3x≤slant6,两边同时除以3,解得x≤slant2。

3. 解不等式(x)/(2)+1<3- 解析:- 先将1移到右边,得到(x)/(2)<3 - 1。

- 即(x)/(2)<2,两边同时乘以2,解得x < 4。

4. 解不等式4 - (x)/(3)≥slant2- 解析:- 先将4移到右边,得到-(x)/(3)≥slant2 - 4。

- 即-(x)/(3)≥slant - 2,两边同时乘以-3,注意此时不等号方向要改变,解得x≤slant6。

5. 解不等式2(x - 1)+3>5- 解析:- 先展开括号得到2x-2 + 3>5。

- 即2x + 1>5,将1移到右边得到2x>5 - 1。

- 即2x>4,两边同时除以2,解得x > 2。

6. 解不等式3(x+2)-1≤slant8- 解析:- 先展开括号得到3x+6 - 1≤slant8。

- 即3x + 5≤slant8,将5移到右边得到3x≤slant8 - 5。

- 即3x≤slant3,两边同时除以3,解得x≤slant1。

7. 解不等式(2x - 1)/(3)<1- 解析:- 两边同时乘以3得到2x-1<3。

- 将-1移到右边得到2x<3 + 1。

- 即2x<4,两边同时除以2,解得x < 2。

8. 解不等式(3x+2)/(2)≥slant4- 解析:- 两边同时乘以2得到3x+2≥slant8。

- 将2移到右边得到3x≥slant8 - 2。

20道不等式组带解答过程

20道不等式组带解答过程

20道不等式组带解答过程篇一:不等式组是数学中一种基本的不等式表达方式,其可以用于求解各种数学问题。

下面,我们将提供20道不等式组题目,并给出解答过程。

正文:1. 某项工程,甲队单独完成需要60天,乙队单独完成需要50天,两队合作完成需要多少天?解答:甲队每天完成工程的1/60,乙队每天完成工程的1/50。

因此,两队合作完成需要的天数为:(1/60 + 1/50) * 2 = 14/100 * 2 = 28/100因此,需要28天才能完成这项工程。

2. 某项工程,甲队每天完成工程的1/12,乙队每天完成工程的1/15,两队合作完成需要多少天?解答:甲队每天完成工程的1/12,乙队每天完成工程的1/15。

因此,两队合作完成需要的天数为:(1/12 + 1/15) * 2 = 5/30 * 2 = 11/60因此,需要11天才能完成这项工程。

3. 某项工程,甲队每天完成工程的1/8,乙队每天完成工程的1/10,两队合作完成需要多少天?解答:甲队每天完成工程的1/8,乙队每天完成工程的1/10。

因此,两队合作完成需要的天数为:(1/8 + 1/10) * 2 = 3/20 * 2 = 3/50因此,需要3天才能完成这项工程。

4. 某项工程,甲队每天完成工程的1/16,乙队每天完成工程的1/20,两队合作完成需要多少天?解答:甲队每天完成工程的1/16,乙队每天完成工程的1/20。

因此,两队合作完成需要的天数为:(1/16 + 1/20) * 2 = 5/40 * 2 = 11/80因此,需要11天才能完成这项工程。

5. 某项工程,甲队每天完成工程的1/15,乙队每天完成工程的1/22,两队合作完成需要多少天?解答:甲队每天完成工程的1/15,乙队每天完成工程的1/22。

因此,两队合作完成需要的天数为:(1/15 + 1/22) * 2 = 7/66 * 2 = 13/111因此,需要13天才能完成这项工程。

初一不等式经典例题

初一不等式经典例题

初中不等式经典例题例1 解方程组(1)⎪⎩⎪⎨⎧=-+==(2) 5434(1)432z y x z y x (2)⎪⎩⎪⎨⎧=++=++=++(3) 201633(2)143163(1) 103316z y x z y x z y x 分析:第一个方程组的(1)式是一个连比式,对于连比式常用连比设k 法来解决。

第二个方程组的各式系数较大,直接用代入消元或加减消元比较繁,观察这个方程组的特点,将三式相加可得x+y+z ,然后再用三式去分别减可得x 、y 、z 的值。

解:(1)设k z k y k x k zy x 4,3,2432======,则,代入(2)得k=5∴x=10,y=15,z=20 ∴原方程组的解为⎪⎩⎪⎨⎧===201510z y x(2) (1)+(2)+(3)得22 (x+y+z)=44,所以x+y+z=2 所以3 (x+y+z)=6 (4)(1)-(4)得13x=4,则x=134 (2)-(4)得13y=8,则y=138 (3)-(4)得13z=14,则z=1314 所以原方程组的解为⎪⎪⎪⎩⎪⎪⎪⎨⎧===1314138134z y x评注:解方程组时,应对方程组的整体结构进行分析,从整体上把握解题方向。

例2 已知关于x ,y 的二元一次方程 (a-1) x+(a+2) y+5-2a=0,当a 每取一个值时就有一个方程,而这些方程有一个公共解。

你能求出这个公共解,并证明对任何a 值它都能使方程成立吗?分析1:将已知方程按a 整理得(x+y-2)a=x-2y-5,要使这些方程有一个公共解,说明这个解与a 的取值无关,所以只须a 的系数x+y-2=0即可。

解法1:将方程按a 整理得:(x+y-2)a=x-2y-5,∵这个关于a 的方程有无穷多个解,所以有由于x 、y 的值与a 的取值无关,所以对于任何的a 值,方程组有公共解⎩⎨⎧-==13y x分析2:分别取a=1和-2得方程3y+3=0和-3x+9=0,因a 取不同的值,所得方程有一个公共解,所以这个公共解就是方程组⎩⎨⎧=+-=+093033x y 的解。

一元一次不等式(组)计算类练习(带解析)

一元一次不等式(组)计算类练习(带解析)

一元一次不等式(组)计算类练习(带解析)1.解不等式组.2.解不等式:.2.解不等式(组):(1)解不等式2x+3>7;(2)解不等式组.3.解下列不等式(组):(1)3x﹣4>2;(2).5.解下列一元一次不等式组,并把不等式组的解在数轴上表示出来.6.解不等式(组):(1)2x+3>﹣5;(2).7.解不等式组并把解集在数轴上表示出来.8.解不等式组:.9.解下列不等式(组):(1)2x﹣1>x﹣3;(2).10.解下列不等式(组):(1)3x﹣6≥x;(2).11.解下列不等式(组):(1)5x+3<3(2+x)(2)12.解不等式组,并求出它的非负整数解.13.解下列不等式(组),并把解集在数轴上表示出来.(1)解不等式:5x+3<3(2+x).(2)解不等式组:.14.求不等式组的最大整数解.15.解不等式组,并将解集在数轴上表示出来.16.求不等式组的正整数解.17.解不等式组,并把解集在数轴上表示.18.解不等式组:,并把解集在数轴上表示出来.19.解不等式(组):(1);(2).19.(1)解不等式≥1;(2)解不等式组.21.解一元一次不等式组,并把解表示在数轴上.22.解不等式组:.23..24..25.解不等式(组),并把解集在数轴上表示出来.(1)1+2(x﹣1)≤5;(2).26.解下列不等式和不等式组:(1)2(x+1)>3x﹣4;(2).27.解下列不等式(组):(1)10﹣5(2x﹣1)≥3﹣x;(2).28.(1)解不等式;(2)解不等式组:,并把它的解集在数轴上表示出来.29.解不等式组,并写出它所有的整数解.30.解不等式组:,并把不等式组的解集表示在数轴上.31.解不等式组:,并求出不等式组的整数解.32.解不等式组.33.解不等式组,并写出它的所有整数解.34.解不等式组,并写出这个不等式组的非负整数解.35.解不等式组:,并写出它的最大整数解.36.解不等式组.(1)将不等式组的解集在数轴上表示出来;(2)求出最小整数解与最大整数解的和.。

不等式解法练习题

不等式解法练习题

不等式解法练习题一、简单不等式解法练习题:1. 解不等式:2x - 5 > 3解:首先将不等式转化为简单形式,得到 2x > 8。

然后除以2,得到 x > 4。

所以解集为 x ∈ (4, +∞)。

2. 解不等式:3(x - 1) + 2 > 5x解:首先展开括号,得到 3x - 3 + 2 > 5x,再整理得到 -3 - 5x > -3x,即 2x > 0,所以解集为 x ∈ (0, +∞)。

二、复合不等式解法练习题:1. 解不等式组:2x - 3 > 6,5 - x ≤ 8解:首先解第一个不等式,得到 2x > 9,即 x > 4.5。

然后解第二个不等式,得到 -x ≤ 3,即x ≥ -3。

综合起来,解集为 x ∈ [-3, +∞)。

2. 解不等式组:3x + 1 > 4,x - 2 < 5解:首先解第一个不等式,得到 3x > 3,即 x > 1。

然后解第二个不等式,得到 x < 7。

综合起来,解集为 x ∈ (1, 7)。

三、绝对值不等式解法练习题:1. 解不等式:|2x - 3| ≤ 5解:首先分别考虑两种情况,即 2x - 3 ≥ 0 和 2x - 3 < 0。

当 2x - 3 ≥ 0 时,不等式可以简化为 2x - 3 ≤ 5,解得x ≤ 4。

当 2x - 3 < 0 时,不等式可以简化为 3 - 2x ≤ 5,解得x ≥ -1。

综合起来,解集为 x ∈ [-1, 4]。

2. 解不等式:|3x - 2| > 4解:首先分别考虑两种情况,即 3x - 2 ≥ 0 和 3x - 2 < 0。

当 3x - 2 ≥ 0 时,不等式可以简化为 3x - 2 > 4,解得 x > 2。

当 3x - 2 < 0 时,不等式可以简化为 2 - 3x > 4,解得 x < -2/3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档